
Pretrained Hybrids with MAD Skills

Nicholas Roberts 1 Samuel Guo 1 Zhiqi Gao 1 Satya Sai Srinath Namburi GNVV 1

Sonia Cromp 1 Chengjun Wu 1 Chengyu Duan 1 Frederic Sala 1

Abstract
While Transformers underpin modern large lan-
guage models (LMs), there is a growing list of
alternative architectures with new capabilities,
promises, and tradeoffs. This makes choosing
the right LM architecture challenging. Recently-
proposed hybrid architectures seek a best-of-all-
worlds approach that reaps the benefits of all archi-
tectures. Hybrid design is difficult for two reasons:
it requires manual expert-driven search, and new
hybrids must be trained from scratch. We propose
Manticore,1 a framework that addresses these
challenges. Manticore automates the design of hy-
brid architectures while reusing pretrained mod-
els to create pretrained hybrids. Our approach
augments ideas from differentiable Neural Archi-
tecture Search (NAS) by incorporating simple pro-
jectors that translate features between pretrained
blocks from different architectures. We then fine-
tune hybrids that combine pretrained models from
different architecture families—such as the GPT
series and Mamba—end-to-end. With Manticore,
we enable LM selection without training multi-
ple models, the construction of pretrained hybrids
from existing pretrained models, and the ability
to program pretrained hybrids to have certain ca-
pabilities. Manticore hybrids outperform exist-
ing hybrids, achieve strong performance on Long
Range Arena (LRA) tasks, and can improve on
pretrained transformers and state space models.

1. Introduction
Transformers are the workhorse architecture for large lan-
guage models and beyond, powering a vast collection of
foundation models. While for years it appeared that the

1Department of Computer Sciences, University of Wisconsin—
Madison, Madison, WI, USA. Correspondence to: Nicholas
Roberts <nick11roberts@cs.wisc.edu>.

Proceedings of the 1 st Workshop on Long-Context Foundation
Models, Vienna, Austria. 2024. Copyright 2024 by the author(s).

1The Manticore is a fearsome human, lion, and scorpion hybrid
from Persian mythology.

Transformers family would remain the undisputed standard,
a recent Cambrian explosion of proposed architectures has
taken place. Many new architectures achieve subquadratic
complexity—in contrast to the quadratic complexity of self-
attention in Transformers—by using local or linear attention
(De et al., 2024; Botev et al., 2024; Arora et al., 2024; Zhang
et al., 2024), or resurrecting recurrent networks (Botev et al.,
2024; De et al., 2024; Peng et al., 2023), or by building
on state-space modeling principles (Gu & Dao, 2023; Poli
et al., 2023b;a; Fu et al., 2023; Gu et al., 2022). These ap-
proaches potentially promise to overturn the dominance of
Transformers through more efficient training and inference.

However, no single new model is a clear overall winner
when varying data modalities, tasks, and model sizes. Com-
paring architectures on a fixed task is fraught with diffi-
culties (Amos et al., 2024). Even if these issues are over-
come, practitioners would have to experiment with every
architecture for each new task—an expensive proposition.
Instead, seeking a best-of-all-worlds approach, researchers
have proposed the use of hybrid models that mix multiple
architectures. These hybrids, such as the MambaFormer
(Park et al., 2024)—a mix of the Mamba architecture with a
standard Transformer—have shown potential in maintaining
the desirable properties of multiple model classes.

While promising, hybrids suffer from two main obstacles:

• Manual Design. Hybrid architectures are hand-crafted,
either by manually exploring large search spaces of hy-
brids or by relying on unreliable intuition and heuristics.

• Failure to Use Pretrained Models. It is unclear how
to integrate pretrained model components from models
with different architectures. Pretrained models are a key
advantage of foundation models. However, hybrids are
often trained from scratch, leading practitioners to resort
to small hybrids in limited settings or incur high costs.

A potential solution to the latter challenge is the use of
model merging techniques (Yadav et al., 2023; Yu et al.,
2023; Wortsman et al., 2022; Ilharco et al., 2023; Davari
& Belilovsky, 2023; Jang et al., 2024), some of which can
operate cross-architecture (Akiba et al., 2024; Goddard et al.,
2024). Unfortunately, such tools are embryonic–they are
expensive and it is unclear how well they work with the

1

Pretrained Hybrids with MAD Skills

diverse types of architectures used to build hybrids.

We propose a framework for automatically designing hy-
brid architectures that overcomes these obstacles. Our
approach is inspired by principles from neural architec-
ture search (NAS). The resulting framework is simple and
tractable. It sidesteps merging different architectures by
using simple linear projectors to translate between the “lan-
guages” spoken by various architectures. This enables us to
include blocks from different architectures with little to no
changes required. In addition, inspired by the mechanistic
architecture design (MAD) framework (Poli et al., 2024),
we show how our framework can learn hybrid architectures
via MAD that transfer to new tasks.

Concretely, our proposed Manticore: automatically selects
language models, without training several models, automat-
ically constructs pretrained hybrids without evaluating the
entire search space, and provides a technique for program-
ming hybrids to have certain skills without full training.

Experimentally, our Manticore hybrids outperform existing
models on Long Range Arena (LRA) (Tay et al., 2021), we
produce pretrained hybrids that improve fine-tuning perfor-
mance, and we can program hybrids using the MAD tasks.

2. Related work
Language Model Architectures: Transfomers and Be-
yond. Transformers are currently the dominant LM archi-
tecture. The success of the “vanilla” architecture introduced
by Vaswani et. al. (Vaswani et al., 2017) has led to many
proposed variations. The quadratic complexity of the base
self-attention operation has inspired the search for alterna-
tive architectures that offer comparable performance with
subquadratic complexity. One line of work builds off state-
space models, with variations made to enable language mod-
eling (Poli et al., 2023a;b; Gu & Dao, 2023; Arora et al.,
2024). Another line of work involves linear-complexity
attention by formulating transformers as RNNs and express-
ing self-attention as a kernel dot-product (Katharopoulos
et al., 2020). Other new approaches increase the expressivity
of this formulation with data-dependent gating (Yang et al.,
2024).

Our work does not propose a new architecture. Instead, we
focus on the idea that practitioners should be able to take
advantage of new architectures in a transparent way.

Neural Architecture Search & Mechanistic Search. Neu-
ral architecture search (NAS) techniques are used to auto-
matically search for optimal architectures. These techniques
have produced state-of-the-art models in several different
architectures and data domains. Much of the challenge in
NAS is the complexity of the search procedures; in the most
standard form, NAS involves a difficult bilevel optimization

over a large search space. Much effort has been aimed at
reducing these costs, often via continuous relaxations of the
large search spaces, with techniques like DARTS (Liu et al.,
2019) and DASH (Shen et al., 2022).

Using NAS to discover architectures for language
modeling—and especially those that may rival
Transformers—has thus far been hard. A promising
approach is the MAD framework (Poli et al., 2024) , which
uses “mechanistic tasks” (synthetic tasks organized around
simple principles) to search for high-quality subquadratic
architectures. While we do not seek to discover new
architectures, we are inspired by this approach in our effort
to search for hybrid architectures.

