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Determinable and interpretable 
network representation for link 
prediction
Yue Deng 

As an intuitive description of complex physical, social, or brain systems, complex networks have 
fascinated scientists for decades. Recently, to abstract a network’s topological and dynamical 
attributes, network representation has been a prevalent technique, which can map a network or 
substructures (like nodes) into a low-dimensional vector space. Since its mainstream methods are 
mostly based on machine learning, a black box of an input-output data fitting mechanism, the learned 
vector’s dimension is indeterminable and the elements are not interpreted. Although massive efforts 
to cope with this issue have included, say, automated machine learning by computer scientists 
and learning theory by mathematicians, the root causes still remain unresolved. Consequently, 
enterprises need to spend enormous computing resources to work out a set of model hyperparameters 
that can bring good performance, and business personnel still finds difficulties in explaining the 
learned vector’s practical meaning. Given that, from a physical perspective, this article proposes two 
determinable and interpretable node representation methods. To evaluate their effectiveness and 
generalization, this article proposes Adaptive and Interpretable ProbS (AIProbS), a network-based 
model that can utilize node representations for link prediction. Experimental results showed that 
the AIProbS can reach state-of-the-art precision beyond baseline models on some small data whose 
distribution of training and test sets is usually not unified enough for machine learning methods to 
perform well. Besides, it can make a good trade-off with machine learning methods on precision, 
determinacy (or robustness), and interpretability. In practice, this work contributes to industrial 
companies without enough computing resources but who pursue good results based on small data 
during their early stage of development and who require high interpretability to better understand 
and carry out their business.

Physics has long been concerned as a propeller of civilization’s evolution in history. The establishment of New-
tonian mechanics and thermodynamics drove the “first technological revolution”. The discovery of the elec-
tromagnetic induction phenomenon laid the theoretical foundation for the “second technological revolution”. 
Condensed matter physics and quantum physics developed the silicon semiconductor industry for the “third 
technological revolution”. With the ongoing “fourth technological revolution” currently, physics is also propelling 
the innovation and development in artificial intelligence, among which the study of complex networks1,2 is a case 
in point, since the input data of artificial intelligence models can be organized as networks, let alone that some 
artificial intelligence models have a network structure, like Graph Neural Network (GNN)3. By using nodes and 
edges to intuitively describe the nonlinear and heterogeneous interaction patterns of components composing the 
complex physical, social, and brain systems, the application of complex networks soon widened to various fields. 
For decades, scientists have been dedicated to understanding a network’s topological and dynamical attributes 
(like vital node identification4,5, high-order network topological analysis6–9, and percolation theory10) and to 
utilizing these attributes in specific applications, such as link prediction11–15, natural language processing16, and 
recommender systems17,18.

Recently, as a pivotal technique to abstract a network’s topological and dynamical attributes in a man-
ner that maps the network or its substructures (like nodes) into a low-dimensional vector space, network 
representation19,20 has intrigued scientists for years, especially in light of ample evidence that network repre-
sentation has several virtues dear to both academia and industry18, including reusable object representations by 
manual or automated feature engineering, enhanced model precision, and efficient parallel computation based 
on GPU. Nevertheless, since the mainstream methods of network representation are mostly based on machine 
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learning21, almost a black box facing fundamental limits on well-explainable and raising difficulties in tedious 
hyperparameter tuning attributed to its input-output data fitting rationale, the dimension of the vector space 
to learn is indeterminable and the learned elements are not interpreted. Consequently, enormous computing 
resources are required for searching the sub-optimal dimension of the vector space within a range, and in most 
cases, researchers still can not interpret why such a dimension works out and what practical meanings the learned 
elements represent. Although recent years have seen massive efforts by computer scientists and mathematicians to 
cope with this issue, the root causes still remain unresolved. For example, although automated machine learning22 
by computer scientists can pave the way for automating the search process of the space’s sub-optimal dimension, 
it still requires enormous computing resources. Moreover, although mathematicians can conclude some empirical 
formulas used to calculate the possible optimal dimension for the space23, each of them is normally with respect 
to specific models and only can be taken as statistical results from specific data, limiting their generalization 
to other scenarios. Given these inadequacies, determinable and interpretable network representation is still an 
open and important question.

Differently, from a physical perspective, this article proposes two methods of determinable and interpretable 
network representation. The first method is based on the Degree, H-index, and Coreness (DHC) theorem24 that 
constructs an operator to generate H-indices sequences (with a determined length) for nodes. Regarding their 
practical meanings and on the advice of the rich club theory25, this article utilizes these H-indices sequences to 
construct node representations, which can be used to abstract nodes’ local topological and dynamical attributes 
related to their neighborhood. To abstract nodes’ global attributes related to the whole network, the second 
method is based on the DHC Entropy (DHC-E)26, a hyperparameter-free and explainable whole graph embed-
ding algorithm we proposed. If a bipartite network containing m+ n nodes of two types, its corresponding 
m× n adjacent matrix can be extended to a (m+ n)× (m+ n) augmented matrix, a simple matrix that can be 
decomposed to m+ n matrices, each of which corresponds to a node and carries the node’s global attributes. 
After implementing the DHC-E algorithm on each of them, node representations can be generated. Unlike those 
learned by machine learning-based methods, the node representations generated by the two methods have both 
a determined dimension and interpretable elements.

To evaluate the two methods’ effectiveness and generalization, this article further proposes Adaptive and 
Interpretable ProbS (AIProbS), a network-based link prediction model for bipartite networks, which can utilize 
nodal representations to measure the similarity between nodes. Methodologically, built on a classical network-
based framework called Probabilistic Spreading (ProbS)27, the AIProbS can control the resource diffusion process 
of the ProbS framework by setting edge weights quantified with the similarity between nodes measured by node 
representations. By doing so, the AIProbS makes the flaw of the classical ProbS framework in self-adaptive per-
ception (or pattern recognition) ability oriented to different scenarios (i.e., different complex networks), since 
the node representations involved can perceive, abstract, and carry underlying patterns of different complex 
networks, which is inspired from the feature recognition function of machine learning methods. At the same 
time, compared with machine learning-based link prediction models28–32, the AIProbS is hyperparameter-free, 
meaning that its implementation process is determinable and the results are interpreted. In addition, imple-
mented on several designed control experiments of diverse recommender systems (a specific application of link 
prediction in artificial intelligence), experimental results showed that the AIProbS can reach state-of-the-art 
precision beyond baseline models on some scenarios with small data and can, by and large, make a good trade-
off with machine learning-based models on precision, determinacy, and interpretability.

