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ABSTRACT

Machine unlearning enables users to remove the influence of their data from
trained models, thus protecting their privacy. However, it is paradoxical that
most unlearning methods require users first to upload their to-be-removed data
to machine learning servers and notify the servers of their unlearning intentions
to prepare appropriate unlearning methods. Both unlearned data and unlearning
intentions are sensitive user information. Exposing this information to the server
for unlearning operations conflicts with the privacy protection goal. In this paper,
we investigate the challenge of implementing unlearning without exposing erased
data and unlearning intentions to the server. We propose an Oblivious Unlearn-
ing by Learning (OUbL) approach to address this privacy-preserving machine un-
learning problem. In OUbL, the users construct a new dataset with synthesized
unlearning noise, ensuring that once the server incrementally updates the model
using the original learning algorithm based on this dataset, it can implement un-
learning. The server does not need to perform any tailored unlearning operation
and remains unaware that the constructed samples are for unlearning. As a result,
the process is oblivious to the server regarding unlearning intentions. Addition-
ally, by transforming the original erased data into unlearning noise and distributing
this noise across numerous auxiliary samples, our approach protects the privacy
of the unlearned data while effectively implementing unlearning. The effective-
ness of the proposed OUbL method is evaluated through extensive experiments
on three representative datasets across various model architectures and four main-
stream unlearning benchmarks. The results demonstrate the significant superior-
ity of OUbL over the state-of-the-art privacy-preserving unlearning benchmarks
in terms of both privacy protection and unlearning effectiveness.

1 INTRODUCTION

Machine unlearning enables users to exercise the right to remove the influence of specific data
samples from trained machine learning (ML) models, thereby protecting user privacy. Paradoxically,
while the goal of machine unlearning is to protect user privacy, most unlearning methods necessitate
that users upload their specified data to the ML server as a prerequisite for executing the unlearning
process (Bourtoule et al., 2021; Warnecke et al., 2023). Additionally, users must inform the server
that the uploaded data are intended for unlearning purposes, enabling the server to prepare and
execute the corresponding unlearning methods and operations (Thudi et al., 2022; Hu et al., 2024b).

However, these requirements expose the privacy of users’ unlearning data and intentions, rendering
existing unlearning methods impractical in privacy-sensitive scenarios. In privacy-preserving ML
contexts, such as those described in (Cao et al., 2021; Bonawitz et al., 2017; Sun et al., 2022;
Naseri et al., 2022), the server is restricted from accessing individuals’ data due to privacy concerns.
Moreover, modifying the original learning algorithms is challenging in these contexts, as most ML
models are trained using secure mechanisms like federated learning (FL) (Cao et al., 2021; Naseri
et al., 2022) or secure multi-party computation (MPC) (Mohassel & Zhang, 2017; Knott et al.,
2021). Additionally, even if the erased samples are protected, exposing unlearning intentions can
allow adversaries to conduct inversion attacks targeted at unlearning updates (Hu et al., 2024a; Chen
et al., 2021; Zhang et al., 2023). Exposing erased data and unlearning intentions to ML servers
for unlearning contradicts the privacy-preserving frameworks’ requirements (Naseri et al., 2022;
Bonawitz et al., 2017; Cao et al., 2021) and undermines the fundamental purpose of the right to
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be forgotten (Liu et al., 2022b; Dang, 2021). Therefore, a privacy-preserving machine unlearning
service is crucial and necessary, and we explore the following question: “Is it possible to achieve
machine unlearning without revealing users’ erased data and unlearning intentions to the server?”

Motivation. Machine learning models can be regarded as mappings of the training data (Goodfellow
et al., 2016; Shalev-Shwartz & Ben-David, 2014). Consequently, altering the training data can
change the model’s performance, such as poisoning and backdooring methods (Lin et al., 2020;
Zeng et al., 2023; Tramèr et al., 2022; Liu et al., 2022a), data “unlearnable” methods (Fu et al.,
2022; Sandoval-Segura et al., 2022), and adversarial attacks (Kang et al., 2024; Madry et al., 2018;
Zhou et al., 2023). Inspired by these works, we investigate the construction of a synthetic dataset
with unlearning noise that ensures the unlearning effect when the server updates the model based
on the constructed dataset. Since the model update uses only the original learning algorithms, users
do not need to inform the server to prepare specific unlearning operations, thereby protecting the
privacy of unlearning intentions.

In this paper, we begin by reformulating the privacy-protection unlearning problem as an oblivi-
ous unlearning by learning problem to investigate the research question. We propose an Oblivious
Unlearning by Learning (OUbL) strategy to address this problem. The goal is to synthesize a new
dataset that includes both clean samples and unlearning noise-injected auxiliary samples. The un-
learning effect is achieved when the server updates the model using the original learning algorithm
on the synthesized dataset. The implementation of OUbL hinges on two key aspects: (1) precisely
estimating the unlearning model update as the target for unlearning noise generation, using only the
information of the unlearning user, and (2) designing an efficient method to generate the unlearning
noise for the auxiliary dataset to achieve the desired unlearning effect. Specifically, we first propose
an efficient unlearning update estimation method based on Hessian-vector products, which samples
only the data of the unlearning user, ensuring that users can calculate it efficiently by themselves.
Second, we generate the unlearning noise through gradient matching, i.e., finding the noise-injected
data with gradients update similar to the estimated unlearning update. We propose an unlearning
noise descent method to efficiently synthesize the noise, treating the noise matrix as an input layer
and fixing the entire model, thereby only calculating the gradient for the noise layer for the update.

We conducted extensive experiments on three representative datasets and compared our method
with four mainstream unlearning benchmarks to evaluate both privacy protection and unlearning
effectiveness. To assess privacy protection, we performed unlearning inversion attacks (Hu et al.,
2024a; Zhang et al., 2023) to reconstruct the erased samples across different unlearning methods,
comparing their reconstruction similarity to demonstrate the privacy protection effect. A lower re-
construction similarity indicates better privacy protection. For evaluating unlearning effectiveness,
we employed a prevalent data removal verification method, MIB (Hu et al., 2022). The experimen-
tal results demonstrate that OUbL offers superior privacy protection and unlearning effectiveness
compared to existing privacy-preserving unlearning methods (Wang et al., 2023; Liu et al., 2022b).
In comparison with state-of-the-art unlearning methods without privacy protection (Bourtoule et al.,
2021; Nguyen et al., 2020), OUbL incurs only a slight trade-off in model utility.

Our contributions are summarized as follows:

• To the best of our knowledge, this paper is the first to identify the privacy threats posed by the
exposure of both unlearning intentions and unlearned data during machine unlearning processes.
It highlights the paradox of the existing unlearning methods that require unlearning users to upload
raw data and inform the server to prepare customized unlearning algorithms, which conflicts with
the original privacy-protection goal of the right to be forgotten.

• We propose an OUbL approach to protect unlearned data and unlearning intentions during ma-
chine unlearning processes. OUbL contributes a precise unlearning updates estimation method
and an efficient unlearning noise generation method to ensure the unlearning effect when the
server updates the model using the original learning algorithm based on the constructed dataset.

• We conducted extensive experiments to compare OUbL with exact and approximate unlearning
methods, with and without privacy protection. The results validate OUbL’s superiority in terms
of privacy protection and unlearning effectiveness over existing privacy-preserving methods, with
only a slight trade-off in model utility compared to unlearning methods without privacy protection.

• The source code and the artifact of the OUbL is released at https://anonymous.4open.
science/r/OUL-55F6, which creates a new tool for protecting the privacy of erased data and
unlearning intentions during machine unlearning processes.
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2 PRELIMINARY AND PROBLEM STATEMENT

To facilitate the understanding of the privacy-preserving machine unlearning problem, we first in-
troduce the mainstream process of unlearning. A detailed discussion about the “Related Work” of
machine unlearning is presented in Appendix A.

Machine Unlearning. The unlearning process typically includes the following phases: (1) The
server trained a model with parameters θo derived from dataset D. (2) The user uploads the dataset
Du for which they request unlearning to the server, indicating the data to be erased from the model.
(3) Upon receiving the unlearning request, the server executes an unlearning algorithm U to remove
the contributions of Du from θo, resulting in an unlearned model θD\Du

, also denoted as θu.

Note that this is a standard machine unlearning process without privacy protection, which exposes
both the unlearning intentions and the erased data to the server in phases (2) and (3). To protect
the privacy of erased samples and unlearning intentions, it is necessary to modify phases (2) and
(3). These modifications should ensure that unlearning can be implemented without exposing Du

to the server and without informing the server of the unlearning intention, needing to eliminate the
dependence on specified unlearning algorithms.

One primary challenge is the need to eliminate reliance on tailored unlearning methods from the
server, thereby avoiding the exposure of unlearning intentions. Given that the server is aware of
the original learning algorithmA and that model updates are a reasonable requirement in real-world
scenarios (Kirkpatrick et al., 2017; Wu et al., 2019; Wang et al., 2022), we pose the question: Can we
achieve unlearning through incremental learning to prevent the server from detecting unlearning in-
tentions? In addition to protecting unlearning intentions by solely executing incremental learning, a
privacy-preserving mechanism C is necessary to safeguard the erased data. Furthermore, the scheme
should not come at the cost of significant model utility degradation. Therefore, we formulate the
privacy-preserving unlearning problem into an oblivious unlearning by learning problem as follows.
Problem Statement (Oblivious unlearning by learning). Suppose the ML server has an original
trained model θo, trained using algorithm A on dataset D. Let the unlearning user possess the
unlearned dataset Du = (Xu, Yu), where Du ⊂ D. Oblivious unlearning by learning aims to (1)
protect the privacy of the unlearned data Du by designing a mechanism C(Da, Du) → Dp

a that
conceals the erased data as unlearning noise on users’ new updating auxiliary dataset Da, and (2)
protect the privacy of unlearning intentions by achieving the unlearning effect through incrementally
updating the model θo using the original learning algorithm A on Dp

a. To preserve model function-
ality, the incrementally updated model should attain a similar model utility as traditional unlearning
algorithms U , i.e.,

U(θo, Du, D) ≈ A(θo, C(Da, Du)). (1)

To solve the Eq. (1), since the learning algorithm A and the unlearned data are fixed, our focus
shifts to designing the dataset construction mechanism C. This mechanism must effectively protect
the privacy of Du and ensure the desired unlearning effect using the constructed dataset C(Da, Du)
during model updating.

