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ABSTRACT

Different levels of visual information are generally coupled in image data, thus
making it hard to reverse the trend of deep learning models that learn texture
bias from images. Consequently, these models are vulnerable when dealing with
tasks in which semantic knowledge matters. To solve this problem, we propose
an instance smoothing algorithm, in which the Total Variation (TV) regularization
is enforced in a differential inclusion to generate a regularized image path from
large-scale (i.e., semantic information) to fine-scale (i.e., detailed information).
Equipped with a proper early stopping mechanism, the structural information can
be disentangled from detailed ones. We then propose an efficient sparse projection
method to obtain the regularized images, by exploiting the graph structure of the
Total Variation matrix. We then propose to incorporate this algorithm into neural
network training, which guides the model to learn structural features in the process
of training. The utility of our framework is demonstrated by improved robustness
against noisy images, adversarial attacks, and low-resolution images; and better
explainability via visualization and frequency analysis.

1 INTRODUCTION

Deep learning models have achieved great success in abundant computer vision tasks like image
recognition, detection, and segmentation, through the usage of large-scale image datasets Krizhevsky
et al. (2012); Simonyan & Zisserman (2014); Long et al. (2015). As shown by previous works
Geirhos et al. (2018b), the neural networks are prone to learn more texture bias from the image data
rather than the structural information like shape. On the other hand, studies Brendel & Bethge (2019)
have also realized that low-frequency features like shapes and edges can help make models more
robust, which means it is also important to learn this kind of feature during model training. However,
since texture and shape are generally entangled in real-world data, it is hard to change the tendency
of texture bias based on these raw image data.

To see if there is a remedy for this problem, we resort to the concept of total variation (TV) regu-
larization, which has been widely applied in image denoising and stylization Rudin et al. (1992);
Chan & Vese (2001); Osher et al. (2005); Chambolle & Pock (2011). Such a TV regularization
gives rise to the spatial smoothing prior, i.e., adjacent pixels tend to have the same value. With such
a regularization, the noisy information can be smoothed away and only structural information is
maintained. Particularly, Burger et al. (2005) propose the Inverse Scale Space (ISS) method for image
denoising, which progressively learns finer scales as iterates, until a noise-free image is recovered
when stops properly.

Inspired by such an inverse-scale-space (ISS) property Burger et al. (2005), we propose a semantic-
aware instance smoothing method based on Splitted Bregman ISS Huang et al. (2016), which can
disentangle semantic/structural information from details. Specifically, our method is guided by a
differential inclusion, which can efficiently enforce TV regularization on an augmented parameter
introduced by a variable splitting term. With this TV regularization, this differential inclusion enjoys
the ISS property in that it can generate a TV-regularized image path, transitioning from a larger scale,
associated with structural information, to a finer scale, associated with detailed information. In this
regard, we can disentangle the structural information from detailed ones if the image path is stopped
at a proper time, as illustrated in Fig. 1. To obtain the TV-sparse estimator, we project onto the sparse
subspace by exploiting the connected components of the graph that the TV matrix corresponds to.
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Figure 1: Illustration of Semantic Learning. (a) Image path generated by instance smoothing, less
sparsity means less details. (b) Visualization using Grad-Cam. By smoothing details, our method
(trained sparsity = 0.6) better captures semantic information than vanilla training on original images.

We show that this projection can be efficiently completed in O(p) (p denotes the dimension of the
image vector) time complexity.

To incorporate this algorithm into neural network training, we propose several training procedures,
including fixed training procedure and iterative training procedure. Specifically, the fixed training
directly trains the model parameters on smoothed data with fixed sparsity; while the iterative training
alternatively runs the instance smoothing algorithm and optimizes the model parameters. Besides,
we can also apply the above procedure to tune any trained model. To validate the benefit brought by
the proposed pipeline, we conduct extensive experiments among tasks including adversarial attack,
low-resolution image classification, noisy images, etc. In addition to enhanced robustness in these
tasks, we also notice improved interpretability through frequency analysis.

Our main contributions are summarized as follows.

• We propose a novel instance smoothing algorithm that can disentangle the structural infor-
mation from detailed ones.

• We propose several training procedures that can efficiently incorporate our instance smooth-
ing algorithm into the training procedure.

• Our model achieves promising results on robustness tasks with better explainability.

2 RELATED WORK

Total Variation in Computer Vision Total Variation (TV), proposed by RUD (1992), has been
successfully applied in various vision tasks including denoising Beck & Teboulle (2009); Chambolle
(2004), deconvolution Chan & Wong (1998), deblurring Beck & Teboulle (2009), inpainting Afonso
et al., superresolution 48 (2008), structure-texture decomposition 6 (2006), and segmentation Donoser
et al. (2009). Recently, Yeh et al. (2022a) has shown the benefit for deep learning models brought by
the introduction of TV Optimization layer. Different from these methods, we consider the idea of
TV-constrained image reconstruction problem in the perspective of semantic-aware learning.

Linearized Bregman Iteration (LBI) LBI, a method for solving convex optimization problems,
was originally proposed in Osher et al. (2005); Yin et al. (2008). It has been demonstrated that LBI
exhibits convergence for convex loss functions, as well as the fundamental properties of discretized
differential inclusion dynamics Osher et al. (2016); Huang & Yao (2018). Subsequent research has
built upon the LBI framework, introducing various enhancements. In this study, we delve into the
practical application of this concept. Specifically, we leverage the inverse scale space property of
differential inclusion to address the TV regularization problem, resulting in a versatile solution path
for image smoothing.

3 SEMANTIC-AWARE LEARNING IN INVERSE SCALE SPACE

In this section, we will introduce our framework for learning semantic features via Inverse Scale
Space (ISS). In Sec. 3.1, we will first introduce the instance smoothing method to decompose the
semantic and non-semantic information in the inverse scale space, followed by incorporation of this
smoothing method to the neural network training in Sec. 3.2.
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3.1 INSTANCE SMOOTHING IN INVERSE SCALE SPACE

To smooth detailed information for image x ∈ Rp (p := h× w denotes the size of the image vector,
with h,w resp. denoting the height and width), typically one can enforce the following Total-Variation
(TV) regularization Rudin et al. (1992), which has been widely applied in image denoising Rudin
et al. (1992); Osher et al. (2005):

Lλ
TV(β) =

1

2
∥β − x∥22 + λ∥Dβ∥1, (1)

where λ > 0 denotes the regularization hyperparameter, and D ∈ Rm×p denotes the total variation
matrix that corresponds to the graph in which the edge set E (with |E| = m) contains those adjacent
pairs of pixels, such that ∥Dβ∥1 :=

∑
(i,j)∈E |β(i)−β(j)|. The TV-regularized image βλ is obtained

by minimizing this loss.However, solving the solution path of βλ w.r.t. λ in Eq. 1 is time-consuming
Yeh et al. (2022b) since one has to solve Eq. 1 for each λ. Although several methods have been
proposed for acceleration Yeh et al. (2022b); Xin et al. (2014), it is still too expensive to apply in
large-scale data.