Hybrid Architectures. Perhaps unsurprisingly, there is
no single dominant architecture among either standards,
like Transformers, or emerging subquadratic architectures.
While there are some insights that can be converted into
heuristics for model selection, generally, to take advantage
of new models, practitioners must exhaustively evaluate all
of them on each of their tasks. The cost of doing so has
inspired the idea of crafting hybrid architectures that mix
components from different approaches, with the goal being
to obtain best-of-all-worlds behavior.

Unfortunately, the space of hybrid architectures is already
large and only grows with each new proposed approach.
Manually crafting hybrids is costly; users must either brute-
force the enormous search space or alternatively hand-craft
a small candidate set of hybrids in the hope that it includes
a reasonably performant choice. Our work provides an
efficient alternative to this process.

Model Merging. A final prospective approach to using
multiple models is merging. Merging pretrained models (of
the same architecture) has shown promising results (Yadav
et al., 2023; Yu et al., 2023; Wortsman et al., 2022; Ilharco
et al., 2023; Davari & Belilovsky, 2023; Jang et al., 2024),
creating powerful large-scale merges such as SOLAR-10.7B
(Kim et al., 2023) and Goliath-120B2 from two fine-tuned
Llama2-70B (Touvron et al., 2023) models. The former
two were produced using a trial-and-error-based technique
called ‘frankenmerging,’ introduced in MergeKit (Goddard
et al., 2024). Frankenmerging involves stitching together
different fine-tuned versions of the same model or, hypothet-
ically, different models. This has inspired efforts to merge
models of different architectures using large-scale evolution-
ary search (Akiba et al., 2024). However, such efforts are
still embryonic, with substantial computational drawbacks,
requiring many training runs. Manticore, on the other hand,
does not require training a large number of models.

2huggingface.co/alpindale/goliath-120b

2

https://huggingface.co/alpindale/goliath-120b

Pretrained Hybrids with MAD Skills

3. Methods
We now describe Manticore, our framework for automati-
cally designing hybrid architectures by mixing components
of pretrained models. Manticore relies on projectors to align
features across architectures, then applies a convex combi-
nation to the aligned features, as summarized in Figure 1.

Our framework comprises three main parts: the individual
LMs that we combine to produce our overall hybrid, pro-
jectors that translate feature representations between LMs
of different architectures, and convex combination mixture
weights that specify how much the hybrid will use the fea-
tures of each component architecture. Formal definitions
and additional details are provided in the Appendix.

Component Models. We refer to a model that is used in
Manticore as a component model. Any modern LM can be
used as a component model in our framework—we provide
a formal definition in the Appendix. This recipe applies
to virtually all modern transformer-based LMs, recurrent
models, and state-space models. Our framework supports all
of these, and any other architecture that follows this recipe.

Projectors. Suppose we have two pretrained component
models, M and M ′. In general, blocks from M and M ′

may not be directly compatible, as their input and output
features are likely to be very different. To overcome this
issue, we apply projectors to both the inputs and the outputs
of a block (or a sequence of blocks, discussed later) that we
wish to combine in Manticore hybrids. Overall, our goal in
designing projectors is to enable the blocks of M and M ′

to speak a common language, such that their features are
compatible and can be reused in the resulting hybrid model.
This is conceivably challenging—the mapping between fea-
ture spaces could be highly nonlinear and might require a
lot of task-specific data to adequately learn the mapping. So
do projectors need to be heavyweight, data-hungry, highly
nonlinear objects? Fortunately, the answer is no—we find
that a simple linear transformation with a gated residual,
pretrained on general language data, is sufficient.

Mixture Weights. Next, we would like to mix the activa-
tions of different component models’ block sequences, in a
way that allows us to learn how much influence the blocks
from each component model will have on the overall hybrid
model. Learning the amount of influence that each block
sequence should have on the overall hybrid is critical—if
certain blocks produce less helpful features, we need a way
to down-weight them. Conversely, we want to use the best
blocks in our hybrid as much as possible—we want to up-
weight these helpful blocks. Overall, a parameterization that
allows us to learn these weights should lead to better hybrids.
We do this by taking a convex combination of the projectors’
outputs. We reuse the convex combination weights as the
gating weights in the projectors. This choice yields the con-

venient property that when the mixture weights α are set to
one in index k and zero everywhere else, the Mix function
exactly computes a sequence of blocks from component
model k while completely ignoring the projectors and the
blocks from other component models. We adopt a popular
parameterization for mixture weights from the NAS litera-
ture (Liu et al., 2019). We provide a formal definition of the
mixture weights and their parameterization in the Appendix.

Manticore. We are now ready to define our overall hybrid
architecture. We seek to create a hybrid from K component
models, M(1), ...,M(K), each with a potentially different
number of blocks, denoted LM(k)

for component model k.
We fix L to be the number of Manticore blocks, where L is a
common factor of each of the depths LM(k)

, for all k ∈ [K]—
we treat this choice of factor as a hyperparameter. For each
of the L Manticore blocks, we want to mix a sequence of
blocks from each of the K component models. We also
want the number of blocks from each model k ∈ [K] that
are allocated to a single Manticore block to be evenly spread
out throughout the L Manticore blocks.

In NAS terms, our search space is over the set of L ∋ ℓ
mixture weights α(ℓ) ∈ ∆K−1. However, our search space
differs from typical gradient-based NAS techniques in the
sense that we do not require discretization to derive a final
architecture after we obtain our mixture weights. Typically,
NAS would involve selecting a single sequence of compo-
nent architecture blocks at each of the Manticore blocks,
usually by taking the argmax of the mixture weights. In-
stead, the mixtures themselves are what characterize Man-
ticore hybrids. Nonetheless, if we were to replace the mix-
ture weights α(ℓ) with discrete one-hot vectors, we could
derive any of the following: the component model architec-
tures themselves, existing hybrid architectures, and ‘franken-
merged’ models (Goddard et al., 2024).

4. Experimental Results
We provide experimental evidence that validates the follow-
ing claims about Manticore:

• 4.1. Pretrained hybrids can outperform their component
models on fine-tuning tasks,

• 4.2. Trained from scratch, Manticore hybrids are compet-
itive with existing hybrids and LMs, and

• 4.3. We can program mixture weights using external
sources without search on the task data.

4.1. Fine-Tuning Pretrained Hybrids

We evaluate 4.1, first on a synthetic fine-tuning task, and
then on natural language fine-tuning tasks.

Setup. We consider a synthetic LM dataset comprising
GPT-Neo and Mamba generated completions of text from

3

Pretrained Hybrids with MAD Skills

Projector Projector

Block from B

Projector

Convex Combination

Block from A

Manticore
weights

Model A
weights

Model B
weightsBlock from A Block from B

Projector

… …Block from A

Block from A

…
Block from B

Block from B

…

Embeddings A

LM head A LM head B

Embeddings B

+ = …
Manticore block

LM head

Embeddings

Manticore block

Figure 1. Our proposed Manticore
framework, which enables: (1) cross-
architecture LM selection, (2) the con-
struction of pretrained hybrids, and (3)
the ability to program hybrids to have
certain skills. Here we depict a Manti-
core hybrid of two component models.