3 OBLIVIOUS UNLEARNING BY LEARNING (OUBL)

3.1 BASIC IDEA AND OVERVIEW OF OUBL

Assume we have an unlearned model θu and the original trained model θo. The unlearning update
is given by ∆θDu

= θu − θo. When we update a model based on a new dataset, such as Dp
a =

C(Da, Du), we have θ ← θo−∇`(Dp
a; θo). To achieve unlearning based on the incremental learning

update, we must ensure that:

θu = θo−
1

P

∑
(x,y)∈Dp

a

∇`((x, y); θo), where
1

P

∑
(x,y)∈Dp

a

∇`((x, y); θo) = −∆θDu , (2)

and P is the size of Dp
a. If we can construct a dataset Dp

a meets the requirement of Eq. (2), we
can achieve the oblivious machine unlearning by learning, guaranteeing (a) the erased data is hidden
from the server as it has not been used in the update, and (b) the unlearning intention is hidden to the
server as there is no unlearning request, just normal model update. However, to achieve the oblivious
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Figure 1: The main process of OUbL includes three components. First, the unlearning user estimates
the influence IDu

of unlearning the erased data from the trained model. Second, the user customizes
the noise for an auxiliary dataset such that incrementally training the model based on the synthesized
auxiliary dataset Dp

a can effectively unlearn the erased data. Third, the unlearning user prepares a
clean dataset Dc to preserve the model utility and uploads both the clean and synthesized auxiliary
datasets to the server for incremental learning, thereby achieving the unlearning effect.

unlearning effect, there are two main challenges: (1) it is hard to achieve a precise unlearning model
update before we execute the unlearning procedure with the above restriction; (2) even if we achieve
the unlearning update, it is challenging to construct the dataset so that the server can incrementally
update based on the constructed dataset to achieve the unlearning effect.

Overview of OUbL. We propose an approach called OUbL to overcome the aforementioned chal-
lenges. The main process of OUbL, illustrated in Figure 1, comprises three key components: un-
learning update estimation, generating unlearning noise to synthesize auxiliary data, and unlearning
by learning training with utility compensation.

3.2 UNLEARNING UPDATE ESTIMATION

Many existing approximate unlearning methods first estimate the unlearning influence and then
reduce the estimated unlearning influence from the trained model for unlearning (Guo et al., 2020;
Sekhari et al., 2021; Liu et al., 2022b). A representative unlearning influence estimation method
involves the use of a Hessian matrix-based approximation, which can be described as follows:

∆θDu = θD\Du − θo ' I(1)(Du) =
1

n−mH−1
θo

∑
(xu,yu)∈Du

∇`((xu, yu); θo), (3)

where H−1θo denotes the inverse of the Hessian matrix evaluated at θo on the dataset D\Du, n is
the size of D, and m is the size of Du. ∇` denotes the gradients of the learning algorithm with
loss function `, and I(1)(Du) denotes the estimated first-order influence of the unlearning data Du.
Eq. (3) is commonly used in (Guo et al., 2020; Sekhari et al., 2021; Liu et al., 2022b).

However, studies (Guo et al., 2020; Sekhari et al., 2021; Liu et al., 2022b) calculate Eq. (3) with
the assistance of the entire remaining dataset, which is prohibited in privacy-concerning scenarios.
In our setting, the unlearning user cannot access the entire training dataset D; they can only access
their own dataset. Moreover, forming and inverting the Hessian of the empirical risk H−1θo requires
O(np2 + p3) operations, as the original dataset contains n samples and θo ∈ Rp. This computation
is too expensive for large neural networks.

We propose an efficient unlearning update estimation (EUUE) method to overcome the aforemen-
tioned challenges by using Hessian-vector products (HVPs) to directly approximate the unlearning
update H−1θo

∑
(xu,yu)∈Du

∇`((xu, yu); θo). This idea is inspired by (Agarwal et al., 2016; Koh &
Liang, 2017). It requires only the assistance of the erased samples and a few clean training samples
of the unlearning user, ensuring that the user can calculate it. For clarity, we drop the θo subscript.
We employ an estimator that samples a single point per iteration for a fast Hessian matrix calcu-
lation. Let H−1j

def
=

∑j
i=0(I − H)i be the first j terms in the Taylor expansion of H−1, where I

is the identity matrix. We can rewrite this recursively as H−1j = I + (I − H)H−1j−1. From the
validity of the Taylor expansion, H−1j → H−1 as j → ∞. We can substitute the full H with a

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

draw from any unbiased estimator of H to form H̃−1j at each iteration. We have E[H̃−1j ] → H−1

as E[H̃−1j ] = H−1j . The detailed process of EUUE is presented in Algorithm 2 in Appendix B.

3.3 GENERATING UNLEARNING NOISE FOR AUXILIARY DATASET

Having achieved the estimated unlearning update ∆θDu
from the above process, we can reformu-

late the condition of Eq. (2) for noise synthesis. Instead of directly synthesizing the dataset, we
generate noise for a normal update dataset. This approach avoids generating samples that signifi-
cantly differ from the original data, which could harm the model’s utility. Assume we now have an
auxiliary dataset Da : (Xa, Ya). We add the noise ∆p to Da, resulting in Dp

a = (Xa + ∆p, Ya),
ensuring that the model update is similar to the update for unlearning. Specifically, we need to sat-
isfy 1

P

∑
(x,y)∈Dp

a
∇`((x, y); θo) + ∆θDu = 0 according to Eq. (2), which can be reformulated as

follows for finding suitable noise.

min
∆p
‖( 1

P

∑
(xi,yi)∈Da

∇`((xi + ∆p
i , yi); θo) + ∆θDu‖, s.t. ∆p ∈ arg min

θ

1

N

∑
i≤N

`((xi + ∆p
i , yi); θ),

(4)where N is the size of D \Du ∪Da, and the value of ∆θDu is estimated according to Eq. (3).

Noise Synthesis by Gradient Matching. Our objective is to find noise ∆p such that, when the
model is trained on the noise-synthesized auxiliary samples Dp

a, it minimizes the two losses in
Eq. (4), thus making the model unlearn the erased samples. However, directly solving Eq. (4) is
computationally intractable due to the bilevel nature of the optimization objective. Instead, one may
implicitly minimize the unlearning update by finding suitable ∆p such that for any model parameter
θ, the following condition is satisfied:

∆θDu ≈ −
1

P

∑
(xi,yi)∈Da

∇θ`((xi + ∆p
i , yi); θ). (5)

If we can enforce Eq. (5) to hold for any θ during training, then the gradient steps that minimize the
training loss on the synthesized auxiliary data will also minimize the unlearning target, satisfying
1
P

∑
(x,y)∈Dp

a
∇`((x, y); θo) + ∆θDu

= 0. Unfortunately, calculating ∆p that satisfies Eq. (5) is
also intractable as it is required to hold for all values of θ. In our setting, the unlearning user cannot
access θ for samples in the remaining dataset D \Du. One possible solution proposed in (Geiping
et al., 2021; Di et al., 2022) is to relax Eq. (5) to be satisfied for a fixed model — the model obtained
by training on the original dataset. We assume a well-trained model θo before unlearning and fix it
during unlearning noise generation. Then, we can minimize the loss based on the cosine similarity
between the two gradients as:

φ(∆p, θo) = 1−
〈∆θDu ,− 1

P

∑P
i=1∇θ`((xi + ∆p

i , yi); θo)〉
‖∆θDu

‖ · ‖ − 1
P

∑P
i=1∇θ`((xi + ∆p

i , yi); θo)‖
. (6)

Geiping et al. (Geiping et al., 2021) use R restarts, usually R ≤ 10, to increase the robustness of
noise synthesis. Using this scheme, we can also find suitable noise for unlearning. However, it is
not always effective because we cannot always achieve satisfactory random noise within 10 restarts.
To address this issue, we propose an unlearning noise descent strategy.

Algorithm 1: Unlearning Noise Descent (UND)

Input: Trained model θo, unlearning update estimate ∆θDu , auxiliary dataset Da
Output: The synthesized data with the unlearning noise, Dp

a = (Xa + ∆p, Ya)
1 procedure UND(θo, ∆θDu , Da):
2 ∆p

1 ← N (0, 1) B Initialize unlearning noise.
3 for i← 1 to n do
4 Xp

a,i ← Xa + ∆p
i B Add the noise to data.

5 ∇θo,i ← ∇θ`((Xp
a,i, Ya); θo,i) B Compute gradients.

6 φi ← Sim(∆θDu ,∇θo,i) B Compute similarity using Eq. (6).
7 ∆p

i+1 ← ∆p
i − η∇∆p(φi) B Update noise to match gradients.

