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Abstract

We prove the first generalization bound for large-margin halfspaces that is asymp-
totically tight in the tradeoff between the margin, the fraction of training points
with the given margin, the failure probability and the number of training points.

1 Introduction

Halfspaces are arguably among the simplest and most fundamental classic learning models. Given a
normal vector w ∈ Rd and a bias b ∈ R defining a hyperplane, the corresponding halfspace classifier
predicts the label of a data point x ∈ Rd by returning sign(⟨w, x⟩+ b), corresponding to a +1 label
on points inside the halfspace above the hyperplane, and −1 on points below.

Classic examples of learning algorithms for obtaining a halfspace classifier from a training set of
points S = {(xi, yi)}ni=1 with (xi, yi) ∈ Rd × {−1, 1}, includes the Perceptron Learning Algorithm
(PLA) (Mcculloch and Pitts [1943]) and Support Vector Machines (SVM) (Cortes and Vapnik [1995]).
A key intuition underlying SVM, is the empirical observation that halfspaces with a large margin to
the training data tend to generalize well. Ignoring the bias variable b (which we later handle by adding
a special feature) and assuming w ∈ Sd−1 (i.e. w has unit length), the margin of the halfspace with
normal vector w on a labeled point (x, y) is y⟨w, x⟩. Observe that ⟨w, x⟩ gives the signed distance of
x from the hyperplane, and the margin is positive when sign(⟨w, x⟩) correctly predicts the label y.
With this definition, hard-margin SVM computes the normal vector w of the hyperplane with the
largest minimum margin. There are also margin variants of the Perceptron (Freund and Schapire
[1999]) that computes a halfspace with minimum margin approaching the optimal, as in hard-margin
SVM.

To handle data that is not linearly separable, and to add robustness to outliers, the soft-margin SVM
relaxes the optimization problem to the following

min
w,ξ
∥w∥22 + λ

∑
i

ξi, s.t. yi⟨w, xi⟩ ≥ 1− ξi, ξi ≥ 0.

Here λ > 0 is a regularization parameter. The soft-margin SVM thus allows for smaller margins on
some training points at the cost of a penalty λξi. For fast implementations of SVM, see Gu et al.
[2025] and S. Shalev-Shwartz and Cotter [2011].

To theoretically justify and explain the empirical success of focusing on large margins, Bartlett
and Shawe-Taylor [1999] proved the first generalization bounds upper bounding the probability
LD(w) := P(x,y)∼D[sign(⟨w,x⟩) ̸= y] of misclassifying the label of a new data point. Concretely,
Bartlett and Shawe-Taylor first studied the hard-margin case and proved that for any distribution D
over Bd

2 × {−1, 1} and any 0 < δ < 1, it holds with probability at least 1 − δ over a training set
S ∼ Dn that for every w ∈ Sd−1 and every margin 0 < γ < 1, if y⟨w, x⟩ ≥ γ for all (x, y) ∈ S
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then

LD(w) ≤ c ·
(
ln2(n)

γ2n
+

ln(e/δ)

n

)
, (1)

for a constant c > 0. Here Bd
2 is the d-dimensional unit ball and Sd−1 is the d-dimensional unit

sphere, both with respect to the l2-norm. The restriction to x ∈ Bd
2 can be relaxed by multiplying

the first term by R2 for x ∈ R · Bd
2. A dependency on the scaling of input points is inevitable as

margins scale with ∥x∥2. Throughout the paper, we state bounds for R = 1 and remark that all
bounds generalize to arbitrary R by replacing γ by γ/R.

DefiningLγ
S(w) as the fraction of data points in a training set S wherew has margin at most γ, Bartlett

and Shawe-Taylor [1999] also prove a more general result, saying that with probability 1− δ over
S ∼ Dn, it holds for every w ∈ Sd−1 that

LD(w) ≤ Lγ
S(w) + c ·

√
ln2(n)

γ2n
+

ln(e/δ)

n
. (2)

This was later improved by Bartlett and Mendelson [2002] using Rademacher complexity arguments,
replacing the ln2(n) term in (2) by 1. Here, and throughout the paper, we refer to Lγ

S(w) as the
(empirical) margin loss.

First-Order Bounds. The first work to interpolate between the hard-margin and soft-margin bounds
was due to McAllester [2003], who gave a general tradeoff of

LD(w) ≤ Lγ
S(w) + c ·

(√
Lγ
S(w) ·

lnn

γ2n
+

lnn

γ2n
+

√
lnn+ ln(e/δ)

n

)
. (3)

Notice how the Lγ
S(w) term is multiplied onto lnn/(γ2n) inside the first square-root. Since the

hard-margin case corresponds to this term being 0, this gives a way of interpolating between the
cases. Such bounds are often referred to as first-order bounds. Unfortunately, (3) still has the
seemingly superfluous

√
(lnn+ ln(e/δ))/n term even when Lγ

S(w) = 0 and thus falls short of even
matching (1) in the hard-margin case.

The current state-of-the-art generalization bound is due to Grønlund et al. [2020a] and states that with
probability 1− δ over S ∼ Dn, it holds for every w ∈ Sd−1 that

LD(w) ≤ Lγ
S(w) + c ·

(√
Lγ
S(w) ·

(
lnn

γ2n
+

ln(e/δ)

n

)
+

lnn

γ2n
+

ln(e/δ)

n

)
. (4)

This improves previous hard-margin bounds by a logarithmic factor and gives a cleaner interpolation
between the hard- and soft-margin cases. Furthermore, the bound is close to optimal. Concretely, the
dependency on δ is optimal by tweaking standard results for agnostic PAC learning, see e.g. Devroye
et al. [1996] [Chapter 11]. Moreover, Grønlund et al. [2020a] complemented their upper bound by
the following lower bound

Theorem 1 (Grønlund et al. [2020a]). There is a constant c > 0 such that for any cn−1/2 < γ < c−1,
any parameter 0 ≤ τ ≤ 1, and any n ≥ c, there is a distribution D such that it holds with constant
probability over S ∼ Dn that there is a w ∈ Sd−1 such that Lγ

S(w) ≤ τ and

LD(w) ≥ Lγ
S(w) + c ·

(√
τ · ln(e/τ)

γ2n
+

ln(γ2n)

γ2n

)

≥ Lγ
S(w) + c ·

√Lγ
S(w) ·

ln(e/Lγ
S(w))

γ2n
+

ln(γ2n)

γ2n

 .

Notice how the parameter τ allows for showing that the upper bound (4) is nearly tight across the
range of Lγ

S(w). Let us also remark that Grønlund et al. [2020a] states their lower bound with a lnn
rather than ln(eγ2n), but require that γ > n−0.499. A careful examination of their proof however
reveals the more general lower bound stated here.
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Unfortunately, there still remains a discrepancy between the lower bound and (4). Concretely, there
is a gap of

√
lnn/ ln(e/Lγ

S(w)). Moreover, for constant Lγ
S(w), the Rademacher complexity based

bound in (2) improves over both of the first-order bounds (3) and (4), and matches the lower bound
in Theorem 1. This seems to suggest that a better upper bound might be possible.

Our Contribution. In this work, we settle the generalization performance of large-margin half-
spaces by proving a new upper bound matching the lower bound in Theorem 1 across the entire
tradeoff between γ, Lγ

S(w) and n (and is also tight in terms of δ). Our result is stated in the following
theorem
Theorem 2. There is a constant c > 0 such that for any distribution D over Bd

2 × {−1, 1}, it
holds with probability at least 1 − δ over S ∼ Dn that for every w ∈ Sd−1 and every margin
n−1/2 ≤ γ ≤ 1, we have

LD(w) ≤ Lγ
S(w) + c

(√
Lγ
S(w) ·

(
ln(e/Lγ

S(w))

γ2n
+

ln(e/δ)

n

)
+

ln(eγ2n)

γ2n
+

ln(e/δ)

n

)
.

Using a simple reduction, our results generalize to all non-homogeneous halfspaces (i.e. including a
bias term) and data in a ball of radiusR, yielding Theorem 2 with γ/R in place of γ. See Appendix A.

While one might argue that our improvement is small in magnitude, this finally pins down the exact
generalization performance of a classic learning model. Furthermore, our proof of Theorem 2 brings
several novel ideas that we hope may find further applications in generalization bounds.

We next proceed to give an overview of our proof and new ideas in Section 2, before giving the full
details of the proof in Section 3.

2 Proof Overview

In this section, we present the main ideas in our proof of Theorem 2. As our proof builds on, and
greatly extends, the work of Grønlund et al. [2020a] establishing the previous state-of-the-art in (4),
we first present their overall proof strategy and the barriers we need to overcome to obtain our tight
generalization bound. Throughout this proof overview, we use the notation x ≲ y to denote that there
is an absolute constant c > 0 so that x ≤ cy.

2.1 Previous Proof

The proof of Grønlund et al. [2020a] follows a framework proposed by Schapire et al. [1998] for
proving generalization of large-margin voting classifiers (i.e. boosting). The main idea is to randomly
discretize the infinite hypothesis set Sd−1 to obtain a finite set G ⊆ Rd → {−1, 1}. If G is small
enough, then a standard union bound over all h ∈ G suffices to bound the difference between the
empirical error and the true error LD(h) for every h ∈ G. The key trick is to exploit large margins to
allow for a discretization to a smaller G.

To elaborate on the above, let us first generalize our notation LD(w) and Lγ
S(w) a bit. For a

distribution D over Bd
2 × {−1, 1}, let Lγ

D(w) := P(x,y)∼D[y⟨w,x⟩ ≤ γ], that is, Lγ
D(w) is the

probability over a fresh sample (x,y) from D, of w having margin no more than γ on (x,y). For a
training set S, we slightly abuse notation and write (x,y) ∼ S to denote a uniform random sample
from S. We thus have

Lγ
S(w) := P

(x,y)∼S
[y⟨w,x⟩ ≤ γ] = |{(x, y) ∈ S : y⟨w, x⟩ ≤ γ}|

|S|
.

When writing LD(w) we implicitly mean L0
D(w) and note that this coincides with our previous

definition of LD(w) = P(x,y)∼D[sign(⟨w,x⟩) ̸= y] (defining sign(0) = 0).

Random Discretization. With this notation, the main idea in the proof of Grønlund et al. [2020a],
is to apply a Johnson-Lindenstrauss transform (Johnson and Lindenstrauss [1984]), followed by
a random snapping to a grid, in order to map each w ∈ Sd−1 to a point on a grid G of size
exp(ck) in Rk, with c > 0 a sufficiently large constant. In more detail, let A be a k × d matrix
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with i.i.d. N (0, 1/k) normal distributed entries. Such a matrix is a classic implementation of the
Johnson-Lindenstrauss transform and has the property that |⟨Aw,Ax⟩−⟨w, x⟩| is greater than ε with
probability at most exp(−ε2k/c) when ∥w∥2, ∥x∥2 ≤ 1 (Dasgupta and Gupta [2003]). Note that this
also preserves the norm of a vector w by considering x = w and noting ⟨w,w⟩ = ∥w∥22. Secondly,
following an idea of Alon and Klartag [2017] in a lower bound proof for the Johnson-Lindenstrauss
transform, Grønlund et al. [2020a] randomly round Aw to a point hA,t(w) with coordinates integer
multiples of k−1/2 while guaranteeing that |⟨hA,t(w),Ax⟩ − ⟨Aw,Ax⟩| is less than ε, except with
probability exp(−ε2k/c). Here we use t to denote the randomness involved in the rounding.

Now choosing ε = γ/4 gives, by the triangle inequality, that |⟨hA,t(w),Ax⟩ − ⟨w, x⟩| ≤ γ/2,
except with probability 2 exp(−γ2k/(16c)). Furthermore, by plugging in x = w and setting ε = 1,
we can also deduce that ∥hA,t(w)∥2 ≤ 2 except with probability exp(−k/c). Simple counting
arguments show that there are only exp(ck) many vectors of norm at most 2 with all coordinates
integer multiples of k−1/2. That is, except with probability exp(−k/c), hA,t(w) belongs to a finite
set G of exp(ck) many points.

Framework. With the above random discretization, the proof of Grønlund et al. [2020a] now
follows the framework of Schapire et al. [1998] by relating LD(w) to Lγ/2

AD(hA,t(w)) and Lγ
S(w)

to Lγ/2
AS (hA,t(w)). Here AD is the distribution obtained by sampling (x,y) ∼ D and returning

(Ax,y). Similarly, AS is the training set obtained by replacing each (x, y) ∈ S by (Ax, y). The
intuition is that the random discretization changes margins by no more than γ/2 for most data points
and hence points with margin at most 0 under D often have margin at most γ/2 under AD and
similarly for S and AS. Let us make this more formal. We have for any A, t in the support of A, t
that

LD(w) ≤ Lγ/2
AD(hA,t(w)) + P(x,y)∼D[y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w), Ax⟩ > γ/2]. (5)

Similarly, we have

Lγ
S(w) ≥ L

γ/2
AS (hA,t(w))− P(x,y)∼S [y⟨w,x⟩ > γ ∧ y⟨hA,t(w), Ax⟩ ≤ γ/2]. (6)

Taking expectation we see that
LD(w)− Lγ

S(w) = EA,t[LD(w)− Lγ
S(w)]

≤ EA,t[Lγ/2
AD(hA,t(w))− Lγ/2

AS (hA,t(w))] (7)
+ EA,t[P(x,y)∼D[y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w),Ax⟩ > γ/2]] (8)

+ EA,t[P(x,y)∼S [y⟨w,x⟩ > γ ∧ y⟨hA,t(w),Ax⟩ ≤ γ/2]]. (9)

To bound (7), we exploit that hA,t(w) belongs to the grid G, except with probability exp(−k/c).
Using Bernstein’s inequality (and a careful partitioning of hypotheses w depending on Lγ

D(w)), it is
possible to union bound over the entire grid and conclude

EA,t[Lγ/2
AD(hA,t(w))− Lγ/2

AS (hA,t(w))] ≤

EA,t[sup
h∈G
Lγ/2
AD(h)− L

γ/2
AS (h)] + PA,t[hA,t(w) /∈ G] ≲√

Lγ
S(w) ·

ln(|G|/δ)
n

+
ln(|G|/δ)

n
+ exp(−k/c) ≲√

Lγ
S(w) ·

k + ln(e/δ)

n
+
k + ln(e/δ)

n
+ exp(−k/c). (10)

To bound (9), we use the guarantees of the random discretization to conclude that
EA,t[P(x,y)∼S [y⟨w,x⟩ > γ ∧ y⟨hA,t(w),Ax⟩ ≤ γ/2]] =
E(x,y)∼S [PA,t[y⟨w,x⟩ > γ ∧ y⟨hA,t(w),Ax⟩ ≤ γ/2]] ≤
E(x,y)∼S [PA,t[y⟨hA,t(w),Ax⟩ ≤ γ/2 | y⟨w,x⟩ > γ]] ≤ 2 exp(−γ2k/(16c)).