0.00 0.25 0.50 0.75 1.00
Mamba

1.5

2.0

2.5

3.0

Ev
al

 lo
ss

 sweep: one Manticore block
Manticore

 from search
= 1 (Mamba)

0.0 0.2 0.4 0.6 0.8 1.0
Mamba (second block)

0.0

0.2

0.4

0.6

0.8

1.0

M
am

ba
 (f

irs
t b

lo
ck

)

 sweep: two Manticore blocks
MAD trajectory
Programmed s

1.4

1.6

1.8

2.0

2.2
Eval loss

Figure 2. Mixture weight sweeps on
Penn Treebank completions using pre-
trained GPT-Neo-125M and Mamba-
130M as our component models,
which were also used to generate the
dataset. (Left) When we create one
Manticore block, there is a region of
the search space where we improve
over Mamba. (Right) The same holds
for two Manticore blocks, and our
technique for hybrid programming us-
ing MAD discovers this region.

Penn Treebank (Marcus et al., 1993b). Naturally, we use
pretrained GPT-Neo-125M and Mamba-130M models as
component models, creating a single Manticore block with
projectors that were pretrained on one billion tokens from
FineWeb (Penedo et al., 2024). We perform search using
DARTS and perform post-search retraining with the model
weights and projectors rewound to their pretrained state.

Results. Our results are shown in Figure 2 (left). We com-
pare our search results to a sweep over a range of possible
mixture weights, and find that our search procedure returns
the optimal mixture weights, outperforming both Mamba
and GPT-Neo. This confirms our claim that Manticore
hybrids can outperform their component models on syn-
thetic fine-tuning tasks. Given that this task comprises
two slices that each of our component models should be
good at—GPT-Neo should be good at predicting GPT-Neo
outputs, and vice versa—we hypothesize that Manticore
hybrids are well suited to situations in which the component
models have complementary ‘skills’ (Chen et al., 2023).

Setup. We evaluate on three natural language fine-tuning
datasets: Penn Treebank (Marcus et al., 1993b), the Alpaca
instructions dataset (Taori et al., 2023), and ELI5 (Fan et al.,
2019). We use Pythia-410M and Mamba-370M as com-
ponent models, and create a single Manticore block from
the blocks of the two models with projectors that were pre-
trained on one billion tokens from FineWeb (Penedo et al.,
2024). We first search for mixture weights, and then we
retrain with the fixed mixture weights found by search.

Results. Our results are shown in Table 1. Manticore out-
performs its component models on Alpaca and ELI5, while
it achieves performance between its two component models
on Penn Treebank. This confirms our claim that Manti-
core can outperform component models on real natural
language tasks. The fact that Mamba-370M outperforms
Manticore in this setting is not a failure of our framework,
as Mamba-370M is included as part of our search space. We
speculate that the use of more powerful search procedures
from the NAS literature, such as GAEA (Li et al., 2021),
could improve our search performance and help to recover
or outperform Mamba-370M.

Table 1. Manticore on natural language tasks using Pythia-410m
and Mamba-370m as component models. The best test losses are
bolded and the second-best are underlined.

Task Pythia-410M Mamba-370M Manticore

PTB 0.9099 0.8397 0.8600
Alpaca 2.5011 2.2999 2.1779

ELI5 4.1260 3.9414 3.9331

4.2. Training Hybrids from Scratch

For 4.2, we compare to non-hybrid component models on
LRA. We provide additional experimental results, including
comparisons to existing hybrids, in the Appendix.

Setup. We compare Manticore hybrids to their component

4

Pretrained Hybrids with MAD Skills

models on LRA when trained from scratch. We create GPT-
Neo and Mamba component models of similar sizes to those
in Tay et al. (2021) and create a Manticore hybrid. For
simplicity, we do not retrain model weights after search.

Results. Our results are shown in Table 2. We outperform
the component models on all tasks except for IMDb, in
which case Manticore was between GPT-Neo and Mamba.
This validates the claim that Manticore hybrids, trained
from scratch, compete with existing LMs.

Table 2. Manticore hybrids trained from scratch on LRA using
GPT-Neo and Mamba. Best test accuracies are bolded. ∗GPT-Neo
does not support the Pathfinder-X sequence length requirement, so
we set its mixture weight to 0 and Manticore reduces to Mamba.

Task GPT-Neo Mamba Manticore

ListOps 37.90 20.65 38.70
IMDb 59.62 87.74 72.44

CIFAR10 39.37 20.81 43.15
Pathfinder32 89.41 85.76 91.45

Pathfinder-X N/A∗ 75.50∗ 75.50∗

Additional results on the MAD tasks can be found in the
Appendix.

4.3. Programming Hybrids

We evaluate 4.3 with two types of external data: access to
task metadata such as length requirements and the use of
MAD tasks as a search proxy on downstream task data.

Setup. As in many of our previous experiments, we used the
GPT-Neo and Mamba architectures as component models to
our Manticore hybrid. However, this time, we set out to train
from scratch on the extremely long-range Pathfinder-X task
from LRA, which requires sequence length support greater
than that of GPT-Neo. Using this external information about
the task, we set the mixture weights for GPT-Neo to 0, which
in this case, means that Manticore reduces to Mamba.3

Results. The results of this experiment are shown in the last
row of Table 2. In the simple case of having access to task
metadata, this validates the claim that we can program
mixture weights to exclude incompatible blocks. At the
time of writing, we are not aware of prior published Mamba
results on LRA despite community interest, which would
make our evaluation in Table 2 the first such result. Note that
we did not thoroughly tune hyperparameters, so we view
this result as a preliminary starting point for the community
to build off of, rather than a final answer.

Setup. Finally, in the case in which we can actually run all

3As of writing, Mamba on LRA is open: https://github.
com/state-spaces/mamba/issues/282.

of our component models on our learning task, we program
the mixture weights using the MAD tasks as a proxy for
search. We set out to fine-tune a pretrained hybrid compris-
ing GPT-Neo-125M and Mamba-130M with two Manticore
blocks on our Penn Treebank completions synthetic. We
train a scaled-down version of this Manticore hybrid with
randomly initialized weights and two blocks per component
model on the MAD tasks. This yields mixture weights for
each of the MAD tasks—we average them across the tasks,
and then fine-tune our pretrained hybrid on Penn Treebank
completions using the predicted mixture weights.

Results. Our results are shown in Figure 2 (right). We
superimpose the predicted mixture weights and mean search
trajectory from MAD onto the architecture loss landscape
computed on Penn Treebank completions. We find that this
procedure recovers a hybrid that outperforms the compo-
nent models (Mamba, lower right; GPT-Neo, upper left) and
substantially outperforms the naive frankenmerges in our
search space (upper right and lower left) (Goddard et al.,
2024). This validates the claim that we can program
mixture weights using external sources without perform-
ing search on the task data. Intriguingly, search on the
MAD tasks appears to follow the architecture gradient on
the different downstream fine-tuning task, even though the
architecture is scaled-down and trained from scratch on
MAD. We suspect that the mixture weights and architecture
loss landscapes for pretrained hybrids are fairly universal
across fine-tuning tasks, and that the same procedure is
likely to work more broadly. Furthermore, we hypothesize
that this technique could outperform other gradient-based
NAS methods directly applied to the downstream task.