8 return Da,p = (Xa + ∆p
n+1, Ya)

5
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Unlearning Noise Descent. Algorithm 1 synthesizes unlearning noise to create a perturbed dataset
Da,p = (Xa + ∆p, Ya). Firstly, we generate a noise matrix ∆p as shown in line 1 of Algorithm 1
and treat it as parameters that could be updated during optimization. Then, during optimization, we
fix the trained model parameters θo and add the noise to the auxiliary data Da as the input to the
model (line 4). We calculate the gradients of the noise-synthesized data based on the current model
point but do not update the model (line 5). Moreover, we calculate the minimization loss according
to Eq. (6) (line 6). With this loss, we can use the gradient descent method for both the model and
the unlearning noise matrix, but we only update the noise matrix ∆p while keeping the model θo
fixed (line 7). After a few rounds of iteration, we can synthesize sufficient unlearning noise to the
auxiliary data to achieve the unlearning effect.

3.4 OBLIVIOUS UNLEARNING GUARANTEE AND UTILITY PRESERVATION

Oblivious Unlearning Guarantee by Incremental Learning. Can gradient alignment cause model
to converge to a model with low unlearning update approaching loss? To simplify presentation, we
denote the unlearning update approaching loss Lunl and incremental loss Linc of Eq. (4) as

Lunl(θo) =: ||( 1

P

∑
(xi,yi)∈Da

∇`((xi + ∆p
i , yi); θo) + ∆θDu ||, (7)

Linc(θo) =:
1

P

∑
i≤P

`((xi + ∆p
i , yi); θo). (8)

Additionally, recall that 1−φ(∆p, θo) measures the cosine similarity between the unlearning update
and the incremental training update in Eq. (6). By adapting a classical result of Zoutendijk, the
Theorem 3.2 in (Nocedal & Wright, 2006), we can elucidate why the unlearning effect can be
accomplished by merely performing standard incremental training on the synthesized dataset.
Proposition 1 (Unlearning Descent by Learning). Let Lunl(θo) be bounded below and have a Lip-
schitz continuous gradient with constant L > 0 and assume that the ML server incrementally trains
the model by gradient descent with step sizes αk, i.e. θk+1

o = θko − αk∇Linc(θko ). If the gradient
descent steps αk > 0 satisfy

αkL < β(1− φ(∆p, θko ))
‖∇Linc(θko )‖
‖∇Lunl(θko )‖ , (9)

for some fixed 0 < β < 1, then Lunl(θk+1
o ) < Lunl(θko ). If in addition ∃ε > 0, k0 so that ∀k ≥ k0,

φ(∆p, θko ) < 1− ε, then
lim
k→∞

‖∇Lunl(θko )‖ → 0. (10)

See supplementary material in Appendix D

Model Utility Preservation. Based on the above processes, the unlearning effect can be achieved
by simply having the server update the model θ on the synthesized Dp

a using the learning algorithm
A. However, updating only based on the unlearning noise-injected data will compromise the model
utility to some extent. To compensate for the model utility degradation, the unlearning user can
mix some clean samples Dc to Dp

a as the final uploading dataset Dup = Dp
a ∪ Dc. Following the

empirical risk minimization (ERM) loss function, we can rewrite the incremental learning loss as:

LDp
a∪Dc

(θ) =:
1

P + C

∑
(x,y)∈Dp

a∪Dc

`((x, y); θ), (11)

where P is the size of Dp
a and C is the size of Dc. Since Dc are clean samples, training on Dp

a ∪Dc

will mitigate the accuracy degradation, meanwhile with more clean samples in Dc to cover the
unlearning noise-synthesized Dp

a will also enhance the privacy protection for erased data.

4 EXPERIMENTS

4.1 SETTINGS

Datasets and Models. We have conducted experiments on three widely adopted public datasets:
MNIST (Deng, 2012), CIFAR10 (Krizhevsky et al., 2009), and CelebA (Liu et al., 2018), offering a
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range of objective categories with varying levels of learning complexity. The statistics of all datasets
are listed and introduced in Appendix E.1. We select three model architectures of different sizes in
our experiments: a 5-layer multi-layer perceptron (MLP) connected by ReLU on MNIST, a ResNet-
18 on CIFAR10 and a 7-layer convolutional neural network (CNN) on CelebA.

Metric. To effectively evaluate privacy protection, we propose a reconstruction similarity metric,
which calculates the cosine similarity between the erased samples and the reconstructed samples
by the recovering attacking based on the unlearning update (Hu et al., 2024a; Salem et al., 2020;
Zhang et al., 2023). These attacks are the most serious type of attack that aims to recover the
erased information, and higher reconstruction similarity means more information is leaked. We
also conduct reconstruction attacks on scenarios with and without unlearning intentions to clearly
illustrate the importance of unlearning intentions in Section 4.4.

To effectively evaluate the unlearning effectiveness, we refer to prevalent data removal verification
methods (Hu et al., 2022; Guo et al., 2023), adding the backdoor patches to the unlearning samples
Du,b ← (Xu+patches, Yu+target) for the original model training. Then, we execute the unlearn-
ing methods to unlearn the backdoor-marked samples Du,b. After unlearning, we test the backdoor
accuracy on the marked-unlearning samplesDu,b to evaluate the unlearning effect. Moreover, since
OUbL implements unlearning by training the model to approach the estimated unlearning update,
we propose an unlearning update similarity metric to evaluate the unlearning effect achieved by
OUbL, which is calculated using the cosine similarity between the estimated unlearning update and
the truly unlearning update after conducting OUbL on the trained model.

Lastly, we use model accuracy to evaluate the model utility and functionality preservation, and
we evaluate the efficiency of unlearning methods based on their running time. All the metrics are
summarized in Appendix E.2.

Compared Machine Unlearning Benchmarks. To comprehensively compare OUbL with existing
machine unlearning methods, we consider the comparison with both no-privacy protection unlearn-
ing methods and privacy protection methods. Specifically, we choose one exact unlearning method,
SISA (Bourtoule et al., 2021), and one approximate unlearning method, VBU (Nguyen et al., 2020),
as centralized no-privacy protection methods. We choose two state-of-the-art federated unlearning
methods, BFU (Wang et al., 2023) and Hessian matrix-based federated unlearning (HBFU) (Liu
et al., 2022b), as erased data privacy protection methods. We choose BFU and HBFU rather than
other federated unlearning methods such as (Su & Li, 2023; Lin et al., 2024) because BFU and
HBFU achieve the best unlearning effect. In contrast, (Su & Li, 2023; Lin et al., 2024) focus more
on improving unlearning efficiency, which compromises unlearning effectiveness to some extent.
We briefly summarize these methods in Appendix E.3.

4.2 PRIVACY PROTECTION EVALUATIONS

In this section, we evaluate the privacy protection of OUbL and the compared benchmarks. To
clearly demonstrate the privacy protection for the erased samples, we not only show the evaluation
of the federated unlearning method, we also design a baseline by directly adding local differential
privacy (LDP) noise to the erased samples, Du,ε = (Xu + LDP(ε), Yu), and implementing unlearn-
ing using VBU, which is called VBU-LDP. We choose VBU to implement the baseline privacy-
protection unlearning with LDP noise because VBU can implement unlearning only based on the
erased samples. Other unlearning methods require the assistance of the remaining dataset besides
the erased samples; combining LDP with these methods will inject too much noise and significantly
compromise the model’s utility. The privacy protection evaluation results on three datasets are pre-
sented in Figure 2.

Setup. The variable of this experiment is ε, which controls the injected LDP noise. By compar-
ing the performance of OUbL with the VBU-LDP with different ε, we can directly observe which
privacy protection level the OUbL achieved. In this experiment, we set the unlearning samples
rate (USR), USR = 1% for all unlearning methods, and constructed samples rate CSR = 1% and
auxiliary samples rate ASR = 1% for OUbL.

Privacy Protection Evaluated by Reconstruction Attacks. The first column in Figure 2 shows the
reconstruction similarity, attacking by (Hu et al., 2024a; Zhang et al., 2023) to recover the erased
samples of different unlearning methods. Note that the privacy protection of OUbL when informing
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Figure 2: Comparisons between OUbL and LDP-based Methods

the server of unlearning intentions would be similar to the privacy protection of FL-based methods.
Since the reconstruction similarity of OUbL with unlearning intentions information overlaps with
BFU, we omit showing the performance of OUbL with unlearning intentions. Instead, we compare
OUbL with and without knowing unlearning intentions in Figure 5 in Section 4.4.

By hiding the unlearning intentions, OUbL can always achieve better privacy protection than BFU.
The attack is conducted based on the model updates on the server side, where the server of BFU
knows the unlearning intentions as it needs to inform other users to retrain, and the server of OUbL
does not know the unlearning intentions as it treats the OUbL process as a usual updating. OUbL has
a huge reconstruction similarity decrease than BFU on MNIST and CIFAR10 and a slight decrease
than BFU on CelebA.

Moreover, we compare OUbL with VBU-LDP to illustrate the privacy effect. OUbL achieves pri-
vacy protection like ε = 6 LDP privacy protection of VBU-LDP on MNIST, similar to ε = 4 LDP
privacy protection of VBU-LDP on CIFAR10 and ε = 4 LDP privacy protection on CelebA.