We can bound (8) in a similar fashion (even with slightly better guarantees scaled by LD(w), but this
does not help for (9)). The final generalization error thus becomes

LD(w) ≤ Lγ
S(w) + c′ ·

(√
Lγ
S(w) ·

k + ln(e/δ)

n
+
k + ln(e/δ)

n
+ exp(−γ2k/c′)

)
, (11)
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where c′ > 0 is a sufficiently large constant. Comparing this expression with the desired bound from
Theorem 2, we see that we have to choose k large enough that c′ exp(−γ2k/c′) is no larger than√

Lγ
S(w) ·

(
ln(e/Lγ

S(w))

γ2n
+

ln(e/δ)

n

)
+

ln(eγ2n)

γ2n
+

ln(e/δ)

n
.

This basically solves to

k ≳ γ−2 ln

(
γ2n

Lγ
S(w) ln(e/L

γ
S(w))

)
≥ γ−2 ln

(
γ2n

)
.

Inserting this k in (11) recovers the bound by Grønlund et al. [2020a] stated in (4).

Barriers. In light of the above discussion, we identify some key barriers for the previous proof
technique. Concretely, if we examine (11), the term

√
Lγ
S(w)k/n requires us to choose k no larger

than cγ−2 ln(e/Lγ
S(w)) to match the optimal bound we get in Theorem 2. Unfortunately, the additive

exp(−γ2k/c′) term originating from handling (8) and (9) then becomes poly(Lγ
S(w)), which is too

expensive. In fact, even the additive exp(−k/c) term from handling (7) is too expensive for e.g.
constant γ. Nonetheless, we will in fact choose such k and identify a tighter strategy for analysing
LD(w)− Lγ

S(w).

2.2 Our Key Improvements

Our first main observation is that the two upper bounds in (5) and (6) are not completely tight, i.e.
they are inequalities, not equalities. In (5) we for instance ignore points (x, y) that had a margin
greater than 0 for w, but where the margin of (Ax, y) is less than γ/2 for hA,t(w). Taking these into
accounts, we get the tighter bounds

LD(w) = Lγ/2
AD(hA,t(w)) + P(x,y)∼D[y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w), Ax⟩ > γ/2]

− P(x,y)∼D[y⟨w,x⟩ > 0 ∧ y⟨hA,t(w), Ax⟩ ≤ γ/2],

and

Lγ
S(w) = L

γ/2
AS (hA,t(w))− P(x,y)∼S [y⟨w,x⟩ > γ ∧ y⟨hA,t(w), Ax⟩ ≤ γ/2]

+ P(x,y)∼S [y⟨w,x⟩ ≤ γ ∧ y⟨hA,t(w), Ax⟩ > γ/2].

With these refined bounds, we can now split LD(w)− Lγ
S(w) into a sum of three terms:

Lγ/2
AD(hA,t(w))− Lγ/2

AS (hA,t(w))

+ PD[y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w), Ax⟩ > γ/2]− PS [y⟨w,x⟩ ≤ γ ∧ y⟨hA,t(w), Ax⟩ > γ/2]
(12)

+ PS [y⟨w,x⟩ > γ ∧ y⟨hA,t(w), Ax⟩ ≤ γ/2]− PD[y⟨w,x⟩ > 0 ∧ y⟨hA,t(w), Ax⟩ ≤ γ/2].
(13)

The first line is the same as (7) from before, but (12) and (13) improves over (8) and (9) by subtracting
off a term. Intuitively, our more refined bounds allow us to argue that if the randomized rounding
creates a big difference between LD(w) and Lγ/2

D (hA,t(w)), then it creates a comparably large
difference between Lγ

S(w) and Lγ/2
S (hA,t(w)), thereby canceling out. We will carefully exploit this

in the following. Let us focus on (12) and remark that (13) is handled symmetrically. For (12), we
see that

P(x,y)∼S [y⟨w,x⟩ ≤ γ ∧ y⟨hA,t(w), Ax⟩ > γ/2] ≥ P(x,y)∼S [y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w), Ax⟩ > γ/2],

and thus (12) is at most

P(x,y)∼D[y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w), Ax⟩ > γ/2]− P(x,y)∼S [y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w), Ax⟩ > γ/2].

Now introducing the expectation over the randomized rounding A and t as in the previous proof, and
using linearity of expectation, we want to bound the following expression with probability 1− δ over
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S ∼ Dn

sup
w∈Sd−1

(
EA,t[P(x,y)∼D[y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w),Ax⟩ > γ/2]]−

EA,t[P(x,y)∼S [y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w),Ax⟩ > γ/2]]

)
=

sup
w∈Sd−1

(
E(x,y)∼D[PA,t[y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w),Ax⟩ > γ/2]]−

E(x,y)∼S[PA,t[y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w),Ax⟩ > γ/2]]

)
. (14)

This now has a form that looks familiar. Concretely, we have a function
ψw(x, y) = 1{y⟨w, x⟩ ≤ 0} · PA,t[y⟨hA,t(w),Ax⟩ > γ/2]. (15)

for each w ∈ Sd−1, and wish to bound supw E(x,y)∼D[ψw(x,y)]− E(x,y)∼S[ψw(x,y)] with high
probability over S ∼ Dn. Rademacher complexity (see e.g. Shalev-Shwartz and Ben-David [2014])
is one key tool for bounding such differences. In particular, the contraction principle from Ledoux
and Talagrand [1991] allows us to bound such a supremum when the functions ψw are composite
functions ψw = f ◦ gw with f : R → R having bounded Lipschitz constant. In (Bartlett and
Mendelson [2002]) this method is used, with f being the ramp loss, resulting in a bound on (14) of√
1/(γ2n). We wish to take a similar approach for our ψw in (15).

To argue that ψw = f ◦ gw with gw(x, y) = y⟨w, x⟩, we need the probability in (15) to only depend
on the original margin y⟨w, x⟩. This is precisely the statement of Claim 3, which is proven in
Appendix B.1. We thus proceed to bound the Lipschitz constant of the function f in (15). To
avoid discontinuities, we have to alter ψw(x, y) somewhat to not include the discontinuous indicator
function, and we eventually bound the Lipschitz constant L by roughly

L ≲ γ−1PA,t[y⟨hA,t(w),Ax⟩ > γ/2 | y⟨w, x⟩ = 0].

With a slight abuse of notation, we write PA,t[y⟨hA,t(w),Ax⟩ > γ/2 | y⟨w, x⟩ = 0] to denote
the probability PA,t[y⟨hA,t(w),Ax⟩ > γ/2] for an arbitrary x,w ∈ Sd−1 and y ∈ {−1, 1} with
y⟨w, x⟩ = 0 as y⟨w, x⟩ completely determines this probability as argued above.

Since our randomized rounding preserves inner products to within γ/2 except with probability
exp(−γ2k/c), we get L ≲ γ−1 exp(−γ2k/c). This finally bounds (14) by

c ·

√
exp(−γ2k/c)

γ2n
.

This should be compared to proof by Grønlund et al. [2020a] that got a bound of c exp(−γ2k/c) and
the
√

1/(γ2n) bound mentioned above. This improvement is precisely enough to derive our tight
Theorem 2. Indeed, as mentioned in (10), we can bound Lγ/2

AD(hA,t(w))− Lγ/2
AS (hA,t(w)) by√

Lγ
S(w) ·

k + ln(e/δ)

n
+
k + ln(e/δ)

n
+ exp(−k/c).

If we ignore the exp(−k/c) term and set k = c′γ−2 ln(e/Lγ
S(w)), this gives the tight bound in

Theorem 2.

Unfortunately, we cannot afford to ignore the exp(−k/c) term and we need additional ideas for
dealing with it. Recall that in the previous proof by Grønlund et al. [2020a], it originates from
bounding

EA,t[Lγ/2
AD(hA,t(w))− Lγ/2

AS (hA,t(w))] ≤ EA,t[sup
h∈G
Lγ/2
AD(h)− L

γ/2
AS (h)] + PA,t[hA,t(w) /∈ G],

and upper bounding PA,t[hA,t(w) /∈ G] by exp(−k/c). Here we instead consider an infinite
sequence of discretizations/grids G0,G1, . . . , and argue that the random rounding A, t and training
set S is simultaneously good (for some appropriate definition) for all grids with high probability.
Here the grids Gi correspond to increasingly large norms of hA,t(w), i.e. Gi contains all vectors of
norm at most 2i+1Bd

2 and all coordinates integer multiples of k−1/2. Multiple careful applications of
Cauchy-Schwartz, Jensen’s inequality and upper bounds on the probability that hA,t(w) /∈ Gi allows
us to finally get rid of the exp(−k/c) factor.
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3 Main Proof

We now set out to prove Theorem 2 following the proof outline sketched in Section 2. We start by
a series of reductions that allow us to focus on a simpler task of establishing Theorem 2 only for a
small range of γ and Lγ

S(w). We describe these reductions in Section 3.1 and then proceed to the
main arguments in Section 3.2.

3.1 Setup

When eventually bounding the Lipschitz constant, as discussed in Section 2, the task turns out to be
simpler if ∥x∥2 = 1 (and not just ∥x∥2 ≤ 1) for all x in the support of D and if |⟨w, x⟩| < cγ for
a constant cγ sufficiently smaller than 1 for all hypotheses w and data points (x, y) in the support
of D. We reduce to this case in Appendix A. The reduction maps every w ∈ Sd−1 to a vector in
H := Sd−1 × {0}, and every x in the support of D to a vector in X , where X is the set of all vectors
x′ in Sd where the norm of x′ without its (d+ 1)’st coordinate is at most cγ .

From hereon, we let D be an arbitrary distribution over X × {−1, 1}, and set out to prove that there
is a constant c > 1, such that with probability at least 1− δ over S ∼ Dn, it holds for all margins
γ ∈ (n−1/2, cγ ] and all w ∈ H that

LD(w) ≤ Lγ
S(w) + c

(√
Lγ
S(w) ·

(
ln(e/Lγ

S(w))

γ2n
+

ln(e/δ)

n

)
+

ln(eγ2n)

γ2n
+

ln(e/δ)

n

)
. (16)

Theorem 2 follows as a corollary.

Smaller Tasks. We now break the task of establishing (16) into smaller tasks, where we consider
margins γ in a small range (γi, γi+1] and only vectors w ∈ H with L(3/4)γi

D (w) in a small range
(ℓj , ℓj+1]. The purpose here is, that for one sub-task, we can treat margins and margin losses as the
same within constant factors. A union bound over all the sub-tasks then suffices to establish (16).

For a given distribution D, partition the range of values of the margin γ ∈ (n−1/2, cγ ] into intervals
Γi = (2i−1n−1/2, 2in−1/2] for i = 1, . . . , lg2(cγn

1/2). Similarly, partition the possible values of
Lγ
D(w) ∈ [0, 1] into intervals L0 = [0, n−1] and Li = (2i−1n−1, 2in−1] with i = 1, . . . lg2 n.

For a pair (Γi, Lj) with Γi = (γi, γi+1], define

H(Γi, Lj) = {w ∈ H : L(3/4)γi

D (w) ∈ Lj}.

For each pair (Γi, Lj) we now prove an equivalent of (16), but tailored to the sub-task. The result is
stated in the following lemma
Lemma 3. There is a constant c > 1, such that for any 0 < δ < 1 and any pair (Γi, Lj) =
((γi, γi+1], (ℓj , ℓj+1]), it holds with probability at least 1− δ over a random sample S ∼ Dn that

sup
w∈H(Γi,Lj)

γ∈Γi

|LD(w)− Lγ
S(w)| ≤ c

(√
ℓj+1

(
ln(e/ℓj+1)

γ2i+1n
+

ln(e/δ)

n

)
+

ln(e/ℓj+1)

γ2i+1n
+

ln(e/δ)

n

)
.

(17)

Observe that while (16) depends on γ and (17) depends on γi+1, this is fine since γ ≤ γi+1 for all
γ ∈ Γi. However, recall that H(Γi, Lj) refers to w ∈ H with L(3/4)γi

D (w) ∈ Lj = (ℓj , ℓj+1]. But
the ℓj+1 terms in (17) need to be replaced by Lγ

S(w) to obtain (16). Thus we relate the two via the
following lemma
Lemma 4. There is a constant c > 1, such that for any 0 < δ < 1 and any Γi = (γi, γi+1], it holds
with probability at least 1− δ over a random sample S ∼ Dn that

∀w ∈ H : Lγi

S (w) ≥
L(3/4)γi

D (w)

4
− c

(
ln(eγ2i+1n)

γ2i+1n
+

ln(e/δ)

n

)
. (18)

We combine the sub-tasks and conclude
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Claim 1. For any 0 < δ < 1, it holds with probability 1 − δ over S ∼ Dn that equations (17)
and (18) simultaneously hold for all (Γi, Lj) and Γi, with slightly different constants c.

Since Claim 1 follows by a simple union bound, exploiting that for different values of ℓj+1 and γi+1,
we can afford to use different δi,j ≈ δ exp(−γ2i+1 ln(e/ℓj+1)) and δi ≈ δ exp(−γ−2

i+1 ln(eγ
2
i+1n)),

we have deferred the proof to Appendix E.

A simple combination of (17) and (18) now gives

Claim 2. For any 0 < δ < 1 and training set S, if equations (17) and (18) hold simultaneously
for all (Γi, Lj) and Γi, then equation (16) holds for all γ ∈ (n−1/2, cγ ] and all w ∈ H for a large
enough constant c > 1 in (16).