Methods
In the first place, this article proposes two novel network representation methods, which are determinable and 
interpretable. Then, a classical network-based link prediction framework called Probabilistic Spreading (ProbS) 
is introduced, and its flaws are revealed. Based on the ProbS framework, this article proposes Adaptive and 
Interpretable ProbS (AIProbS), a network-based link prediction model for bipartite networks, which can utilize 
nodal representations generated by the two methods and can enhance the precision of link prediction beyond 
the classical ProbS framework after making up its flaws.

Generate a complex network’s nodal representations.  Method one.  A complex network is com-
prised of nodes and edges, exhibiting various macroscopic dynamic attributes determined by its different micro-
scopic structures (i.e., different connection patterns between nodes). To quantify nodal influence, one well-stud-
ied topological characteristic of a complex network G, degree, H-index, and coreness are three common-used 
measurements:

Definition 2.1   For any node vi ∈ G , if there are ki neighbors of vi (i.e. ki nodes connected with vi ), the degree 
of vi is ki.

Definition 2.2   For any node vi ∈ G , if nodes vj1 , vj2 , ..., vjki with degrees kj1 , kj2 , ..., kjki , respectively, are the ki 
neighbors of vi , the H-index33 of node vi is the maximum value h such that among these ki neighbors, it has at 
least h neighbors with a degree no less than h.

Definition 2.3  For any node vi ∈ G , its coreness is calculated by k-core decomposition34 (see Fig. S1 in Appendix 
D for an example).
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Intuitively, the greater a node’s degree is, the more neighbors it is connected with, and the higher influence 
it has, and so does a node’s H-index. Furthermore, to take location into account, a node’s coreness can be used 
to reveal its centrality: a greater coreness indicates that a node locates more centrally in a complex network and 
hence has a higher influence.

The DHC theorem24 reveals that degree, H-index, and coreness are all related, that is, the coreness of nodes 
in a network can be derived from their degree values. To mathematically describe the relationship, the DHC 
theorem constructs an operator H , which calculates the maximum value h for each node such that the node has 
at least h neighbors with H-indices no less than h. For each node i in a complex network, taking its degree ki as 
the zero-order H-index h(0)i  as the beginning, the first-order H-index h(1)i  of node i is calculated by 
H(h

(0)
j1
, h

(0)
j2
, ..., h

(0)
jki
) , where h(0)j1

, h
(0)
j2
, ..., h

(0)
jki

 are the zero-order H-indices (i.e., the degree values) of the ki neigh-
bors of node i. By iteratively doing so, h(2)i = H(h

(1)
j1
, h

(1)
j2
, ..., h

(1)
jki
) , as well as h(3)i , h

(4)
i , ... , can be calculated. Finally, 

a sequence h(0)i , h
(1)
i , h

(2)
i , ... with a fixed length (because the sequence is finally convergent to the node’s coreness) 

is generated for node i, as the DHC theorem states:

Theorem 2.1   For each node in a complex network, node i’s H-indices sequence h(0)i , h
(1)
i , h

(2)
i , ... is convergent to its 

coreness ci , i.e., ci = lim
n→∞

h
(n)
i .

Proof  See24. 	�  �

Definition 2.4  Given a complex network G with n nodes. If there exists a mapping � : G → R
n×k that can pro-

ject G into a Euclidean space Rn×k , where k ( k ≪ n ) is the Euclidean space’s dimension, then vector �(vi) ∈ R
k 

is taken as the nodal representation of node i.

Effective nodal representations are supposed to fully perceive and preserve a complex network’s topologi-
cal characteristics and can be used to approximately reconstruct the network. Conforming to the definition of 
nodal representations, the H-indices sequences generated by the DHC theorem can be taken as effective nodal 
representations for the following reasons.

First, according to the rich club theory25 (from the field of social network analysis35 and soon widened to 
interdisciplinary studies like computer science36 and cognitive science37) that a node’s influence could reflect its 
role in its neighborhood or the whole network, this article proposes the following assumption:

Assumption 2.1  A node’s H-indices sequence can abstract the node’s multidimensional influence in the neighbor-
hood, where the sequence’s convergence steps can reflect the magnitude of the node’s influence. The more important 
role played by the node in the neighborhood, the more slowly its influence decays during the dynamic evolution (i.e., 
the convergence process by the DHC theorem), thus the larger its convergence steps are.

Then, built on Assumption 2.1 this article takes a node’s H-indices sequence as its nodal representation. In 
this way, provided n nodes in a complex network and given that their H-indices sequence converges after up to s 
steps, this method can not only mine out and carry a network’s underlying patterns but also map the n nodes to a 
s-dimensional vector space consisting of their H-indices as nodal representations, both of which simulate the key 
target of machine learning methods. Differently, this is a determinable and interpretable network representation 
method, since for an arbitrary complex network the dimension of its nodal representations is determined as s 
and the elements can be interpreted as nodal multidimensional influence with different magnitudes.

Conceivably, one must stress why the DHC theorem is chosen but not others. One motivation lies in that 
although the field of complex networks has sprouted a range of findings that can represent nodal multidimen-
sional influence, like directly concatenating several metrics used to measure nodal influence together as features 
with a fixed dimension, the DHC theorem seems to be a more appropriate one that can generate something being 
taken as nodal representations with an adaptive dimension, conforming to definition 2.4, and that can simulate 
the essential target of machine learning in pattern recognition. This is the first work assuming that the DHC 
theorem plays a role in representing nodal multidimensional influence.