To efficiently enforce this TV-regularization, we employ the following Split Bregman Inverse Scale
Space (ISS) Huang et al. (2018; 2016) that was proposed for sparse recovery:

0 = −∇βLv (βt, γt) , (2a)
ρ̇t = −∇γLv (βt, γt) , (2b)
ρt ∈ ∂∥γt∥1, (2c)

where Lv(β, γ) = 1
2∥β − x∥22 + 1

2ν ∥Dβ − γ∥22 denotes the variable splitting term that has been
proposed in ADMM Boyd et al. (2011) and Split Bregman Ye & Xie (2011) for implementation
convenience. Equipped with such a splitting term, one can enforce sparsity on γ, the distance of
which from Dβ is controlled by the hyperparameter ν. The dynamics in Eq. (2) is a differential
inclusion, which generates a regularized image path from large-scale to fine-scale, with t playing
a similar role as 1/λ in Eq. 1. This is because the path γt transitions from sparsity to density as
t increases. Furthermore, in accordance with the ISS property Burger et al. (2005), the non-zero
elements of γt earlier in the process correspond to larger-scale information within the image.

Specifically, we first note from Eq. (2b) that ρt follows a gradient descent flow, starting from ρ0 = 0
(hence γ0 = 0). As t grows, more elements ρt ∈ ∂∥γt∥1 tend to hit the boundary of ±1, making
corresponding elements of γt selected to be non-zeros according to Eq. 2c. With a sparse γt at each
t, we can obtain a sparse TV-regularized image β̃t by projecting βt onto the subspace expanded
by the support set of γt, i.e., St := supp(γt) := {i : γt(i) ̸= 0}. Due to this projection, we have
DSc

t
β̃t = 0, meaning that β̃t smooth out the information outside St. Since γt gets denser (i.e., St is

larger) as t grows, β̃t will learn more information. According to the ISS property of Split Bregman
ISS Burger et al. (2005); Huang et al. (2016), we know that β̃t will progressively learn finer-scale
information as t grows. This means if we stop early in the image path (say t0), then β̃t0 is able to
keep only semantic information while more detailed information will be smoothed out.

Discussions of Split Bregman ISS and Our Specification. The Split Bregman ISS, which was
proposed in the sparse inference of model parameters Huang et al. (2018), and later applied to many
machine learning tasks including medical imaging Sun et al. (2017), transfer learning Zhao et al.
(2018), and neural network pruning Fu et al. (2020). However, these methods primarily focused on
learning important parameters in the model. In contrast, we are the first to explore the ISS property
at the image level, with the goal of extracting semantic information from the original image.

Discretization. To implement, we follow Yin et al. (2008); Huang et al. (2018) to consider a discrete
form of Eq. 2, with step size α and the damping factor κ > 0:

βk+1 = βk − κα∇βL(βk, γk), (3a)
zk+1 = zk − α∇γL(βk, γk), (3b)
γk+1 = κprox∥γ∥1

(zk+1), (3c)

where prox∥γ∥1
(zt) := argminu

1
2∥u− zt∥2 + ∥u∥1 = sign(zt)max(|zt| − 1, 0). As pointed out

in Huang et al. (2016), Eq. 3 will converge to the original dynamics Eq. 2 by letting α → 0 and
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κ → ∞. Besides, the step size α should satisfy α < 2
κ∥Hν∥2

with Hν := ∇2Lν(β, γ), in order to
make Lν(βk, γk) decrease as iterates. Compared to TV regularization in Eq. 1 that has to run several
optimizations, we can easily obtain a regularized image path at all scales with a single run of Eq.3.

Sparse Projection via Graph Algorithm. With βk and γk at each k, we can obtain the TV
regularized image β̃t by projecting βk onto the sparse subspace of γk, i.e., Sk := supp(γk):

β̃k = projSk
(βk) := arg min

DSc
k
β′=0

∥β′ − βk∥2, (4)

which has a closed-form solution, i.e., β̃k = (I −D†
Sc
k
DSc

k
)βk

1. Here D†
Sc
k

denotes the pseudo-inverse
matrix of DSc

k
. The cost is O(|Sc

k|3), which is much larger than the cost of gradient descent that is
O(p) when |Sc

k| is large.

To improve the efficiency, we exploit the graph structure of DSc
k
. Specifically, note that DSc

k

corresponds to the graph G := (V,ESc
k
), such that

DSc
k
(β̃)(i, j) := β̃k(i)− β̃k(j) = 0, ∀(i, j) ∈ ESc

k
.

In other words, we have β̃k(i) = β̃k(j) if and only if i and j are connected by a path. Inspired by
this, we propose to decompose the graph into connected components, such that β̃i shares the same
value in each component. To minimize ∥β̃k − βk∥2, such a value should equal the average of βk in
that component. Since the complexity of finding connected components of a p-node graph is O(p),
the projection has the same cost as the gradient descent. Our result is summarized as follows.
Proposition 3.1. Given βk and Sk := supp(γk) and suppose G = (V,ESc

k
) has C connected

components G1 = (V1, E1), ..., GC = (VC , EC), such that V = V1∪ ...∪VC , then β̃k = projSk
(βk)

can be given by the following with complexity O(p):

β̃k(j) = βk(Vc), ∀j ∈ Vc for some c ∈ {1, .., C},where βk(Vc) denotes the average of βk(Vc).

Extension to colored image via group sparsity. For a colored image, we have x ∈ Rp×3. This
means each pixel is a 3-d vector xi = [xi1, xi2, xi3] in the RGB channels. Correspondingly, we
enforce group sparsity on γ ∈ Rp×3, where each group corresponds to the vector γi ∈ R3:

P (γ) = ∥γ∥1,2 :=
∑
i

∥γi∥2 =
∑
i

√
γ2
i1 + γ2

i2 + γ2
i3. (5)

By replacing the penalty ∥γ∥1 with P (γ), we can obtain γk from zk ∈ Rp×3 as follows:

γi = prox∥γ∥1,2
(z)i :=

{(
1− 1

∥zi∥2

)
∥zi∥2 ≥ 1,

0 otherwise,
(6)

which can replace Eq. (3c) to generate the image path for colored images.