Claim 2 follows by using that γ ≤ γi+1 for γ ∈ Γi, and by using Lemma 4 to relate all occurrences
of ℓj+1 in (17) to Lγ

S(w). As this is rather straight forward calculations, we have deferred the proof
to Appendix E.

What remains is thus to establish Lemma 3 and Lemma 4, where we may now focus on a small range
of γ and L(3/4)γi

D (w). While both require substantial work and non-trivial arguments, the proof of
Lemma 4 follows mostly the previous work by Grønlund et al. [2020a] and has thus been deferred to
Appendix D.

3.2 Random Discretization

We now set out to prove Lemma 3. So let 0 < δ < 1, and fix a pair (Γi, Lj). Following the proof
outline in Section 2, we now consider the following random discretization of hypotheses inH(Γi, Lj):
Let k = k(i, j) be an integer parameter to be determined. Sample a random k × d matrix A with
each entry N (0, 1/k) distributed as well as k random offsets t = (t1, . . . , tk) all independent and
uniformly distributed in [0, 1].

Let G be the set of all vectors in Rk with coordinates in

{(1/2)(10
√
k)−1 + z(10

√
k)−1 | z ∈ Z}.

For w ∈ H and an outcome (A, t) of (A, t), define hA,t(w) ∈ G as the vector obtained as follows:
Consider each coordinate (Aw)i and let zi denote the integer such that

(1/2)(10
√
k)−1 + zi(10

√
k)−1 ≤ (Aw)i < (1/2)(10

√
k)−1 + (zi + 1)(10

√
k)−1.

Let (hA,t(w))i equal (1/2)(10
√
k)−1 + zi(10

√
k)−1 if ti ≤ p((Aw)i) ((Aw)i rounded down) and

otherwise let it equal (1/2)(10
√
k)−1 + (zi + 1)(10

√
k)−1. By standard arguments, which we

have deferred to Appendix E, we can choose p((Aw)i) ∈ [0, 1] such that the expected value of the
coordinates satisfy Et[(hA,t(w))i] = (Aw)i. The random discretization has the desirable property
that it approximately preserves margins/inner products as stated in the following

Lemma 5. There is a constant c > 0, such that for any integer k ≥ 1, w ∈ H, x ∈ X and any
γ ∈ (0, 1], it holds that PA,t[|⟨hA,t(w),Ax⟩ − ⟨w, x⟩| > γ] < c exp(−γ2k/c).

The proof of Lemma 5 follows the work by Alon and Klartag [2017] in their work on lower bounds
for the Johnson-Lindenstrauss transform, and has thus been deferred to Appendix E. We now observe
that

LD(w) = Lγi/2
AD (hA,t(w)) + P(x,y)∼D[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ 0]

− P(x,y)∼D[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > 0].

Similarly, we have for γ ∈ Γi and any training set S that

Lγ
S(w) = L

γi/2
AS (hA,t(w)) + P(x,y)∼S [y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ γ]

− P(x,y)∼S [y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > γ].
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We now have for any γ ∈ Γi that

sup
w∈H(Γi,Lj)

(
LD(w)− Lγ

S(w)
)
=

sup
w∈H(Γi,Lj)

(
EA,t[Lγi/2

AD (hA,t(w))− Lγi/2
AS (hA,t(w))]+

EA,t[PD[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ 0]− PS [y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ γ]]+

EA,t[PS [y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > γ]− PD[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > 0]]
)
.

(19)

A critical observation is that the distribution of y⟨hA,t(w),Ax⟩ depends only on y⟨w, x⟩.
Claim 3. For any (x, y) ∈ X × {−1, 1} and any w ∈ H, the distribution of y⟨hA,t(w),Ax⟩ is
completely determined from y⟨w, x⟩.

We prove Claim 3 in Appendix B.1 by exploiting that the entries of A are i.i.d.N (0, 1/k) distributed
and using the rotational invariance of the Gaussian distribution.

As outlined in the proof overview in Section 2, we can now use Claim 3 together with the contraction
inequality of Rademacher complexity to bound several of the terms in (19). Similarly to the intro-
duction of the ramp loss in classic proofs of generalization for large-margin halfspaces, we need to
introduce a continuous function upper bounding the probabilities above. With this in mind, we now
define the following functions ϕ and ρ:

ϕ(α) =


PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = α] if − cγ ≤ α ≤ 0
(γi−α)

γi
PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = 0] if 0 < α ≤ γi

0 if γi < α ≤ cγ

ρ(α) =


PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = α] if γi < α ≤ cγ
α
γi
PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = γi] if 0 < α ≤ γi

0 if − cγ ≤ α ≤ 0

.

Here we slightly abuse notation and write PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = α] to denote
the probability PA,t[y⟨hA,t(w),Ax⟩ > γi/2] for an arbitrary w ∈ H, (x, y) ∈ X × {−1, 1} with
y⟨w, x⟩ = α and remark that this probability is the same for all such w, x, y by Claim 3.

We now observe that ϕ and ρ upper and lower bounds the terms in (19)
Remark 6. For any training set S and distribution D over X × {−1, 1}, we have

EA,t[P(x,y)∼D[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ 0]] ≤ E(x,y)∼D[ϕ(y⟨w,x⟩)]
EA,t[P(x,y)∼S [y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ γ]] ≥ E(x,y)∼S [ϕ(y⟨w,x⟩)]
EA,t[P(x,y)∼S [y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > γ]] ≤ E(x,y)∼S [ρ(y⟨w,x⟩)]
EA,t[P(x,y)∼D[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > 0]] ≥ E(x,y)∼D[ρ(y⟨w,x⟩)].

The proof of Remark 6 follows from the definition of ϕ and ρ, along with monotonicity of
PA,t[y⟨hA,t(w),Ax⟩ > γi | y⟨w, x⟩ = α] as a function of α. The proofs have been deferred
to Appendix E. Continuing from (19) using Remark 6, linearity of expectation and the triangle
inequality, we have for any γ ∈ Γi that

sup
w∈H(Γi,Lj)

LD(w)− Lγ
S(w) ≤ sup

w∈H(Γi,Lj)

∣∣∣∣ EA,t
[Lγi/2

D (hA,t(w))− Lγi/2
S (hA,t(w))]

∣∣∣∣ (20)

+ sup
w∈H(Γi,Lj)

∣∣∣∣ E
(x,y)∼D

[ϕ(y⟨w,x⟩)]− E
(x,y)∼S

[ϕ(y⟨w,x⟩)]
∣∣∣∣ (21)

+ sup
w∈H(Γi,Lj)

∣∣∣∣ E
(x,y)∼D

[ρ(y⟨w,x⟩)]− E
(x,y)∼S

[ρ(y⟨w,x⟩)]
∣∣∣∣ . (22)

In Appendix C, we carefully use Bernstein’s plus a (highly non-trivial) union bound over infinitely
many grids of increasing size to bound (20) as follows
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Lemma 7. There is a constant c > 0 such that with probability at least 1− δ over S ∼ Dn we have

(20) ≤ c

√ (ℓj+1 + exp(−γ2i+1k/c))(k + ln(e/δ))

n
+

(k + ln(e/δ))

n

 .

In Appendix B, we then use Rademacher complexity and a bound on the Lipschitz constants of ϕ and
ρ to bound (21) and (22) as follows
Lemma 8. There are constants c, c′ > 0 such that when k ≥ c′γ−2

i+1, it holds with probability at least
1− δ over S ∼ Dn that

max{(21), (22)} ≤ c exp(−γ2i+1k/c) ·
√
(k + γ−2

i+1 + ln(e/δ))/n.

To balance the expressions in Lemma 7 and Lemma 8, we now set k = cγ−2
i+1 ln(e/ℓj+1) for a

sufficiently large constant c > 0 so that exp(−γ2i+1k/c) ≤ ℓj+1/e and k ≥ c′γ−2
i+1. Combining

Lemma 7 and Lemma 8 via a union bound with δ′ = δ/2 and inserting into (20), (21) and (22) gives

sup
w∈H(Γi,Lj)

LD(w)− Lγ
S(w) ≤ c

(
ℓj+1

√
(γ−2

i+1 ln(e/ℓj+1) + ln(e/δ))/n

)

+ c

(√
ℓj+1(γ

−2
i+1 ln(e/ℓj+1) + ln(e/δ))

n
+
γ−2
i+1 ln(e/ℓj+1) + ln(e/δ)

n

)
,

for a constant c > 0. This completes the proof of Lemma 3, which together with Lemma 4 completes
the proof of our main result, Theorem 2.

4 Conclusion

We have established the first asymptotically tight generalization bound for large-margin halfspaces,
resolving a long-standing gap between upper and lower bounds in this fundamental setting. Our main
theorem precisely characterizes the interplay between the margin, empirical margin loss, sample
size, and confidence parameter. The proof introduces several new analytical techniques, including a
refined initial analysis and a Rademacher-based treatment of randomized rounding.

Beyond settling the generalization theory of large margin halfspaces, our framework provides novel
tools that may prove useful for deriving tight bounds in related models. Concretely, our techniques
are in essence a refinement of the techniques introduced by Schapire et al. [1998] for proving
generalization of large margin voting classifiers. For voting classifiers, the best known generalization
upper (Gao and Zhou [2013]) and lower bounds (Grønlund et al. [2020b]) for finite hypothesis sets
have a similar logarithmic gap as our techniques managed to remove for halfspaces. Another related
topic is kernel methods, in particular in the context of support vector machines. Here there are also
prior works deriving generalization bounds based on margins, see e.g. Cortes et al. [2010], however
these works are not "first-order bounds", i.e. the

√
· terms in the generalization bounds do not decrease

withLγ
S(w). We are hopeful that our techniques may also yield improvements in these areas of interest.

In particular, it is worth mentioning that the original Johnson-Lindenstrauss transform Johnson and
Lindenstrauss [1984] also provides dimensionality reduction from infinite-dimensional Hilbert spaces
(e.g. kernel space), thus suggesting that a similar randomized discretization might be possible.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claim made in the abstract is made explicit in the introduction and proved
in Section 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations inside the setting are discussed when relevant. As the paper is
theoretical, practical application of the theory depends on whether the data fits the theoretical
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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arguments have explicit directions to their position in appendices. A proof overview is also
provided.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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• The proofs can either appear in the main paper or the supplemental material, but if
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proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper does not violate the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper and its results are in foundational/pure research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release new assets or data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing and research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing and research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLMs were used to create this paper
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Simplifying the Setting

As is usual in analysis of halfspace classifiers, we restrict to data x of at most unit norm and
normalized halfspaces w without bias. Our main result 2 is stated under this restriction. The more
general result, for non-homogenous halfspaces and data x of any norm, stated below, follows from
the homogeneous case.

Theorem 9. There is a constant c > 0 such that for any radius R > 0 and distribution D over
R ·Bd

2×{−1, 1}, it holds with probability at least 1−δ over S ∼ Dn that for every w ∈ Sd−1, b ∈ R
and every margin Rn−1/2 ≤ γ ≤ R, we have

LD(w, b) ≤ Lγ
S(w, b)

+ c

(√
Lγ
S(w, b) ·

(
R2 ln(e/Lγ

S(w, b))

γ2n
+

ln(e/δ)

n

)
+
R2 ln(eγ2n/R2)

γ2n
+

ln(e/δ)

n

)
,

where LD(w, b) := P(x,y)∼D[sign (⟨w,x⟩+ b) ̸= y] and Lγ
S(w, b) := |{(x, y) ∈ S :

y (⟨w, x⟩+ b) ≤ γ}|/|S| for a set of samples S.

Proof. First observe that for points in the ball of radius R, any halfspace (w, b) with |b| > R makes
the same classifications as the halfspace (w, sign(b)R). We thus assume wlog. that |b| ≤ R. Let D
be a distribution over R · Bd

2 × {−1, 1}. Map any sample (x, y) in the support of D to the sample
(x′, y) where x′ is obtained by prepending a coordinate hardcoded to R and then scaling the resulting
vector by 1/

√
2R2. Similarly, map any non-homogeneous halfspace (w, b) ∈ Sd−1 × [−R,R] to the

homogeneous halfspace w′ obtained by prepending a coordinate to w that is hardcoded to b/R and
then scaling the resulting vector by 1/

√
(b/R)2 + 1. We have ∥w′∥ = 1 and ∥x′∥ ≤ 1. Furthermore

⟨w′, x′⟩ = (2R2((b/R)2 + 1))−1/2(b+ ⟨w, x⟩). It follows that w′ makes the same prediction on x′

as (w, b) does on x. Furthermore, the resulting margin is at least a factor (2R2((b/R)2 + 1))−1/2 ≥
1/(2R) of the original margin. Theorem 9 now follows from Theorem 2 by replacing all occurrences
of γ by γ/(2R).

In the main proof we reduce to a setting more favorable for analysis, here we give the details for the
reduction, and the argument that no generality was lost.

Observation 1. Without loss of generality, we can assume that the vectors x in the support of D have
unit norm and all margins lie in the range [−cγ , cγ ] for a constant 0 < cγ < 1.

Proof. Consider the following distribution D′ obtained by sampling an (x,y) ∼ D and replacing

x by x′ = (cγx) × {
√
1− c2γ∥x∥22} ∈ Sd for a sufficiently small constant 0 < cγ < 1. That

is, scale down all coordinates of x by cγ and append a (d + 1)’st coordinate taking the value√
1− c2γ∥x∥22. Then the norm of the resulting point x′ is

√
c2γ∥x∥22 + 1− c2γ∥x∥22 = 1. Similarly,

for any w ∈ Sd−1, consider instead the hypothesis w′ = w × {0}. We observe that for any x,w, we
have that ⟨w′, x′⟩ = ⟨w, cγx⟩ = cγ⟨w, x⟩ and thus lies in the range [−cγ , cγ ] by Cauchy-Schwartz.
This also implies that sign(⟨w′, x′⟩) = sign(⟨w, x⟩) and thus the generalization error of w′ under D′

and w under D are the same.