Method two.  Following method one, to further abstract a node’s global attributes in a complex network, if a 
bipartite network with m+ n nodes of two types (see Appendix D for its definitions and illustrations), its adja-

cency matrix Am×n can be extended to B(m+n)×(m+n) constructed by 
(

Om×m Am×n

(Am×n)T On×n

)

 , where O denotes the 

null matrix. Based on it, a series of �i and Bi can be decomposed by the following theorem.

Theorem 2.2  The adjacency matrix B(m+n)×(m+n) can be decomposed by B =

m+n
∑

i=1

�iBi , where �i is the i-th eigen-

value of B(m+n)×(m+n) and Bi is the corresponding idempotent matrix.

Proof  See Appendix A. 	�  �

After that, this article implements the DHC-E operator E26 (i.e., resort the DHC theorem as a strategy for 
generating a H-index matrix Hn×s by row containing the H-indices converged after s steps of each of the n nodes 
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in a complex network, the operator E calculates the Shannon entropy of each column of Hn×s and obtains a 
vector e1×s , as the whole graph embedding of the network) on each Bi or �iBi one by one, generating the m+ n 
nodes’ representations for the bipartite network correspondingly. Apparently, this method is also a determinable 
and interpretable network representation method. The characteristics of interpretability and hyperparameter-
free of the DHC-E algorithm are thoroughly illuminated in our previous works26. See Appendix D for intuitive 
illustrations on the two methods.

The ProbS framework and its flaws.  To evaluate the two methods’ effectiveness and generalization, 
this article utilizes them in link prediction for bipartite networks. Since network representation can be used 
to perceive and abstract a complex network’s underlying topological and dynamical attributes, the key target 
(i.e., pattern recognition) of machine learning, this article explores how nodal representations generated by the 
two methods can be utilized in link prediction, aiming to enhance the precision of conventional (non-machine 
learning-based) prediction models.

Among conventional link prediction models for bipartite networks, the Probabilistic Spreading (ProbS)27 
framework has been recognized as a typical one. By means of a resource diffusion mechanism inspired by the 
physical process of Material Diffusion, the ProbS framework can quantify the similarity between nodes after 
initializing and diffusing resources. Fig. S1 in Appendix D includes an example to intuitively illuminate the 
schematics of the ProbS framework. For instance, in the bipartite network with nodes of two types (i.e., nodes 
A, B, and C are of type one, and nodes a, b, c, and d are of type two), when predicting node B’s unobserved links 
with nodes a and b, resources are first initialized at nodes c and d (the nodes that are connected with node B) 
with value 1, then are diffused to nodes A, B, and C along edges after being equally divided by the degree of each 
node, finally are diffused back to nodes a, b, c, and d in the same way, which can be used to quantify the similarity 
between node B and the four nodes, respectively. A larger similarity of two nodes indicates a higher probability 
of an unobserved link existing between them.

This article provides a mathematical perspective to describe the ProbS framework, by constructing an opera-
tor T to describe its diffusion mechanism. Given a bipartite network consisting of m+ n nodes of two different 
types, respectively, whose adjacency matrix is represented by Am×n . Let Rm×n denote the predicted matrix, where 
Rij represents the similarity (i.e., the probability of the existence of a link) between nodes i and j. Then, through 
the ProbS framework Rm×n can be calculated by

where · denotes the dot product, and ◦ denotes the Hadamard product. Dm×n
I = (a1, a2, ..., an) , ai = (

1

kIi
, ...,

1

kIi
)T 

where kIi is item i’s degree. Dm×n
U = (a1, a2, ..., am)

T , ai = (
1

kUi

, ...,
1

kUi

) where kUi is user i’s degree. In Eq. (1) the 

operator T = (DI ◦ A)
T · (DU ◦ A).

This algebraic form of the ProbS framework can directly be used to support parallel computing. In addition, 
the operator T illuminates why the diffusion process of ProbS framework converges in a manner that deriving 
R from A and then placing A with the derived R iteratively, stated as the following theorem.

Theorem 2.3  Let the operator T = (DI ◦ A)
T · (DU ◦ A) iteratively act on A by A ← A · T , the iterative process 

is convergent.

Proof  See Appendix B. 	�  �

Since the difference between the values in A tends to be smoother as the convergent iterative process pro-
gresses while link prediction relies for higher precision on the more distinctive differentiation between the 
predicted values of similarity18, in link prediction the best iteration steps for the ProbS framework is 1.

Most importantly, from such a mathematical perspective, it is intuitive to see that the ProbS framework faces 
fundamental limits on self-adaptive perception (or pattern recognition) ability because its resource diffusion 
mechanism is just based on equal allocation, shown as DI and DU in Eq. (1). In practice like recommender sys-
tems (an application of link prediction for bipartite networks in artificial intelligence), such a mechanism raises 
a key question: if respectively take these nodes of two different types as users and items in recommender systems, 
the resources diffused between users and items back and forth, to some extent, represent user’s preferences for 
items or item’s attractiveness to users, while neither of them should be necessarily equal since user biases38–40 and 
item biases38,41 generally exist in reality. Moreover, these biases are usually recommendation scenario-oriented, 
which means that in different scenarios a user’s preferences may differ, and so do an item’s attractiveness or popu-
larity. Finally, in practice the ProbS framework fails to take these biases into consideration, let alone adaptively 
perceive and quantify their differences in various scenarios.

The AIProbS model.  The essential condition for the ProbS framework to make up for its flaws is to be 
equipped with self-adaptive perception (or pattern recognition) ability, in attempting to abstract and utilize the 
attributes of nodes (represented by nodal representations) in complex networks toward different scenarios. To 
utilize the nodal representations generated by the two proposed methods in the ProbS framework, this article 
proposes Adaptive and Interpretable ProbS (AIProbS).

(1)R = A · (DI ◦ A)
T · (DU ◦ A)
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In the first step, on the advice that the rich club theory25 gives clues that nodes with high centrality tend to 
form tightly interconnected communities, this article generalizes this conclusion to the field of link prediction, 
proposing the following assumption:

Assumption 2.2  The similarity between node pairs having strongly correlated nodal representations (i.e., similar 
features or similar influence) is higher than that between weakly correlated ones.