References
Akiba, T., Shing, M., Tang, Y., Sun, Q., and Ha, D. Evolu-

tionary optimization of model merging recipes, 2024.

Amos, I., Berant, J., and Gupta, A. Never train from scratch:
Fair comparison of long-sequence models requires data-
driven priors. In The Twelfth International Conference
on Learning Representations, 2024. URL https://
openreview.net/forum?id=PdaPky8MUn.

Arora, S., Eyuboglu, S., Zhang, M., Timalsina, A., Alberti,
S., Zinsley, D., Zou, J., Rudra, A., and Ré, C. Sim-
ple linear attention language models balance the recall-
throughput tradeoff. arXiv:2402.18668, 2024.

Biderman, S., Schoelkopf, H., Anthony, Q., Bradley, H.,
O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., Skowron, A., Sutawika, L.,
and van der Wal, O. Pythia: A suite for analyzing large
language models across training and scaling, 2023.

Black, S., Gao, L., Wang, P., Leahy, C., and Biderman, S.

5

https://github.com/state-spaces/mamba/issues/282
https://github.com/state-spaces/mamba/issues/282
https://openreview.net/forum?id=PdaPky8MUn
https://openreview.net/forum?id=PdaPky8MUn

Pretrained Hybrids with MAD Skills

GPT-Neo: Large Scale Autoregressive Language Model-
ing with Mesh-Tensorflow, March 2021. URL https:
//doi.org/10.5281/zenodo.5297715.

Botev, A., De, S., Smith, S. L., Fernando, A., Muraru, G.-
C., Haroun, R., Berrada, L., Pascanu, R., Sessa, P. G.,
Dadashi, R., Hussenot, L., Ferret, J., Girgin, S., Bachem,
O., Andreev, A., Kenealy, K., Mesnard, T., Hardin, C.,
Bhupatiraju, S., Pathak, S., Sifre, L., Rivière, M., Kale,
M. S., Love, J., Tafti, P., Joulin, A., Fiedel, N., Senter,
E., Chen, Y., Srinivasan, S., Desjardins, G., Budden, D.,
Doucet, A., Vikram, S., Paszke, A., Gale, T., Borgeaud,
S., Chen, C., Brock, A., Paterson, A., Brennan, J., Risdal,
M., Gundluru, R., Devanathan, N., Mooney, P., Chauhan,
N., Culliton, P., Martins, L. G., Bandy, E., Huntsperger,
D., Cameron, G., Zucker, A., Warkentin, T., Peran, L.,
Giang, M., Ghahramani, Z., Farabet, C., Kavukcuoglu, K.,
Hassabis, D., Hadsell, R., Teh, Y. W., and de Frietas, N.
Recurrentgemma: Moving past transformers for efficient
open language models, 2024.

Chen, M. F., Roberts, N., Bhatia, K., WANG, J., Zhang, C.,
Sala, F., and Re, C. Skill-it! a data-driven skills frame-
work for understanding and training language models. In
Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.
net/forum?id=IoizwO1NLf.

Davari, M.-J. and Belilovsky, E. Model breadcrumbs:
Scaling multi-task model merging with sparse
masks. ArXiv, abs/2312.06795, 2023. URL https:
//api.semanticscholar.org/CorpusID:
266174505.

De, S., Smith, S. L., Fernando, A., Botev, A., Cristian-
Muraru, G., Gu, A., Haroun, R., Berrada, L., Chen, Y.,
Srinivasan, S., Desjardins, G., Doucet, A., Budden, D.,
Teh, Y. W., Pascanu, R., Freitas, N. D., and Gulcehre,
C. Griffin: Mixing gated linear recurrences with local
attention for efficient language models, 2024.

Fan, A., Jernite, Y., Perez, E., Grangier, D., Weston, J.,
and Auli, M. ELI5: Long form question answering.
In Korhonen, A., Traum, D., and Màrquez, L. (eds.),
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 3558–3567,
Florence, Italy, July 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/P19-1346. URL
https://aclanthology.org/P19-1346.

Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra,
A., and Ré, C. Hungry Hungry Hippos: Towards lan-
guage modeling with state space models. In International
Conference on Learning Representations, 2023.

Goddard, C., Siriwardhana, S., Ehghaghi, M., Meyers, L.,
Karpukhin, V., Benedict, B., McQuade, M., and Solawetz,

J. Arcee’s mergekit: A toolkit for merging large language
models, 2024.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Gu, A., Goel, K., and Re, C. Efficiently modeling
long sequences with structured state spaces. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=uYLFoz1vlAC.

Ilharco, G., Ribeiro, M. T., Wortsman, M., Schmidt, L.,
Hajishirzi, H., and Farhadi, A. Editing models with task
arithmetic. In The Eleventh International Conference
on Learning Representations, 2023. URL https://
openreview.net/forum?id=6t0Kwf8-jrj.

Jang, D.-H., Yun, S., and Han, D. Model stock: All we need
is just a few fine-tuned models. ArXiv, abs/2403.19522,
2024. URL https://api.semanticscholar.
org/CorpusID:268733341.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention, 2020.

Kim, D., Park, C., Kim, S., Lee, W., Song, W., Kim, Y.,
Kim, H., Kim, Y., Lee, H., Kim, J., Ahn, C., Yang, S.,
Lee, S., Park, H., Gim, G., Cha, M., Lee, H., and Kim, S.
Solar 10.7b: Scaling large language models with simple
yet effective depth up-scaling, 2023.

Kim, J., Linsley, D., Thakkar, K., and Serre, T. Disentan-
gling neural mechanisms for perceptual grouping, 2020.

Krizhevsky, A. Learning multiple layers of features
from tiny images. 2009. URL https://api.
semanticscholar.org/CorpusID:18268744.

Li, L., Khodak, M., Balcan, N., and Talwalkar, A. Geometry-
aware gradient algorithms for neural architecture search.
In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=MuSYkd1hxRP.

Linsley, D., Kim, J., Veerabadran, V., Windolf, C., and
Serre, T. Learning long-range spatial dependencies with
horizontal gated recurrent units. In Proceedings of the
32nd International Conference on Neural Information
Processing Systems, NIPS’18, pp. 152–164, Red Hook,
NY, USA, 2018. Curran Associates Inc.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable
architecture search, 2019.

6

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://openreview.net/forum?id=IoizwO1NLf
https://openreview.net/forum?id=IoizwO1NLf
https://api.semanticscholar.org/CorpusID:266174505
https://api.semanticscholar.org/CorpusID:266174505
https://api.semanticscholar.org/CorpusID:266174505
https://aclanthology.org/P19-1346
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=6t0Kwf8-jrj
https://api.semanticscholar.org/CorpusID:268733341
https://api.semanticscholar.org/CorpusID:268733341
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://openreview.net/forum?id=MuSYkd1hxRP
https://openreview.net/forum?id=MuSYkd1hxRP

Pretrained Hybrids with MAD Skills

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2019. URL https://openreview.
net/forum?id=Bkg6RiCqY7.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y.,
and Potts, C. Learning word vectors for sentiment analy-
sis. In Lin, D., Matsumoto, Y., and Mihalcea, R. (eds.),
Proceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Language
Technologies, pp. 142–150, Portland, Oregon, USA, June
2011. Association for Computational Linguistics. URL
https://aclanthology.org/P11-1015.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A.
Building a large annotated corpus of English: The
Penn Treebank. Computational Linguistics, 19(2):313–
330, 1993a. URL https://aclanthology.org/
J93-2004.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A.
Building a large annotated corpus of English: The
Penn Treebank. Computational Linguistics, 19(2):313–
330, 1993b. URL https://aclanthology.org/
J93-2004.