Theorem 2 follows as an immediate corollary of (16), since margins change by a cγ factor in our
transformation of the input distribution. Since cγ is a constant, this disappears in the constant factor
c in Theorem 2 (note that for margins γ ∈ [n−1/2, c−1

γ n−1/2) in Theorem 2, we cannot use the
reduction, but here Theorem 2 follows trivially as c ln(eγ2n)/(γ2n) > 1 for sufficiently large c).

B Rademacher Bounds

In this section, we use Rademacher complexity and the contraction inequality to prove Lemma 8. We
focus on bounding (21) and note that (22) is handled symmetrically.
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For a training set S ∈ (X × {−1, 1})n, consider the empirical Rademacher complexity (for σ =
(σ1, . . . , σn) a vector of independent and uniform variables in {−1, 1}):

R̂ϕ,H(Γi,Lj)(S) =
1

n
· Eσ

 sup
w∈H(Γi,Lj)

∑
(xi,yi)∈S

σiϕ(yi⟨w, xi⟩)


≤ 1

n
· Eσ

 sup
w∈H

∑
(xi,yi)∈S

σiϕ(yi⟨w, xi⟩)

 .
If ϕ is Lϕ-Lipschitz, then the contraction inequality from Ledoux and Talagrand [1991] gives that

R̂ϕ,H(S) ≤ Lϕ

n
· Eσ

 sup
w∈H

∑
(xi,yi)∈S

σiyi⟨w, xi⟩

 .
Using Cauchy-Schwartz, this is bounded by

R̂ϕ,H(S) ≤Lϕ

n
· Eσ

 sup
w∈H

〈
w,

∑
(xi,yi)∈S

σiyixi

〉
≤Lϕ

n
·
(
sup
w∈H
∥w∥2

)
· Eσ

∥∥∥∥∥∥
∑

(xi,yi)∈S

σiyixi

∥∥∥∥∥∥
2



≤Lϕ

n
·

√√√√√√Eσ


∥∥∥∥∥∥
∑

(xi,yi)∈S

σiyixi

∥∥∥∥∥∥
2

2


=
Lϕ√
n
·
√ ∑

(xi,yi)∈S

∑
(xj ,yj)∈S

Eσ[σiσj ]yiyj⟨xi, xj⟩

=
Lϕ√
n
.

Since this inequality holds for all S with each (x, y) ∈ S satisfying ∥x∥2 = 1, we have for the
distribution D that the Rademacher complexity

RD,ϕ,H(n) = ES∼Dn [R̂ϕ,H(S)],

satisfiesRD,ϕ,H(n) ≤ Lϕ/
√
n. By Lemma 5 and γi = γi+1/2, we have that ϕ is bounded by

0 ≤ ϕ(α) ≤ max
−cγ≤α≤0

PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = α] ≤ c exp(−kγ2i+1/c),

for a constant c > 0. We conclude from standard results on Rademacher complexity (see e.g. Shalev-
Shwartz and Ben-David [2014]), that with probability 1− δ over a sample S ∼ Dn it holds that

sup
w∈H(Γi,Lj)

∣∣E(x,y)∼D[ϕ(y⟨w,x⟩)]− E(x,y)∼S[ϕ(y⟨w,x⟩)]
∣∣ ≤

2RD,ϕ,H(n) + cR

(
c exp(−kγ2i+1/c)

√
ln(1/δ)

n

)
≤

2Lϕ√
n

+ cR

(
c exp(−kγ2i+1/c)

√
ln(1/δ)

n

)
.

where cR > 0 is a constant. Symmetric arguments bounds ρ by the same, with the Lipschitz constant
Lρ of ρ in place of Lϕ.

We now use the following bound on the Lipschitz constants of ϕ and ρ
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Lemma 10. There are constants cL, c > 0 such that the Lipschitz constants Lϕ and Lρ of ϕ and ρ
are bounded by

cL exp(−γ2i+1k/cL) ·
(√

k + γ−1
i+1

)
,

when k ≥ cγ−2
i+1.

We prove this lemma in the next section. We thus conclude that with probability at least 1− δ over
S ∼ Dn, we have

sup
w∈H(Γi,Lj)

∣∣E(x,y)∼D[ϕ(y⟨w,x⟩)]− E(x,y)∼S[ϕ(y⟨w,x⟩)]
∣∣ ≤

2 ·
cL exp(−γ2i+1k/cL)

(√
k + γ−1

i+1

)
√
n

+ cR

(
c exp(−kγ2i+1/c)

√
ln(1/δ)

n

)
.

The same bound holds for ρ via Lemma 10, which completes the proof of Lemma 8.

B.1 Bounding the Lipschitz Constants

In this section, we proceed to bound the Lipschitz constants of ϕ and ρ and thereby prove Lemma 10.
We split it into two tasks depending on the value of α. The simplest case is the following
Lemma 11. There is a constant c > 0 such that the Lipschitz constants of ϕ and ρ, when 0 < α ≤ γi,
are less than:

c exp(−kγ2i+1/c)

γi+1
.

Proof. Since ϕ is linear when 0 < α ≤ γi, its Lipschitz constant equals the slope of the line, i.e.

1

γi
· PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = 0].

By Lemma 5 and using γi = γi+1/2, this is bounded by

c exp(−γ2i+1k/c)

γi+1
,

for a constant c > 0. The same arguments applies immediately to ρ.

The trickier case is when α ∈ [−cγ , 0] for ϕ and when α ∈ (γi, cγ ] for ρ. If we set cγ ≤ 1/
√
2, then

we have
Lemma 12. There is a constant c > 0 such that the Lipschitz constant of ϕ when α ∈ [−1/

√
2, 0]

and ρ when α ∈
(
γi, 1/

√
2
]

is less than

c exp
(
−γ2i+1k/c

)√
k,

for k ≥ cγ−2
i+1.

Combining this result with Lemma 11 completes the proof of Lemma 10.

To prove Lemma 12, we need to bound the Lipschitz constants of ϕ when α ∈ [−1/
√
2, 0] and ρ

when α ∈
(
γi, 1/

√
2
]
. We will go through the details for ϕ, and comment how the argument for ρ

differs along the way.

First recall the following claim
Restatement of Claim 3. For any (x, y) ∈ X × {−1, 1} and any w ∈ H, the distribution of
y⟨hA,t(w),Ax⟩ is completely determined from y⟨w, x⟩.

As we need to understand the distribution of the random variable y⟨hA,t(w),Ax⟩ to bound the
Lipschitz constants of ϕ and ρ, we proceed to give the proof of Claim 3 while introducing convenient
notation for establishing Lemma 12.
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Proof. Firstly, write hA,t(w) = Aw + v with v = (hA,t(w)−Aw). Then observe that (Aw)i =

⟨ai, w⟩ ∼ N (0, ∥w∥2/k) d
=N (0, 1/k) where ai denotes the i’th row of A. Here d

= denotes equality
in distribution. Now write x = ⟨w, x⟩w + u where ⟨u,w⟩ = 0 and ∥u∥2 = ∥x∥2 − ⟨w, x⟩2 =
1 − ⟨w, x⟩2 (i.e. a Gram-Schmidt step). We have (Ax)i = ⟨ai, w⟩⟨w, x⟩ + ⟨ai, u⟩. By rotational
invariance of the Gaussian distribution and orthogonality of w and u, we have that ⟨ai, u⟩ ∼
N (0, (1 − ⟨w, x⟩2)/k) and that this is independent of ⟨ai, w⟩. Using the independence, we also
conclude that if we condition on any fixed outcome of ci = (Aw)i, we have that ci⟨ai, u⟩ is
N (0, c2i (1− ⟨w, x⟩2)/k) distributed.

We now argue that we can sample from the distribution of y⟨hA,t(w),Ax⟩ = ⟨hA,t(w), yAx⟩
knowing only y⟨w, x⟩ as follows: Sample independent N (0, 1/k) distributed random variables
X1, . . . ,Xk. Next sample independent N (0, (1 − y2⟨w, x⟩2)/k) distributed random variables
Y1, . . . ,Yk and let Zi = y⟨w, x⟩Xi + Yi

d
= y⟨w, x⟩Xi + yYi, where the last step follows from

independence of Xi and Yi and symmetry in the distribution of Yi. Let X be the vector with the
Xi’s as entries and Z similarly. Then the joint distribution of (X,Z) is equal to the joint distribution
of (Aw, yAx). Finally draw offsets t′1, . . . , t

′
k uniformly and independently in [0, 1] and round Xi

to a number of the form (1/2)(10
√
k)−1 + z(10

√
k)−1 for z ∈ Z as in the definition of hA,t. The

resulting variables X′
i satisfy that y⟨hA,t(w),Ax⟩

d
= ⟨X′,Z⟩.

With Claim 3 established, we will use the notation in the proof as we proceed with bounding the
Lipschitz constants of ϕ and ρ.

Let α = y⟨w, x⟩ for some w ∈ H and (x, y) ∈ X × {−1, 1} and α ∈ [−1/
√
2, 0] (for ρ, let

α ∈ (γi, 1/
√
2]). Let Xi ∼ N (0, 1/k), Yi ∼ N (0, (1− α2)/k) and let X′

i be the random rounding

of Xi. We argued, in the proof of Claim 3, that y⟨hA,t(w),Ax⟩
d
= ⟨X′, αX+Y⟩. Let additionally

Ei be the event that X′
i is rounded up. For notational convenience, let Mi =

√
kXi and observe that

Mi ∼ N (0, 1). With this notation, we have that X′
i has the form

X′
i =

1

10
√
k

(⌊
10Mi −

1

2
√
k10

⌋
+ 1{Ei}+

1

2

)
.

Hence,

y⟨hA,t(w),Ax⟩
d
= ⟨X′, αX+Y⟩ = α√

k
⟨X′,M⟩+ ⟨X′,Y⟩.

Recall that the variables ti and Mi determine Xi, Ei and thus also X′
i. If we condition on an outcome

ti = ti and Mi =Mi, only Yi remains random. We may thus write

P[y⟨hA,t(w),Ax⟩ > γi/2] =

P
[
α√
k
⟨X′,M⟩+ ⟨X′,Y⟩ > γi/2

]
=∫

Rk×[0,1]k
fM,t(M, t)P

[
α√
k
⟨X′,M⟩+ ⟨X′,Y⟩ > γi/2

∣∣∣∣Mi =Mi, ti = ti

]
d(M, t) =∫

Rk×[0,1]k
fM,t(M, t)P

[
α√
k
⟨X ′,M⟩+ ⟨X ′,Y⟩ > γi/2

]
d(M, t),

where fM,t(M, t) is the joint probability density function of M and t.

Let us now define Ni such that Yi =
√

1−α2

k Ni and let N = (N1, . . . ,Nk). Then Ni ∼ N (0, 1)

and the event
α√
k
⟨X ′,M⟩+ ⟨X ′,Y⟩ > γi/2,
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may be rewritten as
α√
k
⟨X ′,M⟩+ ⟨X ′,Y⟩ > γi/2⇐⇒ ⟨X ′,Y⟩ > γi/2−

α√
k
⟨X ′,M⟩ ⇐⇒√

1− α2

k
⟨X ′,N⟩ > γi/2−

α√
k
⟨X ′,M⟩ ⇐⇒√

1− α2

k
∥X ′∥2⟨X ′/∥X ′∥2,N⟩ > γi/2−

α√
k
⟨X ′,M⟩ ⇐⇒

⟨X ′/∥X ′∥2,N⟩ >
√
kγi/2− α⟨X ′,M⟩√

1− α2∥X ′∥2
.

Observe that ⟨X ′/∥X ′∥2,N⟩ ∼ N (0, 1). If we let Φ denote the cumulative density function of a
standard normal distribution, then we have established

P[y⟨hA,t(w),Ax⟩ > γi/2] =

∫
Rk×[0,1]k

fM,t(M, t)

(
1− Φ

(√
kγi/2− α⟨X ′,M⟩√

1− α2∥X ′∥2

))
d(M, t)

=

∫
Rk×[0,1]k

fM(M)

(
1− Φ

(√
kγi/2− α⟨X ′,M⟩√

1− α2∥X ′∥2

))
d(M, t).

(23)

In the last equality, we use that M and t are independent and that the probability density function of
t is 1 since each ti is uniform in [0, 1]. This reduces fM,t(M, t) to the probability density function
fM(M) of M alone.

The same arguments for ρ also gives the integral (23), with the small difference that (1 − Φ(·))
is replaced by Φ(·). This difference is irrelevant, since to bound the Lipschitz constant, we will
differentiate and bound the differential’s absolute value.

Let g(M, t, α) be the integrant above, we want to differentiate
∫
Rk×[0,1]k

g(M, t, α) d(M, t) by
differentiating under the integral. Standard measure theory results (Theorem 6.28, Klenke [2020])
allows us to do this if we satisfy three conditions. These conditions are, in this case, equivalent to the
following

i) for all constant α , the integral
∫
Rk×[0,1]k

g(M, t, α) d(M, t) is finite.

ii) for all constant M, t, the partial differential of g(M, t, α) with respect to α exists.

iii) There exists a function h(M, t), where
∫
Rk×[0,1]k

h(M, t) d(M, t) is finite and such that

| ∂∂αg(M, t, α)| ≤ h(M, t) for all α.

The first two conditions are straightforward: The integral is equal to a probability, which is finite.
And g is a combination of differentiable functions making it differentiable itself. The last condition
is more cumbersome, but the goal of this proof is to upperbound the integral by a constant, which
clearly doesn’t depend on α. Hence the last condition will be satisfied during the proof.

