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Abstract

Classical semi-supervised metric learning usually formulates the objectives via maximiz-
ing/minimizing the ratio formed with must-links and cannot-links. However, the presence
of noise and adversarial attacks can result in incorrect pairings, which will diminish the relia-
bility of learned projection directions. To develop a robust distance metric learning method,
we propose a new objective for distance metric learning using the `2,q-norm (0 < q < 2)
distances which will alleviate the influence of outliers or adversarial attacks. We develop
an algorithm that will decrease the objective monotonically with updates. Additionally,
we address computational burdens (e.g., O(d3) complexity, where d is the size of features)
by introducing a 2D metric learning algorithm and extending it to arbitrary dimensions
with kernel methods, backed by theoretical guarantees. Extensive empirical evaluations
consistently demonstrate the superiority of our methods across various experimental setups.

1 Introduction

Most clustering/classification algorithms rely on defining a distance metric to assess the similarity between
instances (Kulis et al., 2013; Kaya & Bilge, 2019; Bellet et al., 2013; Yang & Jin, 2006). Applying an
appropriate distance metric that can capture important features from instances is critical to improving per-
formance, as illustrated in Figure 2. While some general metrics are available, they often treat all features
equally, which is inadequate as certain features hold more significance than others. Therefore, how to learn
a distance metric that efficiently captures the idiosyncrasies of data with good quality has emerged as a
prevalent research focus (Cakir et al., 2019; López-Sánchez et al., 2019; Karlinsky et al., 2019). Traditional
techniques require explicit class labels and labeled data for classification transformations (Goldberger et al.,
2004). However, obtaining precise labels in real-world scenarios is costly and time-consuming, prompting
the development of semi-supervised methods that learn distance metrics with limited supervisory informa-
tion (Hoi et al., 2006). These methods typically assume either a small portion of labeled data or pairwise
constraints between examples. Clearly, the latter type is weaker. Therefore extensive research has been done
to learn distance metrics with pairwise relevance information: must-links and cannot-links (Xiang et al.,
2008). For more comprehensive survey of various metric learning algorithms, we refer our readers to the
classical monograph (Kulis et al., 2013) and references therein.

The goal of this paper is to develop a robust distance metric incorporating pairwise relevance relationships.
Existing metric learning methods, often based on squared Frobenius norm distances, are susceptible to
outliers, features, and adversarial attacks. To address this issue, we propose a robust distance metric
learning objective using the `2,q-norm, offering robustness against outliers/attacks for any 0 < q < 2.
In addition, existing methods typically vectorize images before optimizing the projection matrix W via
eigenvalue decomposition, which becomes computationally demanding for large dimensions, such as 100×100
grayscale images (d = 10000). Additionally, vectorization distorts image structure, leading to reduced
recognition accuracy. Inspired by above, we propose a 2D metric learning algorithm that avoids image
vectorization, utilizing covariance matrices with dimensions r×r, where r = min{m,n} for each m×n input
image. This approach offers significant computational savings compared to existing methods, as shown in
Figure 1. Besides, inspired by Kernel Principal Component Analysis (Schölkopf et al., 1997) and Kernel
Support Vector Machine (Amari & Wu, 1999), we introduce a kernel-based metric learning algorithm to
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Figure 1: Upper flow denotes metric learning via traditional methods by vectorizing images, lower flow is
the 2D metric learning method proposed in this paper, the covariance matrix size is significantly reduced.

address non-linearity in higher-dimensional spaces using kernel trick. This method ensures that the projection
matrix W satisfies orthonormality constraints, even when obtained implicitly or in infinite dimensions. Our
algorithms do not require explicit class labels; instead, they utilize pairwise relevance relationships in a
semi-supervised manner, and they are designed for minimal computational costs and rapid convergence.

In Section 2, we will formulate the objective for metric learning and discuss its connection with Fisher’s
LDA before introducing a general framework for solving maximizing trace ratio problem. In Section 3, we
discuss a more robust formulation against noise and adversarial samples which widely exist in real world.
Section 4 depicts 2D metric learning which can be naturally extended to higher dimension and Section 5
generalizes into kernel version for metric learning. Section 6 entails convergence analysis, which concludes
our method enjoys superlinear convergence rate and experiments in Section 7 demonstrate the superiority
of our proposed methods over existing counterparts. Our main contributions are summarized as below:

• Propose a robust metric learning formulation and solve it with an efficient algorithm.

• Design novel 2D metric learning along with its robust version which works fast on high dimensional
data, and propose an efficient algorithm which has superlinear convergence rate.

• Discuss and solve kernel version metric learning which goes beyond the linearity assumption.

2 Related Work

2.1 Mahalanobis Distance

He is happy
She is happy

He is very happy
She is very happy

He is angry
She is angry

He is very angry
She is very angry

Figure 2: An illustration to demonstrate the impor-
tance of metric learning. If we do K-means directly
based on the word-count matrix generated from each
sentence, then it may yield poor results. A good met-
ric learning should be able to learn different weights
for various features. For example, if ‘happy’ and ‘an-
gry’ are assigned with significantly different weights,
then K-means can work well on the learned metrics.

Assume that we have a set of n data points X =
{xi ∈ Rp}ni=1 and two sets of pairwise constraints
over the data points X are given under certain ap-
plication context (Xing et al., 2003; Liu et al., 2019)1{
S = {(xi,xj) | xi and xj are in the same class} ;
D = {(xi,xj) | xi and xj from different classes} ,

(1)
1We note that our model can be easily extended to triplet relationship R = {(xi,xj ,xl) | xi is more similar to xj than to xl}

where xi − xl and xi − xj can be conveyed in the numerator and denominator in Eq. (3) respectively.
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where we denote S as must-links and D as cannot-links. Note that it is not necessary for all the data points
in X to be involved in S or D.

Given any two data points xi and xj , the Mahalanobis distance between them is defined as:

‖xi − xj‖M =
√

(xi − xj)T M (xi − xj) , (2)

where M ∈ Rp×p is the Mahalanobis distance metric (Shen et al., 2010; De Maesschalck et al., 2000), a
symmetric matrix of size p × p. In general, M is a valid metric if and only if M is a positive semi-definite
matrix by satisfying the non-negativity and the triangle inequality conditions, i.e., M � 0. The goal of
robust metric learning is to learn an optimal square matrix M from a collection of data points X in the
presence of outliers or adversarial attacks, coupled with a set of similar pairwise constraints S and a set of
dissimilar pairwise constraints D, such that the distances between the data point pairs in S are as small as
possible, whilst those in D are as large as possible.