To measure the similarity between nodes, the AIProbS uses the cosine similarity metric. Provided two 
n-dimension vectors x  and y ,  the cosine similar ity between them is  calculated by 

cos(θ) =
x · y

|x| · |y|
=

∑n
i=1 xiyi

√

∑n
i=1 x

2
i ·

√

∑n
i=1 y

2
i

 . In the same way, provided m+ n nodes belonging to two sets U 

and I of two different types in a bipartite network, respectively. Through the network representation methods 
proposed in this article the representation matrices Fm×s

U  and Fn×s
I  of the two types of nodes are generated, either 

of which is consist of nodal representations by row. Then, the m× n nodal similarity matrix Sm×n calculated by 
the cosine similarity metric is

w h e r e  v e c t o r  α =
(

√

√

√

√

s
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2
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√

√

√
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√
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 a n d  v e c t o r 

β =
(
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s
∑
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√

√

√

√

s
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2
2j , ... ,

√

√

√

√

s
∑

j=1

FI
2
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)

.

After obtaining the nodal similarity matrix Sm×n , utilizing it to control the diffusion process of the classical 
ProbS framework is the second step. To assign proper weights to every node pair for the diffusion mechanism of 
the ProbS framework, the AIProbS further complete some normalization and proportioning operations on S ◦ A 
where A is the adjacency matrix shown in Eq. (1). Since the elements of S ◦ A vary in [−1, 1] while the diffused 
resources are supposed to be positive, the AIProbS normalizes the value range of the elements to [0, 1] using the 
max–min normalization operation, for each row vector (S ◦ A)i∗ (i = 1, 2, ...,m) of S ◦ A , by

where the max and min are the maximum and minimum elements of the row vector (S ◦ A)i∗ , respectively. 
Based on that, the weight matrix WU for nodes belonging to set U is calculated by the proportioning operation as

On the other hand, the same operations are completed on Sm×n by column, generating the weight matrix Wm×n
I  

for nodes belonging to set I.
In the last step, the predicted matrix Rm×n , where Rij represents the prediced similarity between nodes i and 

j, is calculated through the AIProbS by

Conceivably, there are other metrics for similarity measurement. More combinations were tested in this article 
(see Appendix C for details) but none of them performed better than the one used in this section. All in all, the 
whole process of the AIProbS are summarized in the pseudocodes shown in Appendix D. For more intuitive 
illumination, Fig. S1 in Appendix D presents the schematics of the AIProbS.

Performance evaluation.  To evaluate the precision of the AIProbS as well as its pros and cons in link 
prediction for bipartite networks, from which the effectiveness of nodal representations generated by the two 
proposed nodal representation methods can be reflected, this section designs control experiments based on 
recommender systems, an application of link prediction in artificial intelligence.

Recommender systems.  By analyzing observed user-item relations (see Appendix D for illustrations) to predict 
a user’s preferred items from millions of candidates, recommender systems17,18,42–44 are recognized as a pivotal 
tool to alleviate the information overload problem. Among different user-item relations, implicit user-item inter-
actions (e.g., user’s historical clicks or buys on items) record the existence of a user’s interactions with items, 
defined as a binary state using 1 and 0. From the perspective of a complex network, recommendation on implicit 
user-item interactions can be seen as a process of link prediction for bipartite networks, where users and items 
correspond to the two types of nodes and implicit user-item interactions represent the edges between nodes. 
Therefore, the experiments designed in this section are built on recommender systems with implicit user-item 
interactions, for most recommendation models are based on them.

(2)S =
FU · FTI
αT · β

,

(3)(S ◦ A)ij ←
(S ◦ A)ij −min

max−min
, j = 1, 2, ..., n,

(4)WUij =
1

(S ◦ A)ij

n
∑

k=1

(S ◦ A)ik , i = 1, 2, ...,m, j = 1, 2, ..., n.

(5)R = A ·WT
I ·WU .
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Data sets.  In light of the no-free-lunch theorem45 that no model can always perform well as expected in differ-
ent scenarios, this section designs control experiments to evaluate the performance of the AIProbS on diverse 
real recommendation scenarios, in order to explore not only the pros of the AIPobS but also its cons in different 
scenarios.

As shown in Table 1, |U| and |I| represent the number of users and items, respectively, and the interactions 
between users and items are implicit ones. The sparsity in Table 1 represents the ratio of the number of unob-
served interactions to the maximum number of all possible interactions between users and items (e.g., that 
between m users and n items is mn). As a control group, the MovieLens 100K, MovieLens 1M, and LastFM are 
three classical data sets from two different recommender systems of movies and music, with distinctive ratios 
of |U| to |V|, data scales, and sparsity, based on which more persuadable results could yield compared with 
those based on newly published data sets, since these classical data sets have been widely used for evaluation in 
previous works.

In order to guarantee the reproducibility of experiments, either of the three data sets is obtained from the 
RecBole public resources (https://​recbo​le.​io/​datas​et_​list.​html), organized into tuples (user, item, 0/1) without 
preprocessing. Each of them is randomly split into a “train/evaluate/test” set by the ratio of “ 80/10/10% ”. After 
independently repeating the splitting process 30 times, 30 realizations are generated for each data set.

When speaking of the scales of data sets, one is tempted to say that the used ones in this article are not big. 
Indeed, in the popular conception, the bigger the data set is, the better precision a machine learning-based model 
can reach, spring from its data fitting mechanism. Nevertheless, in practice, not every enterprise could afford 
the implementation of a machine learning-based model, which are highly computing-resource consuming for 
hyperparameter tuning. In addition, in the early stage of a company’s development, there would be not enough 
data supporting a well-fit machine learning-based model. Recognizing that, this work aims to make up for this 
situation and therefore mainly concentrates on the implementation of models on data sets with small and middle 
scales. In fact, it has been rare to see a machine learning model implemented on small data sets. So, it would be 
interesting and valuable to make up for this blank.