Hence we can continue with our differentiation by differentiating under the integral.∣∣∣∣ ∂∂αP[y⟨hA,t(w),Ax⟩ > γi/2]

∣∣∣∣ =∣∣∣∣∣
∫
Rk×[0,1]k

∂

∂α
fM(M)

(
1− Φ

(√
kγi/2− α⟨X ′,M⟩√

1− α2∥X ′∥2

))
d(M, t)

∣∣∣∣∣ =
1

2π

∣∣∣∣∣∣
∫
Rk×[0,1]k

fM(M) exp

−1

2

(√
kγi/2− α⟨X ′,M⟩√

1− α2∥X ′∥2

)2
( α

√
kγi

2 − ⟨X ′,M⟩
(1− α2)3/2∥X ′∥2

)
d(M, t)

∣∣∣∣∣∣ ≤
1

2π

∫
Rk×[0,1]k

fM(M) exp

(
− (
√
kγi/2− α⟨X ′,M⟩)2

2(1− α2)∥X ′∥22

)∣∣∣∣∣ α
√
kγi

2 − ⟨X ′,M⟩
(1− α2)3/2∥X ′∥2

∣∣∣∣∣ d(M, t).
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For both α ∈ [−1/
√
2, 0] and α ∈

(
γi, 1/

√
2
]
, we have that 1 ≥ (1− α2) ≥ 1/2 and thus, for both

ϕ and ρ, the above is upper bounded by

23/2

2π
·
∫
Rk×[0,1]k

fM(M) exp

(
− (
√
kγi/2− α⟨X ′,M⟩)2

2∥X ′∥22

) √
kγi + |⟨X ′,M⟩|
∥X ′∥2

d(M, t)

≤
∫
Rk×[0,1]k

fM(M) exp

(
− (
√
kγi/2− α⟨X ′,M⟩)2

2∥X ′∥22

)( √
kγi

∥X ′∥2
+ ∥M∥2

)
d(M, t).

We now use that |X ′
i| ≥ (1/2)(10

√
k)−1 for all i. This implies ∥X ′∥2 ≥

√
k(1/4)(10

√
k)−2 =

1/20. We may thus further upper bound the above by

20 ·
∫
Rk×[0,1]k

fM(M) exp

(
− (
√
kγi/2− α⟨X ′,M⟩)2

2∥X ′∥22

)(√
kγi + ∥M∥2

)
d(M, t). (24)

We will bound (24), by splitting it into 3 cases:

i) ∥M∥22 ≤
9

10
k ii)

9

10
k ≤ ∥M∥22 ≤

4

3
k iii) ∥M∥22 ≥

4

3
k.

The arguments for cases i) and iii) do not depend on α, and hence are identical for ρ and ϕ. In those
cases, we simply exploit that ∥M∥22 ∼ χ2

k and thus these cases are very unlikely. This implies that
the integral over fM (M) is so small that we can afford to upper bound the exponential term in (24)
by 1. For case ii), we can use the assumptions on ∥M∥22 to show that the exponential term is no more
than c exp(−γ2i k/c) for a constant c > 0. We proceed to the three cases.

case i). We simply upper bound the exponential term in (24) by 1 and use the assumption that
∥M∥22 ≤ 9

10k to conclude

exp

(
− (
√
kγi/2− α⟨X ′,M⟩)2

2∥X ′∥22

)(√
kγi + ∥M∥2

)
≤ 2
√
k.

Now since M is multivariate standard normal, ∥M∥22 is χ2
k distributed. Let Z ∼ χ2

k with probability
density function fZ(z). Then the integral in (24) in is bounded by:

40
√
k

∫
(
√

9k/10)Bk
2

fM(M) dM = 40
√
k

∫ 9k/10

0

fZ(z) dz = 40
√
k · P[Z < 9k/10],

which by Theorem 17 is less than

80
√
k exp

(
−kγ2i /800

)
.

case ii). We use the assumption that 9
10k ≤ ∥M∥

2
2 ≤ 4

3k together with the following observations
Remark 13. If ∥X∥22 ≤ 4/3, then ∥X ′∥22 < 2.
Remark 14. If ∥X∥22 ≥ 9/10, then (8/9)∥X∥22 ≤ ⟨X,X ′⟩ ≤ (10/9)∥X∥22.

We prove Remark 13 and Remark 14 in Appendix E. Since
√
kX =M , Remark 14 gives ⟨X ′,M⟩ ≥

(8/10)
√
k and hence

α > γi =⇒
√
kγi
2
− α⟨X ′,M⟩ ≤ −3

√
kγi
10

≤ 0 =⇒ −

(√
kγi
2
− α⟨X ′,M⟩

)2

≤ −9kγ2i
100

α < 0 =⇒
√
kγi
2
− α⟨X ′,M⟩ ≥

√
kγi
2
≥ 0 =⇒ −

(√
kγi
2
− α⟨X ′,M⟩

)2

≤ −kγ
2
i

4
.

Hence for both ϕ and ρ, the last two factors of the integral in (24) are bounded by:

exp

(
− (
√
kγi/2− α⟨X ′,M⟩)2

2∥X ′∥22

)(√
kγi + ∥M∥2

)
≤ 5

2

√
k exp

(
− 9kγ2i
100 · 4

)
.

Which gives the following:

50
√
k exp

(
−kγ

2
i

50

)∫
(
√

9k/10·Bk
2 )

C∩(
√

4k/3·Bk
2 )

fM(M) dM ≤ 50
√
k exp

(
−kγ

2
i

50

)
.
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case iii). We bound the last two factors of the integral (24) under the assumption that ∥M∥22 ≥ 4
3k.

Here we simply upper bound the exponential by 1 and get

exp

(
− (
√
kγi/2− α⟨X ′,M⟩)2

2∥X ′∥22

)(√
kγi + ∥M∥2

)
≤ 2∥M∥2,

hence the integral (24) is bounded by:

40

∫
(
√

4k/3·Bk
2 )

C

fM(M)∥M∥2 dM. (25)

Recall that ∥M∥22 ∼ χ2
k and let Z ∼ χ2

k with probability density function fZ(z). Then the inte-
gral (25) is equal to

40

∫ ∞

4k/3

fZ(z)
√
z dz.

Let also Li =
[
4
3k · 2

i, 43k · 2
i+1
)

for i ∈ Z≥0. By definition, the Li’s partition
[
4
3k,∞

)
, and we

upper bound with:

40

∞∑
i=0

∫
Li

fZ(z)

√
4

3
k · 2i+1 dz ≤ 70

√
k

∞∑
i=0

P[Z ∈ Li]2
i/2 ≤ 70

√
k

∞∑
i=0

P
[
Z ≥ 4

3
k · 2i

]
2i/2.

Using the following remark:

Remark 15 (Laurent and Massart [2000], equation 4.3, page 1326).
Let Z ∼ χ2

k, y > 0 then:

P[Z ≥ 2
√
ky + 2y + k] ≤ exp(−y).

With y = c 43k, where c = 1
82 2

i. We have:

2
√
ky + 2y + k =

(√
c
4√
3
+ c

8

3
+ 1

)
k ≤

(
4
√
3

24
+

1

24
+ 1

)
k · 2i ≤ 4

3
k · 2i.

Hence we can finish the bound for this case, using the assumption that k ≥ γ−2
i 72 ln(2)

70
√
k

∞∑
i=0

P
[
Z ≥ 4

3
k · 2i

]
2i/2 ≤ 70

√
k

∞∑
i=0

exp

(
− 1

48
k · 2i

)
2i/2

≤ 70
√
k exp

(
− 1

48
k

) ∞∑
i=0

exp

(
− 1

48
k

)i

2i/2

≤ 140
√
k exp

(
− 1

48
kγ2i

)
.

Collecting the three cases. Hence in total | ∂∂αϕ| for α ∈ [−1/
√
2, 0] and | ∂∂αρ| for α ∈

(
γi, 1
√
2
]

are bounded by:

80
√
k exp

(
−kγ2i /800

)
+ 50
√
k exp

(
−kγ

2
i

50

)
+ 140

√
k exp

(
− 1

48
kγ2i

)
≤ 140

√
k exp

(
−kγ2i /800

)
.

Using that γi+1 = 2γi, this completes the proof of Lemma 12.

C Meet in the Middle Bound

The goal of this section is to prove the following

26



Restatement of Lemma 7. There is a constant c > 0 such that with probability at least 1− δ over
S ∼ Dn we have

sup
w∈H(Γi,Lj)

∣∣∣EA,t[Lγi/2
AD (hA,t(w))− Lγi/2

AS (hA,t(w))]
∣∣∣ ≤

c

√ (ℓj+1 + exp(−γ2i+1k/c))(k + ln(e/δ))

n
+

(k + ln(e/δ))

n

 .

Notice here that the two losses Lγi/2
AD (hA,t(w)) and Lγi/2

AS (hA,t(w)) refer to the same margin γi/2
and hA,t(w) has been discretized to have all coordinates of the form (1/2)(10

√
k)−1 + z(10

√
k)−1

for integer z. Intuitively, we will try to exploit this discretization to union bound over a grid
of finitely many hypotheses. Unfortunately, the random matrix A may increase the norm of w
arbitrarily much, and thus a single grid is insufficient. Instead, we need an infinite sequence of
grids. For this, let G0 denote the set of all vectors in 4Bk

2 whose coordinates are of the form
(1/2)(10

√
k)−1 + z(10

√
k)−1 for integer z. More generally, let Gi for i > 0 denote the set of all

vectors in (2i · 4Bk
2) whose coordinates are of this form. Since ∥x∥1 ≤

√
k∥x∥2 for any x ∈ Rk,

we have that Gi ⊂ (2i · 4Bk
2) ⊆

√
k(2i · 4Bk

1). For a vector x ∈ Gi, let i(x) = (i1, . . . , ik) denote
the integers so that x = (10

√
k)−1i(x) + (1/2)(10

√
k)−11 with 1 ∈ Rk the all-1’s vector. Then by

the triangle inequality, we have (10
√
k)−1∥i(x)∥2 ≤ ∥x∥2 + (1/2)(10

√
k)−1∥1∥2 ≤ 2i · 4 + 1/20.

This implies ∥i(x)∥1 ≤ (10
√
k)
√
k(2i · 4 + 1/20) ≤ (5 · 2i+3 + 1)k. Since each coordinate of i(x)

is an integer, there are thus at most 2k choices for the signs and
∑(5·2i+3+1)k

t=0

(
k+t−1

t

)
choices for

the absolute values of the integers. That is, we have

|Gi| ≤ 2k ·
(5·2i+3+1)k∑

t=0

(
k + t− 1

t

)
≤ 2(5·2

i+3+3)k ≤ 22
i+7k. (26)

We now start by considering a fixed outcome A of the random matrix A. For such a fixed A, the
training set S behaves well in the sense that Lγ

AD(w) and Lγ
AS(w) are close with high probability for

any w. This is formalized in the following remark

Remark 16. For any distribution D over X × {−1, 1}, fixed w ∈ H, margin γ and any A ∈ Rk×d,
it holds with probability at least 1− δ over S ∼ Dn that

|Lγ
AD(w)− L

γ
AS(w)| ≤

√
8Lγ

AD(w) ln(1/δ)

n
+

2 ln(1/δ)

n
.

The proof of Remark 16 is a simple application of Bernstein’s and can be found in Appendix E.

In Lemma 7, the matrix A is not fixed but random. Thus we need to find a formal property of the
training set S under which Lγi/2

AD (hA,t(w)) and Lγi/2
AS (hA,t(w)) are close in expectation over the

random choice of A. With this goal in mind, we now say that a matrix A in the support of A and a
training set S has distortion at least β, if there is a grid Ga and a vector w ∈ Ga such that

|Lγi/2
AD (w)− Lγi/2

AS (w)| > β ·

√8Lγi/2
AD (w)(2a+7k + ln(1/δ))

n
+

2(2a+7k + ln(1/δ))

n

 .

For a training set S, we use Dβ(S) to denote the set of matrices A with distortion at least β for S.

We observe that for a fixed matrix A, grid Ga and β > 1, we have by Remark 16 with δ′a =

(δ/22
a+7k)β and a union bound over all w ∈ Ga, that with probability at least 1− |Ga|δ′a, it holds for
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all w ∈ Ga that

|Lγi/2
AD (w)− Lγi/2

AS (w)| ≤

√
8Lγi/2

AD (w) ln(1/δ′a)

n
+

2 ln(1/δ′a)

n

=

√
8Lγi/2

AD (w)(β2a+7k + β ln(1/δ))

n
+

2(β2a+7k + β ln(1/δ))

n

≤ β ·

√8Lγi/2
AD (w)(2a+7k + ln(1/δ))

n
+

2(2a+7k + ln(1/δ))

n

 .

Thus for β ≥ 2, we have

PS[A ∈ Dβ(S)] ≤
∞∑
a=0

|Ga|δ′a

≤
∞∑
a=0

δβ · 2−(β−1)2a+7k

≤ 2 · δβ · 2−(β−1)27k.

By Markov’s inequality, we have

PS[PA[A ∈ Dβ(S)] > 2 · δβ/2 · 2−(β−1)·26k] ≤ ES[PA[A ∈ Dβ(S)]

2 · δβ/2 · 2−(β−1)·26k

=
EA[PS[A ∈ Dβ(S)]

2 · δβ/2 · 2−(β−1)·26k

≤ δβ/2 · 2−(β−1)26k.

Now call a training set S representative if it holds for every β = 2h with integer h ≥ 1 that

PA[A ∈ Dβ(S)] ≤ 2 · δβ/2 · 2−(β−1)·26k.

A union bound implies that S is representative with probability at least

1−
∞∑
h=1

2 · δ2
h−1

· 2−(2h−1)26k ≥ 1− δ

226k−2
≥ 1− δ.

Now define for integer h ≥ 1 the set
Kh(S) = D2h(S) \

(
∪∞b=h+1D2b(S)

)
.

Let K0(S) be defined as
K0(S) = supp(A) \ (∪∞b=1D2b(S)) .

For any w ∈ H, we may use the triangle inequality to conclude∣∣∣EA,t[Lγi/2
AD (hA,t(w))− Lγi/2

AS (hA,t(w))]
∣∣∣ ≤

∞∑
h=0

EA,t

[∣∣∣Lγi/2
AD (hA,t(w))− Lγi/2

AS (hA,t(w))
∣∣∣ | A ∈ Kh(S)

]
PA[A ∈ Kh(S)].