2.2 Metric Learning

Because M is positive semi-definite, we can reasonably write M = WWT , where W ∈ Rp×r with
r ≤ p. Thus the Mahalanobis distance under the metric M can be computed as ‖xi − xj‖M =√

(xi − xj)T WWT (xi − xj) =
∥∥WT (xi − xj)

∥∥
2, which defines a transformation y = WTx under pro-

jection matrix W. Our intuition is data points from different classes after projection are far away while from
same class should be close, therefore we can formulate the objective as:

max
WT W=I

∑
(xi,xj)∈D

∥∥WT (xi − xj)
∥∥2

2∑
(xi,xj)∈S

‖WT (xi − xj)‖2
2

=

d∑
i=1

∥∥WTbi
∥∥2

2

s∑
i=1
‖WTai‖2

2

=
∥∥WTB

∥∥2
F

‖WTA‖2
F

=
tr
(
WTSbW

)
tr (WTSwW) , (3)

where A = [a1,a2, . . . ,as] ∈ Rp×s such that each column of A : (xi − xj) satisfies (xi,xj) ∈
S, and similarly B = [b1,b2, . . . ,bd] ∈ Rp×d such that each column of B : (xi − xj) satisfies
(xi,xj) ∈ D. Sw =

∑
(xi,xj)∈S (xi − xj) (xi − xj)T is the covariance matrix of must-links and Sb =∑

(xi,xj)∈D (xi − xj) (xi − xj)T denotes covariance of cannot-links. For the sake of brevity, we denote |S| = s

and |D| = d. In the above objective, the numerator term measures the scatteredness of different classes, while
the denominator term denotes the compactness of the same class. Orthogonality constraint is to prevent
degenerate solution(Xiang et al., 2008).

2.3 Connection with Fisher’s Linear Discriminant Analysis

It is easy to notice that the above equation has the same objective as Fisher’s Linear Discriminant Analysis
where the only difference is the existence of orthonormality constraint on W in our formulation. By observing
the independence of each column of W, we can reformulate Eq. (3) as :

max
wi

∑
i=1

wT
i Sbwi, s.t. wT

i Swwi = 1, ∀i ∈ [r]. (4)

By making use of Lagrangian Multipliers, we obtain Sbwi = λiSwwi and max
wi

∑
i=1

wT
i Sbwi = max

∑
i=1

λi.
If we assume Sw is invertible and the projection is along different directions, then to obtain optimal W,
it is equivalent to solve S−1

w Sbwi = λiwi and find the top r eigenvalues of S−1
w Sb and the corresponding

eigenvectors. However, the main drawback of Fisher’s LDA is as S−1
w Sb is not necessarily symmetric, each

column of optimal W is generally non-orthogonal to each other, which means the new coordinate system
formed by W, has non-orthogonal axes. The reason to prefer orthogonal coordinates instead of general
curvilinear coordinates is simplicity: many complications arise when coordinates are not orthogonal. Our
experiments in Figure 4 demonstrate that the orthonormal constraint is nontrivial as it can not only obtain
better objective, but also the classification accuracy is higher as it can avoid ill-conditioned coordinate base.
We refer our readers to Daubechies (1993); Ninness et al. (1999) and references therein.
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Figure 3: When ‖wi‖2 = 1, WTx is the projection in new axes system formed by columns of W. Specifically,
wT
i x determines the position in i-th axis. In Fisher’s LDA formulation, each wi is not orthogonal to others.

In contrast, the orthonormality constraint ensures the new coordinate follows Cartesian system.

Algorithm 1 The algorithm to solve the problem (5).
Initialization: v ∈ C
repeat
Calculate λ = f(v)

g(v)
Update v by solving the following problem:

v = arg max
v∈C

f(v)− λg(v) (6)

until convergence

2.4 An Optimization Framework

The objective formulation above is inherently nonconvex due to the nonconvex nature of orthogonality
constraint imposed on W. In response to this challenge, we propose to address the problem effectively with
an iterative algorithm. We first introduce a framework for maximization problem (Wang et al., 2014):

max
v∈C

f(v)
g(v) , where g(v) > 0 (∀ v ∈ C) . (5)

The optimization procedure is described in Algorithm 1. The set C in our metric learning problem is Stiefel
manifold St(p, r) defined as {W : W ∈ Rp×r,WTW = Ir}. Several theorems are now in order.
Theorem 2.1. By updating as Algorithm 1, the objective in (5) is monotonically non-decreasing.

Proof. By definition v+ = arg maxv∈C f(v) − λg(v), we have: f(v+) − λg(v+) ≥ f(v) − λg(v) = 0. Since
g(v) ≥ 0, therefore f(v+)− λg(v+) ≥ 0 =⇒ λ+ = f(v+)

g(v+) ≥
f(v)
g(v) = λ.

Theorem 2.2. If the updated v in Algorithm 1 is a stationary point of problem (6), the converged solution
in Algorithm 1 is a stationary point of problem (5).

Proof. Suppose the converged solution in Algorithm 1 is v∗. If v∗ is a stationary point of problem (6),

f ′(v∗)− f(v∗)
g(v∗) g

′(v∗) = 0⇒ f ′(v∗)g(v∗) = f(v∗)g′(v∗). (7)

On the other hand, if v∗ is a critical point of problem (5), then

(f(v)
g(v) )′|v=v∗ = 0⇒ f ′(v∗)g(v∗)− f(v∗)g′(v∗)

g2(v∗) = 0. (8)

Apparently, Eq. (7) is equivalent to (8) given the fact that g(v) > 0, which completes the proof.
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Figure 4: Experiments show that the orthonormality constraint can not only obtain better objective
(Fig. 4(a)), but also improve classification results on real-world datasets (Fig. 4(b)–Fig. 4(c)).

3 Robust Metric Learning

3.1 Problem Formulation

Eq. (3) quantifies the ratio between squared `2-norm distances of pairs within must-links and cannot-links.
Like other least square minimization models in machine learning and statistics, it is sensitive to outliers.
Recent progress (Baccini et al., 1996; Gao, 2008; Ke & Kanade, 2004; Ding et al., 2006; Kwak, 2008; Wright
et al., 2009) has shown that the `1-norm or `2,1-norm distance can promote robustness against outlier samples
or features, which have been widely applied to replace the squared `2-norm distance in many traditional
machine learning methods, such as `2,q-norm PCA (Wang et al., 2018). Inspired by the methods described
above, we propose a general robust metric learning formulation based on Eq. (3) as:

max
WT W=I

∑
(xi,xj)∈S

∥∥WT (xi − xj)
∥∥q

2∑
(xi,xj)∈D ‖WT (xi − xj)‖q2

=
∑s
i=1
∥∥WTai

∥∥q
2∑d

i=1 ‖WTbi‖q2
= ‖A

TW‖2,q

‖BTW‖2,q
, (9)

where 0 < q < 2 2 and ‖Z‖2,q =
∑
i ‖Z(i, :)‖q2.

The above objective is obviously more challenging than Eq. 3 given the fact q 6= 2. As we will discuss later,
we will propose a more generalized algorithm in which vanilla metric learning where q = 2 is a special case.