Nangia, N. and Bowman, S. R. Listops: A diagnostic dataset
for latent tree learning, 2018.

Park, J., Park, J., Xiong, Z., Lee, N., Cho, J., Oymak, S.,
Lee, K., and Papailiopoulos, D. Can mamba learn how to
learn? a comparative study on in-context learning tasks,
2024.

Penedo, G., Kydlíček, H., von Werra, L., and Wolf, T.
Fineweb, 2024. URL https://huggingface.co/
datasets/HuggingFaceFW/fineweb.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho,
S., Biderman, S., Cao, H., Cheng, X., Chung, M., Der-
czynski, L., Du, X., Grella, M., Gv, K., He, X., Hou,
H., Kazienko, P., Kocon, J., Kong, J., Koptyra, B., Lau,
H., Lin, J., Mantri, K. S. I., Mom, F., Saito, A., Song,
G., Tang, X., Wind, J., Woźniak, S., Zhang, Z., Zhou,
Q., Zhu, J., and Zhu, R.-J. RWKV: Reinventing RNNs
for the transformer era. In Bouamor, H., Pino, J., and
Bali, K. (eds.), Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pp. 14048–14077, Sin-
gapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.
936. URL https://aclanthology.org/2023.
findings-emnlp.936.

Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T.,
Baccus, S., Bengio, Y., Ermon, S., and Ré, C. Hyena
hierarchy: towards larger convolutional language models.
In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023a.

Poli, M., Wang, J., Massaroli, S., Quesnelle, J., Carlow,
R., Nguyen, E., and Thomas, A. StripedHyena: Mov-
ing Beyond Transformers with Hybrid Signal Processing
Models, 12 2023b. URL https://github.com/
togethercomputer/stripedhyena.

Poli, M., Thomas, A. W., Nguyen, E., Ponnusamy, P., Deis-
eroth, B., Kersting, K., Suzuki, T., Hie, B., Ermon, S.,
Ré, C., et al. Mechanistic design and scaling of hybrid
architectures. arXiv preprint arXiv:2403.17844, 2024.

Shen, J., Khodak, M., and Talwalkar, A. Efficient architec-
ture search for diverse tasks, 2022.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li,
X., Guestrin, C., Liang, P., and Hashimoto, T. B.
Stanford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P., Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena : A benchmark for efficient transformers. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=qVyeW-grC2k.

Touvron, H., Martin, L., Stone, K. R., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D. M., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A. S., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I. M., Korenev, A. V., Koura,
P. S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D.,
Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P.,
Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta,
R., Saladi, K., Schelten, A., Silva, R., Smith, E. M., Sub-
ramanian, R., Tan, X., Tang, B., Taylor, R., Williams, A.,
Kuan, J. X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan,
A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic,
R., Edunov, S., and Scialom, T. Llama 2: Open founda-
tion and fine-tuned chat models. ArXiv, abs/2307.09288,
2023. URL https://api.semanticscholar.
org/CorpusID:259950998.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs,
R., Gontijo-Lopes, R., Morcos, A. S., Namkoong,
H., Farhadi, A., Carmon, Y., Kornblith, S., and
Schmidt, L. Model soups: averaging weights of
multiple fine-tuned models improves accuracy with-
out increasing inference time. ArXiv, abs/2203.05482,

7

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/P11-1015
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://huggingface.co/datasets/HuggingFaceFW/fineweb
https://huggingface.co/datasets/HuggingFaceFW/fineweb
https://aclanthology.org/2023.findings-emnlp.936
https://aclanthology.org/2023.findings-emnlp.936
https://github.com/togethercomputer/stripedhyena
https://github.com/togethercomputer/stripedhyena
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998

Pretrained Hybrids with MAD Skills

2022. URL https://api.semanticscholar.
org/CorpusID:247362886.

Yadav, P., Tam, D., Choshen, L., Raffel, C., and Bansal,
M. TIES-merging: Resolving interference when merg-
ing models. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=xtaX3WyCj1.

Yang, S., Wang, B., Shen, Y., Panda, R., and Kim, Y. Gated
linear attention transformers with hardware-efficient train-
ing, 2024.

Yu, L., Yu, B., Yu, H., Huang, F., and Li, Y. Lan-
guage models are super mario: Absorbing abilities
from homologous models as a free lunch. CoRR,
abs/2311.03099, 2023. URL https://doi.org/10.
48550/arXiv.2311.03099.

Zhang, M., Bhatia, K., Kumbong, H., and Ré, C. The
hedgehog & the porcupine: Expressive linear attentions
with softmax mimicry. arXiv preprint arXiv:2402.04347,
2024.

8

https://api.semanticscholar.org/CorpusID:247362886
https://api.semanticscholar.org/CorpusID:247362886
https://openreview.net/forum?id=xtaX3WyCj1
https://openreview.net/forum?id=xtaX3WyCj1
https://doi.org/10.48550/arXiv.2311.03099
https://doi.org/10.48550/arXiv.2311.03099

Pretrained Hybrids with MAD Skills

Appendix

A. The Structure of Manticore Hybrids
Our framework comprises three main parts: the individual LMs that we combine to produce our overall hybrid, projectors
that translate feature representations between LMs of different architectures, and convex combination mixture weights that
specify how much the hybrid will use the features of each component architecture. We detail each of these in the following.

A.1. Component Models

We refer to a model that is used in Manticore as a component model. Any modern LM can be used as a component
model in our framework. In this section, we will formally define the general high-level structure of the component models
that we support. For an LM M with model embedding dimension dM on a sequence of t tokens from a set V , denoted
x = (x1, ..., xt) ∈ Vt, a forward pass M(x) is typically computed using the following recipe:

1. Apply an embedding function, Membed : Vt → Rt×dM to the tokens, resulting in a sequence of embeddings denoted
xembed = Membed(x).

2. Take forward passes through LM ‘blocks’–we denote the ℓth block as M (ℓ)
Block : Rt×dM → Rt×dM . Specifically, for all

ℓ ∈ [LM], we obtain xℓ+1 = M
(ℓ)
Block(xℓ), where x1 := xembed.

3. Finally, we pass xLM+1 into a language modeling head, Mhead : Rt×dM → (∆|V|−1)t, where ∆|V|−1 is the probability
simplex of dimension |V|.

This recipe applies to virtually all modern transformer-based LMs, recurrent models, and state-space models. Our framework
supports all of these, and any other architecture that follows this recipe.