Evaluation metrics.  In order to quantify the precision of the AIProbS on these data sets, three common-used 
metrics are chosen in this article. Given a user u ∈ U (U is the user set) and the length N of the recommendation 
list, the set of recommended items for the user is denoted by R̂(u) and the ground-truth set of items the user 
interacted with is denoted by R(u). Based on them, the first evaluation metric is the Recall@N46, which calculates 
the fraction of predicted relevant items out of all ground-truth relevant items by

where |R(u)| represents the item count of R(u).
To calculate the reciprocal rank of the first relevant item recommended to each user, the second evaluation 

metric Mean Reciprocal Rank (MRR@N)47 is denoted as

where rank∗u is the rank position of the first relevant item recommended to user u.
Moreover, as the third evaluation metric, the Normalized Discounted Cumulative Gain (NDCG@N)48 can 

further measure the overall ranking quality in a manner that accounts for the position of the hit by assigning 
higher scores to hits at top ranks as

where δ(·) is an indicator function and positions are discounted logarithmically.
In practice, the greater the values of these evaluation metrics are, the higher a model’s precision is.

Baseline methods.  This article chooses nine baseline models as follows, evaluating the pros and cons of the 
AIProbS compared with its predecessors of both conventional and machine learning-based ones.

Conventional baselines include two models. As the bedrock, the Probabilistic Spreading (ProbS)27 is a nec-
essary baseline used to evaluate the improvement of the AIProbS. In addition, one might expect to base the 
recommendation directly on the nodal representations generated by the two proposed methods, not built on 

(6)Recall@N =
1

|U |

∑

u∈U

|R̂(u) ∩ R(u)|

|R(u)|
,

(7)MRR@N =
1

|U |

∑

u∈U

1

rank∗u
,

(8)NDCG@N =
1

|U |

∑

u∈U

( 1
∑min(|R(u)|,N)

i=1
1

log2(i+1)

N
∑

i=1

δ(i ∈ R(u))
1

log2(i + 1)

)

,

Table 1.   Overview of data sets.

Data sets |U| |I| Interactions Sparsity (%)

MovieLens 100K 943 1680 100,000 93.70

MovieLens 1M 6040 3952 1,000,209 95.81

LastFM 1892 17,632 92,834 99.72

https://recbole.io/dataset_list.html
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the ProbS framework. To test this strategy, this section constructs the Pure-DHC model, used to perform the 
recommendation by Eq. (2) based on the user-item similarity of their H-indices (i.e., nodal representations). One 
might also expect that why not directly use similarity metrics like Jaccord and Adamic-Adar in link prediction 
without through the ProbS framework? Previous works have proved that the ProbS framework outperformed 
those directly used metrics for link prediction17,27. In view of it, to evaluate its improvement beyond other con-
ventional methods, the AIProbS is only needed to be compared with the ProbS framework.

Machine learning-based baselines include seven models. To avoid the baseline pitfalls that have plagued 
earlier research on the comprehensive and objective evaluation of proposed models, this article further chooses 
eight representative machine learning-based models as baselines, among which were based on six different 
techniques of machine learning frameworks, including Neural Matrix Factorization (NeuMF)49 based on deep 
neural networks, Convolutional Neural Collaborative Filtering (ConvNCF)50 and Spectral Collaborative Filter-
ing (SpectralCF)51 based on convolution operations, Graph Convolutional Matrix Completion (GCMC)52 based 
on graph auto-encoder frameworks, LINE53 based on random walking, Neural Graph Collaborative Filtering 
(NGCF)54 based on graph neural networks, and Disentangled Graph Collaborative Filtering (DGCF)55 and 
Neighborhood-enriched Contrastive Learning (NCL)56 based on attention mechanisms.

Results
Based on the experimental settings, this section presents the experimental results on the precision, robustness, 
and interpretability of the AIProbS and baseline models, revealing their pros and cons in different recommen-
dation scenarios.

Precision analysis.  As shown in Tables 2, 3 and 4, the results on model precision are presented, where the 
length N of the recommendation list is set to 10, and each model’s precision is averaged from its independently 
implementation based on 30 different realizations. The values in parentheses indicate the percentage of improve-
ment or decline in model precision of the AIProb model compared to each of the baseline models based on each 
data set and evaluated by each metric, where the percentage of improvement is bold. The best and the second-
best results for each column are highlighted by italics and bold italics fonts.

Table 2.   Results of model precision on LastFM. The best and the second-best results for each column are 
highlighted by italics and bold italics fonts.

Models

LastFM

Recall@10 MRR@10 NDCG@10

Pure-DHC 0.004 0.006 0.003

ProbS 0.170 (+8.2%) 0.308 (+10.4%) 0.166 (+10.2%)

AIProbS 0.184 0.340 0.183

NeuMF 0.060 (+206.7%) 0.092 (+269.9%) 0.050 (+266.0%)

ConvNCF 0.056 (+228.6%) 0.090 (+277.8%) 0.048 (+281.3%)

SpectralCF 0.066 (+178.8%) 0.120 (+183.3%) 0.062 (+195.2%)

GCMC 0.121 (+52.1%) 0.214 (+58.9%) 0.116 (+57.8%)

LINE 0.149 (+23.5%) 0.272 (+25.0%) 0.145 (+26.2%)

NGCF 0.169 (+8.9%) 0.301 (+13.0%) 0.163 (+12.3%)

DGCF 0.177 (+4.0%) 0.316 (+7.6%) 0.172 (+6.4%)

NCL 0.183 (+0.3%) 0.337 (+0.8%) 0.182 (+0.6%)

Table 3.   Results of model precision on MovieLens 100K. The best and the second-best results for each column 
are highlighted by italics and bold italics fonts.