3.2 Algorithm to Solve Eq. (6)

In this subsection, we are to develop an algorithm to obtain the optimal solution of W in the following
problem:

max
WT W=I

‖ATW‖2,q − λ‖BTW‖2,q, (10)

which is equivalent to:
min

WT W=I
λ‖BTW‖2,q − ‖ATW‖2,q. (11)

We start with a lemma that will be the foundation for analysis:
Lemma 3.1. ∇W‖ATW‖2,1 = ADATW, where D is a diagonal matrix with D(i, i) = 1

‖aT
i

W‖ .

Proof of Lemma 3.1.

∇W‖ATW‖2,1 =
∑
i

∇W‖aTi W‖ =
∑
i

ai
1

‖aTi W‖
aTi W =

∑
i

aiD(i, i)aTi W = (
∑
i

aiD(i, i)aTi )W = ADATW,

(12)
2Note our algorithm also works for q ≥ 2 or even q ≤ 0, but that makes less sense as our goal is to make the model robust

to outliers, therefore q > 2 will make it more sensitive to noise.
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where the first equation comes from the definition of the `2,q-norm for matrices, the second equation comes
from the fact that ∇x‖x‖ = x

‖x‖ .

Based upon the lemma, we turn to study the `2,q-norm case:
Lemma 3.2. ∇W‖ATW‖2,q = ADATW, where D is a diagonal matrix with D(i, i) = q‖aTi W‖q−2.

Proof of Lemma 3.2.

∇W‖ATW‖2,q =
∑
i

∇W‖aTi W‖q =
∑
i

q‖aTi W‖q−1∇W‖aTi W‖

=
∑
i

q‖aTi W‖q−1ai
1

‖aTi W‖
aTi W =

∑
i

aiD(i, i)aTi W

=(
∑
i

aiD(i, i)aTi )W = ADATW,

(13)

where the first equation comes from the definition of matrix `2,q-norm, the second equation comes from the
fact that ∇xyq = qyq−1∇xy and the second line is directly from Lemma 3.1. One can see if q = 2, then the
gradient becomes 2AATW which is in accordance with the vanilla squared Frobenius norm case. Therefore,
our formulation is a more general case of traditional metric learning.

Denote f(W) = λ‖BTW‖2,q − ‖ATW‖2,q, then ∇f(W) = λBDBBTW−ADAATW.

3.3 Algorithm to Solve Eq. (11) with Retraction
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Figure 5: Objective update on syn-
thetic data demonstrates our retrac-
tion algorithm can make the objective
monotonically decreasing, which vali-
dates our theoretical analysis.

Given the first order (gradient) information of the objective, it is not
surprising to use projected gradient descent method where as long as
we can find an appropriate stepsize, we can guarantee the objective
will be monotonically decreasing. Meanwhile, the orthonormality
constraint is nonconvex, which inspires us to propose a backtracking
line search style algorithm. For sake of further analysis, we start
with the following definition:
Definition 3.3. A retraction on a differentiable manifold C is a
smooth mapping Retr from the agent space of C: TC, onto C satisfy-
ing the following two conditions, RetrXC denotes the restriction of
Retr onto TXC: 1. RetrX(0) = X, ∀X ∈ C; 2. For any X ∈ C
and δ ∈ TXC, it holds that limδ→0

‖RetrX(δ)−(X+δ)‖F

‖δ‖F
= 0.

For the Stiefel manifold St(p, r), common retractions include the
polar decomposition RetrpolarX (δ) = (X + δ)(I + δT δ)−1/2, the QR
decomposition RetrQRX (δ) = qf(X + δ), where qf(X) is the Q factor of the QR factorization of X. For a
matrix W ∈ Rp×r with r ≤ p, the total cost of computing the orthogonal projection is 8pr2 + O(r3) flops,
while if W = X + δ and δ ∈ TXC then the polar decomposition takes only 3pr2 + O(r3) flops and the
QR decomposition takes only 2pr2 + O(r3). So if we can get a δ ∈ TXC efficiently, we can utilize cheaper
retraction operation rather than the expensive projection via singular value decomposition.

Based on the proximal gradient method described in Algorithm 2, in order to leverage retractions to handle
the Stiefel manifold constraint, we need to find a descent direction in the tangent space TWk

C, which is
formulated as:

Vk = argmin
V

〈gradf(Wk),V〉+ 1
2t‖V‖

2
F , s.t. V ∈ TWk

C, (14)

where gradf denotes the Riemannian gradient of f . And using the fact that for V ∈ TWk
C we have

〈gradf(Wk),V〉 = 〈∇f(Wk),V〉, we can simply solve the descent direction V without computing the
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Algorithm 2 Robust metric learning algorithm to solve Eq. (11) with retractions.
Input: ε, 0 < γ < 1.
Initialization: t.
repeat
Obtain Vk by Eq. (18)
Set α = 1
While f(RetrWk

(αVk)) > f(Wk)− α‖Vk‖2
F

2t
α = γα

End While
Wk+1 = RetrWk

(αVk)
until satisfying stopping criterion ‖Vk‖F ≤ ε

L

Riemannian gradient gradf :

Vk = argmin l(V) = argmin
V

〈∇f(Wk),V〉+ 1
2t‖V‖

2
F , s.t. V ∈ TWk

C. (15)

With the definition of the tangent space to C = St(p, r) being TWC = {V|VTW + WTV = 0}, we can
obtain V by checking the Karush–Kuhn–Tucker (KKT) conditions for the following Lagrangian function
with a Lagrange multiplier Γ:

minL(V,Γ) = 〈∇f(Wk),V〉+ 1
2t‖V‖

2
F − 〈VTW + WTV,Γ〉. (16)

The KKT conditions are
0 ∈ ∂VL(V,Γ), VTW + WTV = 0, (17)

and we can obtain the following closed-form solution for Vk associated with Wk:

Vk = t( (Wk∇f(W)TWk + WkWT
k∇f(Wk))

2‖Wk‖2
F

−∇f(Wk)). (18)

We summarize the procedure by using retractions with a line search in Algorithm 2.

Here we also show the convergence properties of Algorithm 2, we present the following facts about retrac-
tions (Boumal et al., 2019) that will be leveraged in the later analysis:
Lemma 3.4. Let C be a compact embedded submanifold of the Euclidean space, for all X ∈ C and δ ∈ TXC,
there exist constants C1 > 0 and C2 > 0 such that the following two inequalities hold:

‖RetrX(δ)−X‖F ≤ C1‖δ‖F , ‖RetrX(δ)− (X + δ)‖F ≤ C2‖δ‖2
F . (19)

First, we want to show that we can get a descent direction V in TWk
C by solving Eq. (18).