A.2. Projectors

Suppose we have two pretrained component models, M and M ′. In general, even if the model dimensions are the same for
both models (dM = dM ′), blocks from M and M ′ may not be directly compatible, as their input and output features are
likely to be very different. It is also possible that dM ̸= dM ′ , in which case composing blocks from M and M ′ is not even
well-defined.

To overcome this issue, we apply projectors to both the inputs and the outputs of a block (or a sequence of blocks, discussed
in Section A.4) that we wish to combine in Manticore hybrids. Overall, our goal in designing projectors is to enable the
blocks of M and M ′ to speak a common language, such that their features are compatible and can be reused in the resulting
hybrid model. This is conceivably challenging—the mapping between feature spaces could be highly nonlinear and might
require a lot of task-specific data to adequately learn the mapping. So do projectors need to be heavyweight, data-hungry,
highly nonlinear objects? Fortunately, the answer is no—we find that a simple linear transformation with a gated residual,
pretrained on general language data, is sufficient.

Suppose that we want to create a Manticore hybrid from K different pretrained component models, denoted M(1), ...,M(K)

with model dimensions dM(1)
, ..., dM(K)

. We define dmax := maxk∈[K] dM(k)
, then want input and output projectors for the

blocks of each model that convert their features to a common feature space of dimension dmax. For any sequence of blocks
of length (n+ 1) < LdM(k)

from model M(k) and length-t input,

(
M

(ℓ+n)
(k)Block ◦ ... ◦M

(ℓ)
(k)Block

)
: Rt×dM(k) → Rt×dM(k) ,

we want functions Proj-in(ℓ)(k) : R
t×dmax → Rt×dM(k) and Proj-out(ℓ+n)

(k) : Rt×dM(k) → Rt×dmax , so(
Proj-out(ℓ+n)

(k) ◦M (ℓ+n)
(k)Block ◦ ... ◦M

(ℓ)
(k)Block ◦ Proj-in(ℓ)(k)

)
: Rt×dmax → Rt×dmax .

9

Pretrained Hybrids with MAD Skills

For input x ∈ Rt×dM(k) we parameterize each projector as a linear transformation with gated residual:

Proj-in(ℓ)(k)(x;α) := (1− α) · Lineardmax→dM(k)
(x) + α · Trunc(x; dM(k)

)

Proj-out(ℓ)(k)(x;α) := (1− α) · LineardM(k)
→dmax(x) + α · Pad(x; dmax).

Respectively, Trunc(·; d) and Pad(·; d) truncate and zero-pad input to dimension d, and Lineard→d′ : Rd → Rd′
is a

learnable linear transformation. Gating weights are parameterized as α ∈ [0, 1].

In total, where α ∈ ∆K−1 and Ik is a length-nk vector of block indices from component model k, we define the output of
the block sequence defined by Ik as

hk(x;αk, Ik) =

(
Proj-out

(Ik,nk
)

(k) ◦M (Ik,nk
)

(k)Block ◦ ... ◦M
(Ik,1)

(k)Block ◦ Proj-in(Ik,1)

(k)

)
(x;αk).

A.3. Mixture Weights

Next, we would like to mix the activations of different component models’ block sequences, in a way that allows us to
learn how much influence the blocks from each component model will have on the overall hybrid model. Learning the
amount of influence that each block sequence should have on the overall hybrid is critical—if certain blocks produce less
helpful features, we need a way to down-weight them. Conversely, we want to use the best blocks in our hybrid as much
as possible—we want to up-weight these helpful blocks. Overall, a parameterization that allows us to learn these weights
should lead to better hybrids.

We do this by taking a convex combination of the projectors’ outputs: given the projected features hk(x;αk, Ik) for each
component model k ∈ [K], we output a convex combination of projected features

Mixα(x; I1, ..., IK) =
∑

k∈[K]

αkhk(x;αk, Ik).

We reuse the convex combination weights as the gating weights in the projectors. This choice yields the convenient property
that when the mixture weights α are set to one in index k and zero everywhere else, the Mix function exactly computes a
sequence of blocks from component model k while completely ignoring the projectors and the blocks from other component
models. We adopt a popular parameterization for mixture weights from the NAS literature (Liu et al., 2019): we parameterize
α using a softmax of scalar parameters. That is, we define αk := exp(ai)∑

j∈[K] exp(aj)
for all k ∈ [K].

A.4. Manticore

We are now ready to define our overall hybrid architecture. We seek to create a hybrid from K component models,
M(1), ...,M(K), each with a potentially different number of blocks, denoted LM(k)

for component model k. We fix L to be
the number of Manticore blocks, where L is a common factor of each of the depths LM(k)

, for all k ∈ [K]—we treat this
choice of factor as a hyperparameter. For each of the L Manticore blocks, we want to mix a sequence of blocks from each
of the K component models. We also want the number of blocks from each model k ∈ [K] that are allocated to a single
Manticore block to be evenly spread out throughout the L Manticore blocks—this is why we require L to be a factor of
LM(k)

.

For each component model k ∈ [K], divide the indices of the blocks [LM(k)
] evenly into L contiguous parts, denoted as

[LM(k)
] = (Ik,1, ..., Ik,L). Then, adopting the notation from our component models, a Manticore block is defined as

Manticore(ℓ)Block(·) := Mixα(ℓ)(·; I1,ℓ, ..., IK,ℓ)

with Manticore(ℓ)Block : Rt×dmax → Rt×dmax , for each ℓ ∈ [L], and α(ℓ) being the mixture weights at ℓ. Next, we initialize a
new set of embedding weights and a new task specific (or language modeling) head, and we can finally illustrate a forward
pass with a Manticore hybrid model, denoted using the shorthand notation Manticore(·) := Manticore[M(1), ...,M(K)](·).
Let x = (x1, ..., xt) ∈ Vt be a sequence of t tokens from a set V . The forward pass is computed as follows:

10

Pretrained Hybrids with MAD Skills

1. Apply the new embedding function Manticoreembed : Vt → Rt×dmax to the tokens, resulting in a sequence of embeddings
denoted xembed = Manticoreembed(x).

2. Take forward passes through L Manticore blocks, each with dimension dmax, concretely, we compute xℓ+1 :=

Manticore(ℓ)Block(xℓ), where x1 := xembed.

3. Pass xLM+1 into a new task-specific or language modeling head, Manticorehead : Rt×dM → T, where T is the appropriate
output space for the learning task.

In NAS terms, our search space is over the set of L ∋ ℓ mixture weights α(ℓ) ∈ ∆K−1. However, our search space
differs from typical gradient-based NAS techniques in the sense that we do not require discretization to derive a final
architecture after we obtain our mixture weights. Typically, NAS would involve selecting a single sequence of component
architecture blocks at each of the Manticore blocks, usually by taking the argmax of the mixture weights. Instead, the
mixtures themselves are what characterize Manticore hybrids. Nonetheless, if we were to replace the mixture weights α(ℓ)

with discrete one-hot vectors, we could derive any of the following: the component model architectures themselves, existing
hybrid architectures, and ‘frankenmerged’ models (Goddard et al., 2024).

A.5. How To Use Manticore

With Manticore, we can automatically select language models without training every model in the search space, automatically
construct pretrained hybrid architectures without significant trial-and-error, and also program pretrained hybrids without full
training. In this section, we will discuss the details of how Manticore can be used in each of these three usage scenarios.