Trade-off between Privacy Protection and Unlearning Efficacy. With good privacy protection
for the erased samples, OUbL simultaneously achieves much better model utility preservation than
VBU-LDP and a much better data removal effect than BFU. For VBU-LDP, it is obvious that noise
injection significantly decreases the model accuracy. There is a huge gap between VBU and VBU-
LDP on the second column in Figure 2, and smaller ε decreases the model utility worse. Although
BFU has not compromised the model accuracy with the assistance of normal federated users, it
sometimes fails to unlearn the samples, such as the last figure on CelebA in Figure 2.

4.3 UNLEARNING EFFICACY AND EFFICIENCY EVALUATIONS

Setup. We first illustrate the incremental training details of OUbL on MNIST, CIFAR10 , and
CelebA to demonstrate unlearning effectiveness as shown in Figure 3. We also compare OUbL
with two centralized unlearning methods, SISA and VBU, and with two federated unlearning meth-
ods, BFU and HBFU, in Figure 4. In this experiment, we conduct the evaluation for multi-sample
unlearning, where USR = 1%. We set the CSR = 1% and ASR = 1%.

Results of Unlearning Efficacy and Efficiency. From the unlearning efficacy perspective, Figure 3
definitely shows the unlearning effectiveness of incremental training on synthesized data (OUbL)
compared with clean data. The backdoor accuracy on the unlearned dataset of OUbL drops ob-
viously as the incremental training on synthesized data continues, which is confirmed in all three
datasets. In Figure 4, OUbL achieves similar model accuracy and backdoor accuracy as SISA, a
representative exact unlearning method without erased data privacy preservation. Although VBU
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Figure 3: Training Details of OUbL
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Figure 4: Evaluation of the effectiveness of different machine unlearning methods and datasets

achieves the best data removal effect (the lowest backdoor accuracy), it also compromises the model
accuracy most, the lowest on all datasets. With the assistance of the other users to retrain the un-
learned model, the federated unlearning methods (BFU and HBFU) achieve a similar model utility
as OUbL and SISA. However, they may compromise data removal effects, worse than OUbL and
SISA in most cases.

From the unlearning efficiency perspective, the third figure in Figure 4, OUbL achieves the second
efficiency after the VBU. VBU is the most efficient because it implements unlearning solely based on
the erased samples. Compared with centralized methods, the federated unlearning methods always
consume more running time because FL-based methods require other normal users to participate in
unlearning. Due to page limitation, additional experimental results are shown in Appendix F.

4.4 ABLATION STUDY OF CONSTRUCTED SAMPLES RATE AND AUXILIARY SAMPLES RATE
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Figure 5: Evaluations for CSR and ASR

Clean Samples Rate (CSR) and Auxiliary
Samples Rate (ASR) are two important pa-
rameters that influence the unlearning dataset
construction of OUbL. In this section, we
conduct experiments to study the influence of
these two parameters. We also compare the
privacy protection of OUbL with a version
of OUbL that allows the server to know the
unlearning intentions (abbreviated as “OUbL
know unl. int.”).

Setup. For ease of conducting experiments,
we maintain a CSR : ASR ratio of 1 : 1
when constructing the uploading dataset. We
set the USR = 1% on MNIST and CIFAR10
and USR = 0.5% on CelebA. We range CSR
and ASR from 1% and 6% on MNIST and
CIFAR10, and from 0.5% to 1% on CelebA.
The privacy budget of VBU-LDP is set ε =
10 here, and all the results are presented in
Figure 5.

Relationship between Unlearning Update Similarity and CSR and ASR. Usually, with more
clean samples and auxiliary samples, it would be easier to approach the unlearning update based on
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Figure 6: Evaluations of impact about different USR.

them. The first column in Figure 5 also demonstrates the trend. The unlearning update similarity
increases as the CSR and ASR increase on all three datasets.

Impact on Unlearning Effectiveness. Since the data removal effect (backdoor accuracy) is stable
with different CSR and ASR, we only demonstrate the model utility in Figure 5. It is obvious that the
model accuracy increases when the CSR and ASR increases. The model utility degradation caused
by the unlearning effect definitely can be mitigated if we have more clean and auxiliary data for
continual learning updates for unlearning.

Impact on Erased Data Protection. The third column of Figure 5 demonstrates the privacy protec-
tion for the erased data against the reconstruction attacks. Higher CSR and ASR means more clean
and auxiliary data is used to construct the uploading dataset. The unlearning noise is hidden in more
samples, which increases the reconstruction difficulty, showing as lower reconstruction similarity
in the third column in Figure 5. Compared with the “OUbL know unl. int.”, the complete OUbL
that hides the unlearning intentions significantly improves privacy protection, reflected by the huge
decreased reconstruction similarity gap.

4.5 IMPACT OF UNLEARNING SAMPLES RATE (USR)

Figure 6 presents the evaluation of USR from 0.5% to 1% on CelebA. Additional evaluation of USR
from 1% to 6% on MNIST and CIFAR10 is presented in Appendix F.2. CSR and ASR are set 0.5%
for OUbL on CelebA. The privacy budget of VBU-LDP is set ε = 10 here.

The first column of Figure 9 shows that more unlearning samples reduce the unlearning update sim-
ilarity of OUbL when synthesizing the new dataset. However, OUbL still achieves stable unlearning
effectiveness when USR increases, which is reflected by the model accuracy and backdoor accuracy.
Although VBU achieves a thorough data removal effect, which is better than OUbL, we also note
that the noise injection (VBU-LDP) will mitigate the data removal effect, as shown in the third fig-
ure on CelebA. Moreover, as shown in the last two figures in Figure 9, OUbL has slight privacy
protection and efficiency decrease when USR increases.

5 SUMMARY AND FUTURE WORK

In this paper, we are the first to investigate privacy protection for both erased samples and unlearning
intentions during machine unlearning. We propose an OUbL approach to solve this problem. OUbL
constructs a new dataset for unlearning by incremental training, which hides the unlearning infor-
mation in the constructed dataset to protect the erased data. Moreover, OUbL obliviously achieves
the unlearning effect by incremental training on the constructed data using the original learning
algorithm, hence not relying on customized unlearning algorithms and avoiding exposing the un-
learning intentions to the servers. Our extensive experiments and comprehensive ablation studies
have shown that the proposed OUbL can effectively protect the erased samples and the unlearning
intentions while achieving a satisfactory unlearning effect. The proposed OUbL fulfills the gap be-
tween machine unlearning and privacy leakage to the server during unlearning, providing a powerful
approach to implement machine unlearning with privacy protection.

As machine unlearning becomes increasingly important, our research serves as a stepping stone
in understanding and protecting privacy during machine unlearning services. Future work should
continue this line of inquiry, developing more privacy-preserving unlearning methods to uphold and
support the right to be forgotten in MLaaS environments.
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A RELATED WORK

A.1 MACHINE UNLEARNING

Unlearned	Data	Du

a)	Traditional	Unlearning

Protect	unlearning
intentions	as	only
conducting
learning
algorithm

b)	Oblivious	Unlearning	by	Learning

Clean	Data	Dc	for
utility	preservation

+

=

Auxiliary	Data
with	unlearning	noise

Exposing
Du	to	the
server

Exposing
unlearning
intentions	as
relying	on
unlearning
algorithms		

Protect	erased	data	by
uploading																
instead	of	Du

Figure 7: Assuming a model with parameters θ
trained using learning algorithm A, traditional un-
learning employs an unlearning algorithm U to un-
learn Du. Differently, OUbL constructs an up-
dating dataset, comprising clean samples Dc and
unlearning noise-synthesized samples Dp

a, and up-
loads them to the server. The server only needs
to incrementally update the model with the original
learning algorithm A based on Dc ∪ Dp

a, thereby
guaranteeing the unlearning effect without upload-
ing the erased data Du and without specifical un-
learning algorithms.

Machine unlearning techniques are motivated
by the growing privacy concerns of individ-
uals and the corresponding privacy regula-
tions (Cao & Yang, 2015; Bourtoule et al.,
2021). The most legitimate approach is re-
training from scratch (Cao & Yang, 2015;
Thudi et al., 2022). However, this method is
often impractical due to the significant com-
putational and storage costs involved, espe-
cially for complex deep-learning tasks. Con-
sequently, numerous studies have sought to
develop effective and efficient unlearning so-
lutions (Yan et al., 2022; Warnecke et al.,
2024).

Existing machine unlearning studies can
be broadly categorized into exact unlearn-
ing (Cao & Yang, 2015; Bourtoule et al.,
2021; Yan et al., 2022; Hu et al., 2024b) and
approximate unlearning (Guo et al., 2020;
Nguyen et al., 2020; Wang et al., 2024; War-
necke et al., 2024) methods. A represen-
tative exact unlearning method, introduced
in (Bourtoule et al., 2021), extends naive re-
training to reduce the computational cost of
retraining a new model (Hu et al., 2024b; Yan
et al., 2022). Exact unlearning completely re-
moves the influence of the unlearned data on
the model but requires significant storage space and is inefficient when removal requests are fre-
quent. Conversely, approximate unlearning attempts to modify the model directly to approximate
one retrained on the remaining dataset (Guo et al., 2020; Nguyen et al., 2020). Although more ef-
ficient than exact unlearning, approximate unlearning can lead to catastrophic unlearning (Nguyen
et al., 2020; Wang et al., 2024; Nguyen et al., 2022).