Lemma 3.5. With l(V) being the objective in Eq. (15), for any α ∈ [0, 1], we have

l(αVk)− l(0) ≤ α2 − 2α
2t ‖Vk‖2

F . (20)

Proof. l is 1
t -strongly convex, then

l(V1) ≥ l(V2) + 〈∇l(V2),V1 −V2〉+ 1
2‖V1 −V2‖2

F , (21)

and when V1,V2 ∈ TWk
C, we have 〈∇l(V2),V1 − V2〉 = 〈ProjTWk

C∇l(V2),V1 − V2〉, and 0 ∈
ProjTWk

C∇l(V2) based on the optimality condition. Then, let V1 = 0,V2 = Vk in Eq. (21), we have

l(0) ≥ l(Vk) + 1
2t‖Vk‖2

F = 〈∇f(Wk),Vk〉+ 1
t
‖Vk‖2

F , (22)

therefore, we have l(αVk)− l(0) = 〈∇f(Wk), αVk〉+ 1
2t‖αVk‖2

F ≤ α2−2α
2t ‖Vk‖2

F .
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We now show that the objective sequence {f(Wk)} is monotonically decreasing in Algorithm 2:
Lemma 3.6. For any t > 0, there exists a constant ᾱ > 0 such that for any 0 < α ≤ min{1, ᾱ}, the
inequality in the line search procedure, i.e. f(RetrWk

(αVk)) > f(Wk) − α‖Vk‖2
F

2t , is satisfied, and the
objective sequence {f(Wk)} generated by Algorithm 2 satisfies

f(Wk+1)− f(Wk) ≤ −α‖Vk‖2
F

2t . (23)

Proof. With Lemma 3.4, let W+
k = Wk + αVk, then for any α > 0 we have

f(RetrWk
(αVk))− f(Wk) ≤ 〈∇f(Wk), RetrWk

(αVk)−Wk〉+ L

2 ‖RetrWk
(αVk)−Wk‖2

F

≤ C2‖∇f(Wk)‖F ‖αVk‖2
F + α〈∇f(Wk),Vk〉+ LC2

1
2 ‖αVk‖2

F .

(24)

Since ∇f is continuous on C, we can safely say ‖∇f(W)‖F is upper bounded by a constant number G > 0,
thus let c0 = C2G+ LC2

1
2 , we can get

f(RetrWk
(αVk))− f(Wk) ≤ α〈∇f(Wk),Vk〉+ c0α

2‖Vk‖2
F

= c0α
2‖Vk‖2

F + l(αVk)− 1
2t‖αVk‖2

F − l(0)

≤ c0α
2‖Vk‖2

F −
1
2t‖αVk‖2

F + α2

2t ‖Vk‖2
F −

α

t
‖Vk‖2

F

= (c0 −
1
αt

)‖αVk‖2
F ,

(25)

where l(V) is defined in Eq. (15) and the second inequality comes from Lemma 3.5. By setting ᾱ = 1
2tc0

, we
guarantee that for 0 < α ≤ min{1, ᾱ}, f(RetrWk

(αVk))− f(Wk) ≤ − α
2t‖Vk‖2

F .

Definition 3.7. Wk is an ε-stationary point of g(W) if ‖Vk‖F ≤ ε
L .

Theorem 3.8. Algorithm 2 will return an ε-stationary point in O( 1
ε2 ) iterations.

Proof. Suppose Algorithm 2 doesn’t terminate until the Kth iteration, which means

‖Vk‖F >
ε

L
,∀k = 0, 1, . . . ,K − 1, (26)

and let αk denote the actual α in the kth iteration, and we have αk ≥ γᾱ from Lemma 3.6, we have

f(W0)− f∗ ≥ f(W0)− f(WK) ≥
K−1∑
k=0

αk
2t ‖Vk‖2

F = t

2

K−1∑
k=0

αk‖
Vk

t
‖2
F >

tε2

2

K−1∑
k=0

αk ≥
Ktε2

2 γᾱ, (27)

which implies that the number of iterations needed to obtain an ε-stationary point in Algorithm 2 is O( 1
ε2 ).

4 2D Metric Learning

For a 2D dataset X = {xi ∈ Rp×m}ni=1 (e.g., grayscale images) and given relevance relationships between
certain pairs, we group paired data into S or D. Unlike conventional metric learning, our 2D metric learning
algorithm operates directly on 2D matrices instead of 1D vectors, eliminating the need to transform image
data (Zhang & Zhou, 2005; Li & Yuan, 2005). This allows us to construct image covariance matrices directly
from the original matrices, resulting in significantly reduced covariance matrix sizes, as shown in Fig. 1.

8
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4.1 Problem Formulation

Given any two 2D data points xi and xj , its Mahalanobis distance between them can be naturally given by:

‖xi − xj‖2
M = tr

{
(xi − xj)T M (xi − xj)

}
= ‖WT (xi − xj) ‖2

F , (28)

where M = WWT ∈ Rp×p.

Similar to the practices in traditional metric learning methods, suppose we are given a set of paired data
instances in D, along with some paired samples from S defined in Eq. (1), without loss of generality, we
denote {D1,D2, . . . ,Dd} where Dk = xki − xkj ∈ Rp×m is the difference between paired samples taken from
set D. Similarly, we can denote {S1,S2, . . . ,Ss} where Sk = xki − xkj from set S. By following the idea
of Fisher’s LDA (Fisher, 1936), the projection matrix W will make the distance within the same class as
small as possible while setting the distance between different classes as large as possible, therefore we can
formulate the 2D metric learning objective as:

max
WT W=I

∑
(xi,xj)∈D

∥∥WT (xi − xj)
∥∥2
F∑

(xi,xj)∈S
‖WT (xi − xj)‖2

F

=

d∑
i=1

∥∥WTDi

∥∥2
F

s∑
i=1
‖WTSi‖2

F

, (29)

It is obvious that the denominator in Eq. (29) is nonnegative, therefore we could use the general framework
in Algorithm 1 to optimize W in Eq. (29) with C corresponding to the orthonormal constraint on W.

Following Algorithm 1, now we turn to optimize max
WT W=I

f(W)− λg(W). By Eq. (29) we have:

f(W) =
d∑
i=1

∥∥WTDi

∥∥2
F =

d∑
i=1

tr
(
WTDiDT

i W
)

= tr
(
WTSbW

)
, (30)

where Sb = D1DT
1 + D2DT

2 + · · · + DdDT
d denotes the covariance matrix of data pairs from different

clusters. Similarly, we can get g(W) =
∑s
i=1
∥∥WTSi

∥∥2
F =

∑s
i=1 tr

(
WTSiSTi W

)
= tr

(
WTSwW

)
, with

Sw = S1ST1 + S2ST2 + · · ·+ SsSTs denotes the covariance matrix from the same clusters.

The optimization problem now is in the following form:

max
W

tr
(
WTSbW

)
− λ tr

(
WTSwW

)
= tr

{
WT (Sb − λSw)W

}
, (31)

with constraint WTW = Ir×r. Though the constraint is nonconvex, still there is a closed solution for W
by noticing the fact that Sb − λSw is symmetric, which can be obtained by doing eigenvalue decomposition
to Sb − λSw ∈ Rp×p and pick the r eigenvectors corresponding to the largest r eigenvalues. The constraint
WTW = Ir×r is automatically satisfied due to the property of symmetric matrix eigenvalue decomposition.