Training hybrids from scratch. Manticore can be used to automatically select LMs without training all of the LMs in the
search space. Our selection technique is simple: inspired by gradient-based NAS techniques (Liu et al., 2019) and treating
the mixture weights as our ‘architecture parameters,’ we proceed in two steps: 1. train mixture weights along with all other
parameters, and 2. freeze the mixture weights and retrain the rest of the parameters from scratch. Unlike NAS, we found
that in many pretraining settings, it was sufficient to stop at 1. and forgo retraining. In our pretraining experiments,
we primarily use randomly-initialized GPT-Neo (Black et al., 2021) and Mamba (Gu & Dao, 2023) as component models
without projectors, and separately experiment with a subset of the blocks from MAD (Poli et al., 2024).

Fine-tuning pretrained hybrids. Manticore can be used to create and fine-tune pretrained hybrids. We create pretrained
hybrids as follows: begin with a set of pretrained models, replace their LM heads and embeddings with a single randomly
initialized LM head and embedding layer, and pretrain the projectors on a small amount of general language data such as
FineWeb (Penedo et al., 2024) while keeping the original component model weights frozen.4 To fine-tune the pretrained
hybrids on downstream task data, we first search for mixture weights by training all of the parameters simultaneously,
we freeze the mixture weights, rewind the component models and projectors to their pretrained state, and fine-tune. This
procedure completely sidesteps large-scale pretraining of new hybrids. In our synthetic experiments, we create pretrained
Manticore hybrids from pretrained GPT-Neo-125M (Black et al., 2021) and Mamba-130M (Gu & Dao, 2023) models,
while for our experiments on real natural language data, we opt for pretrained Pythia-410M (Biderman et al., 2023) and
Mamba-370M (Gu & Dao, 2023) as component models.

Programming hybrids. Excitingly, we can program Manticore mixture weights by using external information to predict
them. We consider two scenarios. If we know that a component model has blocks that are somehow incompatible with the
target task—e.g. resulting from sequence length constraints—we can omit these blocks by setting their mixture weights
to 0. Otherwise, we can predict good mixture weights by searching on a fixed set of proxy tasks—for this, we use the MAD
tasks (Poli et al., 2024). The MAD tasks are synthetic unit tests that are predictive of hybrid LM scaling laws, but within our
framework, we find that they are also useful for finding general-purpose pretrained hybrids. We use the following
procedure for programming mixture weights using the MAD tasks. First, run search on the MAD tasks using a smaller,
randomly initialized version of our pretrained hybrid. For each MAD task, our search procedure returns a set of mixture
weights—we simply average the resulting mixture weights, freeze them, and fine-tune on the downstream task data.

4We found one billion tokens to be sufficient for projector pretraining.

11

Pretrained Hybrids with MAD Skills

B. Additional Experiments
B.1. Training Hybrids from Scratch

For 4.2, we compare to prior hybrids on MAD and non-hybrid component models on LRA and MAD.

Setup. We compare training Manticore from scratch to training existing hybrid architectures on the MAD tasks. We
begin with two hybrid architectures from the literature: MambaFormer (Park et al., 2024), which combines Mamba and
attention blocks, and the striped multi-head Hyena + Mixture-of-Experts (MoE) MLP architecture that was shown to
perform well on the MAD tasks (Poli et al., 2024). We compare these two baselines to a Manticore hybrid combining three
component models: striped multi-head Hyena + MoE-MLP, a transformer, and Mamba. We use two blocks for each of these
architectures, creating two Manticore blocks. Again, we search for mixture weights and then retrain.

Results. The results of this experiment are shown in Table 3. We outperform the striped multi-head Hyena + MoE model
from the MAD paper, and we approach the performance of MambaFormer on all but one task. This validates the claim that
Manticore hybrids, trained from scratch, compete with existing hybrids. Despite MambaFormer not being a component
model, it is in our search space, and we again speculate that improvements in search would lead to its recovery.

Table 3. Trained from scratch on MAD tasks, Manticore beats or matches the performance of existing hybrids on all but one task. The
best test losses are bolded and the second best are underlined.

Task MH Hyena Mamba- Manticore+ MoE-MLP former

In-Context Recall 3.7153 0.0020 0.0048
Fuzzy In-Context Recall 4.1714 4.1712 4.1750
Noisy In-Context Recall 4.1643 4.1646 4.1607

Selective Copying 1.8021 0.0005 0.0171
Memorization 8.8353 5.2179 8.9254

Setup. Next, we compare Manticore to non-hybrid architectures trained from scratch on the MAD tasks. We compare
two-block GPT-Neo and Mamba models to a Manticore hybrid using a single Manticore block. Again, we report the
performance of the search procedure itself without retraining.

Results. Our results are shown in Table 4. Manticore outperforms GPT-Neo and Mamba on all of the MAD tasks in this
setting. This provides further evidence for our claim that Manticore hybrids compete with existing LMs when trained
from scratch. It is conceivable that our larger Manticore hybrids simply perform better than component models due to their
size—however, we find that post-search discretization and retraining tends to result in similar performance, but reduces the
model size by roughly half.

Table 4. Trained from scratch on the MAD tasks, Manticore improves over small two-block component models combined into a single
Manticore block. The best test losses are shown in bold.

Task GPT-Neo (A) Mamba (B) Manticore [A, B]

In-Context Recall 4.0771 4.1858 4.0768
Fuzzy In-Context Recall 4.4384 4.8097 4.2797
Noisy In-Context Recall 4.1843 4.2605 4.1823

Selective Copying 1.0470 3.7765 0.9478
Memorization 4.6110 5.2281 4.1367

C. Ablations
Choice of search algorithm. By default, we use a form of the single-level DARTS (Liu et al., 2019) search algorithm in all
of our experiments requiring search. We optionally evaluate whether or not to take alternating update, that is, we alternately
take gradient steps in the architecture and model parameters—we treat this choice as a task-dependent hyperparameter.
However, there are many alternative NAS algorithms that we could have used for search. In our ablation of the choice of

12

Pretrained Hybrids with MAD Skills

search algorithm, we also evaluate DASH (Shen et al., 2022) on our Penn Treebank completions synthetic—the results of
which are shown in Table 5. In general, we found that using DASH was unable to recover strong architectures in our search
space. We postulate that this is because DASH simply aims to solve a different problem, and is not suited to our search space:
namely, DASH is used to search for lower-level operations, rather than LM blocks. We also found that alternating DARTS
updates was somewhat helpful, compared to simultaneously updating all of the parameters at once—for our experiments, we
treated this choice as a hyperparameter.

Table 5. Comparison of NAS search methods on our Penn Treebank completions synthetic.

Alternating? DARTS DASH

Yes 1.2854 2.5899
No 1.3635 2.5968

Whether or not to discretize after search. We perform an ablation of whether or not to perform discretization on our
MAD task experiments in which we compare to existing hybrids. We find that while discretization can sometimes improve
performance, the performance differences are often marginal. If final parameter count is a concern, then discretization is
beneficial.

Table 6. A comparison of non-discretized vs. discretized Manticore.