Now consider an A ∈ Kh(S). Then A has distortion no more than 2h+1 by definition of Kh(S).
This implies that if hA,t(w) is in Ga but not Gb for b < a, then ∥hA,t(w)∥2 ≥ 2a+1 by definition of
Gb and we get

|Lγi/2
AD (hA,t(w))− Lγi/2

AS (hA,t(w))| ≤

2h+1 ·

√8Lγi/2
AD (w)(2a+7k + ln(1/δ))

n
+

2(2a+7k + ln(1/δ))

n

 ≤
2h+8∥hA,t(w)∥2 ·

√8Lγi/2
AD (w)(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

 .
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Using Cauchy-Schwartz, we thus get for any w ∈ H that∣∣∣EA,t[Lγi/2
AD (hA,t(w))− Lγi/2

AS (hA,t(w))]
∣∣∣ ≤

∞∑
h=0

2h+8EA,t

[
∥hA,t(w)∥2 ·

(√
8Lγi/2

AD (w)(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

)
| A ∈ Kh(S)

]
PA[A ∈ Kh(S)] ≤

∞∑
h=0

2h+8
√

EA,t [∥hA,t(w)∥22 | A ∈ Kh(S)] ·√√√√√√EA,t


√8Lγi/2

AD (w)(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

2

| A ∈ Kh(S)

PA[A ∈ Kh(S)].

By Cauchy-Schwartz, this is at most√√√√ ∞∑
h=0

22h+16EA,t[∥hA,t(w)∥22 | A ∈ Kh(S)]PA[A ∈ Kh(S)] ·√√√√√√ ∞∑
h=0

EA,t


√8Lγi/2

AD (w)(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

2

| A ∈ Kh(S)

PA[A ∈ Kh(S)].

Using Cauchy-Schwartz again and Jensen’s inequality, the first sum is bounded by
∞∑
h=0

22h+16EA,t[∥hA,t(w)∥22 | A ∈ Kh(S)]PA[A ∈ Kh(S)] ≤√√√√ ∞∑
h=0

24h+64PA[A ∈ Kh(S)] ·

√√√√ ∞∑
h=0

EA,t[∥hA,t(w)∥22 | A ∈ Kh(S)]2PA[A ∈ Kh(S)] ≤√√√√ ∞∑
h=0

24h+64PA[A ∈ D2h(S)] ·

√√√√ ∞∑
h=0

EA,t[∥hA,t(w)∥42 | A ∈ Kh(S)]PA[A ∈ Kh(S)] ≤√√√√ ∞∑
h=0

24h+642(δ/227k+1)(2h−1)/2 ·
√
EA,t[∥hA,t(w)∥42] ≤

233 ·
√

EA,t[∥hA,t(w)∥42].

Using Jensen’s inequality on the second sum, we find that

∞∑
h=0

EA,t


√8Lγi/2

AD (w)(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

2

| A ∈ Kh(S)

PA[A ∈ Kh(S)] =

EA,t


√8Lγi/2

AD (w)(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

2
 .

For positive constants c0, c1, c2, we have that the function f(t) = (
√
c0t+ c1 + c2)

2 is concave for
t ≥ 0. To see this, we compute its derivative

f ′(t) = 2(
√
c0t+ c1 + c2) ·

c0
2
√
c0t+ c1

= c0 +
c0c2√
c0t+ c1

,
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and its second derivative

f ′′(t) =
−c20c2

2(c0t+ c1)3/2
.

This is a negative function for t ≥ 0. We thus use Jensen’s inequality to conclude

EA,t


√8Lγi/2

AD (w)(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

2
 ≤


√√√√8EA,t

[
Lγi/2
AD (w)

]
(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n


2

.

Combining it all, we have thus shown ∣∣∣EA,t[Lγi/2
AD (hA,t(w))− Lγi/2

AS (hA,t(w))]
∣∣∣ ≤

√
233 ·

√
EA,t[∥hA,t(w)∥42] ·

√√√√√√√

√√√√8EA,t

[
Lγi/2
AD (w)

]
(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n


2

≤

217 · EA,t[∥hA,t(w)∥42]1/4 ·


√√√√8EA,t

[
Lγi/2
AD (w)

]
(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

 .

We now bound EA,t[∥hA,t(w)∥42] as follows

EA,t[∥hA,t(w)∥42] =
EA,t[∥Aw + (hA,t(w)−Aw)∥42] ≤

EA,t[(∥Aw∥2 + ∥hA,t(w)−Aw∥2)4] ≤

EA,t

[(
∥Aw∥2 +

√
k(10
√
k)−2

)4
]
=

EA,t

[
(∥Aw∥2 + 1/10)

4
]
=

4∑
b=0

(
4

b

)
EA,t[∥Aw∥b2]10−(4−b).

Recalling that ∥Aw∥22 ∼ (1/k)χ2
k, we have from the moments of the chi-square distribution that for

even k ≥ 4:

EA,t[∥Aw∥b2] ≤ EA,t[∥Aw∥42] = k−2EA,t[(k∥Aw∥22)2] = k−222
(2 + k/2)!

(k/2)!
≤ 4.

Hence

EA,t[∥hA,t(w)∥42] ≤
4∑

b=0

(
4

b

)
4 · 10−(4−b) ≤ (4 + 1/10)4 < 54.

We thus have ∣∣∣EA,t[Lγi/2
AD (hA,t(w))− Lγi/2

AS (hA,t(w))]
∣∣∣ ≤

220 ·


√√√√8EA,t

[
Lγi/2
AD (w)

]
(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

 .
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Finally, we exploit that for any w ∈ H(Γi, Lj), we have by definition that L(3/4)γi

D (w) ≤ ℓj+1. Thus
for any such w, we have

EA,t[Lγi/2
AD (w)] = EA,t[P(x,y)∼D[y⟨hA,t(w),Ax⟩ ≤ γi/2]]

= E(x,y)∼D[PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2]]
≤ P(x,y)∼D[y⟨w,x⟩ ≤ (3/4)γi]

+ E(x,y)∼D[PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2] | y⟨w,x⟩ > (3/4)γi]

≤ L(3/4)γi

D (w) + sup
µ>(3/4)γi

[PA,t[⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = µ].

Using Lemma 5 and that L(3/4)γi

D (w) ∈ Lj by definition ofH(Γi, Lj), there is a constant c > 0 such
that this is bounded by

≤ L(3/4)γi

D (w) + c exp(−k(γi/4)2/c)
≤ ℓj+1 + c exp(−kγ2i+1/(16c)).

We have thus reached the conclusion that there is a constant c > 0, such that with probability at least
1− δ over S ∼ Dn, it holds that

sup
w∈H(Γi,Lj)

∣∣∣EA,t[Lγi/2
AD (hA,t(w))− Lγi/2

AS (hA,t(w))]
∣∣∣ ≤

c ·

√ (ℓj+1 + exp(−kγ2i+1/c))(k + ln(1/δ))

n
+
k + ln(1/δ)

n

 .

This completes the proof of Lemma 7.

D Within Constant Factors

In this section we prove

Restatement of Lemma 4. There is a constant c > 1, such that for any 0 < δ < 1 and any
Γi = (γi, γi+1], it holds with probability at least 1− δ over a random sample S ∼ Dn that

∀w ∈ H : Lγi

S (w) ≥
L(3/4)γi

D (w)

4
− c

(
ln(eγ2i+1n)

γ2i+1n
+

ln(e/δ)

n

)
.

The proof follows mostly the ideas in Grønlund et al. [2020a] that were outlined in the proof overview
in Section 2.

Proof. Let k ≥ 1 be a parameter to be determined and consider the random construction of A and t
as defined in Section 3.2. Let Ga be defined as in Section C, i.e. Ga contains all vectors in 2a · 4Bk

2 .
We say that a matrix A in the support of A and a training set S is α-unusual, if there is a vector
w ∈ G0 such that

L(7/8)γi

AS (w) <
L(7/8)γi

AD (w)

2
− 211k + ln(1/α)

n
.

For a fixed matrix A and vector w ∈ W0, we have by Bernstein’s inequality and ES[L(7/8)γi

AS (w)] =

L(7/8)γi

AD (w) that

PS

[∣∣∣L(7/8)γi

AS (w)− L(7/8)γi

AD (w)
∣∣∣ > t/n

]
< exp

(
−

1
2 t

2

nL(7/8)γi

AD (w) + 1
3 t

)
.

Setting

t = n ·

(
L(7/8)γi

AD (w)

2
+ Z

)
,
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with Z = 16 ln(1/α)/n gives

PS

[∣∣∣∣L(7/8)γi

AS (w)− L(7/8)γi

AD (w)

∣∣∣∣ >
(
L(7/8)γi

AD (w)

2
+ Z

)]

< exp

−
n2

2

(
L(7/8)γi

AD (w)

2 + Z

)2

nL(7/8)γi

AD (w) + n
3

(
L(7/8)γi

AD (w)

2 + Z

)


≤ exp

(
−

n2

8 max{L(7/8)γi

AD (w), Z}2

2nmax{L(7/8)γi

AD (w), Z}

)

≤ exp

(
−nZ

16

)
= α.

A union bound over all w ∈ G0 with α′ = α/e2
7k gives that a fixed matrix A is α-unusual for

S ∼ Dn with probability at most
|G0|

α

e27k
< α.

Now call a training set S α-representative if A is α-unusual for S with probability less than 1/4. By
Markov’s inequality, we have

PS[PA[(S,A) is α-unusual] ≥ 1/4] ≤ ES[PA[(S,A) is α-unusual]]
1/4

= 4 · EA[PS[(S,A) is α-unusual]]
≤ 4α.

Thus
PS[S is α-representative] ≥ 1− 4α. (27)

We claim that if the training set S is δ-representative, then it holds for all w ∈ H that

Lγ
S(w) ≥

L(3/4)γi

D (w)

4
− 211k + ln(4/δ)

n
− 30 exp(−kγ2i+1/2

14).

To see this, consider an arbitrary such S and a w ∈ H. Sample A and t as in the previous section.
Call A, t good for w if it satisfies both ∥hA,t(w)∥2 ≤ 4 and L(7/8)γi

AD (hA,t(w)) ≥ L(3/4)γi

D (w) −
25 exp(−kγ2i+1/2

14). For ease of notation, let Gw denote the set of (A, t) that are good for w.
Similarly, let US denote the set of A where A is δ-unusual for S.

For all w ∈ H, γ ∈ Γi, A and t, we have that

Lγ
S(w) ≥ L

(7/8)γi

AS (hA,t(w))− P(x,y)∼S [y⟨w,x⟩ > γ ∧ y⟨hA,t(w), Ax⟩ ≤ (7/8)γi].

Thus
Lγ
S(w) ≥ EA,t[L(7/8)γi

AS (hA,t(w))− P(x,y)∼S [y⟨w,x⟩ > γ ∧ y⟨hA,t(w),Ax⟩ ≤ (7/8)γi]]

≥ EA,t[L(7/8)γi

AS (hA,t(w)) | (A, t) ∈ Gw ∧A /∈ US ]PA,t[(A, t) ∈ Gw ∧A /∈ US ] (28)
− EA,t[P(x,y)∼S [y⟨w,x⟩ > γ ∧ y⟨hA,t(w),Ax⟩ ≤ (7/8)γi]]. (29)

For the term (28), we observe that conditioned on (A, t) ∈ Gw, we have that hA,t(w) ∈ G0 since
∥hA,t(w)∥2 ≤ 4. Secondly, when A /∈ US , this implies by the definition of δ-unusual that

L(7/8)γi

AS (hA,t(w)) ≥
L(7/8)γi

AD (hA,t(w))

2
− 211k + ln(1/δ)

n
.

Hence
EA,t[L(7/8)γi

AS (hA,t(w)) | (A, t) ∈ Gw ∧A /∈ US ]PA,t[(A, t) ∈ Gw ∧A /∈ US ] ≥

EA,t

[
L(7/8)γi

AD (hA,t(w))

2

∣∣∣∣∣(A, t) ∈ Gw ∧A /∈ US

]
PA,t[(A, t) ∈ Gw ∧A /∈ US ]−

211k + ln(1/δ)

n
.

(30)
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Using again that (A, t) ∈ Gw, we have that (30) is at least

L(3/4)γi

D (w)

2
PA,t[(A, t) ∈ Gw ∧A /∈ US ]−

211k + ln(1/δ)

n
− 25 exp(−kγ2i+1/2

14). (31)

We now bound P[(A, t) ∈ Gw] and P[A /∈ US ]. For this, we recall that ∥Aw∥22 ∼ (1/k)χk
2 . Thus

E[∥Aw∥22] = 1 and by Markov’s, we get P[∥Aw∥22 ≥ 9] ≤ 1/9. Conditioned on ∥Aw∥22 < 9, we

have ∥hA,t(w)∥2 ≤ ∥Aw∥2 + ∥hA,t(w)−Aw∥2 ≤
√
9 +

√
k(10
√
k)−2 < 4. Next observe that

L(7/8)γi

AD (hA,t(w)) ≥ L(3/4)γi

D (w)− P(x,y)∼D[y⟨w,x⟩ ≤ (3/4)γi ∧ y⟨hA,t(w),Ax⟩ > (7/8)γi].

We have by Lemma 5 that there is a constant c > 0 so that
EA,t[P(x,y)∼D[y⟨w,x⟩ ≤ (3/4)γi ∧ y⟨hA,t(w),Ax⟩ > (7/8)γi]] =

E(x,y)∼D[PA,t[y⟨w,x⟩ ≤ (3/4)γi ∧ y⟨hA,t(w),Ax⟩ > (7/8)γi]] ≤
sup

x∈X :⟨w,x⟩≤(3/4)γi

PA,t[⟨hA,t(w),Ax⟩ > (7/8)γi] ≤

c exp(−k(γi/8)2/c) ≤
c exp(−kγ2i+1/(2

8c)).

Thus by Markov’s inequality, we conclude

PA,t[L(7/8)γi

AD (hA,t(w)) < L(3/4)γi

D (w)− 5c exp(−kγ2i+1/(2
8c))] ≤

PA,t[P(x,y)∼D[y⟨w,x⟩ ≤ (3/4)γi ∧ y⟨hA,t(w),Ax⟩ > (7/8)γi] > 5c exp(−kγ2i+1/(2
8c))] < 1/5.

Finally, since we assumed S is δ-representative, we have PA[A ∈ US ] ≤ 1/4 by definition of
δ-representative. We conclude by a union bound that

PA,t[(A, t) ∈ Gw ∧A /∈ US ] ≥ 1− 1/9− 1/5− 1/4 ≥ 1/2.

In summary, we have shown that (31) is at least

L(3/4)γi

D (w)

2
· 1
2
− 211k + ln(1/δ)

n
− 5c exp(−kγ2i+1/(2

8c)).