3.2 INCORPORATION TO THE TRAINING PROCEDURE

In this section, we introduce several strategies to incorporate Eq. (3) into the training procedure: fixed
training, iterative training, and Finetuning. By decomposing the semantic and detailed information
apart, these training methods are endowed with better interpretability; moreover, they can exploit
semantic information to improve robustness against non-semantic perturbation, such as natural noise,
high-frequency perturbation, adversarial noise, and low-resolution images.

Specifically, we denote fθ : X → Y as the neural network with parameters θ, which is typically
trained via Empirical Risk Minimization (ERM) with loss ℓ(fθ(x), y).

Fixed Training Procedure. Simply speaking, it means training fθ via ERM on regularized image
data when stopped at a fixed sparsity level of γ (i.e., the proportion of non-zero elements of γ over
the dimension of γ). This procedure can be applied to the task of classification with noisy images

1For a general matrix A, we denote AS as the sub-matrix of A with rows indexed by S
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and adversarial defense, where the image at an early stopped iteration in Eq. (3) can eliminate the
detailed information in which the adversarial perturbation happens.

Iterative Training Procedure. Equipped with an efficient generation of the image path, we can
iteratively train the network parameter θ and run the instance smoothing in Eq. (3). In this regard,
the model can first learn semantic features, followed by detailed/fine-scale features. Specifically, the
iterative training alternatively runs the LBI and the gradient descent w.r.t. θ as follows:

βk+1 = βk − κα∇βLν(βk, γk),

zk+1 = zk − α∇γLν(βk, γk),

γk+1 = κ ∗ prox∥γ∥1
(zk+1) from Eq. (3), (7a)

β̃k+1 = projsupp(γk+1)
(βk+1) from Prop. 3.1, (7b)

θk+1 = θk −∇θℓ(fθ(β̃k+1, y)) gradient descent w.r.t. θ, (7c)

where Eq. (7c) can be replaced with other optimizers such as SGD or Adam. Such an iterative training
procedure can decompose the information, which enjoys better interpretability and can be potentially
applied to the task when y is labeled according to both semantic and detailed information features,
e.g., the medical imaging diagnosis in which both shape and texture of the lesion are pathologically
related to the disease. As a compromise, this method may still be open to adversarial attacks since it
also contains fine-scale information.

Finetune Procedure. For any pre-trained model fθ0 obtained through a non-regularized training
procedure (e.g., vanilla ERM), we perform a fine-tuning process on the parameter θ0 using the Fixed
Training procedure, allowing the model to progressively capture semantic information.

4 EXPERIMENTS

In this section, we conduct extensive experiments to demonstrate the ability of our method to learn
semantic features. We mainly focus on the robustness against non-semantic features introduced
by our method. Specifically, the method is evaluated to show the robustness against noisy images,
adversarial attacks, high-frequency perturbations, and low-frequency images.

Datasets. CIFAR10 Krizhevsky & Hinton (2009) and miniImageNet Vinyals et al. (2016) are adopted
in our experiments. For noisy training, we instead utilize CIFAR10-C Hendrycks & Dietterich (2019),
which contains different kinds of noisy and corrupted images from CIFAR10.

Implementation Details. We use ResNet18 for CIFAR10 and ResNet34 He et al. (2016) for
miniImageNet in our experiments. For hyperparameters, we set κ = 10, ν = 1, and calculate α by
α = 1

κ∥H∥2
, where H = ∇2Lν is the Hessian matrix of loss function. Since the miniImagenet was

originally used for few-shot learning, its classes in the training set and testing set are different. To
adapt it into our settings, we split the train set and randomly chose 100 images of each class as our
new test set, and others as our training set.

4.1 ROBUSTNESS AGAINST NOISY IMAGES

To explain the efficacy of our proposed method when dealing with noisy images, we compare our
model with (1) Vanilla Model: vanilla training to optimize ERM, and (2) TV Layer that appended the
neural network with a layer to enforce TV smoothness, following Yeh et al. (2022b). For training, the
vanilla model and TV layer are trained on clean images in CIFAR10. For the fixed training procedure,
we train the network on preprocessed images from CIFAR10 with sparsity 0.8. For iterative training,
we follow Eq. 7 trained with strategy in Eq. 7 with sparsity level from 0.3 to 0.8. For the finetuning
procedure, we use fixed training on processed images with sparsity 0.8 to finetune the vanilla model
for 20 epochs. In the test stage, we consider three scenarios for both methods: None, Sparsity 0.6,
which respectively correspond to noisy images with no preprocessing, and preprocessing test images
via our instance smoothing algorithm in Eq. 3 with sparsity 0.6.

We report the classification accuracy in Tab. 1. When used as a preprocessing method, our method
can help almost all the models improve their accuracy on several kinds of noisy data. Meanwhile,
our model achieves a further improvement over others by smoothing the detailed information out via
preprocessing in the training stage.
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Table 1: Classification results on noisy data from CIFAR10-C with different preprocessing strategies.

Training
Preprocessing Corruption Type

Mean
on Test Data Gaussian Shot Impulse Glass Motion Brightness Elastic

Vanilla Model
None 45.90% 59.08% 51.43% 55.20% 78.73% 93.91% 85.72% 67.14%

Sparsity 0.6 72.57% 76.34% 51.30% 57.66% 78.43% 92.58% 84.08% 73.28%

TV Layer
None 49.97% 62.14% 58.75% 56.84% 81.27% 93.66% 85.80% 69.78%

Sparsity 0.6 76.15% 78.39% 59.15% 60.64% 80.12% 92.33% 84.23% 75.86%

Ours (Fixed Training)
None 36.60% 49.80% 51.25% 43.88% 72.00% 92.42% 83.05% 61.29%

Sparsity 0.6 75.34% 78.01% 55.03% 55.80% 78.08% 92.47% 84.38% 74.16%

Ours (Iterative Training)
None 42.90% 53.55% 61.54% 53.19% 67.99% 91.01% 78.94% 64.16%

Sparsity 0.6 78.46% 79.83% 72.72% 62.00% 73.72% 91.15% 81.03% 76.99%

Ours (Finetune)
None 42.62% 55.64% 52.88% 49.28% 75.12% 93.40% 83.64% 64.65%

Sparsity 0.6 75.28% 78.11% 57.60% 58.38% 77.37% 92.24% 83.17% 74.59%

It is also interesting to observe that instance smoothing yields varying effects with different corrup-
tion types. Notably, significant improvements are evident following preprocessing for types like
"Gaussian" and "Shot", whereas some other types, such as "Elastic" and "Glass," do not exhibit this
phenomenon. To explain, we visualize images corrupted by different types in Fig. 2. As shown,
Gaussian or Shot noise mainly corrupts background or contextual details, which can be smoothed
out after preprocessing. . In contrast, ’Glass Blur’ and ’Elastic Transform’ alter shapes significantly,
challenging our method’s effectiveness.Additionally, ’Brightness’ type corruption shows minimal
impact, possibly because the noise is relatively not strong.