A.2 PRIVACY-PRESERVING MACHINE UNLEARNING

To facilitate addressing the challenging unlearning problem, all the aforementioned studies assume
that the ML server is aware of users’ data and unlearning intentions (Bourtoule et al., 2021; Cao
& Yang, 2015; Guo et al., 2020; Sekhari et al., 2021). However, uploading the erased data and
informing the server of unlearning intentions raises potential privacy threats to users, conflicting
with the original intention of the “right to be forgotten” regulations (Wang et al., 2023; Liu et al.,
2022b; Thudi et al., 2022). Although some studies highlight the privacy breaches caused by machine
unlearning updates (Chen et al., 2021; Gao et al., 2022; Hu et al., 2024a; Zhang et al., 2023), only
a few focus on privacy protection during machine unlearning, specifically avoiding the exposure of
erased data and unlearning intentions to servers during unlearning. Most of these privacy-preserving
machine unlearning solutions are based on federated learning, termed federated unlearning (Liu
et al., 2022b; Wang et al., 2023; Su & Li, 2023; Gao et al., 2024).

Some federated unlearning methods (Wu et al., 2022; Fraboni et al., 2024; Liu et al., 2021; Lin et al.,
2024) attempt to unlearn a user client’s entire contribution from the trained FL model. They store all
clients’ uploaded parameters on the server side and estimate the unlearning user’s influence based
on these stored parameters (Fraboni et al., 2024; Liu et al., 2021). These approaches allow the FL
server to implement unlearning without interacting with the user. However, it significantly degrades
the original model’s utility and is unsuitable for a user who wishes to unlearn only a small portion
of their local dataset.
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In contrast to unlearning a user’s total contribution, the authors of (Liu et al., 2022b; 2021; Wang
et al., 2023) investigated how to unlearn user-specified samples in FL. They proposed fast retraining
methods based on the Hessian matrix and Bayesian inference (Box & Tiao, 2011). However, these
approaches require the FL server to reactivate all users for retraining, which is impractical in real-
world scenarios. Lin et al. (Lin et al., 2024) proposed a dynamic client selection method to avoid
reactivating all user clients for unlearning. However, the vulnerability of privacy leakage from gra-
dients remains. Gradients computed solely using the erased data for unlearning pose a higher risk of
privacy leakage compared to standard FL training gradients, which are derived from the entire local
dataset (Salem et al., 2020; Melis et al., 2019). Consequently, the FL framework can only offer lim-
ited protection for the privacy of erased data. Moreover, in existing unlearning methods (Bourtoule
et al., 2021; Nguyen et al., 2020; Chundawat et al., 2023; Tarun et al., 2023), users must inform
the server of their unlearning intentions so that the server can prepare customized operations for
unlearning, which inevitably threatens the privacy of users’ unlearning intentions.

Table 1: An overview of representative non-privacy protection and FL-based privacy-preserving
unlearning methods.

Machine
Unlearning

Methods

Service Scenarios Unlearning Data Size Unlearning Algorithms Necessity Unlearning Intention Protection Erased Data
Protecting Methods

Centralized
Scenarios

Distributed
Scenarios

Specified
any samples

User’s entire
samples

Require
unlearning algorithms

Not require
unlearning algorithms

Need to
inform servers

Not Need to
inform servers

SISA No Protection
VBU No Protection
BFU By Gradients

HBFU By Gradients
Federaser By Gradients

OUbL (Ours) Constructed new datasets

: the machine unlearning method is applicable; : the machine unlearning method is not applicable.
SISA (Bourtoule et al., 2021); VBU (Nguyen et al., 2020); BFU (Wang et al., 2023); HBFU (Liu et al., 2022b);Federaser (Liu et al., 2021).

A.3 DIFFERENCE FROM EXISTING WORK

Our OUbL approach significantly differs from existing non-privacy protection machine unlearning
methods (Bourtoule et al., 2021; Nguyen et al., 2020) and FL-based privacy-preserving unlearning
methods (Liu et al., 2022b; 2021; Wang et al., 2023) in terms of service scenarios, unlearning data
size, unlearning intentions protection, and erased data protection mechanisms, as depicted in Table 1.
First, most existing privacy-preserving machine unlearning methods focus on federated (distributed)
learning scenarios, utilizing gradients instead of original erased data to protect the privacy of erased
samples (Liu et al., 2021; Wang et al., 2023; Liu et al., 2022b). Our method targets general central-
ized learning scenarios, where the centralized server processes model training, and most methods
in these scenarios lack privacy protection (Bourtoule et al., 2021; Nguyen et al., 2020). Second, no
studies currently protect unlearning intentions; all require informing the ML servers to customize
unlearning algorithms. This work considers unlearning intentions as private information and aims to
implement unlearning without needing specific unlearning algorithms, instead updating the model
using the original learning algorithm.

We also note that some studies have attempted to generate adversarial or backdoor samples to influ-
ence model performance on targeted samples (Di et al., 2022; Madry et al., 2018; Zeng et al., 2023;
Shafahi et al., 2019; Geiping et al., 2021). However, our approach differs in two significant ways.
First, in backdooring methods (Geiping et al., 2021; Zeng et al., 2023), the targeted sample is typ-
ically a single instance, whereas unlearning scenarios usually involve multiple samples, increasing
the complexity of noise generation. Second, the objective of backdooring is specific and relatively
straightforward, i.e., altering the model’s performance on a targeted sample. In contrast, the un-
learning noise generation target, estimating the unlearning update, is considerably more challenging
to determine.

B EFFICIENT UNLEARNING UPDATE ESTIMATION ALGORITHM

We can use ∇2
θ`((xi, yi); θo) of any (xi, yi) as an unbiased estimator of H . In Algorithm 2, we

uniformly sample t points xs1, xs2, . . . , xst from a clean dataset Dc. Moreover, for a precise esti-
mation, we repeat the process r times and average the results to reduce variance. For each estimation
round k ∈ [1, 2, . . . , r], we initially define H−1k,0Gu = Gu, where Gu = ∇θ`((xu, yu); θo) for clar-
ity, as shown in line 4 in Algorithm 2. Then, we recursively compute H−1k,jGu = Gu + (I −
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Algorithm 2: Efficient Unlearning Update Estimation

Input: Trained model θo, the gradient vector of one erased sample Gu = ∇θ`((xu, yu); θo), the clean
samples used in model training Dc = {(xi, yi)}mi=1, Number of samples t, Number of iterations r

Output: Estimated unlearning update H−1∇θ`((xu, yu); θo)
1 procedure EUUE(θo, Gu, Dc, t, r):
2 for k ← 1 to r do
3 Sample t points {xs1 , xs2 , ..., xst} uniformly from Dc
4 Initialize H−1

k,0Gu = Gu
5 for j ← 1 to t do
6 Compute∇2

θL(xsj , θo)H
−1
k,j−1Gu;

7 Update H−1
k,jGu = Gu + (I −∇2

θ`((xsj , ysj ); θo))H
−1
k,j−1Gu;

8 Store result H−1
k,tGu

9 Average the results to get the final estimation: H−1Gu = 1
r

∑r
k=1 H

−1
k,tGu

10 return H−1Gu

∇2
θ`((xsj , ysj); θo))H

−1
k,j−1Gu, as shown in lines 5 to 7 in Algorithm 2. We store the final round

H−1k,tGu as the unbiased estimation of H−1Gu in the k-th iteration. After executing r iterations, we
average the results to obtain the final estimation.

C UNLEARNING NOISE DESCENT

Backpropagation:

Forward	propagation:

Fixed
parameters:

Unlearning	noise
matrix	to	update:

Figure 8: Unlearning noise descent. During the training process, we only update the unlearning
noise matrixes (green circles) to find sufficient noise efficiently while fixing the model parameters
(black circles).

Figure 8 shows the training process to find the suitable unlearning noise. Initially, we generate
unlearning noise matrixes ∆p, shown as the green circles. During the training process, forward
propagation, depicted by blue arrows, moves information from the input layer, which combines im-
ages with unlearning noise, through the network’s hidden layers to the output layer. Concurrently,
backpropagation, illustrated by red arrows, calculates the gradients of the loss according to Eq. (6)
and adjusts the network’s parameters by propagating errors backward. However, we here fix the
network’s parameters (black-bordered circles) and only update the unlearning noise matrixes (green
circles) during the training process. After a few rounds of training, we can get sufficient unlearn-
ing noise for the auxiliary data to synthesize, ensuring the unlearning effect once the ML server
incrementally trains the model based on the synthesized dataset.

The corresponding unlearning noise descent algorithm for the unlearning noise descent is presented
in Algorithm 1.
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D PROOF OF PROPOSITION 1

In this section, we provide the proof of Proposition 1 based on Zoutendijk, the Theorem 3.2 in
(Nocedal & Wright, 2006). The main proof process is presented as follows.

Proof. Consider the incremental gradient descent update as the following form

θk+1
o = θko − αk∇Linc(θko ). (12)

Due to Lipschitz smoothness of the gradient of the unlearning simulation loss Lunl, we can estimate
the value at θk+1

o by the descent lemma

Lunl(θk+1
o ) ≤ Lunl(θko )− 〈αk∇Lunl(θko ),∇Linc(θko )〉

+ α2
kL‖∇Linc(θko )‖2,

(13)

where L is the Lipschitz constant. If we use the cosine similarity identity:

〈∇Lunl(θko ),∇Linc(θko )〉 = ‖∇Linc(θko )‖ · ‖∇Lunl(θko )‖ cos(γk), (14)

where γk denotes the angle between both gradients vectors, we can find that

Lunl(θk+1
o ) ≤ Lunl(θkk)−‖∇Linc(θko )‖ · ‖∇Lunl(θko )‖ cos(γk)

+ α2
kL‖∇Linc(θko )‖2

= Lunl(θko )−(αk
‖∇Lunl(θko )‖
‖∇Linc(θko )‖

cos(γk)− α2
kL)‖∇Linc(θko )‖2.

