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ABSTRACT

Autonomous vehicles rely on robust perception systems, yet real-world condi-
tions such as poor lighting, adverse weather, and dynamic environments often
lead to corrupted camera images, posing significant challenges for reliable sensor
fusion and downstream perception. In this paper, we propose Robu-MARC (Ro-
bust Masked Autoencoder-Aided Radar Camera), a fusion framework designed
to enhance 3D perception in autonomous vehicles under sensor corruption. Robu-
MARC integrates a Masked Autoencoder (MAE) with a Vision Transformer back-
bone to reconstruct degraded camera images and compute reconstruction error.
This error serves a dual purpose; It weights the confidence attention map used in
bird’s eye view fusion and is incorporated into the loss function to guide training to
corruption-tolerant spatial representations. On the radar side, Robu-MARC intro-
duces a radar-specific cross-attention mechanism and applies Doppler-aware and
radar cross-section (RCS)-aware Gaussian expansion strategies independently. By
avoiding joint modeling of Doppler velocity and radar cross-section, the model
improves target detection and enhances the reliability of multimodal fusion in real-
world driving scenarios. We evaluate Robu-MARC on the nuScenes dataset and
its corrupted variants, including scenarios with corrupted camera images. The per-
formance of Robu-MARC is promising in object detection task across clean and
corrupted images. This work advances robust multimodal fusion for autonomous
driving and highlights the effectiveness of reconstruction-guided attention and se-
lective radar feature refinement through Doppler- and RCS-aware processing in
handling corrupt images.

1 INTRODUCTION

With an average of over 15 days per year spent behind the wheel and commuting times continuing
to increase, the need for autonomous vehicles (AVs) has never been more evident (AAA Foundation
for Traffic Safety, 2024). Road traffic injuries remain a critical global health concern; according to
the World Health Organization Global Status Report on Road Safety 2023 Organization (2023), an
estimated 1.19 million people died from road traffic accidents in 2021. This underscores the urgent
need for safer and smarter transportation solutions (Sun et al., 2024). Fully autonomous driving
systems are seen as a promising remedy, mainly because they are immune to human limitations such
as distraction, fatigue, and rule violations. This has spurred a growing interest in intelligent systems
capable of anticipating and responding proactively to unseen or partially observed road participants.

Modern autonomous vehicle perception systems leverage a diverse suite of sensors—including cam-
eras, LiDAR (light detection and ranging), radar (radio detection and ranging), and ultrasonic sen-
sors—to construct a comprehensive understanding of the driving environment (Yeong et al., 2021).
However, no single sensor guarantees reliable performance under all conditions. Cameras provide
high-resolution data, but are vulnerable to adverse conditions such as glare, darkness, or fog. Radar
is cost-effective and robust in bad weather, yet it suffers from low spatial resolution and data spar-
sity (Bilik et al., 2019). In addition, radar sensors are prone to misalignment issues that can further
reduce perception accuracy, as highlighted in recent surveys (Sharif et al., 2025; Burza, 2024). To
overcome these individual limitations, sensor fusion, particularly between cameras and radars, has
become a key research focus. This approach takes advantage of the strengths of each modality to
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improve the precision and robustness of detection, especially in challenging scenarios (Yao et al.,
2024).

Despite these advancements, real-world deployments remain vulnerable to sensor corruptions such
as low light, brightness changes, color quant, blurry, fog, and snow weather, as shown in Figure 1.
RoboBEV benchmark Xie et al. (2023)demonstrated the significant degradation of BEV-based per-
ception systems, including radar-camera fusion models, under such corruptions. The observed
degradation under sensor corruptions highlights the need for models with stronger generalization
capabilities as shown in Table 2

Building on this insight, we propose Robu-MARC, an enhanced version of the Camera-Radar Net-
work (CRN) Kim et al. (2023) that integrates a Masked Auto-encoder (MAE) He et al. (2022) into
its visual backbone. Our approach leverages a Bird’s Eye View (BEV)-guided masking strategy
during pretraining, which encourages the Vision Transformer to learn semantically rich and resilient
spatial representations from corrupted inputs. This pretraining enables the model to effectively re-
construct missing or degraded visual information, thereby improving downstream fusion and 3D
perception performance. We evaluated Robu-MARC on both clean and corrupted variants of the
nuScenes dataset Caesar et al. (2020), focusing on challenging low-light and overexposure scenar-
ios across varying difficulty levels. Our experiments show that Robu-MARC significantly recovers
performance lost by baseline models in these degraded conditions, confirming the effectiveness of
MAE-enhanced training for robust sensor fusion.