Algorithm 3 2D metric learning algorithm.
Input: {D1, . . . ,Dd}, {S1, . . . ,Ss}, Sw, Sb and r.
Initialization: W
repeat
Calculate λ = tr(WT SbW)

tr(WT SwW) ;
[U,V] = eig(Sb − λSw,′ descent′);
W+ = UVT ;

until convergence

9
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Algorithm 4 Robust 2D metric learning algorithm.
Input: {D1, . . . ,Dd}, {S1, . . . ,Ss} and r.
Initialization: W
repeat
Calculate λ = tr(WT SbW)

tr(WT SwW)
repeat
Calculate Sb,Sw according to Eq. (34);
[U,V] = eig(Sb − λSw, ‘descent′);
W+ = UVT ;

until convergence
until convergence

Regarding the analysis of complexity, for the sake of simplicity, we assume the image dimension to be n×n.
Traditional metric learning methods vectorize an image to a vector of size n2, so the covariance matrix size
is n2×n2. Generally speaking, the complexity of eigenvalue decomposition is O(p3) given matrix size p× p.
Therefore, the time complexity of 2D metric learning proposed by this paper is O(n3) while traditional is
O(n6), which is a huge improvement, especially when n is considerably large. Assume there are K loops to
update λ in Algorithm 1, then the whole complexity is O(K ∗ n3) since the most significant consumption in
the algorithm comes from eigenvalue decomposition.

4.2 Robust 2D Metric Learning

The same robust strategy in Section 3 can be applied to 2D metric learning as well:

max
WT W=I

∑
(xi,xj)∈D

∥∥WT (xi − xj)
∥∥q
F∑

(xi,xj)∈S
‖WT (xi − xj)‖qF

=

d∑
i=1

∥∥WTDi

∥∥q
F

s∑
i=1
‖WTSi‖qF

, (32)

where 0 < q < 2. Following earlier analysis, we turn to optimize:

max
WT W=I

d∑
i=1

∥∥WTDi

∥∥q
F − λ

s∑
i=1

∥∥WTSi
∥∥q

F . (33)

The robust 2D metric learning problem can be addressed using a very similar approach to vanilla 2D. By

denoting f(W) =
d∑
i=1

∥∥WTDi

∥∥q
F − λ

s∑
i=1

∥∥WTSi
∥∥q

F, then ∇f(W) = q(Sb − λSw)W, where we define:

Sw = S1ST1
‖WTS1‖2−q

F

+ · · ·+ SsSTs
‖WTSs‖2−q

F

,Sb = D1DT
1

‖WTD1‖2−q
F

+ · · ·+ DdDT
d

‖WTDd‖2−q
F

. (34)

Algorithm 4 is slightly different from Algorithm 3 in terms an inner loop to ensure W and Sw,Sb converge.

5 Kernel Version Metric Learning

While the preceding sections offer methodologies for 1D and 2D data, it’s important to acknowledge that in
real-world scenarios, a substantial volume of data exists in high-dimensional spaces. Rather than transform-
ing the tensor data into 2D or 1D formats, we present a versatile approach to address such data by leveraging
the Kernel trick, which has demonstrated substantial promising performance, particularly when the data in
the original space (Rd) may not be well separable but can be effectively separated by projecting it into a
higher-dimensional space. (Rn) via Φ(xi) where Φ : Rd → Rn (Liu et al., 2008; Leslie et al., 2001; Patle &
Chouhan, 2013; Ye et al., 2009; Cai et al., 2011). Assume we are given {D1,D2, . . . ,Dd}, {S1,S2, . . . ,Ss},

10
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where Di,Si ∈ Rp. Different from existing methods, the kernel method bypasses the explicit computation
of eigenvalues, while it provides the efficient calculation of eigenvalues through the kernel trick instead. To
the best of our knowledge, kernel metric learning in the form of min-max ratio optimization has not been
previously explored in the literature.

5.1 Problem Formulation

Same as before, we formulate the kernel version objective as:

max
WT W=I

∑
(xi,xj)∈D

∥∥WTΦ (xi − xj)
∥∥2

2∑
(xi,xj)∈S

‖WTΦ (xi − xj)‖2
2

=

d∑
i=1

∥∥WTΦ(Di)
∥∥2

2

s∑
i=1
‖WTΦ(Si)‖2

2

=
∥∥WTΦ(D)

∥∥2
F

‖WTΦ(S)‖2
F
. (35)

Similar to the steps in the 2D version, we can first initialize λ followed by optimizing:

max
WT W=I

tr
(
WTΦ(D)ΦT (D)W

)
− λ tr

(
WTΦ(S)ΦT (S)W

)
= tr

{
WT (Φ(D)ΦT (D)− λΦ(S)ΦT (S))W

}
.

(36)
By observing that Φ(D)ΦT (D)−λΦ(S)ΦT (S) is symmetric, we can transfer it into finding the r eigenvectors
corresponds to the top r largest eigenvalue of Φ(D)ΦT (D)− λΦ(S)ΦT (S). If we denote an eigenvector as v,
and its corresponding eigenvalue as θ, we have:

(Φ(D)ΦT (D)− λΦ(S)ΦT (S))v = θv

⇔ (
d∑
i=1

Φ(Di)ΦT (Di)− λ
s∑
i=1

Φ(Si)ΦT (Si))v = θv

⇔
d∑
i=1

Φ(Di) 〈ΦT (Di), v〉︸ ︷︷ ︸
scalar

−λ
s∑
i=1

Φ(Si) 〈ΦT (Si), v〉︸ ︷︷ ︸
scalar

= θv,

(37)

we see that v is a linear combination of Φ(Di) and Φ(Si), therefore we have:

v = [Φ(D),Φ(S)]
[
αd
αs

]
︸ ︷︷ ︸
α

, (38)

where α ∈ Rd+s. Now plug Eq. (38) in Eq. (37) we have:

(Φ(D)ΦT (D)− λΦ(S)ΦT (S))[Φ(D),Φ(S)]α = θ[Φ(D),Φ(S)]α, (39)

which is equivalent to:

[Φ(D)KDD − λΦ(S)KSD,Φ(D)KDS − λΦ(S)KSS ]α = θ[Φ(D),Φ(S)]α. (40)

By multiplying [Φ(D),Φ(S)]T to both sides of the above equation:[
KDDKDD − λKDSKSDKDDKDS − λKDSKSS

KSDKDD − λKSSKSDKSDKDS − λKSSKSS

]
α = θ

[
KDDKDS

KSDKSS

]
α, (41)

therefore, θ and α are the eigenvalue and eigenvector of[
KDD KDS

KSD KSS

]−1 [KDDKDD − λKDSKSD KDDKDS − λKDSKSS

KSDKDD − λKSSKSD KSDKDS − λKSSKSS

]
, (42)

where KDD = Φ(D)TΦ(D), KDS = Φ(D)TΦ(S), KSD = Φ(S)TΦ(D), KSS = Φ(S)TΦ(S) 3.