Models

MovieLens 100K

Recall@10 MRR@10 NDCG@10

Pure-DHC 0.017 0.084 0.041

ProbS 0.208 (+3.4%) 0.413 (+5.1%) 0.236 (+5.1%)

AIProbS 0.215 0.434 0.248

NeuMF 0.070 (+207.1%) 0.187 (+132.1%) 0.093 (+166.7%)

ConvNCF 0.099 (+117.2%) 0.245 (+77.1%) 0.125 (+98.4%)

SpectralCF 0.124 (+73.4%) 0.293 (+48.1%) 0.153 (+62.1%)

GCMC 0.196 (+9.7%) 0.400 (+8.5%) 0.232 (+6.9%)

LINE 0.190 (+13.2%) 0.391 (+11.0%) 0.225 (+10.2%)

NGCF 0.245 (−12.2%) 0.481 (−9.8%) 0.293 (−15.4%)

DGCF 0.236 (−8.9%) 0.458 (−5.2%) 0.278 (−10.8%)

NCL 0.240 (−10.4% ) 0.469 (−7.5% ) 0.285 (− 13.0%)
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Conceivably, when speaking of the necessity of determinable and interpretable network representation and 
their utilization in link prediction, one might cast it into doubt: why not base link prediction directly on the 
nodal representations generated by the two proposed methods (as the Pure-DHC model does) but built on the 
AIProbS? Can the precision of the conventional ProbS framework really be enhanced by being involved with 
nodal representations as an ability in pattern recognition? Why do we need the AIProbS when machine learning-
based methods have long been recognized to be more precise on big data? These questions are answered point to 
point in the rest of this section. As shown in Tables 2, 3 and 4, on all three data sets the Pure-DHC which directly 
utilizes the nodal representations generated by the proposed methods in recommendation achieved the worst 
prediction precision among the AIProbS and baseline models. That is to say, such generated nodal representa-
tions could be nothing with the recommendation if not utilized in the ProbS framework. After utilizing these 
nodal representations in the ProbS framework, as shown in Tables 2, 3, and 4, the AIProbS outperformed the 
conventional ProbS on all three data sets. However, when compared to machine learning-based baselines, the 
AIProbS indeed performed worse than some of them, most obviously on MovieLens 1M. But it still can achieve 
state-of-the-art performance on prediction precision on LastFM, suggesting that nodal representations gener-
ated by the proposed methods may be able to perceive and abstract the underlying patterns hidden in a complex 
network, which can be used to enhance the performance of recommendation methods.

To put these results in more general terms, it is definite that designing control experiments to guarantee 
the comprehensiveness and objectivity of model performance evaluation is indispensable because, as shown in 
Tables 2, 3 and 4, the comparative predominance between different models or even that between the conven-
tional and machine learning-based models are distinctive. For instance, compared to its predecessor (the ProbS 
framework), the AIProbS at best improved the Recall@10 by 21.3% on MovieLens 1M and at worst, by 3.4% on 
MovieLens 100K. Such a 17.9% gap shows that the predominance of the AIProbS over the ProbS is not necessarily 
that significant in all recommendation scenarios. Overall, on MovieLens 1M, although it achieved an appreci-
able improvement over the ProbS, the AIProbS still performed worse than the other six machine learning-based 
models, revealing the predominance of the machine learning-based frameworks over the conventional ones on 
this data set. Nonetheless, that predominance faded on MovieLens 100K because only three machine learning-
based models (i.e., NGCF, DGCF, and NCL) outperformed the AIProbS. On LastFM, none of the machine 
learning-based models outperformed the AIProbS, in other words, but the AIProbS achieved state-of-the-art 
performance on prediction precision.

Figuring out the determinant factors of model performance in different recommendation scenarios is not 
easy and intuitive, not to mention accurately predicting a model’s performance for one specific scenario. Still, 
on the advice of the clues given in Tables 2, 3 and 4, some discoveries could be summarized as follows. (1) The 
machine learning-based models might have a predominance on data sets with large scales. The recommendation 
scenario of MovieLens 1M and MovieLens 100K being equal, the machine learning-based models showed a more 
distinguished predominance on the former with a comparatively larger data scale than the latter. However, it is 
hard to assert that the distinctions of ratios of |U| to |V| and the sparsity of the two data sets play a silent role. (2) 
The conventional ProbS framework might play a large role in recommendation scenarios with high sparsity. Since 
the sparsity of LastFM is the highest among the three data sets, where the machine learning-based models face 
fundamental limits on lack of enough user-item interactions for training, the AIProbS or the ProbS combined 
with or of the conventional frameworks showed their predominance as a result of their network structure-
oriented resolution. Nevertheless, the ratio of |U| to |V| of LastFM, which seems to be a little higher than the 
other two, could also be a decisive factor.

As shown in Tables 2, 3, and 4, one might suspect the precision of NeuMF, ConvNCF, and SpectralCF, which 
can perform well on some big data but are seemingly aberrant here. Since one of this article’s focuses is to produce 
substantial benefits for industrial companies without enough computing and data resources, even though the 
three models may work better when being set with more layers and larger dimensions in their model structures 
and higher early stop steps for the training, it is still worth exposing their flaws in this article’s specific scenarios 
by implementing them based on a resource-consuming condition (meaning that their hyperparameters were 

Table 4.   Results of model precision on MovieLens 1M. The best and the second-best results for each column 
are highlighted by italics and bold italics fonts.

Models

MovieLens 1M

Recall@10 MRR@10 NDCG@10

Pure-DHC 0.002 0.031 0.014

ProbS 0.108 (+21.3%) 0.352 (+17.6%) 0.177 (+18.6%)

AIProbS 0.131 0.414 0.210

NeuMF 0.032 (+309.4%) 0.128 (+223.4%) 0.053 (+296.2%)

ConvNCF 0.073 (+79.5%) 0.255 (+62.4%) 0.128 (+64.1%)

SpectralCF 0.147 (−10.9%) 0.416 (−0.5%) 0.236 (−11.0%)

GCMC 0.152 (−13.8%) 0.421 (−1.7%) 0.240 (−12.5%)

LINE 0.153 (−14.4%) 0.423 (−2.1%) 0.236 (−11.0%)

NGCF 0.162 (−19.1%) 0.442 (−6.3%) 0.254 (−17.3%)

DGCF 0.172 (− 23.8%) 0.460 (− 10.0%) 0.266 (− 21.1%)

NCL 0.180 (− 27.2%) 0.482 (− 14.1%) 0.279 (− 24.7%)
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not set very large and the early stops were not set far more than other baselines’ that requires for a long-running 
time for the three models’ convergence). In other words, their poor performance in some realizations under 
this constrained condition was not eliminated but averaged into the precision results. In view that there should 
be more than precision to analyze, the following sections further discuss the robustness and interpretability of 
the AIProbS and baselines.