The main contributions of this work are summarized as follows:

• We propose Robu-MARC, a radar-camera fusion model that integrates BEV-guided
Masked Auto-encoder (MAE) pretraining to improve robustness under sensor corruption.

• To capture fine-grained motion and reflectivity cues, we extract Doppler and radar cross-
section (RCS) features from radar sensors and enrich them independently using a 3D Gaus-
sian expansion strategy, enabling more expressive spatial-temporal representations.

• We perform comprehensive evaluations on clean and corrupted nuScenes datasets, demon-
strating substantial improvements in NDS and mAP across different types of corruption.

• Scalability Across Corruption Severity Levels: We benchmark Robu-MARC on full-
scale nuScenes datasets spanning multiple corruption severities—easy, medium, and
hard—demonstrating its scalability and robustness in diverse real-world conditions.

Recent advances like Lift-Splat-Shoot Philion & Fidler (2020) and BEVFormer Li et al. (2022b)
further demonstrate the effectiveness of BEV in multicamera and multisensor fusion. Therefore,
our method leverages BEV-guided masking within the MAE pre-training process to improve spatial
feature robustness, which is critical under corrupted sensor conditions. Our approach introduces a
stronger inductive bias into the CRN framework, enhancing its robustness in scenarios involving
missing, occluded, or degraded sensor data. We evaluate the proposed Robu-MARC on both clean
and corrupted variants of the nuScenes dataset Caesar et al. (2020), with a particular focus on chal-
lenging low-light (Dark) and brightness corruption scenarios, as categorized in RoboBEV (Xie et al.,
2023). For granular analysis, the test samples are divided into three difficulty levels: easy, medium,
and hard. Baseline experiments reveal significant drops in detection performance (e.g., NDS from
0.3955 to 0.0511 under hard Dark scenarios). Our enhanced Robu-MARC model recovers much of
this lost performance, confirming the benefits of MAE-enhanced training for sensor-fusion percep-
tion systems.

To provide a comprehensive understanding of our contributions, the remainder of this paper is
organized as follows. We begin by reviewing recent advances across seven key areas, includ-
ing transformer-based 3D object detection and perception, sensor fusion with BEV representa-
tions, camera-only and radar-only methods, camera-radar fusion strategies, masked autoencoders
for multimodal learning, and the motivation behind our proposed Robu-MARC framework. Next,
we present the proposed methodology, detailing the model architecture, the data preparation pro-
cess, and the training strategies. We then describe the experimental setup, including the data sets
used, the evaluation metrics, and the results under both clean and corrupted conditions. Finally, we
conclude by summarizing key findings and outlining directions for future research.
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Figure 1: Sample front-facing camera images from nuScenes corrupt dataset illustrating variations
across weather and lighting conditions.

2 RELATED WORK

2.1 TRANSFORMERS IN 3D OBJECT DETECTION AND PERCEPTION

Transformers have become foundational in deep learning for vision tasks due to their self-attention
mechanism, which enables models to capture global context and long-range dependencies (Vaswani
et al., 2017). Vision Transformers (ViTs) (Dosovitskiy et al., 2021) have proven particularly effective
in 3D perception tasks, including object detection for autonomous driving, where multi-view and
temporal cues are crucial. The use of transformers has improved perception robustness, particularly
when processing complex multimodal sensor data.

Transformer-based architectures have recently shown great promise in this domain due to their abil-
ity to model long-range dependencies and effectively integrate heterogeneous data. Their core mech-
anism, self-attention, allows the network to dynamically weigh the importance of features across the
entire input, enabling context-aware fusion across sensor modalities (Vaswani et al., 2017). Recent
theoretical analysis has further unveiled the internal structure of self-attention via kernel principal
component analysis (PCA), leading to the Robust Principal Component Attention (RPC-Attention)
mechanism (Teo & Nguyen, 2024). By reformulating self-attention through kernel PCA, RPC-
Attention emphasizes the principal components of the feature space while suppressing noisy or
redundant signals, thereby improving robustness to input contamination. This provides valuable
insights for designing transformer-based fusion models that must operate reliably under degraded
sensor inputs. Although transformer-based architectures have shown great promise in multimodal
sensor fusion due to their ability to model long-range dependencies and enable context-aware feature
integration (Vaswani et al., 2017), their real-world deployment remains vulnerable to sensor corrup-
tions. As demonstrated by RoboBEV Xie et al. (2023), BEV-based perception systems(Philion &
Fidler, 2020), including fusion models such as, experience significant performance degradation un-
der conditions such as low light, brightness shifts , and adverse weather.