Figure 2: Visualization of different types of noisy images.

4.2 ROBUSTNESS AGAINST ADVERSARIAL ATTACK

Table 2: Classification results on adversarial examples (FGSM) at different strengths with CIFAR-10.

Training Preprocessing on Test Data ε = 8/255 ε = 16/255 ε = 24/255 ε = 32/255
Vanilla Model None 26.77 18.49 15.63 14.32

PNI None 41.07 26.05 16.64 13.31
TV Layer None 43.57 31.59 21.17 16.46

Ours iterative None 35.31 28.70 21.16 18.08
Ours fix None 37.23 26.14 18.57 13.54
Finetune None 48.60 36.27 23.66 17.47

Vanilla Model Sparsity 0.6 38.51 31.32 27.48 25.53
PNI Sparsity 0.6 51.21 43.35 37.30 32.83

TV Layer Sparsity 0.6 53.25 45.59 40.99 36.81
Ours iterative Sparsity 0.6 44.79 38.38 35.64 32.62

Ours fix Sparsity 0.6 51.19 43.39 38.13 33.82
Finetune Sparsity 0.6 57.61 51.62 46.87 41.14

Wang, et al. Natural - 17.10 14.00 12.70 -
Wang, et al. Adv - 43.50 23.20 28.60 -

In this section, we show the robustness of our method against adversarial attacks. The attacked data
are generated via commonly-used FSGM Goodfellow et al. (2014) and PGD Madry et al. (2018)(
In appendix G). We compare our methods with the Vanilla, TV layer methods, PNI Rakin et al.
(2018) and results from Wang et al. (2020). For the fixed training procedure, we train the network on
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preprocessed images with sparsity 0.6. For iterative training, we follow Eq. 7 trained with strategy
in Eq. 7 with sparsity level from 0.3 to 0.6. For the finetuning procedure, we use fixed training
on processed images with sparsity 0.6 to finetune the vanilla model for 20 epochs. During the test
stage, we consider three scenarios to smooth each data, None, Sparsity 0.6, and Sparsity 0.8, which
respectively correspond to test data with no smoothing, and preprocessing with sparsity 0.6 and
sparsity 0.8. Since optimizing the TV layer method involves computing the Hessian, which is not
computationally tractable for large-scale image data, we have limited its implementation on CIFAR10.

We report the accuracy at strengths ε = 2/255 to ε = 8/255 of CIFAR10 and miniImagenet in
Tab. 2 and Tab. 3, where ε stands for the attack strengths on normalized images. We first note that
for all methods, applying the instance smoothing method to test data can bring about robustness
improvement, which suggests the utility of instance smoothing. Besides, it is also interesting to
see that all variants of our methods can outperform the Vanilla method by a large margin, which
can further demonstrate the utility of incorporating the instance smoothing into the training stage.
In particular, the finetuning training procedure can outperform the vanilla model by 17.20% at
ε = 2/255.

Table 3: Classification results on adversarial examples (FGSM) with miniImagent.

Training Preprocessing on Test Data ε = 2/255 ε = 4/255 ε = 6/255 ε = 8/255
Vanilla Model None 13.23 7.86 6.17 5.30
Ours iterative None 16.72 9.40 6.98 6.22

Ours fix None 12.84 7.39 5.84 5.08
Finetune None 12.20 6.78 5.14 4.47

Vanilla Model Sparsity 0.6 30.54 17.58 12.75 10.39
Ours iterative Sparsity 0.6 30.27 16.98 12.09 9.78

Ours fix Sparsity 0.6 32.62 18.67 13.09 10.48
Finetune Sparsity 0.6 33.92 19.81 13.55 10.31

4.3 FREQUENCY DOMAIN ANALYSIS

Figure 3: Examples of high and low-frequency components of images. (a) An example from CIFAR10
with a cut-off radius r = 8. (b) An example from miniImagenet with a cut-off radius r = 20.

To further illustrate the role of our method in enhancing robustness, we try to analyze the method from
the perspective of the frequency domain. We follow Wang et al. (2020) to test the accuracy of models
on both the high and low-frequency components and follow Geirhos et al. (2018a) to measure the
fraction of low-frequency features in our trained model. Specifically, we first decompose the images
into low-frequency and high-frequency components as shown in Fig. 3. Then the low-frequency
fraction, which is defined as the proportion of correctly predicted instances using only low-frequency
components, is calculated among all correctly predicted samples. We consider three kinds of model
with different training strategy compared with the vanilla model. For fixed training procedure, we
train the network on preprocessed images with sparsity 0.8. For iterative training, we follow Eq. 7
with sparsity level from 0.3 to 0.8. For the finetuning procedure, we use fixed training on processed
images with sparsity 0.8 to finetune the vanilla model for 20 epochs.

We plot the low-frequency fraction and accuracy on high/low-frequency components during training
with different cut-off radius r in Fig 4 within CIFAR-10 and miniImagenet. As iterates, our method
has a higher fraction than the vanilla model. On low-frequency components, our models always
achieve the highest accuracy, while the vanilla model usually makes a better prediction on high-
frequency components, which is not robust since a human can not get obvious visual information
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from high-frequency components. This result suggests the ability of our method to learn semantic
information contained in the low-frequency features. Moreover, we note that the iterative training
method learns more low-frequency information than the fixed training, which suggests that smoothly
increased sparsity in iterative training can facilitate semantic learning.
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Figure 4: Test accuracy and fraction during training on high/low-frequency components of images
from miniImagenet and CIFAR-10. The top row contains a low-frequency fraction on CIFAR10 and
miniImagenet. The bottom row contains the accuracy on high/low-frequency components.