(15)

As such, the unlearning simulation loss decreases for nonzero step sizes if

‖∇Lunl(θko )‖
‖∇Linc(θko )‖

cos(γk) > αkL, (16)

i.e.,

αkL ≤
‖∇Lunl(θko )‖
‖∇Linc(θko )‖

cos(γk)

c
, (17)

for some 1 < c < ∞. This follows from the assumption on the parameter β in the statement of the
Proposition 1. Reinserting this estimate into the descent inequality reveals that

Lunl(θk+1
o ) < Lunl(θko )− ‖∇Lunl‖2

cos(γk)

c′L
, (18)

for 1
c′ = 1

c −
1
c2 . Due to monotonicity, we may sum over all descent inequalities, yielding

Lunl(θ0o)− Lunl(θk+1
o ) ≥ 1

c′L

k∑
j=0

‖∇Lunl(θjo)‖2 cos(γj). (19)

As Lunl is bounded below, we may consider the limit of k →∞ to find

∞∑
j=0

‖∇Lunl(θjo)‖2 cos(γj) <∞. (20)

If for all, except finitely many iterates the angle between adversarial and training gradient is less
than 90◦, i.e., cos(γk) is bounded below by some fixed ε > 0, as assumed, then the convergence to
a stationary point follows:

lim
k→∞

‖∇Lunl(θko )‖ → 0. (21)
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Table 2: Dataset statistics.

Dataset Feature Dimension #. Classes #. Samples

MNIST (Deng, 2012) 28×28×1 10 70,000
CIFAR10 (Krizhevsky et al., 2009) 32×32×3 10 60,000

CelebA (Liu et al., 2018) 178×218×3 2 (Gender) 202,599

E DETAILED EXPERIMENTAL SETTINGS

E.1 DATASETS AND MODELS

Datasets. The statistics of all datasets used in our experiments are listed in Table 2. Both MNIST and
CIFAR10 are used to train 10-class classification models. The experiment on CelebA is to identify
the gender attributes of the face images. The task is a binary classification problem, different from
the ones on MNIST and CIFAR10. We also introduce them as below.

• MNIST. MNIST contains 60,000 handwritten digit images for the training and 10,000
handwritten digit images for the testing. All these black and white digits are size normal-
ized, and centered in a fixed-size image with 28 × 28 pixels.

• CIFAR10. CIFAR10 dataset consists of 60,000 32x32 colour images in 10 classes, with
6,000 images per class. There are 50,000 training images and 10,000 test images.

• CelebA. CelebA is a large-scale face attributes dataset with more than 200,000 celebrity
images, each with 40 attribute annotations.

Models. We train a 5-layer MLP model on MNIST, a ResNet18 on CIFAR10 and a 7-layer CNN on
CelebA. On the MNIST dataset, we set the learning rate η = 0.001. On CIFAR10 and CelebA, we
set the learning rate η = 0.0001. During training, we set the minibatch size to 16 on MNIST and
CIFAR10, and the minibatch size to 160 on CelebA. All algorithms are implemented using Pytorch
3.8 and are conducted on NVIDIA Quadro RTX 6000 GPUs.

E.2 METRIC

• Accuracy. Model accuracy is calculated based on the test dataset, which shows if the
unlearning methods influence the original ML service model utility.

• Backdoor Accuary. It calculated based on the backdoored dataset Du,b to evaluate the
data removal effect.

• Unlearning Update Similarity. It calculates the cosine similarity between the estimated
unlearning update by EUUE and the final OUbL unlearned update as

sim(∆θEUUE,∆θOUbL) =
∆θEUUE ·∆θOUbL

‖∆θEUUE‖ · ‖∆θOUbL‖
,

where ∆θEUUE denotes the unlearning update estimated by EUUE (Algorithm 2) and
∆θOUbL is the unlearning update after conducting OUbL. ‖∆θEUUE‖ and ‖∆θOUbL‖ are
the Euclidean norms of the two updates vectors.

• Reconstruction Similarity. It calculates the cosine similarity between the unlearned sam-
ples Du and the attacks’ reconstructed samples D̂u,

sim(Du, D̂u) =
Du · D̂u

‖Du‖ · ‖D̂u‖
.

• Running Time. It is used to assess the efficiency, calculated by recording the time used in
each training batch and multiplying it with the training epochs.
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Table 3: Overall Evaluation Results on MNIST, CIFAR10 and CelebA.

Single-Sample
Unlearning

MNIST CIFAR10 CelebA

OUbL BFU SISA VBU OUbL BFU SISA VBU OUbL BFU SISA VBU

Model Accuracy 98.71% 98.88% 98.75% 97.91% 76.75% 77.61% 79.37% 75.86% 95.66% 95.72% 95.78% 95.80%
Backdoor Accuracy 0.00% 100% 0.00% 0.00% 0.00% 100% 0.00% 0.00% 0.00% 100% 0.00% 0.00%

Unl. Update Similarity 0.976 - - - 0.989 - - - 0.998 - - -
Reconstruction Similarity 0.669 0.947 1 1 0.852 0.888 1 1 0.932 0.933 1 1

Running time (s) 4.178 15.95 11.87 0.024 8.231 122.26 113.00 0.088 0.432 168.61 135.42 0.033

Multi-Sample
Unlearning

MNIST, USR = 1% CIFAR10, USR = 1% CelebA, USR = 0.5%

OUbL BFU SISA VBU OUbL BFU SISA VBU OUbL BFU SISA VBU

Model Accuracy 98.52% 98.70% 98.53% 78.69% 73.89% 78.20% 78.49% 43.23% 95.74% 96.01% 95.92% 93.53%
Backdoor Accuracy 9.67% 9.16% 9.67% 0.00% 9.40% 9.70% 7.60% 0.00% 4.55% 41.92% 4.41% 4.92%

Unl. Update Similarity 0.942 - - - 0.959 - - - 0.992 - - -
Reconstruction Similarity 0.818 0.874 1 1 0.846 0.874 1 1 0.826 0.831 1 1

Running time (s) 3.920 16.03 11.70 0.631 6.633 141.26 103.01 0.587 2.257 176.86 133.74 0.672

BFU (Wang et al., 2023); SISA (Bourtoule et al., 2021); VBU (Nguyen et al., 2020)

E.3 BENCHMARKS

• SISA (Bourtoule et al., 2021). The main process of SISA divides the full data D into sev-
eral shards D1, D2, ..., Dk and trains sub-models with parameters θ1, θ2, ..., θk for each
shard. When the server receives a request for unlearning sample xu, it just needs to retrain
the sub-model θi of shard Di that contains xu. We set k = 5 disjoint shards and corre-
sponding sub-models. We put the unlearned samples only on one shard, which is the ideal
scenario of SISA.

• VBU (Nguyen et al., 2020). VBU is an approximate unlearning method based on varia-
tional Bayesian inference. For the convenience of experiments, we set a middle layer of
original neural networks as the Bayesian layer and calculate the unlearning loss according
to (Nguyen et al., 2020) based on the Bayesian layer and erased samples for unlearning.

• BFU (Wang et al., 2023). The BFU extended the variational Bayesian unlearning method
to FL scenarios and proposed parameters self-sharing to mitigate the unlearning catastro-
phe. We implement BFU following the process as introduced in (Wang et al., 2023) and set
the user number k = 5, and only one user needs unlearning, which is also an ideal scenario
in FL.

• HBFU (Liu et al., 2022b). The HBFU extended the Hessian matrix-based unlearning
methods (Sekhari et al., 2021; Guo et al., 2020) to FL scenarios. We implement HBFU
following (Liu et al., 2022b) and also set the FL user number k = 5, and only one user
needs unlearning.

F ADDITIONAL EXPERIMENTS

F.1 OVERALL EVALUATION OF OUBL

We first demonstrate the overall evaluation results of different machine unlearning methods on
MNIST, CIFAR10 and CelebA, presented in Table 3. The bolded values indicate the best per-
formance among the compared methods, while red-colored values signify results that are opposite
from expectations. We fill a dash when the method does not contain the evaluation metrics.

Setup. We measure unlearning methods based on the five above-introduced evaluation metrics in
single-sample and multi-sample unlearning scenarios. In the single samples unlearning scenario,
only one unlearning sample needs to be unlearned. In the multi-sample unlearning scenario, we set
the unlearning samples rate USR = 1%, where USR = m

n , m is the unlearned samples size and n is
the training data size. We illustrate the comparison of OUbL with one privacy-preserving federated
unlearning method, BFU (Wang et al., 2023), one representative exact unlearning method, SISA
(Bourtoule et al., 2021), and one approximate unlearning method, VBU (Nguyen et al., 2020).

Evaluation of Unlearning Effectiveness. The effect of machine unlearning is measured by model
accuracy and backdoor accuracy, where the model accuracy represents the model utility after un-
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learning, and the backdoor accuracy means if the backdoor-marked samples are unlearned from the
model.

From the model utility perspective, in most cases, BFU or SISA achieves the best model accuracy.
This is because SISA is a retraining-based method, and BFU needs all other normal federated users
to assist in unlearning retraining to ensure the model’s utility. Compared with the methods utilizing
the remaining dataset, OUbL achieves a similar model accuracy as BFU and SISA, usually only
slightly lower (not exceeding 2%) than them, much better than VBU, an approximate unlearning
method without the assistance of the remaining dataset.