3Clearly,
[

KDD KDS

KSD KSS

]
is a Kernel matrix, therefore it is SPD. To avoid the singular case, in practice, we can take its

inversion as
{[

KDD KDS

KSD KSS

]
+ εI
}−1

, where ε is a very small positive scalar.

11
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Algorithm 5 Kernel metric learning algorithm.
Input: {D1, . . . ,Dd}, {S1, . . . ,Ss}, r and calculate KDD, KDS , KSD and KSS accordingly.
Initialization: λ
repeat
Obtain eigenvalue θ and eigenvector α via Eq. (41);
Calculate λ as Eq. (43);

until convergence

It is worth noting that we do the eigenvalue decomposition based on the above matrix with dimension
(s + d) × (s + d) instead of high dimension n, and it’s computationally efficient to get eigenvectors G =
[α1, . . . , αr] corresponding to the largest r largest eigenvalues θ. After we obtain G ∈ R(s+d)×r composed of
the first r eigenvectors, according to Eq. (38), we obtain the projection matrix W as [Φ(D),Φ(S)]G. And
therefore:

λ =

∥∥WT Φ(D)
∥∥2

F

‖WT Φ(S)‖2
F

=
tr
(
GT [Φ(D),Φ(S)]T Φ(D)ΦT (D)[Φ(D),Φ(S)]G

)
tr (GT [Φ(D),Φ(S)]T Φ(S)ΦT (S)[Φ(D),Φ(S)]G) =

tr
{

GT

[
KDDKDD KDDKDS

KSDKDD KSDKDS

]
G
}

tr
{

GT

[
KDSKSD KDSKSS

KSSKSD KSSKSS

]
G
} .

(43)

5.2 Image Recognition Via Kernel Version

In image clustering or classification, the cluster/class assignment is based on Euclidean distance in the lower
dimension by projection matrix W. Also, for some kernels, say Gaussian kernel, W can not be explicitly
obtained as it is an infinite dimension mapping. Therefore, we seek image recognition implicitly via the
Kernel trick. Assume we have anchor data samples A = {aj}(j = 1, . . . , h) and query data ai, the squared
Euclidean distance in transformed space is ‖WTΦ(Qj)‖2

F , where Qj = aj − ai(j = 1, . . . , h). Therefore:

‖WT Φ(Qj)‖2
F = tr

(
GT [Φ(D),Φ(S)]T Φ(Qj)ΦT (Qj)[Φ(D),Φ(S)]G

)
= tr

{
GT

[
KDQj KQj D KDQj KQj S

KSQj KQj D KSQj KQj S

]
G
}
.

(44)

The kernel version metric learning algorithm is summarized in Algorithm 5. We end this section by pointing
out that different kernel options may result in various performances, such as Linear, polynomial, and RBF
kernel, hyper-parameter needs tuning when necessary, but K(x,y) = 〈Φ(x),Φ(y)〉 is computationally efficient
via the Kernel trick. In the kernel version metric learning algorithm, the main consumption goes to inversion
and eigenvalue decomposition both on (s+ d)× (s+ d), therefore the whole complexity is O(K ∗ (s+ d)3).

6 Convergence Analysis

We give the convergence rate of Algorithm 3 and Algorithm 5 in the following theorem:
Theorem 6.1. The convergence rate of Algorithm 3 and Algorithm 5 is superlinear.

Proof. We start the analysis with the definition of superlinear convergence rate: limk→∞
‖Fk+1−F∗‖
‖Fk−F∗‖ = 0,

where we define
F ∗ = max

WT W=I

tr
(
WTSbW

)
tr (WTSwW) := max

WT W=I

f(W)
g(W) = max

WT W=I
F (W), (45)

and we have
W∗ ∈ argmaxf(W)− F (W∗)g(W). (46)

As W ∈ Rp×r, we conclude the leading eigenvalues of Sb −F ∗Sw denoted as λ1, . . . , λr satisfy
∑r
i=1 λi = 0.

Many previous works have focused on the convergence rate of the constrained maximum trace ratio problem,
including global linear or local quadratic, we refer the readers to Ngo et al. (2012); Zhang et al. (2010; 2013)

12
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and the references therein. Our analysis will utilize the global linear convergence result established by Zhang
et al. (2010), based on which we will show it is indeed superlinear:

F (W∗)− F (Wk+1) ≤ (1− 1
κ(Sw) )(F (W∗)− F (Wk)), (47)

where κ(Sw) =
∑r
i=1 λi(Sw)/

∑r
i=1 λp−i+1(Sw) > 1 almost surely.

For any symmetric matrix C ∈ Rp×p and V = (v1,v2, . . . ,vp) be its eigenvectors in decreasing order w.r.t.
eigenvalues, then we have

r∑
i=1

λi − tr
(
WTCW

)
=

r∑
i=1

λi −
p∑
i=1

λi‖WTvi‖2
2 =

r∑
i=1

λi(1− ‖WTvi‖2
2)−

p∑
i=r+1

λi‖WTvi‖2
2, (48)

with the fact that
‖WTvi‖2

2 = vTi WWTvi ≤ ‖WWT ‖2 = ‖WTW‖2 = 1, (49)

we have
r∑
i=1

λi − tr
(
WTCW

)
≥

r∑
i=1

λi(1− ‖WTvi‖2
2)− λr+1

p∑
i=r+1

‖WTvi‖2
2

≥λr(r −
r∑
i=1
‖WTvi‖2

2)− λr+1(r −
r∑
i=1
‖WTvi‖2

2)

=(λr − λr+1)(r −
r∑
i=1
‖WTvi‖2

2).

(50)

Denote V̄ = (v1,v2, . . . ,vr) ∈ Rp×r, for any square rotation matrix R ∈ Rr×r such that RTR = RRT = I,
with σi(·) denoting the singular values, we have

min
W∗
‖W−W∗‖2

F ≤min
R
‖W− V̄R‖2

F = min
R
‖W‖2

F + ‖V̄R‖2
F − 2 tr

(
WT V̄R

)
= min

R
2(r − tr

(
RT V̄TW

)
) = 2(r −

r∑
i=1

σi(V̄TW))

≤2(r −
r∑
i=1

σ2
i (V̄TW)) = 2(r − ‖V̄TW‖2

F ) = 2(r −
r∑
i=1
‖WTvi‖2

2).