Moreover, we present two visualization results. The first one shows the frequencies in the first
layer’s feature maps during training in Fig. 5. Each grid corresponds to a feature map, where in the
high-frequency map is typically more visually dispersed, and the low-frequency map is usually more
concentrated. As shown, the vanilla model (bottom) tends to learn high-frequent features while our
method can first learn low-frequency features and then high-frequency features in the process of
training. This result can explain the low-frequency robustness shown in Fig. 4.

Figure 5: Visualization of the frequency maps in the first convolution layer in the frequency domain
during training. The top and bottom rows respectively correspond to our iterative training model and
the vanilla method.

The second one is about the expected difference in the frequency domain as proposed in Yin et al.
(2019). We calculate E(F(X) − F(X̂)), where F stands for Fourier transformation, X and X̂
stand for different images. As shown in Fig. 6, the difference between processed images and the
original image is mainly located within the low-frequency component. Besides, as the sparsity
level increases from 0.6 to 0.8, the difference in the high-frequency domain between the original
images and images generated by our method decreases. These results can explain the low-frequency
robustness of our model since during iterative training, the model initially learns low-frequency
(large-scale) information and then high-frequency (small-scale) information.

8
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Figure 6: The expected difference in the frequency domain on CIFAR10. "0.6 & Original" stands for
the difference between images with 0.6 sparsity and original images. The interpretation of "0.8 &
Original" and "0.6 & 0.8" is similar.

4.4 ROBUSTNESS AGAINST LOW RESOLUTION

To illustrate the robustness of our method against low-resolution data, we apply our method to the
task of classifying low-resolution images. We first downsample the original images to some specific
intermediate sizes and then upsample to the original size via nearest interpolation. The smaller
intermediate size will result in a lower-resolution image. Similar to the previous section, we consider
the fixed model trained on preprocessed images with sparsity 0.6, the iterative model trained with
strategy in Eq. 7 from sparsity 0.3 to 0.6 and the finetuned model on preprocessed images with
sparsity 0.6.

The results are presented along the training procedure in Fig. 7 for test data with intermediate size sets
from 74 to 24 respectively. As shown, all variants of our methods outperform the vanilla model (blue
curve), especially with lower-resolution images. This result suggests the effectiveness of instance
smoothing in learning semantic information during training, as the low-resolution images can smooth
out the details while maintaining the object’s shape.

Figure 7: (a) Examples of low-resolution images, with the original image on the left and images
of different intermediate sizes from 74 to 24 on the right; (b) Test accuracy during training on
low-resolution images with different intermediate sizes.

5 CONCLUSIONS AND DISCUSSIONS

We present a novel instance smoothing algorithm that effectively disentangles structural information
from images. We propose an efficient graph-based algorithm for projection acceleration. We then
propose three procedures to incorporate the algorithm into network training. We demonstrate the
utility in several robustness tasks.

Limitations. Our methods can bring additional memory costs during training, which makes it difficult
to extend to larger-scale datasets such as the Imagenet. Besides, we believe that our method can be
potentially applied to feature maps with TV regularization. Such an extension and the optimization
of memory usage will be explored in the future.
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A PROOF OF PROPOSITION 3.1

Notations. We project βk onto the sparse subspace of γk, i.e., Sk := supp(γk): β̃k = projSk
(βk) :=

argminDSc
k
β′=0 ∥β′ − βk∥2. We denote DSc

k
as the sub-matrix of D with rows indexed by Sc

k,
which indexes the nonzero elements of γk. Specifically, DSc

k
is the graph difference matrix of

G := (V,ESc
k
), such that (i, j) ∈ ESc

k
if DSc

k
β̃k(i, j) := β̃k(i)− β̃k(j) = 0. E is the corresponding

edge set of D, which is composed of adjacent pairs of pixels.

Proof of Prop. 3.1. Suppose G = (V,ESc
k
) has C connected components G1 = (V1, E1), ..., GC =

(VC , EC), such that V = V1 ∪ ... ∪ VC . If two nodes i and j are in the same component, the
corresponding elements of β̃k have the same value, i.e., β̃k(i) = β̃k(j). Then for each component Vc,
β̃k(Vc) shares the same value. If we denote it as ηc, then the ηc to minimize∑

j∈Vc

(ηc − βk(j))
2,

equals to the average of βk(Vc), i.e., mean(βk(Vc)). Using the strong connected-component al-
gorithm proposed in Lulli et al. (2016), the decomposition of connected components will cost
O(log(p)).

The algorithm is shown in Alg. ??, and the flowchart of graph algorithm is shown in Fig. 8.

Algorithm 1 Projection by Connected Components in Graph
Input :An image β, current γt, the graph G(V,E) where V denotes the set of pixels and E contains

edges defined according to the graph difference matrix D in Eq. (1).
Output :β̃ via projection in Eq. (4).

1 Find connected components G1 := (V1, E1), . . . , GC := (VC , EC).

2 For each i = 1, ..., C, compute the average of β over Vi, i.e., zi :=
∑

j∈Vi
β(j)/|Vi| and take

β̃(j) = zi for each j ∈ Vi.

3 return β̂.

Figure 8: A flowchart of an example to visualize Alg. ??. There are four components, including
G3 := {x3}, G4 := {x7}, and the other components G1 and G2 with vertices in each component
connected by blue and red edges. For each component, we take each element’s value as the average
of x within that component.
Remark A.1. After obtaining the connected components, we need to compute the average of each
component, which has the complexity of O(p) and is comparable to the gradient descent. Since the
complexity of the soft-thresholding in Eq. (3c) is also O(p), the overall complexity of our instance
smoothing algorithm in Eq. 3 has the same order of the gradient descent.
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B STANDARD CLASSIFICATION ON CIFAR10 AND IMAGENET100

In this experiment, we apply our method to the standard classification on CIFAR10 and ImageNet100
Deng et al. (2009).

Experiment Setup. We adopt ResNet-18 as the backbone on CIFAR10 and ResNet-50 on Ima-
geNet100. For fixed training, we try different sparsity level for preprocessing images. For iterative
training, we use strategy in Eq. 3 from sparsity 0.3 to 0.8.

Results. We report the classification accuracy on CIFAR10 In Tab. 4. As shown, our methods, both
fixed and iterative training offer comparable results to the vanilla model after the sparsity reaches 0.6,
suggesting that the loss in information is limited. Moreover, fixed training slightly outperforms the
vanilla model with sparsity 0.9. We also report the classification accuracy on ImageNet100 In Tab. 5

Table 4: Results of standard classification on CIAFR10.