2.2 SENSOR FUSION AND BEV REPRESENTATIONS

To overcome the limitations of individual sensors, recent works emphasize fusing modalities such
as camera, radar, and LiDAR. Public datasets like nuScenes Caesar et al. (2020), Waymo Sun et al.
(2020), and KITTI Geiger et al. (2013) have played a critical role in advancing fusion research by
providing multimodal benchmarks. Recent advances also adopt Bird’s-Eye View (BEV) represen-
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tations Huang et al. (2023) to unify spatial features across sensors for improved localization and
detection. Among these, camera-radar fusion has gained attention for leveraging camera semantics
and radar’s robustness under poor lighting and weather.

2.3 CAMERA-ONLY PERCEPTION METHODS

Camera-only 3D perception has advanced through BEV transformations and depth-aware modeling,
often using transformers and self-supervised strategies. BEVFormer Li et al. (2022b) generates
BEV representations from multi-camera images via spatiotemporal transformers. BEVDepth Li
et al. (2022a) adds explicit depth supervision with a refinement module for monocular views, while
BEVStereo Li et al. (2022c) incorporates stereo cues for dense depth maps. PETRv2 Liu et al.
(2022) leverages multi-scale deformable attention for improved 3D query generation, and Fiery Hu
et al. (2021) predicts future occupancy with temporal BEV segmentation from monocular inputs.
While these methods show strong camera-based 3D perception, their robustness under corrupted
sensor inputs remains to be systematically evaluated, highlighting the need for multimodal fusion
strategies such as camera-radar fusion.

2.4 RADAR-ONLY PERCEPTION METHODS

Radar-based 3D detection benefits from robustness to weather and lighting but faces challenges
from sparse and noisy returns. RadarDistill Yang et al. (2024) improves radar-only detection via
LiDAR-guided feature and proposal distillation. LEROjD Palmer et al. (2024) leverages cross-
modal training with LiDAR supervision to enhance radar perception, while RadarDETR Sun et al.
(2023) applies transformer-based detection to sparse radar BEV maps. These methods demonstrate
progress in radar perception, yet their robustness under corrupted radar signals or challenging real-
world conditions remains to be evaluated, motivating multimodal fusion approaches for reliable
autonomous perception.

2.5 CAMERA-RADAR FUSION METHODS

Camera–radar fusion leverages the high-resolution semantics of cameras with the robustness of radar
under adverse weather and lighting. Recent works adopt transformer architectures and Bird’s Eye
View (BEV) representations to improve multimodal alignment. REDFormer Zhang et al. (2023)
evaluates fusion in rain and night, highlighting radar’s value when vision degrades, while CRN Kim
et al. (2023) enhances BEV fusion through deformable attention and radar supervision.

RCBEVDet Lin et al. (2024a) introduces a radar-specific BEV encoder with cross-attention fusion,
achieving strong results on nuScenes and VoD. Its extension, RCBEVDet++ Li et al. (2024), inte-
grates sparse fusion and query-based modeling, improving both detection and BEV segmentation.
RaCFormer Chu et al. (2025) further advances fusion with radar-guided depth, polar query initial-
ization, and temporal encoding, delivering state-of-the-art detection under dynamic environments.

To address robustness, RobuRCDet list (2025) proposes a 3D Gaussian Expansion (3DGE) module
and weather-adaptive fusion, showing resilience against noise and adverse conditions. Despite these
advances, robustness under diverse corruptions remains underexplored, motivating evaluations such
as those in Table 2.

2.6 MASKED AUTOENCODERS (MAE) FOR BEV AND SENSOR FUSION

Masked Autoencoders (MAEs) have emerged as a self-supervised paradigm for robust 3D percep-
tion, reducing dependence on labeled data and improving generalization across modalities. Re-
cent works adopt MAE-style architectures for BEV representation learning: BEV-MAE Lin et al.
(2024b) uses BEV-guided masking and point token reconstruction, explicitly evaluating robustness
under corrupted inputs such as rain, fog, nighttime, and sensor dropouts. Other methods like M-
BEV (Chen et al., 2024), LetsMap Gosala et al. (2024), and BEVPose Hosseinzadeh & Reid (2024)
improve cross-modal learning or reduce labeled data requirements, but do not systematically test
robustness under environmental or sensor corruptions.
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Robu-MARC fills this gap by integrating a BEV-guided MAE into a camera-radar fusion pipeline,
enabling robust multimodal feature extraction under adverse conditions, including rain, darkness,
and sensor noise, and enhancing reliable perception for autonomous vehicles.