(51)

Combine Eq. (50) and Eq. (51), we get

r∑
i=1

λi − tr
(
WTCW

)
≥ λr − λr+1

2 min
W∗
‖W−W∗‖2

F . (52)

Denote P (W) = f(W) − F (W∗)g(W) = g(W)(F (W) − F ∗) = tr
(
WT (Sb − F ∗Sw)W

)
, now set C =

Sb − F ∗Sw, recall that the leading eigenvalues of Sb − F ∗Sw satisfy
∑r
i=1 λi = 0, and invoke Eq. (52), we

get
λr − λr+1

2 min
W∗
‖W−W∗‖2

F ≤ − tr
(
WTCW

)
= g(W)(F ∗ − F (W)). (53)

With the definition of g(W) in Eq. (45), we have

g(W) = tr
(
WTSwW

)
≤

r∑
i=1

λi(Sw), (54)

13
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therefore, by plugging W = Wk, we can obtain

min
W∗
‖W−W∗‖2

F ≤
2
∑r
i=1 λi(Sw)

λr − λr+1
(F ∗ − F (Wk)) ≤ 2

∑r
i=1 λi(Sw)

λr − λr+1
(F ∗ − F (W0))(1− 1

κ(Sw) )k. (55)

On the other side,

|g(W∗)− g(Wk)| =|〈W∗ −Wk,∇g(θWk + (1− θ)W∗)〉| = |〈W∗ −Wk, 2Sw(θWk + (1− θ)W∗)〉|
≤2‖W∗ −Wk‖F ‖Sw‖2(θ‖Wk‖F + (1− θ)‖W∗‖F ) = 2

√
rλ1(Sw)‖W∗ −Wk‖F .

(56)

Since Wk+1 = argmaxWf(W) − F (Wk)g(W) = argmaxWg(W) f(W)
g(W) − g(W)F (Wk) =

argmaxWg(W)(F (W)− F (Wk)), we have

g(Wk+1)(F (Wk+1)− F (Wk)) ≥ g(W∗)(F (W∗)− F (Wk)), (57)

dividing both sides by g(Wk+1) and add F (W∗)− F (Wk), we obtain

F (W∗)− F (Wk+1) ≤ g(W∗)
g(Wk+1) (F (Wk)− F (W∗)) + F (W∗)− F (Wk)

=g(Wk+1)− g(W∗)
g(Wk+1) (F (W∗)− F (Wk)).

(58)

Thus, based on Eq. (55), Eq. (56) and Eq. (58), we can obtain

F ∗ − F (Wk+1)
F ∗ − F (Wk) ≤

g(Wk+1)− g(W∗)
g(Wk+1) ≤ 2

√
rλ1(Sw)‖W∗ −Wk‖F∑r

i=1 λp−i+1(Sw)

≤ 2
√
rλ1(Sw)∑r

i=1 λp−i+1(Sw) min
W∗
‖Wk+1 −W∗‖F

≤ 2
√
rλ1(Sw)∑r

i=1 λp−i+1(Sw)

√
2
∑r
i=1 λi(Sw)

λr − λr+1
(F ∗ − F (W0))(1− 1

κ(Sw) )
k+1

2 .

(59)

We can see that when k → ∞ in Eq. (59), we have F∗−F (Wk+1)
F∗−F (Wk) = 0, which is the superlinear convergence

rate, and we have

F ∗ − F (Wk)
F ∗ − F (W0) ≤ S

k(1− 1
κ(Sw) )

∑k

n=1
n
2 = Sk(1− 1

κ(Sw) )
k(k+1)

4 , (60)

where S = 2
√
rλ1(Sw)∑r

i=1
λp−i+1(Sw)

√
2
∑r

i=1
λi(Sw)

λr−λr+1
(F ∗ − F (W0)).

7 Experiments

7.1 Toy Experiment

To test our approach, we conduct a toy experiment classifying dogs and cats. Training data deliberately
include mismatched pairs, as seen in Figure 6(a). Despite mislabeled images, both the robust method and
robust 2D method, designed for outlier robustness, correctly classify all images for q = 1, as shown in the
lower part of Figure 6(a). To further illustrate the robust metric learning method, we also provide the
details in Figure 2 example. Given the following sentences: ‘He/She is happy/angry’, ‘He/She is very/quite
happy/angry’ and ‘Happy/Angry’, with a total number of 14. We manually give 20 correct side constraints,
for example: ‘He is happy’ and ‘She is angry’ in different sets, while ‘He is quite happy’ and ‘Happy’ in the
same. Also, there are some adversarial examples, where 5 links are mistakenly given, say ‘She is happy’ and
‘He is quite angry’ should be separated but they are put in the same set. Each sentence x is represented as a
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(a) Image recognition
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Figure 6: Results from toy experiments. From left to right: (a) Image recognition: Training set (upper) and
recognition results (lower). Even with the existence of incorrect pairs, our robust metric learning method
still yields correct recognition; (b) Sentiment recognition: Our robust metric learning (p = 1) can learn
reasonable weights for features even under adversarial attack while the traditional one (p =2) will fail.
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Figure 7: From left to right: (a) Accuracy of the 2D metric learning with varying projected dimension r and k
in k-NN for the IMDB dataset; (b) Face recognition accuracy for the headpose dataset, where X-axis denotes
the projected dimension; (c) The objective of the 2D metric learning is monotonically non-decreasing, same
for the kernel method and the robust 2D method.

7-dimensional word-count vector (with each denoting a word such as ‘happy’, ‘angry’, etc.). As demonstrated
in Figure 6(b), for vanilla squared Frobenius (q = 2), the learned weights for ‘is’, ‘happy’, and ‘angry’ are
close, which is not as they should be. However, if we set q = 1, which is supposed to remain robust with
outliers/attacks, it can obtain significantly different weights for ‘happy’ (0.707) and ‘angry’ (-0.707), while
the rest are all set close to 0. This is in perfect accordance with our common sense, which indicates the
potential application of our robust metric learning in other domains.

7.2 Sentiment Recognition

We evaluate the 2D metric learning method in a sentiment recognition task with the IMDB dataset. 5000
data instances are randomly sampled from the IMDB review dataset and are split into the training set and
test set evenly. For each review, only the first 50 processed text words are embedded in a 50-dimension tensor
and are labeled as positive or negative. We obtain W using samples from the training set, and then apply
it when we use k-NN to do sentiment classification. We test the 2D metric learning method with varying
numbers of columns in the transformation matrix and k in the k-NN classifier. Figure 7(a) shows the result,
our method can achieve stable and better performance than Euclidean distance-based classification.
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Table 1: Time consumption (in seconds) and mean recognition accuracy (10 test runs) for headpose dataset
MS GMML LMNN KISSME ITML

Grayscale

Time 155.981 56.221 6601.881 792.331 5310.871
k = 3 0.940 0.928 0.917 0.935 0.917
k = 5 0.931 0.922 0.825 0.931 0.883
k = 9 0.933 0.917 0.817 0.922 0.883

RGB

Time 312.212 93.125 9925.917 1238.569 7555.825
k = 3 0.983 0.967 0.928 0.962 0.931
k = 5 0.983 0.933 0.917 0.958 0.925
k = 9 0.967 0.933 0.917 0.945 0.917

MRL RDML 2D Robust 2D Kernel

Grayscale

Time 698.329 1005.72 2.062 8.185 2.517
k = 3 0.933 0.933 0.933 0.967 0.967
k = 5 0.917 0.933 0.933 0.967 0.967
k = 9 0.883 0.917 0.933 0.967 0.933