Sparsity Level 0.4 0.5 0.6 0.7 0.8 0.9 1.0 (Vanilla) Iterative

Accuracy 85.24± 1.69% 92.47± 1.53% 93.82± 0.68% 94.53± 0.27% 94.78± 0.24% 95.38 ± 0.14% 95.29± 0.06% 94.54± 0.14%

Table 5: Results of standard classification on ImageNet100.

Sparsity Level 0.4 0.6 0.8 1.0 (Vanilla) Iterative

Accuracy 59.12% 75.51% 78.66% 79.36% 74.39%

C VISUALIZATIONS WITH GRAD-CAM

In this experiment, we apply the Grad-CAM Selvaraju et al. (2019) to visualize learned features
during iterative training. We consider the model trained with strategy in Eq. 2 from sparsity 0.3 to
sparsity 0.8. As shown in Fig. 9, the features learned by our model in the early epochs are more
concentrated on the class-dependent regions (e.g., the cat’s face in the top-left image and the dog‘s
body in the bottom left image). As iterates, finer-scale information is learned; thus the feature map is
enlarged due to the completeness of information. The larger saliency map of our model shows that
our model learn more shape information than the vanilla model.

D RUNNING TIME OF THE ALGORITHM

In this experiment, we compare the running time of our algorithm on gray-scale images from
miniImagenet dataset to sparsity level 0.6. We consider the matrix factorization method and our
graph method for the sparse projection in Eq. 7b. We run this test on an NVIDIA Tesla V100 (32GB)
and an Intel Gold 6240 CPU @ 2.60GHz.

Results. For other methods such as Singular value decomposition (SVD) decomposition or QR
decomposition that can obtain the closed-form solution suffer from high computational cost. Assume
p is the dimension of βk. For example, the complexity of SVD decomposition in our case is
O(p3), which is much more expensive than the gradient descent. In contrast, the complexity of the
graph projection is only O(p). To illustrate, we compare our graph projection methods with other
alternatives and also the gradient descent in terms of time complexity. We report the running time for
15,000 iterations on a 84x84 grayscale image, in Tab 6. As shown, our graph projection method is
much more efficient than others.

E VISUALIZATIONS OF IMAGE PATH

In this experiment, we visualize the regularized image path of more instances on the ImageNet
Dataset Deng et al. (2009) and COCO Dataset Lin et al. (2014), a multi-object image dataset .

14



Under review as a conference paper at ICLR 2024

Figure 9: Visualization of learned features in four images: cat (top-left), Boxer (bottom-left), Frog
(top-right), and Cabinet (bottom-right) during iterative training. The top two are from CIFAR-10
and the bottom two are from miniImagenet. In each image, the top and the bottom rows respectively
correspond to the vanilla model and our method in Eq. (7).

Table 6: Computational time (s) of different methods for 15,000 iterations on a 84x84 grayscale
image.

Projection Method SVD LSQR Graph Algorithm

Running Time (s) 373.24 ± 1.41 171.79 ± 2.31 4.87 ± 0.09

Results. As shown in Fig. 10, as the sparsity level increases, the image first identifies semantic
information and then detailed information. Such semantic information can refer to the shape of the
object in the first three rows where the object as a whole has a convex and smoothed boundary; while
in the last three rows with irregular and complex contour, such semantic information can refer to the
key parts of the object, e.g., the plow of a plow truck in the fifth row, and umbrellas in the last row.

As shown in Fig. 11, when our method meets multi-object images, the shape of the object in the
images will pop out when in the beginning of the image path, and more detail texture will gradually
add to the background and object smoothly.

F TOTAL VARIATION OF CONVOLUTION KERNEL

In this experiment, we calculate the total variation of filters of ResNet18 and visualize the results.

Experiment Setup. For training, the vanilla model is trained on clean images of CIFAR10; while our
fixed training model is trained on preprocessed images with sparsity 0.8 from CIFAR10; our iterative
training model is trained with strategy in Eq. (7) from sparsity 0.3 to 0.8. Denote the kernels of the
first convolution layer of ResNet18 as wi ∈ R3×3, i ∈ {1, . . . , 64}. We compute the total variation
∥Dw∥1 where D corresponds to the total variation (TV) matrix of the image.

Results. We plot the histogram of the first layer’s kernels’ TV in Figure 12. As shown, the kernels
both fixed training and iterative training are more concentrated to smaller TV values than the vanilla
model. This can explain the low-frequency robustness shown results in 4.3 that our models have
higher low-frequency fraction and tend to extract more low-frequency information.
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Sparsity=0.2 Sparsity=0.4 Sparsity=0.6 Sparsity=0.8 Sparsity=1.0

Figure 10: The image path generated with our instance smoothing algorithm in Eq. 3. From left to
right, the images correspond to sparsity levels of 0.2, 0.4, 0.6, 0.8, and 1.0 (the original image). The
1st to the 6th rows represent a curly-coated retriever; a holster, a dish made of zucchini; a garden
spider; a plow; umbrellas.

G MORE RESULTS OF ADVERSARIAL ROBUSTNESS

In this section, we present additional results of adversarial examples generated via PGD Madry et al.
(2018) in 7 and 8, supplementing Section 4.2.

H MORE RESULTS OF FREQUENCY ANALYSIS

In this section, we show more experiment results of the frequency analysis in Sec. 4.3.

Experiment Setup. We launch some extra frequency domain analysis experiments on images with
more cut-off radius following the settings of high/low frequency components accuracy test in Sec. 4.3.
For models, we consider ResNet18 for CIFAR-10 and ResNet34 for miniImagenet. In this part, we
only display their accuracy of the last epoch. For training, we consider model trained on preprocessed
images on sparsity 0.8, model trained with strategy in Eq. 7 from sparsity 0.3 to 0.8 and model
finetuned with preprocessed images with sparsity 0.8.
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Sparsity=0.2 Sparsity=0.4 Sparsity=0.6 Sparsity=0.8 Sparsity=1.0

Figure 11: The image path generated with our instance smoothing algorithm in Eq. 3 for multi-object
images (COCO dataset).

Figure 12: Histogram of the total variation of the first layer’s kernels of ResNet18.
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Table 7: Classification results on adversarial examples (PGD) at different strengths with CIFAR-10.