Robustness analysis.  As revealed in the previous section, with the increase in data scale the precision of 
the AIProbS decreased compared with that of machine learning-based baselines, for the mechanism of data 
fitting (or pattern recognition) adopted by machine learning methods can give fully to its play more suitably 
in scenarios with larger data scale. Nevertheless, it does not mean that the AIProbS is superfluous in those 
scenarios. Since tedious hyperparameter tuning is required for up to the optimal performance of a model, the 
model’s computing efficiency reduction (containing the preparation time paid for hyperparameter tuning) is 
inevitable for machine learning methods to reach their expected precision. Such a strategy brings about heavy 
financial (i.e., computing resources) and time costs for the implementation of these methods built on big data. 
Even though at best, a well-trained machine learning-based model with identified hyperparameters can be acted 
on end tasks after fine-tuning, the original tuning process is still inevitable prior to that. At worst, if the model is 
applied to another scenario with different data distribution from that where it was trained, it has to be retrained 
before working, in order to identify a new group of hyperparameters with respect to the changed scenario. In 
contrast, the nodal representation generated by the proposed methods is determinable in dimension and ele-
ments, and can be directly used in the AIProbS, indicating that they are more robust to the disturbance in data 
distribution that happens when applied to another scenario or a scenario evolves over time (like new users, new 
items, and new interactions occur in recommender systems). Besides, as for machine learning-based models, 
different hyperparameter settings would lead to fluctuated performance, some of which could be overshadowed 
by the AIProbS even if its average performance was better, as shown in the following experimental results.

On two realizations of MovieLens 100k for instance, Figs. 1, 2, 3, and 4 present the relations between the dif-
ferent settings of two hyperparameters (i.e., vector dimension and learning rating) and a model’s average precision 
when one hyperparameter is fixed and others are set with common-used values within a specified search range, 
where the standard deviation of precision is presented by error arrow at a data point and each model’s number 

Figure 1.   Relation between model precision and representation dimension reflected on ml-100k realization 1.

Figure 2.   Relation between model precision and learning rate reflected on ml-100k realization 1.
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of hyperparameters is presented in parentheses, reflecting a model’s magnitude of performance fluctuation 
associated with setting disturbance, which actually can quantify the model’s robustness. As shown in Fig. 1, the 
AIProbS had a stable performance on recall@10, since the dimension of the learned representation vectors by it 
is determined. However, as a hyperparameter different settings of the vector dimension can largely affect machine 
learning-based baselines’ prediction precision. Although the performance on recall@10 of ConvNCF, LightGCN, 
and NGCF of different representation dimensions was relatively stable among machine learning-based baselines, 
that of GCMC and SpectralCF largely fluctuated with the change of the vector dimension. For example, as for 
SpectralCF when the vector dimension is set to 48 its average precision could be around 27% higher than that 
when being set to 16. On top of that, even when the vector dimension of SpectralCF is set to 48, seemingly the 
optimal choice, its performance on recall@10 still faces a 125% gap between the peaks of performance, flowing 
from the different settings of other hyperparameters when the vector dimension fixed. Similar fluctuations in 
machine learning-based baselines’ precision were revealed by the performance under different settings of the 
vector dimension on mrr@10 and by results shown in Fig. 2 when considering the learning rate as the controlled 
hyperparameter. Attributed to such the indeterminable performance of machine learning methods, one may 
have to repeatedly try different hyperparameter settings for a machine learning-based model to search out the 
optimal (or sub-optimal) one, which is definitely computing resources-consuming and time costly. If an insuf-
ficient searching process turns out improper hyperparameter settings, the model could even end up with its worst 
performance. In contrast, only one implementation is enough for the AIProbS to reach its optimal performance, 
without any tuning process.

It may be said, though, that determining a machine learning-based model’s optimal (or sub-optimal) hyper-
parameter settings is burdensome but can be once and for all built on one data set. However, it is not a fact. 
Similar experiments were done on another realization of MovieLens 100k and the results presented in Figs. 3 
and 4 revealed that the optimal hyperparameter settings of a machine learning-based model would be changed 
with the change of data set. For example, as shown in Fig.1 the optimal vector dimension of SpectralCF was 48 on 
MovieLens 100k realization 1 but that on MovieLens 100k realization 2 was changed to 128, as shown in Fig. 3. 
As a result, the tuning process for searching out the optimal hyperparameter settings of a machine learning-based 
model on another data set appears to be inevitable. In contrast, with the change of data set the vector dimension 
of the AIProbS is still automatically determined, once implemented.

Figure 3.   Relation between model precision and representation dimension reflected on ml-100k realization 2.

Figure 4.   Relation between model precision and learning rate reflected on ml-100k realization 2.
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Interpretability analysis.  Built on the instance in Fig. S1 in Appendix D, this section intuitively explains 
why the AIProbS model still achieved higher precision than those of machine learning-based models on small 
data sets and discusses their interpretability in this case.

In the first place, machine learning-based methods are used to learn the nodal representations of the seven 
nodes in Fig. S1 in Appendix D that can be taken as a training set. Since the dimension of nodal representation 
learned by machine learning-based models is not determined and, as revealed in the previous section, even if 
it was specified the models will frequently work out different performances, here two realizations correspond 
to two different specified nodal representation dimensions (i.e., dim = 3 and dim = 4) were run for instance. As 
presented in Table 5, the nodal representations learned by machine learning methods were just varied numbers 
without interpretable meanings related to reality because they conformed to no seeming rules. For example, on 
the two independent realizations, why did a machine learning-based model specified with the same dimension 
learned different nodal representations whose relative sizes of elements changed a lot? If they had practical mean-
ings, this should not happen, especially with the change of the numbers’ relative sizes, since a mapping from the 
numbers to their possible practical meanings does not exist. Besides, the dimension of these nodal representa-
tions learned by machine learning methods was also not interpreted. If did, why did the learned representations 
were with different effective dimensions? Which one should be chosen and why? Recognizing that, in practical 
applications like recommender systems, it would be helpless for personnel to understand the business based 
on these not interpreted results. For example, why did the similarity between A and a calculated based on their 
representations learned built on different realizations vary? Also, one can not understand why machine learning 
methods’ performance is often fluctuated with respect to different hyperparameters and realizations, as revealed 
in the previous section, not to mention how to determine the appropriate ones without repeatedly trying out the 
tuning process, which is computing resource-consuming.