RGB

Time 1025.978 2955.96 5.959 10.121 5.012
k = 3 0.965 0.967 0.985 0.985 0.985
k = 5 0.932 0.933 0.983 0.985 0.983
k = 9 0.923 0.917 0.967 0.983 0.983

Table 2: Time consumption (in seconds) and mean recognition accuracy (10 test runs) for ORL dataset,
with full test images, with random missing pixels as noise on test images, and with mismatched pairs

MS GMML LMNN KISSME ITML

Vanilla

Time 102.763 35.758 5721.998 603.992 4125.722
k = 3 0.913 0.898 0.897 0.901 0.883
k = 5 0.891 0.885 0.852 0.882 0.867
k = 7 0.847 0.839 0.792 0.828 0.813

Noise
k = 3 0.895 0.879 0.892 0.891 0.852
k = 5 0.873 0.868 0.839 0.852 0.839
k = 7 0.839 0.807 0.768 0.819 0.793

Miss-matched
k = 3 0.892 0.872 0.853 0.858 0.863
k = 5 0.875 0.827 0.822 0.839 0.817
k = 7 0.819 0.808 0.767 0.795 0.792

MRL RDML 2D Robust 2D Kernel

Vanilla

Time 465.827 805.386 2.287 8.552 2.817
k = 3 0.905 0.902 0.933 0.933 0.933
k = 5 0.887 0.872 0.917 0.917 0.902
k = 7 0.835 0.851 0.861 0.867 0.867

Noise
k = 3 0.857 0.867 0.892 0.913 0.917
k = 5 0.825 0.845 0.873 0.892 0.892
k = 7 0.817 0.769 0.833 0.877 0.837

Miss-matched
k = 3 0.851 0.817 0.875 0.917 0.892
k = 5 0.818 0.813 0.835 0.902 0.875
k = 7 0.785 0.767 0.819 0.875 0.825

7.3 Image Segmentation and Recognition

We conduct image segmentation on some natural images (Martin et al., 2001) and evaluate our methods in
an image classification task with k-NN classifier on two datasets, the headpose dataset (Gourier et al., 2004)
and the ORL dataset (Samaria & Harter, 1994). For the headpose dataset, we conduct the experiment with
two settings: (1) with grayscale images; (2) with RGB images. To deal with RGB images, we treat the three
layers of images as three matrix blocks and append them together. Thus for an input image of size p×m, in
2D methods we stretch it into a matrix of size p×3m. In other methods, we vectorize the input image to get
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(c) Mispaired

Figure 8: Accuracy for the ORL dataset with varying projected dimensions, from left to right is obtained
with vanilla images, with noise, and with mispaired images, respectively.

a vector with length 3× p×m. For the Robust metric learning, we set q = 1. To evaluate the robustness of
the algorithms, we test on the ORL dataset in three situations: (1) learn with correct pairwise relationships,
test on vanilla images; (2) learn with correct information but test on images with 10% noises; (3) learn the
metric while there exist 7% miss-matched pairwise relationships, test on vanilla images. We also compare
our method with several metric learning methods, including Multi-Similarity-based deep metric learning
(MS) (Wang et al., 2019), GMML (Zadeh et al., 2016), ITML (Davis et al., 2007), LMNN (Weinberger et al.,
2006), KISSME (Koestinger et al., 2012), MRL(-ADMM) (Lim et al., 2013), and RDML (Liu et al., 2019).
Both GMML and MRL-ADMM claim their superiority in terms of low computation time, which will be
compared with our methods in computation time. We evaluate both the time consumption and recognition
accuracy of each algorithm. The time consumption to get W, and the recognition accuracy with varying k
of k-NN classifier are listed in Table 1 and Table 2, best results are highlighted. It is obvious that the time
consumption of our 2D methods and kernel method is a huge advantage and this merit is more significant
with RGB images. Our methods require negligible computation time to get the transformation matrix, while
other methods have much higher computational costs. Even compared with the GMML method, which serves
as a breakthrough in terms of computation time, our proposed methods still have a great advantage in high
efficiency. Our methods are able to achieve the best recognition accuracy almost on all tested datasets, at
most times they are significantly better than most other methods, and they have comparable performance
with deep metric learning on the two datasets. In Table 2, when we introduce noise and adversarial attack
in the training process, the robust 2D metric learning method and robust metric learning method are proved
to be able to achieve robust performance.

We also investigate the impact of varying the number of columns r in the transformation matrix W. By
testing different values of r while keeping k of the k-NN classifier set to 3, Figure 7(b) illustrates that higher
accuracy can be achieved as r increases, reaching a threshold where the incremental gain diminishes. For
a more detailed exploration of how the number of columns r in the transformation matrix W influences
accuracy, refer to Figure 8. Figure 7(c) illustrates the objective change in the 2D version, with kernel and
robust methods exhibiting similar trends. Notably, an optimal transformation matrix W can be obtained
within very few iterations. The presented results collectively affirm that the four proposed metric learning
algorithms effectively address real-world cases. This validation aligns with our earlier analyses and suggests
their superiority over their counterparts. Figure 9 showcases image segmentation results utilizing RGB
pixel values and X,Y locations as input features. The presence of red/green lines and pixels indicates
must-link and cannot-link relationships, respectively. In the first row, images display user-specified pixels
denoting the background and foreground. Subsequent rows reveal the impact of learning an appropriate
distance metric transformation matrix W from user-specified pixels. The improved performance of the
k-NN classifier in segmentation is evident. Our algorithm consistently outperforms GMML and RDML
methods, as demonstrated in the lower rows. For instance, in the pyramid image, the black circled area,
situated far from the labeled foreground region, is accurately classified by our method but not by others.
Figure 10 demonstrates the results from the face recognition experiment. After imposing 10% noise on the
query image randomly, our method excels in identifying the nearest anchor images compared to others.
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Figure 9: Image segmentation results. First row: Original images with labeled pixels. Second: Euclidean
distance. Third: GMML method. Fourth: RDML method. Fifth Row: Robust Algorithm 2.

Fig. 5. Face recognition results with missing pixels
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8 Conclusion

We introduce a robust metric learning approach that leverages the `2,q-norm distance, offering enhanced
resilience against data outliers and adversarial attacks. Additionally, we present 2D metric learning and
kernel metric learning algorithms, tailored to mitigate the computational challenges associated with eigen-
value decomposition on high-dimensional covariance matrices. Our methods come with a strong theoretical
foundation, ensuring the objective is monotonically increasing. Within each iteration, we obtain a closed-
form optimal solution for 2D and kernel metric learning respectively. In addition, we rigorously establish the
convergence rate of these proposed algorithms. Experiments on diverse real-world datasets are conducted to
validate the effectiveness of our methods. The results highlight the efficiency and superior accuracy of our
approaches in addressing a range of practical tasks in comparison with the counterparts.
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