Training Preprocessing on Test Data ε = 8/255 ε = 16/255 ε = 24/255 ε = 32/255
Vanilla Model None 0.06 0.01 0.00 0.00

PNI None 0.16 0.10 0.11 0.03
TV Layer None 0.20 0.04 0.01 0.02

Ours iterative None 0.07 0.02 0.00 0.00
Ours fix None 1.15 0.06 0.01 0.00
Finetune None 0.80 0.14 0.13 0.05

Vanilla Model Sparsity 0.6 29.50 29.07 32.64 34.31
PNI Sparsity 0.6 39.05 35.70 40.81 42.73

TV Layer Sparsity 0.6 39.28 35.82 39.21 41.80
Ours iterative Sparsity 0.6 28.71 27.40 31.92 34.21

Ours fix Sparsity 0.6 38.90 34.47 38.53 41.90
Finetune Sparsity 0.6 41.19 38.94 43.60 43.28

Wang, et al. Natural - 8.60 7.80 7.80 -
Wang, et al. Adv - 40.30 17.50 13.10 -

Table 8: Classification results on adversarial examples (PGD) at different strengths with miniImagent.

Training Preprocessing on Test Data ε = 2/255 ε = 4/255 ε = 6/255 ε = 8/255
Vanilla Model None 5.60 0.52 0.14 0.06
Ours iterative None 9.38 1.08 0.28 0.16

Ours fix None 6.36 7.50 0.19 0.09
Finetune None 5.50 5.47 0.09 0.03

Vanilla Model Sparsity 0.6 29.20 15.22 9.86 7.81
Ours iterative Sparsity 0.6 28.17 11.80 6.75 4.44

Ours fix Sparsity 0.6 32.09 16.62 10.53 8.34
Finetune Sparsity 0.6 33.75 17.79 11.75 9.23

Results. As shown in Tab. 9 and Tab. 10, on both datasets and all the cut-off radius settings,
our iterative model can outperform other model on low frequency components and our models
always achieve the best low frequency fraction. It show that our model can learn more robust
low frequency information, which suggests the effectiveness of the instance smoothing in learning
semantic information during training, focusing on more robust low frequency information.

Table 9: Test accuracy and low frequency fraction of last epoch of models on high/low-frequency
components of images from CIFAR-10. The r stands for the cut-off radius in frequency domain.

Model r=4 r=6 r=8 r=10 Freq
Vanilla 86.11% 75.43% 52.27% 27.77%

HighFinetune 83.23% 67.48% 34.95% 17.96%
Fixed 40.99% 30.24% 21.16% 15.91%

Iterative 22.17% 17.09% 14.17% 13.06%
Vanilla 11.32% 16.53% 23.99% 46.19%

lowFinetune 18.32% 22.37% 46.31% 74.36%
Fixed 18.56% 23.01% 38.41% 68.29%

Iterative 24.79% 35.76% 57.83% 82.02%
Vanilla 11.62% 17.97% 31.46% 62.46%

FractionFinetune 18.04% 24.89% 56.99% 80.55%
Fixed 31.16% 43.21% 64.48% 81.11%

Iterative 52.79% 67.66% 80.32% 86.26%

I MORE RESULTS OF LOW RESOLUTION CLASSIFICATION

In this section, we show more detailed results of the low resolution classification task in Sec. 4.4.

Experiment Setup. Following the settings of the experiment in Sec. 4.4, we display the classification
accuracy of the last epoch of the models on low resolution images from miniImagenet. For models,
we consider the model trained on preprocessed images with sparsity 0.6, model trained with strategy
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Table 10: Test accuracy and low frequency fraction of last epoch of models on high/low-frequency
components of images from miniImagenet. The r stands for the cut-off radius in frequency domain.

Model r=10 r=20 r=30 r=40 Freq
Vanilla 11.79% 3.14% 1.66% 1.55%

highFinetune 11.54% 2.64% 2.68% 0.48%
Fixed 9.95% 2.91% 1.95% 1.54%

Iterative 8.61% 2.92% 2.47% 2.53%
Vanilla 10.09% 31.02% 51.23% 64.27%

lowFinetune 10.14% 31.31% 48.70% 60.14%
Fixed 12.56% 35.20% 53.29% 64.83%

Iterative 18.92% 41.84% 56.99% 65.83%
Vanilla 46.11% 90.81% 95.87% 97.65%

FractionFinetune 46.77% 92.22% 94.78% 99.20%
Fixed 55.79% 92.37% 96.46% 97.65%

Iterative 68.73% 93.47% 95.85% 96.29%

in Eq. 7 from 0.3 to 0.6, and model finetuned on preprocessed images with sparsity 0.6. We consider
miniImagenet dataset with different intermediate size.

Results. As shown in Tab 11, our fixed training model can outperform the other models on images
with different intermediate size. Especially, when the intermediate size is 44, our fixed training
model can surpass the vanilla model for 13% in accuracy, demonstrating that our instance smoothing
algorithm can help model learn more robust semantic information.

Table 11: The accuracy on low resolution images with different intermediate size. The s stands for
the intermediate size.

Model s=24 s=34 s=44 s=54 s=64 s=74
Vanilla 18.14% 28.98% 43.64% 50.37% 60.51% 67.93%

Finetune 17.74% 28.85% 43.39% 50.59% 60.24% 66.74%
Iterative 14.43% 29.45% 48.15% 51.14% 60.34% 65.73%

Fixed 23.29% 41.74% 56.25% 60.18% 65.70% 69.26%

J GRAY SCALE LOW RESOLUTION CLASSIFICATION ON MINIIMAGENET

In this section, we further apply our method to the task of classification with low-resolution images.

Experiment Setup. Different from the experiment settings in Sec. 4.4, we consider gray-scale
miniImagenet data Vinyals et al. (2016) and ResNet34 model with one input channel. We follow the
low resolution image generation strategy in Sec. 4.4. To illustrate, Fig. 13 shows an example from
gray-scale miniImagenet with different intermediate sizes. For simplicity, we only adopt the iterative
training strategy in Eq. (7) from sparsity 0.3 to 0.8.

Figure 13: Examples of gray scale low-resolution images intermediate sizes 74× 74, 64× 64, and
54× 54 from left to right. The original size is 84× 84.

Results. We present the test accuracy along the training procedure in Fig. 14 for test data with
intermediate size set as 74, 64, and 54 respectively. As shown, our method (orange curve) can
outperform the vanilla model (blue curve), especially with lower-resolution images. This results are
consistent with those in Sec. 4.4 and Sec.I, which also suggests the effectiveness of our instance
smoothing algorithm in learning semantic information during training, as the low-resolution image
can smooth out the details while maintaining the object’s shape. The results show that our model is
also robust on gray scale low resolution images, expanding its usage.
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Figure 14: Test accuracy during training on low-resolution images with different intermediate sizes.
Left: size 74; center: size 64; right: size 54. Our iterative training in Eq. (7) and the vanilla training
are respectively marked by orange and blue.