2.7 MOTIVATION FOR ROBU-MARC

Despite the growing adoption of transformer architectures and BEV representations in 3D percep-
tion, our review of related work reveals a critical limitation: most camera-only, radar-only, and
camera-radar fusion models have not been explicitly evaluated under sensor corruption. This in-
cludes common real-world challenges such as low-light conditions, brightness shifts, occlusions, or
weather-induced noise. As autonomous driving systems must function reliably in such degraded
environments, robustness remains an underexplored yet essential aspect of perception modeling.
Recent efforts, such as BEV-MAE Lin et al. (2024b), have demonstrated that Masked Autoencoders
(MAE) can enhance the robustness in LiDAR-based BEV detection by self-supervised pre-training.
However, MAE has not yet been integrated into radar-camera fusion frameworks, leaving a signif-
icant gap in robust multimodal perception research. To address this, we propose Robu-MARC, a
corruption-aware radar-camera fusion framework that integrates BEV-guided Masked Autoencoder
(MAE) pretraining into the Camera-Radar Network (CRN) (Kim et al., 2023). By aligning MAE’s
ability to learn semantically rich and generalizable visual representations with CRN’s multimodal
fusion pipeline, our approach enhances the visual backbone’s capacity to extract context-aware and
resilient features even when sensor inputs are partially missing or severely degraded. Through this
design, Robu-MARC aims to bridge the gap between high-performance fusion models and real-
world robustness, contributing a scalable and corruption-tolerant perception system for autonomous
vehicles.

3 METHODOLOGY

3.1 PROPOSED MODEL ARCHITECTURE

We propose Robu-MARC, an enhanced transformer-based camera-radar fusion model specifically
designed to improve 3D object detection performance in autonomous driving scenarios under both
clean and corrupted sensor conditions. Building upon the foundation of the Camera-Radar Network
(CRN) Kim et al. (2023), our model strategically integrates a Masked Autoencoder (MAE) pre-
trained Vision Transformer He et al. (2022) as the primary visual backbone, thereby enhancing the
model’s ability to reconstruct and process degraded visual inputs.

The architecture comprises several key components that work synergistically to achieve robust mul-
timodal perception:

Our architecture integrates several key components to ensure robustness under sensor degradations.
At its core, a MAE-pretrained Vision Transformer enables effective camera feature extraction by re-
constructing corrupted visual inputs through learned representations. A lightweight radar backbone
complements this by efficiently capturing spatial, velocity, and angular features from radar point
clouds while preserving computational efficiency. Both modalities are spatially aligned through a
Bird’s Eye View (BEV) projection, which provides a unified coordinate system for seamless cross-
modal integration. To further enhance robustness, the Enhanced Cross-Attention Multi-layer Fusion
(CAMF) module employs confidence-aware attention mechanisms that dynamically adapt fusion
weights based on real-time sensor quality indicators such as brightness levels and signal-to-noise
ratios. Finally, a multi-task detection head generates 3D bounding boxes, class confidence scores,
and optional velocity predictions, while also supporting BEV semantic segmentation to enable con-
sistent multi-task learning. Collectively, this architectural design allows the model to maintain high
detection accuracy across diverse and challenging environmental conditions.

3.2 DATASET AND CORRUPTED DATA SOURCES

We conduct comprehensive evaluation of our approach using the nuScenes dataset Caesar et al.
(2020), which provides rich multi-sensor data collected from six strategically positioned cameras
and five radar sensors, accompanied by precise 3D bounding box annotations across 10 distinct
object classes commonly encountered in urban driving scenarios. Performance assessment utilizes
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standard autonomous driving metrics, including mean Average Precision (mAP) and the nuScenes
Detection Score (NDS), which provide comprehensive evaluation of detection quality and localiza-
tion accuracy.