From the data removal perspective, OUbL and other centralized unlearning methods (SISA and
VBU) can effectively unlearn the marked samples, reducing the backdoor accuracy to a very low
level. For BFU, although the retraining assistance of other normal federated users helps to preserve
model utility, it to some extent mitigates the unlearning update, failing to unlearn specified samples
in the single-sample scenario on all datasets and in the multi-sample scenario on CelebA.

Evaluation of Privacy Protection. We evaluate privacy preservation through reconstruction simi-
larity metrics. For OUbL and BFU, since the server cannot access the erased data, we conduct the
reconstruction attacks (Hu et al., 2024a; Salem et al., 2020; Zhang et al., 2023) based on the un-
learned update. Since the server of OUbL has no information about unlearning intentions, it treats
the model updates as normal learning updates for attack (Salem et al., 2020).

The results of the three datasets show significant improvement in privacy protection by hiding un-
learning intentions. For example, on MNIST, for SISA and VBU, since the server knows the un-
learning requested samples, the reconstruction similarity is directly 1, the same as having no privacy
preservation of these data. When gradient-based protection (BFU) is applied, the privacy protection
of erased data achieves 0.947 reconstruction similarity when unlearning one sample. If we inform
the server with unlearning intentions in OUbL, it achieves a reconstruction similarity to BFU. We
present detailed comparisons for OUbL with informed unlearning intentions in Section 4.4. How-
ever, the server will be oblivious to unlearning when conducting OUbL, and the privacy protection
of OUbL achieves 0.669 reconstruction similarity on single-sample unlearning on MNIST. OUbL
achieves significant privacy protection on the three datasets compared with the FL-based and no-
privacy protection unlearning methods. Although the FL-based method can also protect the privacy
of erased data, it sometimes fails to unlearn samples and is inefficient as it needs the retraining
assistance of other normal users.

Evaluation of Efficiency. Normally, OUbL achieves a slight efficiency improvement than BFU and
SISA on MNIST and a significant improvement (more than 10× speedup) on CIFAR10 and CelebA.
Although BFU and SISA are much more efficient than naive retraining, they are still training time
expensive compared with OUbL and VBU because BFU needs the retraining assistance of other
users, and SISA needs to retrain 1/5 shard of the original training dataset. VBU is the most efficient
method, with less than 0.1 seconds for single sample unlearning, as it implements unlearning only
based on the erased samples; however, the cost is the model utility degradation and lack of privacy
protection.

F.2 ADDITIONAL EVALUATION OF IMPACT OF UNLEARNING SAMPLES RATE (USR)

Setup. Since the above unlearning methods have lots of similar metric values, for clear illustra-
tion and demonstration, we here only display the VBU and VBU-LDP methods as they implement
machine unlearning based on solely erased samples, which requires the least data access. In this
experiment, we range USR from 1% to 6% on MNIST and CIFAR10. CSR and ASR are set 1%
for OUbL on MNIST and CIFAR10. The privacy budget of VBU-LDP is set ε = 10 here. All the
experimental results are presented in Figure 9.

Relationship between Unlearning Update Similarity and USR. The first column of Figure 9
shows the relationship between unlearning update similarity and USR. It is obvious that more un-
learning samples in the unlearning request will increase the difficulty of constructing the dataset to
achieve the unlearning effect, which is confirmed on the three datasets, higher USR decreasing the
unlearning update similarity of OUbL a lot.

Impact on Unlearning Effectiveness. Unlearning effectiveness includes model utility preservation
(the second column) and the data removal effect (the third column) in Figure 9.
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Figure 9: Evaluations of impact about different USR.

From the model utility preservation perspective, a good unlearning method should not be heavily
influenced by the increasing USR. On all datasets, OUbL always achieves a similar model accuracy
as the original trained model on all datasets even when USR increases from 1% to 6%. VBU only
achieves an acceptable model accuracy on CelebA. Moreover, adding the LDP noise will definitely
decrease the model utility, reflected by the huge gap between VBU and VBU-LDP.

From the data removal perspective, all the unlearning methods can effectively remove the influence
of the marked backdooring samples from the model, reducing the backdoor accuracy of the original
model.

Impact on Erased Data Protection. The fourth column in Figure 9 shows the privacy protection of
the erased samples against the reconstruction attacks (Hu et al., 2024a; Zhang et al., 2023). For these
methods with no privacy protection, the server directly has the erased sample, and the reconstruction
similarity is 1. When USR increases, the reconstruction similarity of OUbL increases, too, meaning
more privacy is leaked. Since we set ε = 10 for VBU-LDP, OUbL always achieves better privacy
protection than VBU-LDP.

Impact on Unlearning Efficiency. The fifth column in Figure 9 illustrates the running time of
OUbL and VBU. The running time slightly increases as USR increases. Both OUbL and VBU
achieve more than 20× speedup than original training, which is much more efficient than most fed-
erated unlearning and retraining-based methods. Although OUbL consumes slightly more time than
VBU, it is important to note that OUbL does not require uploading the erased data and informing the
server for unlearning, which avoids privacy leakage of both erased data and unlearning intentions.

F.3 IMPACT OF UNLEARNING SAMPLES SIMILARITY

We know that the similarity between the erased samples and the remaining samples plays an impor-
tant role in machine unlearning. In this section, we also conduct experiments to evaluate how the
similarity influences the performance of OUbL.

Setup. To quantify the similarity between the erased samples and the remaining samples, we
introduce a backdoor ratio β to control the injected patch to the erased samples, formulated as
Du,β ← (Xu +β× patch, Yu). We mixed both Du,β and original unlearned data Du into the train-
ing dataset for ML service model training. During the unlearning process, we only need to remove
the contribution of the marked samples Du,β . By adjusting β, we can simulate the different levels
of similarity between the erased samples and the samples in the remaining dataset. This approach
allows us to intuitively quantify the similarity between the unlearned samples and the remaining
samples. The experimental results on MNIST, CIFAR10 and CelebA are presented in Figure 10.

Relationship between Unlearned Data Similarity and Patch Injection Ratio. The first column
in Figure 10 illustrates the relationship between the patch injection ratio β and similarity, where
similarity is measured between the original samples Du and the patch-injected data Du,β . In this
experiment, we only need to unlearn Duβ . Across all datasets, including MNIST, CIFAR10, and
CelebA, increasing the amount of noise (as indicated by a higher β) results in a decrease in simi-
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Figure 10: Evaluations for the impact of unlearning samples’ similarity

larity. This trend is consistently observed, demonstrating that higher patch injection ratios make the
unlearned samples more distinct from the original samples in the remaining dataset.

Impact on Unlearning Update Similarity. The second column in Figure 10 demonstrates the
unlearning update similarity influenced by the patch ratio β. With more patches injected into the
data, the marked samples will be more dissimilar to the original samples and the remaining samples.
It increases the difficulty of OUbL in approaching the unlearning update via incremental learning,
as the normal clean and the auxiliary data that we can use are not similar to the unlearned samples
with a high patch injecting ratio. The unlearning update similarity obviously decreases as the patch
ratio increases on all three datasets.

Impact on Unlearning Effectiveness. The third and fourth columns demonstrate the model utility
and data removal of unlearning effectiveness. The data removal effect increases as the patch ratio
increases, showing as the decreased backdoor accuracy. It means the more unique samples, larger
β and lower similarity, are easier to be unlearned. However, better data removal effect slightly
decreases model utility, as showing from the model accuracy of all methods in the third column in
Figure 10.

Impact on Erased Data Protection. Our OUbL achieves the best privacy protection for the erased
samples, and the attacking difficulty for OUbL increases as the patch ratio increases. It is easy to
understand because OUbL is more difficult to forge the unlearning update when patch ratio increases,
which means the constructed data contains less unqiue information about the erased samples when
β is large. It makes the unlearning update less similar to the expected ones, and hence increase the
reconstruction difficulty.

We omit the illustration of the unlearning efficiency results as the similarity not heavily influence
the training time.

F.4 IMPACT OF CONSTRUCTED SAMPLES RATE AND AUXILIARY SAMPLES RATE ON
UNLEARNING EFFICIENCY

Impact on Unlearning Efficiency. As the synthesized dataset is constructed with the parameters
CSR and ASR, the incremental training time based on the constructed dataset will definitely increase
linearly as CSR and ASR increases, as shown in Figure 11.
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Figure 11: The impact of CSR and ASR about the running time. The CSR and ASR for CelebA is
from 0.5% to 1%.
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Figure R1: Example of the original auxiliary dataset (the first row), their noisy counterparts (the
middle row), and directly construct data without an auxiliary dataset [R11] (the last row). @Re-
viewer iCGz

Table R1: Evaluating mixing unlearned data in the clean dataset on CIFAR10. The results demon-
strate that mixing the unlearned samples into the constructed uploaded data for incremental learning
negatively impacts the unlearning effect, as reflected by the increasing backdoor accuracy, but the
model utility keeps. @Reviewer BZGC

On CIFAR10 Mixed 0% of Unlearned Data 2% 4% 6% 8%

Model Acc. 73.89% 73.85% 73.78% 73.25% 73.03%
Backdoor Acc. 9.40% 13.60% 33.40% 35.40% 43.26%
Running Time 6.63 6.72 6.83 7.01 7.16

Table R2: Evaluating learning rate on MNIST and CIFAR10. The results demonstrate that a larger
learning rate can speed the convergence to achieve unlearning, costing less computation and achiev-
ing a better unlearning effect (low backdoor accuracy by removing). The tradeoff is that it slightly
decreases the model utility at the same time, which is not too much on MNIST but a little worse on
CIFAR10. @Reviewer iCGz, @Reviewer Gp18