Recalling that (28) ≥ (31) gives

EA,t[L(7/8)γi

AS (hA,t(w)) | (A, t) ∈ Gw ∧A /∈ US ]PA,t[(A, t) ∈ Gw ∧A /∈ US ] ≥

L(3/4)γi

D (w)

4
− 211k + ln(1/δ)

n
− 5c exp(−kγ2i+1/(2

8c)).

The term (29) can be bounded using Lemma 5 by
EA,t[P(x,y)∼S [y⟨w,x⟩ > γ ∧ y⟨hA,t(w),Ax⟩ ≤ (7/8)γi]] =

E(x,y)∼S [PA,t[y⟨w,x⟩ > γ ∧ y⟨hA,t(w),Ax⟩ ≤ (7/8)γi]] ≤
sup

x∈X :⟨w,x⟩>γ

PA,t[⟨hA,t(w),Ax⟩ ≤ (7/8)γi] ≤

c exp(−k(γ − (7/8)γi)
2/c) ≤

c exp(−kγ2i /(64c)) ≤
c exp(−kγ2i+1/(2

8c)).

In summary, we have shown that for (δ/4)-representative S, it holds for all w ∈ H that

Lγ
S(w) ≥

L(3/4)γi

D (w)

4
− 211k + ln(4/δ)

n
− 6c exp(−kγ2i+1/(2

8c)).

We finally conclude from (27) that with probability at least 1− δ over S, it holds for all w ∈ H that

Lγ
S(w) ≥

L(3/4)γi

D (w)

4
− 211k + ln(4/δ)

n
− 6c exp(−kγ2i+1/(2

8c)).

Picking k = 28cγ−2
i+1 ln(γ

2
i+1n) finally results in

Lγ
S(w) ≥

L(3/4)γi

D (w)

4
−

220c ln(γ2i+1n)

γ2i+1n
− 2 ln(e/δ)

n
.

This completes the proof.
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E Auxiliary Results

In this section, we prove a number of auxiliary results used throughout the paper. For this, we need
the following concentration inequality:
Theorem 17 (Wainwright [2019], example 2.11). Let Y ∼ χ2

k, then for any x ∈ (0, 1) it holds that

P
[∣∣∣∣Yk − 1

∣∣∣∣ ≥ x] ≤ 2 exp(−kx2/8).

Restatement of Claim 1. For any 0 < δ < 1, it holds with probability 1− δ over S ∼ Dn that (17)
and (18) simultaneously hold for all (Γi, Lj) and Γi, with slightly different constants c.

Proof. Let (γi, γi+1] be such that γi+1 := 2in−1/2. Similarly, let (ℓj , ℓj+1] be such that ℓj+1 :=

2jn−1. Do a union bound over all (Γi, Lj) for i = 1, . . . , lg2(cγn
1/2) and j = 0, . . . , lg2 n with

δi,j := (δ/e)3 exp(−γ−2
i+1 ln(e/ℓj+1)) in (17). We see that

lg2(cγn
1/2)∑

i=1

lg2 n∑
j=0

δi,j =

lg2(cγn
1/2)∑

i=1

lg2 n∑
j=0

(δ/e)3 exp(−γ−2
i+1 ln(e/ℓj+1))

=

lg2(cγn
1/2)∑

i=1

lg2 n∑
j=0

(δ/e)3 exp(−2−2in ln(en2−j))

=

lg2(cγn
1/2)∑

i=1

lg2 n∑
j=0

(δ/e)3(en2−j)−2−2in.

Doing the substitutions j ← lg2 n− j and i← lg2(cγn
1/2) + 1− i, this equals

=

lg2(cγn
1/2)∑

i=1

lg2 n∑
j=0

(δ/e)3(e2j)−22i−2c−2
γ

≤
lg2(cγn

1/2)∑
i=1

lg2 n∑
j=0

(δ/e)3e−22i−2

2−j

≤
lg2(cγn

1/2)∑
i=1

2(δ/e)3e−22i−2

≤ δ/2.

Similarly, do a union bound over all Γi with δi := (δ/e)3 exp(−γ−2
i+1 ln(eγ

2
i+1n)) in (18). We have

lg2(cγn
1/2)∑

i=1

δi =

lg2(cγn
1/2)∑

i=1

(δ/e)3 exp(−γ−2
i+1 ln(eγ

2
i+1n))

≤
lg2(cγn

1/2)∑
i=1

(δ/e)3 exp(− ln(eγ2i+1n))

=

lg2(cγn
1/2)∑

i=1

(δ/e)3
1

eγ2i+1n

=

lg2(cγn
1/2)∑

i=1

(δ/e)3
n

e22in

≤ (δ/e)3

≤ δ/2.
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We thus have that with probability at least 1− δ that for all (Γi, Lj), we have

sup
w∈H(Γi,Lj),γ∈Γi

|LD(w)− Lγ
S(w)| ≤

c

(√
ℓj+1

(
ln(e/ℓj+1)

γ2i+1n
+

ln(e/δi,j)

n

)
+

ln(e/ℓj+1)

γ2i+1n
+

ln(e/δi,j)

n

)
=

c

(√
ℓj+1

(
ln(e/ℓj+1)

γ2i+1n
+

ln(e/δi,j)

n

)
+ 2 · ln(e/ℓj+1)

γ2i+1n
+ 3 · ln(e/δ)

n

)
.

and for all Γi, we have

inf
w∈H
Lγi

S (w) ≥
L(3/4)γi

D (w)

4
− c

(
ln(eγ2i+1n)

γ2i+1n
− ln(e/δi)

n

)
=
L(3/4)γi

D (w)

4
− c

(
2 ·

ln(eγ2i+1n)

γ2i+1n
− 3 · ln(e/δ)

n

)
.

Restatement of Claim 2. For any 0 < δ < 1 and training set S, if (17) and (18) hold simultaneously
for all (Γi, Lj) and Γi, then (16) holds for all γ ∈ (n−1/2, cγ ] and all w ∈ H for large enough
constant c > 1 in (16).

Proof. Let 0 < δ < 1 and assume as in the claim that (17) and (18) holds for all (Γi, Lj) and Γi.
Now consider an arbitrary γ ∈ (n−1/2, cγ ] and w ∈ H. Let i and j be such that γ ∈ (γi, γi+1]

and L(3/4)γi

D (w) ∈ (ℓj , ℓj+1] with γi+1 = 2in−1/2 and ℓj+1 = 2jn−1. We consider two cases. Let
c4 > 1 be the constant in Lemma 4. First, if

L(3/4)γi

D (w) ≤ 16 · c4 ·
(
ln(eγ2i+1n)

γ2i+1n
+

ln(e/δ)

n

)
,

then since LD(w) ≤ L(3/4)γi

D (w) and γ ≤ γi+1 (using that ln(eγ2n)/(γ2n) is decreasing in γ for
γ ≥ n−1/2), we have already shown (16) for sufficiently large constant c in (16). So assume this is
not the case. Our goal is to show that ℓj+1 and Lγ

S(w) are within constant factors of each other so
that we may replace occurrences of ℓj+1 by Lγ

S(w) in (17). We first see that our assumption implies

ℓj+1 ≥ L(3/4)γi

D (w) ≥ 16 · c4 ·
(
ln(eγ2i+1n)

γ2i+1n
+

ln(e/δ)

n

)
≥ 1

γ2i+1n
> n−1. (32)

This also implies j ̸= 0 and hence ℓj+1 = 2ℓj and therefore ℓj+1 ≤ 2L(3/4)γi

D (w). Letting c3 be the
constant in Lemma 3, we get from (17) and (32), that

Lγ
S(w) ≤ LD(w) + c3 ·

(√
ℓj+1

(
ln(e/ℓj+1)

γ2i+1n
+

ln(e/δ)

n

)
+

ln(e/ℓj+1)

γ2i+1n
+

ln(e/δ)

n

)

≤ L(3/4)γi

D (w) + c3 ·

(√
2L(3/4)γi

D (w)

(
ln(eγ2i+1n)

γ2i+1n
+

ln(e/δ)

n

)
+

ln(eγ2i+1n)

γ2i+1n
+

ln(e/δ)

n

)

≤ L(3/4)γi

D (w) + c3 ·
(√

2L(3/4)γi

D (w)L(3/4)γi

D (w) + L(3/4)γi

D (w)

)
≤ 3 · c3 · L(3/4)γi

D (w).

We thus also have ℓj+1 ≥ L(3/4)γi

D (w) ≥ (3 · c3)−1Lγ
S(w). Inserting this and (32) in (17) gives

LD(w) ≤ Lγ
S(w) + c3

(√
ℓj+1

(
ln(3ec3/Lγ

S(w))

γ2i+1n
+

ln(e/δ)

n

)
+

ln(eγ2i+1n)

γ2i+1n
+

ln(e/δ)

n

)
.

(33)
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Finally from (18) and γ ≥ γi, we have

Lγ
S(w) ≥ L

γi

S (w)

≥
L(3/4)γi

D (w)

4
− c4

(
ln(eγ2i+1n)

γ2i+1n
− ln(e/δ)

n

)
≥ ℓj+1

8
− c4

(
ln(eγ2i+1n)

γ2i+1n
− ln(e/δ)

n

)
.

From (32), this is at least ℓj+1/16 and thus ℓj+1 ≤ 16Lγ
S(w). Inserting this in (33) finally gives us

LD(w) ≤ Lγ
S(w) + c3

(√
16Lγ

S(w)

(
ln(2ec3/Lγ

S(w))

γ2i+1n
+

ln(e/δ)

n

)
+

ln(eγ2i+1n)

γ2i+1n
+

ln(e/δ)

n

)
.

Since γ ≤ γi+1, this completes the proof of Claim 2 for sufficiently large c > 0 in (16).

Restatement of Lemma 5. There is a constant c > 0, such that for any integer k ≥ 1, w ∈ H, x ∈ X
and any γ ∈ (0, 1], it holds that PA,t[|⟨hA,t(w),Ax⟩ − ⟨w, x⟩| > γ] < c exp(−γ2k/c).

Proof. We start by observing that ∥Aw∥22, ∥Ax∥22 and ∥A(w − x)∥22/∥w − x∥22 are all (1/k)χ2
k

distributed. Using Theorem 17 with x = γ/3, we have with probability at least 1− 6 exp(−kγ2/72)
that ∥Aw∥22 ∈ 1± γ/3, ∥Ax∥22 ∈ 1± γ/3 and ∥A(w − x)∥22 ∈ ∥w − x∥22(1± γ/3). By the polar
identity, this implies

⟨Aw,Aw⟩ = 1

4

(
∥Aw∥22 + ∥Ax∥22 − ∥A(w − x)∥22

)
∈ 1

4

(
∥w∥22 + ∥x∥22 − ∥w − x∥22

)
± γ

12

(
∥w∥22 + ∥x∥22 + ∥w − x∥22

)
⊆ ⟨w, x⟩ ± γ

12
(1 + 1 + 4)

= ⟨w, x⟩ ± γ

2
.

Let us condition on an outcome A of A satisfying the above. We then observe that

⟨hA,t(w), Ax⟩ = ⟨hA,t(w)−Aw,Ax⟩+ ⟨Aw,Ax⟩.

By the randomized rounding procedure, we have that each coordinate i satisfies Eti [(hA,t(w))i] =
(Aw)i. Moreover, these coordinates are independent. Letting ∆i = (hA,t(w))i − (Aw)i, we then
have that E[∆i] = 0 and that ∆i lies in an interval of length (10

√
k)−1. Hoeffding’s inequality

implies

Pt[|⟨hA,t(w)−Aw,Ax⟩| > γ/2] = P∆1,...,∆k

[∣∣∣∣∣
k∑

i=1

∆i(Ax)i

∣∣∣∣∣ > γ/2

]

< 2 exp

(
− 2(γ/2)2∑k

i=1(10
√
k)−2(Ax)2i

)

= 2 exp

(
− 50γ2k

∥Ax∥22

)
≤ 2 exp

(
−25γ2k

)
.

In summary, it holds with probability at least 1 − 6 exp(−kγ2/72) − 2 exp(−25γ2k) ≥ 1 −
7 exp(−kγ2/72) that

|⟨hA,t(w),Ax⟩ − ⟨w, x⟩| ≤ |⟨hA,t(w),Ax⟩ − ⟨Aw,Ax⟩|+ |⟨Aw,Ax⟩ − ⟨w, x⟩|
≤ |⟨hA,t(w)−Aw,Ax⟩|+ γ/2

< γ.
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Remark 18. The value p((Aw)i) chosen such that Et[(hA,t(w))i] = (Aw)i, i.e satisfying that

(Aw)i = p((Aw)i)

(
1

2 · 10
√
k
+

zi

10
√
k

)
+ (1− p((Aw)i))

(
1

2 · 10
√
k
+
zi + 1

10
√
k

)
,

where zi is an integer such that

(1/2)(10
√
k)−1 + zi(10

√
k)−1 ≤ (Aw)i < (1/2)(10

√
k)−1 + (zi + 1)(10

√
k)−1.

is nonnegative, and less than 1.

Proof. By definition of zi.

((1/2)(10
√
k)−1 + zi(10

√
k)−1) + (1− p((Aw)i))(10

√
k)−1 = (Aw)i ⇒

(Aw)i − ((1/2)(10
√
k)−1 + zi(10

√
k)−1) = (1− p((Aw)i))(10

√
k)−1.

By definition of zi, we have that the left hand side is a number in [0, (10
√
k)−1] and thus we conclude

(1− p((Aw)i)) ∈ [0, 1]⇒ p((Aw)i) ∈ [0, 1].

Restatement of Remark 6. For any training set S and distribution D over X × {−1, 1}, we have

EA,t[P(x,y)∼D[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ 0]] ≤ E(x,y)∼D[ϕ(y⟨w,x⟩)]
EA,t[P(x,y)∼S [y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ γ]] ≥ E(x,y)∼S [ϕ(y⟨w,x⟩)]
EA,t[P(x,y)∼S [y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > γ]] ≤ E(x,y)∼S [ρ(y⟨w,x⟩)]
EA,t[P(x,y)∼D[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > 0]] ≥ E(x,y)∼D[ρ(y⟨w,x⟩)].