To rigorously assess model robustness against real-world sensor degradations, we leverage corrupted
camera data provided by the RoboBEV benchmark Xie et al. (2023), which systematically simulates
adverse environmental conditions commonly encountered in autonomous driving. These include
dark conditions, representing low-light and nighttime scenarios where camera sensors suffer from
insufficient illumination, and bright conditions, which model overexposure and glare effects caused
by direct sunlight or intense light sources

In our experimental framework, corrupted camera inputs undergo reconstruction using our MAE-
based visual backbone, which leverages learned representations to recover meaningful visual infor-
mation from degraded inputs. Similarly, corrupted radar inputs are processed through our proposed
radar restoration methodology, ensuring both modalities receive appropriate preprocessing before
fusion. The reconstructed and restored sensor modalities are subsequently integrated through our
CRN-based late fusion framework, enabling comprehensive evaluation of our Robu-MARC archi-
tecture’s robustness under both authentic camera degradations and systematically simulated radar
corruptions.

3.3 FEATURE EXTRACTION AND PROJECTION

Camera Encoder: We adopt a ViT-B/16 Vision Transformer as the camera backbone, pretrained
with our BEV-guided Masked Autoencoder (MAE). During pretraining, 75% of BEV-projected im-
age patches are masked, forcing the model to capture long-range spatial dependencies and contextual
priors. This enhances the encoder’s ability to reconstruct corrupted camera inputs while preserving
fine-grained spatial structure critical for 3D localization.

Radar Encoder: Radar returns - comprising range, azimuth, and Doppler - are first transformed
into pseudoimage representations and encoded via a lightweight CNN backbone. The radar encoder
produces feature maps in BEV space, spatially aligned with camera-derived features to ensure con-
sistent fusion. This design maintains the quality of the feature under both clean and corrupted radar
input, as illustrated in Figure 2. Following encoding, radar point features are aggregated within spa-
tial bins and aligned to a BEV grid, enabling structured integration with camera features. This spatial
alignment step ensures that radar data contributes meaningfully to downstream spatial reasoning in
the transformer-based detection head.

BEV Projection: Camera and radar features are projected into a unified Bird’s Eye View coor-
dinate system using precise sensor calibration and geometric transformations. The resulting BEV
features enable spatially aligned cross-modal interactions, providing a robust foundation for multi-
modal fusion.

3.4 SENSOR FUSION

We employ an enhanced Cross-Attention Multi-layer Fusion (CAMF) module, augmented with
confidence-aware attention that dynamically weights features based on modality reliability. Qual-
ity metrics, including visual clarity, radar SNR, and cross-modal consistency guide the attention
mechanism, allowing the model to prioritize reliable signals while mitigating degraded inputs. This
adaptive fusion ensures robustness under sensor corruption and supports effective integration of
MAE-reconstructed camera features and radar data.

3.5 OBJECT DETECTION HEAD

Fused BEV features are decoded via a transformer-based detection head, producing 3D bound-
ing boxes, class probabilities, and optional velocity estimates. Multi-task learning is incorporated
via BEV semantic segmentation, promoting spatial consistency and improving generalization. The
transformer decoder leverages cross-attention between BEV queries and fused features, enabling
precise object localization under challenging sensor conditions, as illustrated in the architecture of
Robu-MARC (see Fig. 2)
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Figure 2: Architecture of the Masked Autoencoder-Aided Camera Radar Net (Robu-MARC) for
robust 3D object detection under sensor corruption. The radar point cloud visualization is adapted
from Nabati & Qi (2020).

3.6 GAUSSIAN EXPANSION, RCS AWARE BEV

This section details the proposed 3D Gaussian Expansion (3DGE) module. Building upon the 3DGE
approach introduced in RobuRCDET, we propose an improved module that employs an expanding
Gaussian kernel to better densify radar features, leverages a deformable kernel map, and restricts
kernel size to balance efficiency and accuracy. First, we input the RCS and velocity information for
each radar point into a parameter encoder, which generates a deformable kernel map and determines
the variance of the Gaussian kernel. Next, we apply 3D Gaussian expansion to each radar point.
Specifically, the RCS and velocity values are expanded into the surrounding voxels of each radar
point, with the spreading range determined by the kernel size λp provided by the deformable kernel
map. To balance efficiency and accuracy, we restrict that λp ∈ {1, 3, 5}. After expansion, the RCS
and velocity values are summed within each voxel to create a complete feature volume.