Metrics Learning Rate: 0.0001 0.0002 0.0004 0.0006 0.0008

On MNIST
Model Acc. 98.52% 97.84% 96.72% 95.88% 95.37%

On MNIST Backdoor Acc. 9.67% 9.53% 9.17% 8.20% 8.67%
Running Time 3.92 2.72 1.83 1.61 1.56

On Cifar10
Model Acc. 73.89% 72.98% 68.69% 65.23% 62.23%

On Cifar10 Backdoor Acc. 9.40% 6.20% 5.80% 4.00% 2.48%
Running Time 6.63 3.72 2.83 2.51 2.23

Table R3: Membership inference attack accuracy after unlearning by OUbL. The results demonstrate
that OUbL can effectively reduce the MI accuracy, achieving a significant unlearning performance.
@Reviewer 5Whi

Dataset Original Model ASR and CSR, 1% 2% 3% 4%

On MNIST 63.86% 53.87% 53.61% 53.02% 52.86%
On CIFAR10 77.43% 61.47% 61.30% 61.10% 60.92%
On CelebA 58.37% 51.94% 51.32% 51.04% 50.69%
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Table R4: The detailed running time. The results demonstrate that although we put more computa-
tional cost on the user side, it is affordable for users compared to the FL users in BFU. @Reviewer
Ha5f

Dataset
Total running time
of OUbL (second)

Unlearning update
estimation (User side)

Unlearning noise generation
(User side)

Unlearning by incremental
learning (Server side)

Total running time
of BFU

On MNIST 3.92 1.06 1.45 1.41 16.03
On CIFAR10 6.64 1.02 2.10 3.52 141.26
On CelebA 2.26 0.72 0.83 0.71 176.86

Table R5: Experimental results on Adult. The task of the Adult dataset is to predict whether an
individual’s income exceeds $50,000 per year, which is a binary classification. We first backdoor
some samples in Adult by setting the “education-num” feature to 2 and changing the corresponding
label. The aim of unlearning is to remove the influence of these backdoored samples, and the
results are presented in the following table. Since the task on the Adult dataset is a binary task,
dropping the backdoor accuracy of around 50% is similar to the random selection. Our method
can effectively degrade the backdoor accuracy to around 50%, guaranteeing the effectiveness of
unlearning. @Reviewer Gp18

On Adult Original ASR and CSR, 1% 2% 3% 4%

Model Acc. 85.32% 81.66% 81.69% 79.93% 80.79%
Backdoor Acc. 100.00% 54.81% 52.81% 50.02% 49.52%
Running Time 15.31 0.54 1.03 1.51 1.93

G SCENARIOS AND THREAT MODEL

@Reviewer BZGC, @Reviewer iCGz, @Reviewer 5Whi, @Reviewer EoYb, @Reviewer
Ha5f,@Reviewer Gp18

Machine Unlearning Service Scenarios. To facilitate understanding, we introduce the problem in
a Machine Learning as a Service (MLaaS) scenario. In the MLaaS setting, there are two key entities:
a ML server that trains models as ML services, and users (data owners) who contribute their data
for ML model training. In such scenarios, machine unlearning occurs when users realize that some
of their previously contributed samples are private and wish to revoke these data contributions from
the trained models.

The ML Server’s Ability. We assume the ML server is honest but curious [R1]: while it honestly
hosts and provides ML services, including model training and updating, it may still be curious
about private information, such as unlearned data and unlearning intentions, if there are other
operations. Informing the server of unlearning intentions to customize unlearning operations is
considered a privacy threat because it reveals users’ unlearning purposes, potentially enabling the
server to prepare targeted unlearning attacks [R1,R2]. Therefore, in our setting, we assume the ML
server has only the learning algorithm A and the model with parameters θ to meet strict privacy
requirements. The ML server will not conduct unlearning operations other than training the model
using the learning algorithm A for model updating.

Moreover, we assume the ML server does not store the original training data and cannot access
the erased data, which should not be exposed to the server again due to privacy concerns. This
assumption is reasonable in both real-world and privacy-preserving MLaaS scenarios. In real-world
applications, vast amounts of data are generated daily, leading to the need of prompt model updates.
Consequently, many models are trained using incremental or continual learning techniques [R3,R4].
Therefore, the server does not retain the entire raw data due to its large size [R5,R6]. In privacy-
preserving scenarios, the ML server is restricted from directly accessing private training data from
users due to privacy concerns [R7,R8].

The Users’ Ability. The training data D was collected from all users and was used to train the
model θo. The unlearning user has the erased data Du ⊂ D. To estimate the unlearning update as

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

the target for unlearning noise generation in our method, we assume the unlearning user can access
the trained model θo, which is a common setting even in many privacy-preserving scenarios such
as FL. We assume the unlearning user has auxiliary clean examples Da so that they can synthesize
a new dataset based on it with the unlearning noise, replacing the erased data Du for achieving the
unlearning effect with only incremental learning using the synthesized dataset.

H DISCUSSION ABOUT DISTINGUISHING BENIGN UNLEARNING USERS AND
MALICIOUS USERS @REVIEWER ICGZ

To distinguish a benign user who wants to delete their data from a malicious user and who wants to
upload noisy gradients to sabotage the model performance, we can only propose some possible ways
for the server to distinguish these two kinds of users. The most significant difference is the purposes
of the unlearning user and the malicious user. Unlearning users want to remove some knowledge of
their data from the model, and they also want to preserve the model’s utility. Therefore, most clean
samples and the auxiliary data they choose are in the same distribution as the genuine samples,
and the synthesized noise should not influence the utility of the remaining dataset, as shown in the
second objective of Eq.(4). However, the purpose of the malicious user is to sabotage the model
performance. Their uploaded data will not be consistent with the genuine samples, so they can
degrade model utility. We believe checking the similarity between the uploaded samples and genuine
samples would be a possible solution. However, detailed poisoning attacking methods may need
different solutions, and the problem is valuable to investigate in future work.

I DISCUSSION ABOUT DIFFERENCE BETWEEN EXISTING UNLEARNING
METHODS @REVIEWER GP18

Compared with existing representative approximate unlearning methods [R19, R20, R21], our
method also has the following differences. Specifically, the key techniques used in [R20] are the
Hessian approximation and Fisher information, which is similar to our unlearning update estimation
method that is also based on the Hessian matrix. The difference is that we use Hessian-vector prod-
ucts (HVPs) while [R20] uses the Fisher information to improve the efficiency. The HVPs solution
is more efficient and more suitable to our scenarios in which the unlearning user cannot access the
remaining dataset. [R19] and [R21] are approximate unlearning methods based on techniques called
error maximizing. They generate error-maximizing noise for the unlearned samples to remove the
influence from the model. One significant advantage of [R19] and [R21] is that they do not require
access to the remaining training dataset. Compared with them, we put more effort into designing the
method to further hide the unlearning data and the unlearning intentions from the server.

J ADDITIONAL EXPERIMENTS ON THE MORE PRACTICAL BLACK-BOX
SCENARIOS @REVIEWER HA5F

To prove the feasibility of our method in the more practical black-box scenarios, we conducted addi-
tional experiments on the black-box setting on MNIST and CIFAR10. In this setting, the unlearning
user cannot access the server’s current model. The unlearning user only knows the type of the model
(MLP on MNIST and CNN on CIFAR10 in our experiment), and the user only has the erasing data
and the auxiliary data. We set the size of auxiliary data to 1% of the server-side training data. Other
unlearning settings are the same as the main setting in the paper, where we first backdoor the erasing
data for model training and aim to unlearn these backdoored erasing data.

With these settings, the unlearning user trains a shadow model (θs) with 94.55% accuracy on MNIST
and 42.57% accuracy on CIFAR10. By contrast, the accuracy of the server’s model (θo) trained with
the entire dataset is 98.74% on MNIST and 78.80% on CIFAR10. Since both models are optimized
on the erasing dataset, the proposed efficient unlearning update estimation (EUUE) method is effec-
tive for simulating the update of the unlearning data based on the shadow model. Hence, we can
generate effective noise for the incremental learning data to approach the influence of unlearning.
Then, we upload the constructed data to the server side for incremental learning, aiming to achieve
the unlearning effect at the same time. We present the results as follows in Table R6.
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Table R6: Additional experiments on the black-box setting. On both datasets, OUbL achieves effec-
tive unlearning performance, effectively removing the backdoor influence. The backdoor removal
effectiveness in the black-box setting is slightly lower than in the white-box setting. However, the
negative impact on the model utility is also mitigated. These experimental results demonstrate the
feasibility of OUbL in a more practical scenario, which lets the unlearning user not rely on the as-
sumption of white-box access to the trained model in the federated learning scenarios. @Reviewer
Ha5f

Metrics USR = 1% 2% 3% 4% 5%

Model Acc.(white-box) 98.52% 98.55% 98.15% 98.19% 95.43%
On MNIST Model Acc. (black-box) 98.26% 98.20% 98.31% 98.27% 98.54%

Backdoor Acc. (white-box) 9.67% 10.08% 9.83% 10.42% 10.57%
Backdoor Acc. (black-box) 12.33% 9.58% 11.67% 10.64% 11.83%

Model Acc.(white-box) 73.89% 74.57% 74.50% 75.15% 75.99%
On Cifar10 Model Acc. (black-box) 76.06% 75.98% 74.93% 75.06% 74.68%

Backdoor Acc. (white-box) 9.40% 7.30% 7.87% 8.70% 7.24%
Backdoor Acc. (black-box) 13.20% 10.20% 8.40% 10.25% 8.28%
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