In contrast, built on the instance in Fig. S1 in Appendix D, the nodal representations generated by the AIProbS 
were both interpreted in elements and determined in dimension. First, the nodal representations generated by 
the AIProbS can preserve a node’s multidimensional influence in reality. This can be seen in Fig. S1. For example, 
the nodal representation of A is {3, 2} , the largest one among others, which can preserve that A has the highest 
overall influence since it can be intuitively observed that A has the most neighbors in topology. Yet the nodal 
representation of a is {1, 1} , one of the lowest ones among others, representing that a has the lowest overall influ-
ence since it is only connected to one node. In practice, these interpreted elements can be used to understand the 
business. For example, if recommender systems, one can analyze more characteristics of the most influential node 
A, whose passions are most easily inoculated to others, to figure out what his neighbors might be interested in. 
Second, since the dimension and elements of the nodal representations generated by the AIProbS are determined, 
the calculated similarity between nodes is always not varied, which can be utilized in recommender systems for 
reliable analysis of user relationships, item categories, and something.

Attributed to these properties, the AIProbS could outperform machine learning-based methods on small data 
sets, as presented in Table 2. It is long claimed that the distribution of train data is supposed to be the same (or 
closely similar) to that of test data for machine learning methods to perform well: the huger their data scales, the 
more possible they share a common distribution, the more power a machine learning method would show up 
built on them. However, when the scale of data is small like LastFM and MovieLens 100K illustrated in Table 1, it 
might be not sufficient to establish the distribution relation between training and test data; then the performance 
of machine learning-based methods could be confined, indicating that small data could be not enough to well 
fit a machine learning-based model, let alone the precise similarity between nodes. In contrast, the AIProbS is 
able to make the best use of small data to generate the similarities reliably in this case.

All in all, in the sense that the AIProbS provides a good trade-off with machine learning-based models on 
precision, interpretability, and determinacy.

Discussion
This article proposes two determinable and interpretable node representation methods. Different from other 
attempts like automated machine learning methods by computer scientists or learning theory by mathematicians 
to search out and analyze the sub-optimal (or optimal) representation dimension of a machine learning-based 
network representation model and to interpret the implementing process and the results come out of the model, 
from a perspective of physics the two proposed methods can substantially generate nodal representations with a 
determined dimension and interpretable elements, reaching its optimal performance once implemented. After 

Table 5.   Nodal representations learned by machine learning methods.

dim = 3, realization 1 dim = 3, realization 2 dim = 4, realization 1 dim = 4, realization 2

A (−0.546,−0.121,−0.657) (−0.200,−0.212, 0.126) (−0.088,−0.544, 0.276,−0.195) (0.411,−0.322, 0.634, 0.112)

B (−0.760, 0.039,−0.146) (−0.009,−0.415, 0.207) (−0.002,−0.265, 0.141, 0.181) (0.233,−0.284, 0.094,−0.346)

C (−0.324, 0.061,−0.277) (0.203, 0.127, 0.426) (0.195, 0.250, 0.414, 0.342) (0.137,−0.299, 0.365,−0.117)

a (−0.385, 0.069,−0.310) (−0.095,−0.166,−0.038) (−0.105,−0.384, 0.141,−0.186) (0.198,−0.177, 0.387, 0.134)

b (−0.354,−0.123,−0.575) (0.020, 0.243, 0.312) (0.063,−0.047, 0.360, 0.039) (0.246,−0.218, 0.512, 0.097)

c (−0.571,−0.162,−0.411) (−0.230,−0.550, 0.139) (−0.067,−0.545, 0.180,−0.031) (0.328,−0.314, 0.275,−0.171)

d (−0.566, 0.135,−0.068) (0.168,−0.116, 0.396) (0.113, 0.107, 0.292, 0.328) (0.151,−0.291, 0.145,−0.335)
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utilizing these representations in link prediction for bipartite networks, experimental results showed that the 
AIProbS can make a good trade-off with machine learning-based models on precision, determinacy, and inter-
pretability, indicating the effectiveness of nodal representations generated by the two proposed representation 
methods.

Importantly, these methods with good generalization may motivate further research. For example, nodal 
representations generated by the two proposed methods can also be utilized in machine learning-based models 
as initial features, and the AIProbS provides a unified architecture that various nodal representations gener-
ated by other methods, like machine learning-based methods, can be integrated, which may further improve 
the precision of link prediction. Besides, although this work only evaluated the performance of the AIProbS in 
recommender systems, more in other applications of link prediction could be tried in further research.

Nevertheless, like any model under the effect of the no-free-lunch theorem45 that no model can always 
perform well enough as expected in different scenarios, the AIProbS has its disadvantages in some scenarios. 
Granted that when concentrating on data sets in small and middle scales it achieved a good performance, which 
in practice can potentially contribute to companies without enough input data or computing resources for 
machine learning-based methods, with the increase in data scales, the AIProbS overall underperformed machine 
learning-based models on precision. Although the AIProbS can make a good trade-off with machine learning 
methods on precision and interpretability, in some applications where results’ interpretability is unnecessary, 
like computer vision, healthcare, and finance, machine learning methods seem like a better choice. Besides, since 
quantum machine learning is usually claimed as the next generation of machine learning, which can exponen-
tially uplift a model’s computing efficiency, would costly hyperparameter tuning be no longer an apprehension 
in the future? In other words, would determinable network representation that could sacrifice some precision 
but not representation learning-based (i.e., machine learning-based) methods that are adept in precision still be 
worthy of quantum computing devices in the future?

Data availability
Data and codes are available at (https://​github.​com/​pitte​ryue/​AIPro​bS).
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