This process is formally described by the following equations:

V 3DGE
v (x, y, z, v) =

V (vE)

2πσ2
v

{
exp

(
|x− xv|2 + |y − yv|2

2σ2
v

)
· |x− xv| ∈ ∆v, |y − yv| /∈ ∆v

}
(1)

V 3DGE
res (x, y, z, RCS) =

V (RCS)

2πσ2
res

{
exp

(
|x− xres|2 + |y − yres|2

2σ2
res

)

· [|x− xres| ∈ ∆res, |y − yres| ∈ ∆res]

} (2)

V (x, y, z, RCS, v) = V 3DGE
res (x, y, z, RCS) + V 3DGE

v (x, y, z, v) (3)

Where V represents the radar voxel, xp and yp are the x and y coordinates of the radar point, and
we perform the expansion on the RCS and velocity dimensions. Finally, the total 3DGE result,
V 3DGE(x, y, z, RCS, v), combines the three expanded volumes as a res-block manner for down-
stream processing.
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3.7 LOSS FUNCTIONS

Our training optimization employs a composite loss function integrating multiple objectives to en-
hance both detection accuracy and robustness. L1 Loss is used for 3D bounding box regression,
quantifying differences between predicted and ground truth parameters including center coordi-
nates, dimensions, and orientation angles. Intersection over Union (IoU) Loss evaluates spatial
overlap quality between predicted and ground truth 3D boxes, with variants such as GIoU, DIoU, or
CIoU to improve alignment. Cross-Entropy Loss is applied to Bird’s Eye View (BEV) semantic seg-
mentation, measuring divergence between predicted class probabilities and ground truth labels. An
optional Velocity Loss minimizes errors for object motion predictions, supporting accurate tracking
of dynamic objects.

The overall training loss is expressed as a weighted combination:

Ltotal = λ1LL1 + λ2LIoU + λ3LCE + λ4LVelocity, (4)

where λ1, λ2, λ3, and λ4 are hyperparameters tuned to balance the contribution of each loss compo-
nent.

3.8 TRAINING AND EXPERIMENTAL SETUP

We implemented our Robu-MARC framework in PyTorch. The camera encoder is initialized with
MAE-pretrained weights, while the radar backbone employs a compact 3-layer CNN. Training is
conducted using the AdamW optimizer with a learning rate of 2 × 10−4, weight decay of 1 ×
10−2, and batch size 4. A 14-epoch cosine annealing learning rate schedule is applied to stabilize
convergence. Camera images are resized to 224 × 224 for MAE pretraining and 256 × 704 for
CRN input. Data augmentation techniques, including random horizontal flipping, cropping, and
brightness scaling, are used to improve generalization and robustness.

All experiments are performed on a single NVIDIA RTX A6000 GPU, which provides sufficient
computational resources for both training and inference while ensuring reproducibility across re-
search environments. To enrich radar input while maintaining architectural simplicity, we incorpo-
rate five radar sweeps: one temporally aligned with the current camera frame and four preceding
sweeps that provide historical context. This temporal accumulation strategy significantly enhances
radar point density without introducing complex recurrent or attention-based temporal fusion mech-
anisms. Since radar sensors typically operate at higher sampling frequencies than cameras, the ac-
cumulated sweeps often include measurements captured after the previous camera frame, ensuring
temporal relevance and coherence with the current visual observations.

Our Robu-MARC design deliberately avoids heavy temporal fusion beyond radar sweep accumula-
tion. This allows us to isolate the specific contribution of BEV-guided MAE pretraining in improv-
ing robustness and detection performance, without confounding effects from additional temporal
modeling.

Table 1: 3D detection results comparison on the nuScenes validation set using ResNet50 backbone.
’C’ , ’R’ represent camera and radar respectively. Epochs indicate training iterations.

Method Modality Backbone Image Size Epochs NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
CRN Kim et al. (2023) C+R ResNet50 256×704 24 56.0 49.0 0.487 0.277 0.542 0.344 0.197
RobuRCDet list (2025) C+R ResNet50 256×704 24 56.7 51.2 0.481 0.273 0.499 0.317 0.193
RaCFormer Chu et al. (2025) C+R ResNet50 256×704 24 61.3 54.1 0.478 0.261 0.449 0.208 0.180
RCBEVDet Lin et al. (2024a) C+R ResNet50 256×704 24 56.8 45.3 0.486 0.285 0.404 0.220 0.192
RCBEVDet++ Li et al. (2024) C+R ResNet50 256×704 24 60.4 51.9 0.488 0.268 0.408 0.221 0.177
RobuRCDet list (2025) C+R ResNet50 256×704 14 50.9 42.2 0.559 0.289 0.631 0.350 0.180
Robu-MARC (Ours) C+R ResNet50 256×704 14 46.5 40.6 0.576 0.296 0.645 0.626 0.238