K DENOISED RESULTS ON CIFAR10

In this experiment, we apply our method to image denoising on CIFAR10.

Experiment Setup. We implement our instance smoothing algorithm in Eq. 3 to compress the
data with sparsity 0.6. We adopt Peak signal-to-noise ratio (PSNR) Hore & Ziou (2010) in Eq. (8),
which has been applied to measure the image quality, to evaluate the denoising ability. The Peak
signal-to-noise ratio (PSNR), where X denotes the original image and X̃ denotes the noisy images.
Here we add Gauss noise with 0 mean and 0.1 standard deviations.

PSNR = 10 log10

(
MAX2

MSE

)
(8a)

MAX = maxX (8b)

MSE =
1

hwc

∑
h,w,c

(X − X̃)2, (8c)

where h,w, c denotes the height, width, and number of channels. We visualize the psnr of all the test
data on CIFAR10.

Results. Fig. 15 shows that the denoised images via our instance smoothing algorithm have larger
PSNR than those noisy images. The mean PSNR on the original noisy images is 19.78dB but
increased to 22.55dB after denoising. There results demonstrate the effectiveness of our instance
smoothing algorithm in image denoising, and explain the results in Sec 4.1 and Sec 4.2.

L CLASSIFICATION ON DENOISED DATA FROM IMAGENET

In this experiment, we apply our method to noisy classification of images from ImageNet Deng et al.
(2009) with Gaussian noise.

Experiment Setup. We apply the pre-trained ResNet 50 on clean data to the test data with Gaussian
noise, in which the standard deviations (std) range from 0.01, 0.05, to 0.1. We compared the vanilla
model (without preprocessing) and our method that preprocessed the test data via our instance
smoothing algorithm in Eq.3 with sparsity 0.6. Due to the limit of time and device, we randomly
sample 100 data for testing. To remove the randomness, we repeat it 10 times.

Results. Tab. 12 shows that the our instance smoothing algorithm can improve the classification
accuracy by 15% across all standard deviations, which suggests the effectiveness of our our instance
smoothing algorithm as a preprocessing method to help improve robustness against noise.

PSNR Visualization. To further explain the effectiveness of denoising, we visualize the PSNR like
Sec. K on each pool of 100 test data with std = 0.1 in Tab. 12. As shown, the denoised images via
our instance smoothing algorithm have larger PSNR than those of the vanilla model.

Visualizations of Denoised Images. To illustrate the effect of denoising, we visualize the denoised
image in Fig. 17. As shown, the denoise images can smooth the noise information our while also
keeping the semantic information in the original image.
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Figure 15: Histogram of PSNR of the noisy images from CIFAR10 and those after preprocessing.
The blue bars denote the noise images, and the orange bars denote the denoised images via our
instance smoothing algorithm.

Samples Preprocess 1 2 3 4 5 6 7 8 9 10 Average

std=0.01 None 56.0% 52.0% 62.0% 54.0% 56.0% 57.0% 55.0% 52.0% 52.0% 61.0% 55.7%
Sparsity 0.6 70.0% 73.0% 74.0% 67.0% 72.0% 71.0% 72.0% 65.0% 68.0% 78.0% 71.0%

std=0.05 None 48.0% 47.0% 49.0% 43.0% 49.0% 42.0% 47.0% 44.0% 43.0% 49.0% 46.1%
Sparsity 0.6 63.0% 60.0% 62.0% 56.0% 59.0% 55.0% 69.0% 64.0% 62.0% 61.0% 61.1%

std=0.1 None 40.0% 38.0% 39.0% 33.0% 32.0% 38.0% 36.0% 35.0% 33.0% 33.0% 35.7%
Sparsity 0.6 58.0% 56.0% 55.0% 48.0% 49.0% 53.0% 50.0% 54.0% 56.0% 45.0% 52.4%

Table 12: Results of classification on noisy images from ImageNet. For each standard deviation,
the 1st row corresponds to the original noisy images, while the 2nd row corresponds to our instance
smoothing algorithm to preprocess test data with a sparsity of 0.6.
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Figure 16: Histogram of PSNR of the noisy images andour instance smoothing algorithm the ones
after preprocessing. Each image contains 100 samples. The blue bars denote the noise images, and
the orange bars denote the denoised images via our instance smoothing algorithm.
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Figure 17: Examples of noisy images (right) and the denoised one via our instance smoothing
algorithm (center) and original one (left). A small patch (orange box in the original image) is zoomed
in for visualization.
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Comparison with TV Denoise Method. We also compare our method with the usually used TV
denoising tools. We also choose ImageNet as our dataset and use Gaussian noise with 0.1 derivation.
We smooth the images with our instance smoothing algorithm in Eq. 3 to sparsity 0.6. As shown in
Fig 18, our method can smooth the noise while preserving the detailed information of the images,
such as color. However, TV denoise can get rid of the noise but ruin the detailed information. In
Tab 13, we can also observe that the TV denoised image usually have larger variance.

Original Noisy TV Denoised Ours

Figure 18: More denoising results comparing our Semanti-LBI method with TV denoising.

M LRP VISUALIZATION

The LRP Bach et al. (2015) visualization is shown in Fig. 19. It can be seen that with fix training and
iterative training, the model can find the semantic part more accurately (e.g. the orange and unicycle
in the first row row). When the object is found, the fix training and iterative training model tend to
make decision on much bigger part of the object, especially multi-object case (e.g. the tile roof, beer
bottles and dog in row 3-5). Also, the iterative training model tends to make decision on the shape of
the main object related to the label (e.g. the pencil box and photocopier in row 6-7), whose decision
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Table 13: The mean and variance of PSNR of 5 samples from ImageNet, comparing our method and
TV denoising method.

Method Statics Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Noise Mean 20.23 20.30 20.07 20.20 20.24
Variance 0.64 0.33 0.43 0.41 0.54

TV Mean 23.92 23.95 23.89 23.83 23.92
Variance 5.43 6.09 6.25 5.13 5.95

Ours Mean 23.99 24.21 24.24 23.98 24.15
Variance 2.36 2.18 1.31 1.85 1.31

pixels can capture the shape well. By finetuning on images with sparsity, the model can more focus
on the object and tends to make decision on larger parts.
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Figure 19: LRP visualization.
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