In the proof, we will need the following monotonicity properties

Claim 4. We have PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = α1] ≤ PA,t[y⟨hA,t(w),Ax⟩ >
γi/2 | y⟨w, x⟩ = α2] for any 0 ≤ α1 ≤ α2 ≤ γi.
Claim 5. We have PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = α2] ≤ PA,t[y⟨hA,t(w),Ax⟩ ≤
γi/2 | y⟨w, x⟩ = α1] for any 0 < α1 ≤ α2 ≤ γi.

First we will prove Remark 6 using the two claims. Afterward, we will prove Claim 4 and Claim 5.

Proof of Remark 6. For convenience, let us recall the definitions of ϕ and ρ:

ϕ(α) =


PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = α] if − cγ ≤ α ≤ 0
(γi−α)

γi
PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = 0] if 0 < α ≤ γi

0 if γi < α ≤ cγ

ρ(α) =


PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = α] if γi < α ≤ cγ
α
γi
PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = γi] if 0 < α ≤ γi

0 if − cγ ≤ α ≤ 0.

We handle each of the inequalities in turn. First we see that

EA,t[P(x,y)∼D[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ 0] =

E(x,y)∼D[PA,t[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ 0]] ≤
E(x,y)∼D[ϕ(y⟨w,x⟩)].

Here the inequality follows from the observations that ϕ(y⟨w, x⟩) ≥ 0 for y⟨w, x⟩ > 0, whereas
PA,t[y⟨hA,t(w),Ax⟩ > γi/2∧y⟨w,x⟩ ≤ 0] = 0 for such y⟨w, x⟩. Similarly for y⟨w, x⟩ = α ≤ 0,
we have ϕ(y⟨w, x⟩) = PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = α] = PA,t[y⟨hA,t(w),Ax⟩ >
γi/2 ∧ y⟨w, x⟩ ≤ 0 | y⟨w, x⟩ = α].
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Similarly, we have

EA,t[P(x,y)∼S [y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ γ] =
E(x,y)∼S [PA,t[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ γ]] ≥
E(x,y)∼S [PA,t[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ γi]] ≥

E(x,y)∼S [ϕ(y⟨w,x⟩)].

The last inequality follows by observing that if y⟨w, x⟩ > γi, we have ϕ(y⟨w, x⟩) = 0 and
PA,t[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w, x⟩ ≤ γi] = 0. For α = y⟨w, x⟩ with 0 < α ≤ γi, we
have ϕ(α) = γi−α

γi
PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = 0] ≤ PA,t[y⟨hA,t(w),Ax⟩ > γi/2 |

y⟨w, x⟩ = α] = PA,t[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w, x⟩ ≤ γi | y⟨w, x⟩ = α]. This uses the
monotonicity in Claim 4. Finally for y⟨w, x⟩ = α ≤ 0, the two coincide as in the above argument.

Symmetric arguments for ρ gives

EA,t[P(x,y)∼S [y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > γ] =

E(x,y)∼S [PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > γ] ≤
E(x,y)∼S [PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > γi] ≤

E(x,y)∼S [ρ(y⟨w,x⟩)].

Here the last inequality follows from the following considerations. For y⟨w, x⟩ = α with α ≤ γi,
we have that PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w, x⟩ > γi] = 0 and ρ is always non-negative. For
α > γi, we have ρ(α) = PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = α] = PA,t[y⟨hA,t(w),Ax⟩ ≤
γi/2 ∧ y⟨w, x⟩ > γi | y⟨w, x⟩ = α] and the two coincide.

Finally, we have

EA,t[P(x,y)∼D[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > 0] =

E(x,y)∼D[PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > 0] ≥
E(x,y)∼D[ρ(y⟨w,x⟩)].

Here the inequality follows by observing that for y⟨w, x⟩ = α with α ≤ 0, both ρ(α) and
PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w, x⟩ > 0] are 0. For 0 ≤ α ≤ γi we have by definition
that ρ(α) = α

γi
PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = γi] ≤ PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 |

y⟨w, x⟩ = α] = PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w, x⟩ > 0 | y⟨w, x⟩ = α], where we used that
PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = α] is decreasing in α (as stated in Claim 5). Finally, for
α > γi, the two coincide as above.

Proof of Claim 4. Let w1, x1, y1 be such that α1 := y1⟨w1, x1⟩ and let w2, x2, y2 be such that
α2 := y2⟨w2, x2⟩. Consider sampling Xi,Yi ∼ N (0, 1/k) independently. Also sample offsets
t′1, . . . , t

′
k uniformly and independently in [0, 1] and let X′

i be Xi rounded based on t′i as above. Let
Z1 = Y = α1X +

√
1− α2

1Y and Z2 = α2X +
√
1− α2

2Y. Then the marginal distribution of
⟨X′,Zj⟩ equals the distribution of ⟨hA,t(wj), yjAxj⟩ = yj⟨hA,t(wj),Axj⟩.
Consider now an arbitrary outcome X ′, X of X,X′. We have ⟨Zj , X

′⟩ ≥ γi/2 if and only if

αj⟨X,X ′⟩+
√
1− α2

j ⟨Y, X ′⟩ ≥ γi/2. We also have that ⟨Y, X ′⟩ ∼ N (0, ∥X ′∥22/k) and thus

P[⟨Z2, X
′⟩ ≥ γi/2]− P[⟨Z1, X

′⟩ ≥ γi/2] =(
1− Φ

(
√
k · γi/2− α2⟨X,X ′⟩√

1− α2
2

))
−

(
1− Φ

(
√
k · γi/2− α1⟨X,X ′⟩√

1− α2
1

))
=

Φ

(
√
k · γi/2− α1⟨X,X ′⟩√

1− α2
1

)
− Φ

(
√
k · γi/2− α2⟨X,X ′⟩√

1− α2
2

)
. (34)

Here Φ(·) denotes the cumulative density function of the normal distribution with mean 0 and variance
1. Now let

u :=
√
k · γi/2− α1⟨X,X ′⟩√

1− α2
1

,
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and

ℓ :=
√
k · γi/2− α2⟨X,X ′⟩√

1− α2
2

.

Consider now the derivative
∂

∂α

√
k · γi/2− α⟨X,X

′⟩√
1− α2

=
√
k · αγi/2− ⟨X,X

′⟩
(1− α2)3/2

.

Assume first that ∥X∥22 ≥ 9/10. Then ⟨X,X ′⟩ ≥ 8/9 by Remark 14. Now since αγi/2 ≤ γ2i /2 ≤
c2γ/8 ≤ 1/9 for cγ small enough. Thus the derivative when ∥X∥22 ≥ 9/10 is no more than

√
k · (1/9− 8/9) ≤ −7

√
k/9.

This implies u− ℓ ≥ 7(α2 − α1)
√
k/9 > 0 and therefore

P[⟨Z2, X
′⟩ ≥ γi/2] ≥ P[⟨Z1, X

′⟩ ≥ γi/2].

If we in addition have that ∥X∥22 ≤ 4/3, then we may even show that the difference in probabilities
is large as a function of α2 − α1 as follows

P[⟨Z2, X
′⟩ ≥ γi/2]− P[⟨Z1, X

′⟩ ≥ γi/2] =
1√
2π
·
∫ u

x=ℓ

e−x2/2dx

≥ e−maxa∈[ℓ,u] a
2/2 7
√
k(α2 − α1)

9
√
2π

.

Observing that

max
a∈[ℓ,u]

a2 ≤ k

1− c2γ
·max{γ2i /2, γ2i ⟨X,X ′⟩2},

we use Remark 14 to conclude ⟨X,X ′⟩ ≤ (10/9)∥X∥22 and thus u2 ≤ 2kγ2i (10/9)
2 ≤ 3kγ2i for

cγ ≤ 1/
√
2. This gives us that for any X with 9/10 ≤ ∥X∥22 ≤ 4/3, it holds that

P[⟨Z2, X
′⟩ ≥ γi/2]− P[⟨Z1, X

′⟩ ≥ γi/2] ≥ e−3kγ2
i /2

7
√
k(α2 − α1)

9
√
2π

.

For ∥X∥22 < 9/10, we have ∥X ′∥2 = ∥X ′ −X +X∥2 ≤ ∥X ′ −X∥2 + ∥X∥2 ≤
√
k(10
√
k)−2 +√

9/10 ≤ 11/10. It follows by Cauchy-Schwartz that |⟨X,X ′⟩| ≤ ∥X∥2 · ∥X ′∥2 ≤
√
9/10 ·

11/10 ≤ 11/10. For 0 ≤ α ≤ γi ≤ cγ/2 ≤ 1/
√
8 for cγ ≤ 1/

√
2, this upper bounds the derivative

by
√
k · γ

2
i /2 + 11/10

(1− 1/8)3/2
< 2
√
k.

If u ≥ ℓ, we already have that

P[⟨Z2, X ′⟩ ≥ γi/2]− P[⟨Z1, X ′⟩ ≥ γi/2] ≥ 0.

So assume u < ℓ. The bound on the derivative gives us that ℓ− u ≤ 2
√
k(α2−α1) and we conclude

P[⟨Z2, X ′⟩ ≥ γi/2]− P[⟨Z1, X ′⟩ ≥ γi/2] = −
1√
2π
·
∫ ℓ

x=u

e−x2/2dx

≥ −e−mina∈[u,ℓ] a
2/2 · 2

√
k(α2 − α1)√

2π

≥ −2
√
k(α2 − α1)√

2π
.

We finally conclude

P[⟨Z2, X ′⟩ ≥ γi/2]− P[⟨Z1, X ′⟩ ≥ γi/2] ≥

P[9/10 ≤ ∥X∥22 ≤ 4/3] · e−3kγ2
i /2 · 7

√
k(α2 − α1)

9
√
2π

− P[∥X∥22 < 9/10] · 2
√
k(α2 − α1)√

2π
. (35)
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Using Theorem 17, we get

P[9/10 ≤ ∥X∥22 ≤ 4/3] ≥ 1− 2 exp(−k/800), (36)

and
P[∥X∥22 < 9/10] ≤ 2 exp(−k/800).

For k at least a sufficiently large constant, we have that (36) is at least 1/2 and we get that (35) is at
least

e−3kγ2
i /2 · 7

√
k(α2 − α1)

18
√
2π

− e−k/800 · 4
√
k(α2 − α1)√

2π
.

For the constant cγ sufficiently small, this is positive as γi ≤ cγ .

Proof of Claim 5. Similarly to the proof of Claim 4, let w1, x1, y1 by such that α1 = y1⟨w1, x1⟩
and let w2, x2, y2 be such that α2 = y2⟨w2, x2⟩. Draw X, X′ and Z1,Z2 as above. Consider
again an arbitrary outcome X ′, X of X,X′. We have ⟨Zj , X

′⟩ ≤ γi/2 if and only if αj⟨X,X ′⟩+√
1− α2

j ⟨Y, X ′⟩ ≤ γi/2. Hence

P[⟨Z1, X
′⟩ ≤ γi/2]− P[⟨Z2, X

′⟩ ≤ γi/2] =

Φ

(
√
k · γi/2− α1⟨X,X ′⟩√

1− α2
1

)
− Φ

(
√
k · γi/2− α2⟨X,X ′⟩√

1− α2
2

)
.

This has the exact same constraints 0 ≤ α1 ≤ α2 ≤ γi and exact same form as (34). The conclusion
thus follows from the proof of Claim 4.

Restatement of Remark 13. If ∥X∥22 ≤ 4/3, then ∥X ′∥22 < 2.

Proof. By the triangle inequality, and using that all coordinates of X−X ′ are bounded by (10
√
k)−1

in absolute value, we have

∥X ′∥22 = ∥X ′ −X +X∥22
≤ (∥X ′ −X∥2 + ∥X∥2)

2

≤
(√

k(10
√
k)−2 +

√
4/3

)2

= (1/10 +
√

4/3)2

< 2.

Restatement of Remark 14. If ∥X∥22 ≥ 9/10, then (8/9)∥X∥22 ≤ ⟨X,X ′⟩ ≤ (10/9)∥X∥22

Proof. We have:

⟨X ′, X⟩ = ⟨X ′ −X +X,X⟩
= ⟨X ′ −X,X⟩+ ∥X∥22.

Since each coordinate of X ′ −X is bounded by (10
√
k)−1 in absolute value, it follows by Cauchy-

Schwartz that

|⟨X ′ −X,X⟩| ≤ ∥X ′ −X∥2 · ∥X∥2

≤
√
k(10
√
k)−2 · ∥X∥

2
2

∥X∥2

≤ ∥X∥22
10
√
9/10

≤ ∥X∥22/9.
The conclusion follows.
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Restatement of Remark 16. For any distribution D over X × {−1, 1}, fixed w ∈ H, margin γ and
any A ∈ Rk×d, it holds with probability at least 1− δ over S ∼ Dn that

|Lγ
AD(w)− L

γ
AS(w)| ≤

√
8Lγ

AD(w) ln(1/δ)

n
+

2 ln(1/δ)

n
.

Proof. Since Lγ
AS(w) is an average of n i.i.d. 0/1 random variables with mean Lγ

AD(w), we get
from Bernstein’s inequality that

PS∼D

[
|Lγ

AD(w)− L
γ
AS(w)| >

√
8Lγ

AD(w) ln(1/δ)

n
+

2 ln(1/δ)

n

]
≤

exp

− 1
2 ·
(√

8Lγ
AD(w)n ln(1/δ) + 2 ln(1/δ)

)2
nLγ

AD(w) +
1
3 ·
(√

8Lγ
AD(w) ln(1/δ)n+ 2 ln(1/δ)

)
 ≤

exp

(
−

1
2 ·max {8Lγ

AD(w)n, 4 ln(1/δ)} ln(2/δ)
1
8 max{nLγ

AD(w), 4 ln(1/δ)}+
1
3 ·
√
2 ·max{8Lγ

AD(w), 4 ln(1/δ)} · ln(1/δ)

)
.

Using that ln(1/δ) ≤ 1
4 max{8Lγ

AD(w), 4 ln(1/δ)}, this is at most

exp

− 1
2 ln(1/δ)

1
8 + 1

3 ·
√

1
2

 ≤ exp(− ln(1/δ)) = δ.
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