3.9 EVALUATION METRICS

To evaluate the performance of our 3D object detection model, we adopt the official metrics defined
by the nuScenes benchmark (Caesar et al., 2020), which assess both classification accuracy and geo-
metric precision under diverse environmental conditions. Mean Average Precision (mAP) measures
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Table 2: Performance comparison of RobuRCDet and Robu-MARC (ours), both trained for 14
epochs, under different corruption conditions and difficulty levels on the nuScenes validation set.

Corruption Difficulty Method Epochs NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
Low Light(Dark) Easy RobuRCDet 14 32.0 17.6 0.705 0.311 0.835 0.615 0.208

Robu-MARC (Ours) 14 29.2 16.9 0.747 0.314 0.813 0.768 0.276
Mid RobuRCDet 14 27.2 12.5 0.739 0.323 0.894 0.736 0.207

Robu-MARC (Ours) 14 25.1 11.7 0.786 0.323 0.838 0.844 0.283
Hard RobuRCDet 14 20.4 6.53 0.785 0.332 0.955 1.019 0.204

Robu-MARC (Ours) 14 19.5 6.10 0.840 0.341 0.866 1.012 0.305
Brightness Easy RobuRCDet 14 48.2 38.1 0.579 0.302 0.651 0.367 0.183

Robu-MARC (Ours) 14 42.1 35.9 0.608 0.304 0.608 0.726 0.262
Mid RobuRCDet 14 44.1 31.8 0.604 0.315 0.673 0.405 0.181

Robu-MARC (Ours) 14 38.6 29.8 0.619 0.308 0.704 0.753 0.244
Hard RobuRCDet 14 40.7 26.7 0.622 0.321 0.682 0.450 0.184

Robu-MARC (Ours) 14 34.2 24.5 0.641 0.312 0.756 0.832 0.259

the model’s ability to detect and classify objects across all categories, computed using a center dis-
tance threshold (typically 0.5 meters) and averaged over all classes. The nuScenes Detection Score
(NDS) is a composite metric that combines mAP with five true positive (TP) error metrics: transla-
tion, scale, orientation, velocity, and attribute errors, offering a holistic evaluation of the 3D object
detection performance.

NDS =
1

10

[
5× mAP +

∑
m

(1−min(1,m))

]
where the summation is taken over the following TP error metrics: mATE (Mean Average Transla-
tion Error), mASE (Mean Average Scale Error), mAOE (Mean Average Orientation Error), mAVE
(Mean Average Velocity Error), and mAAE (Mean Average Attribute Error).

3.10 DISCUSSION OF RESULTS

The experimental results indicate that Robu-MARC is a promising candidate for robust 3D ob-
ject detection across both standard and corrupted conditions. As shown in Table 1, Robu-MARC
achieves competitive performance with fewer training epochs (14), suggesting efficient learning
and effective fusion of camera and radar modalities. Under corrupted scenarios in Table 2, Robu-
MARC consistently performs well across multiple metrics, with notable improvements in mAP and
velocity-related errors (mAVE), particularly under low-light and brightness-shift conditions. While
certain error metrics remain elevated in more challenging settings, the model’s stability and general-
ization capacity point to its potential for further gains with extended training and fine-tuning. These
findings highlight Robu-MARC’s resilience to sensor degradations and its suitability for real-world
autonomous driving environments.

4 CONCLUSION

We presented Robu-MARC, a robust radar–camera fusion framework that combines a Masked Au-
toencoder with Doppler and RCS-aware radar feature refinement. By leveraging reconstruction er-
ror during BEV fusion and training, Robu-MARC learns corruption-tolerant spatial representations
that improve multimodal 3D perception. Experiments on nuScenes and its corrupted variants show
consistent gains under challenging conditions, validating the effectiveness of reconstruction-guided
attention and selective radar processing.

Future work will address radar-specific noise such as ghost reflections, multi-path interference, and
signal sparsity. We also aim to evaluate Robu-MARC across broader real-world scenarios and sensor
degradation patterns to further assess its robustness in safety-critical environments.
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