Task Manticore Manticore
(non-discretized) (discretized)

In-context Recall 0.0068 0.0081
Fuzzy In-context Recall 4.1764 4.1729
Noisy In-context Recall 4.1628 4.1614

Selective Copying 0.0849 0.0006
Memorization 8.9416 8.9402

D. Additional MAD results
In the main text of the paper, we presented results comparing Manticore hybrids trained from scratch to existing hybrids
from the literature—namely MambaFormer and the Striped MH Hyena + MOE architecture from MAD. Notably, the Striped
MH Hyena + MOE architecture was only the second best architecture presented in the MAD paper. We found that their best
architecture, the Striped Hyena Experts + MOE model, performed slightly worse on the harder versions of the MAD tasks
that we evaluated. We present these results in Table 7.

Table 7. Trained from scratch on MAD tasks, Manticore beats or matches the performance of existing hybrids on all but one task. The
best test losses are bolded and the second best are underlined.

Task Striped Hyena Experts Striped MH Hyena MambaFormer Manticore+ MoE-MLP + MoE-MLP

In-context Recall 4.0315 3.7153 0.0020 0.0048
Fuzzy In-context Recall 4.1749 4.1714 4.1712 4.1750
Noisy In-context Recall 4.1640 4.1643 4.1646 4.1607

Selective Copying 2.1731 1.8021 0.0005 0.0171
Memorization 8.8537 8.8353 5.2179 8.9254

E. Additional Pathfinder Results
We ran several additional variants of the pathfinder task for which the required sequence length exceeded the maximum
supported sequence length of GPT-Neo. We report these results in Table 8.

13

Pretrained Hybrids with MAD Skills

Table 8. Additional Pathfinder results. Note that since these variants of Pathfinder exceed the maximum sequence length of GPT-Neo, we
set its mixture weight to be 0 and evaluate using Mamba.

Pathfinder task GPT-Neo Mamba Manticore
(A) (B) [A, B]

64× 64, 6 paddles N/A 80.40 80.40
64× 64, 9 paddles N/A 90.01 90.01
64× 64, 14 paddles N/A 86.87 86.87

128× 128, 6 paddles N/A 75.50 75.50

F. Hyperparameters
F.1. Fine-Tuning Pretrained Hybrids

Penn Treebank completions synthetic. For model weights, we use the AdamW (Loshchilov & Hutter, 2019) optimizer with
a linear learning rate schedule with an initial learning rate of 5e− 5. For mixture weights, we use the AdamW (Loshchilov &
Hutter, 2019) optimizer with a linear learning rate schedule with an initial learning rate of 0.005 and use alternating updates.

Fine-tuning on language tasks. For model weights, we use the AdamW (Loshchilov & Hutter, 2019) optimizer with a
linear learning rate schedule with an initial learning rate of 5e− 5. For mixture weights, we use the AdamW (Loshchilov
& Hutter, 2019) optimizer with a linear learning rate schedule with an initial learning rate of 0.005 and use simultaneous
updates.

F.2. Training Hybrids from Scratch

Comparison to existing hybrids on MAD.

We provide the hyperparameters and training details for our MAD evaluations from Section 4.2

Existing hybrids were trained with a hyperparameter grid search over the space [1e− 4, 5e− 4, 1e− 3] for learning rate and
[0.0, 0.1] for weight decay, similar to the procedure in MAD (Poli et al., 2024).

Manticore is trained in two stages. In the first stage, we train the model and architecture weights in the alternating
schedule utilized in DARTS (Liu et al., 2019). In this stage, we perform a hyperparameter grid search of the space
[1e− 4, 5e− 4, 1e− 3] for model weight learning rate, [1e− 4, 1e− 4] for architecture weight learning rate, and [0.1] for
weight decay. In the second stage, the architecture weights are frozen and we train only the model weights using the best
learning rate found in the first stage.

Evaluation on LRA. We provide the hyperparameters and training details for our LRA evaluations.

• ListOps. We trained all models with 5000 steps. The hyperparameter for GPT-Neo is 8 heads, 6 layers, 512 as the
embedding dimension, and 2048 as FFN dimension. The hyperparameter for Mamba is 12 layers, with 512 as the model
dimension. The vocab size is 18.

• IMDb. We trained all models with 25 epochs and batch size 32.The hyperparameter for GPT-Neo is 8 heads, 6 layers, 512
as the embedding dimension, and 2048 as FFN dimension. The hyperparameter for Mamba is 12 layers, with 512 as the
model dimension. The vocab size is 129.

• CIFAR10. We trained all models with 10 epochs. The hyperparameter for GPT-Neo is 4 heads, 3 layers, 64 as the
embedding dimension, and 128 as FFN dimension. The hyperparameter for Mamba is 6 layers, with 64 as the model
dimension. The vocab size is 256, which is the pixel value range of the grayscale image.

• Pathfinder32. We trained all models with 10 epochs. The hyperparameter for GPT-Neo is 8 heads, 4 layers, 128 as the
embedding dimension, and 128 as FFN dimension. The hyperparameter for Mamba is 8 layers, with 128 as the model
dimension. The vocab size is 256, which is the pixel value range of the grayscale image.

Comparison to non-hybrids on MAD.

14

Pretrained Hybrids with MAD Skills

We use two blocks each from GPT-Neo and Mamba, each with a model dimension of 128. We train for 200 epochs and
select the best performance during training, as all of the models overfit across the board. We use the AdamW (Loshchilov &
Hutter, 2019) optimizer with a linear learning rate schedule with an initial learning rate of 5e− 5.

F.3. Programming Hybrids

Mamba evaluation on long Pathfinder tasks. Due to our limited computation resources, we did not conduct a hyperparam-
eter sweep for the result we presented. We used Mamba with models of a similar size as Pathfinder32, which has 8 layers,
128 as the hidden dimension size, and 256 as the vocab size. The 64× 64, 6 paddles version is trained by 10 Epoch with
default HP. The result for other versions is trained with 200 epochs with default HP in Huggingface trainer.

MAD tasks as a search proxy. For model weights, we use the AdamW (Loshchilov & Hutter, 2019) optimizer with a linear
learning rate schedule with an initial learning rate of 5e− 5. For mixture weights, we use the AdamW (Loshchilov & Hutter,
2019) optimizer with a linear learning rate schedule with an initial learning rate of 0.01 and use simultaneous updates. For
search on the MAD tasks, we train scaled-down versions of GPT-Neo and Mamba each with four blocks, model dimensions
of 128, and no projectors.

F.4. Pretraining Projectors

For all non-frozen weights (i.e., projectors, mixture weights, embeddings, and the LM head), we use the AdamW (Loshchilov
& Hutter, 2019) optimizer with a linear learning rate schedule with an initial learning rate of 5e− 5.

G. Data and MAD Task Parameters
We provide a more detailed description of the datasets that we use in our experiments. We perform our experiments on a
range of synthetic and real tasks that measure various aspects of modern LM capabilities. We discuss the specific datasets
that we use in our experiments below. MAD synthetics. The MAD synthetic datasets are a set of tasks introduced by Poli
et al. (2024) to systematically evaluate the design space of LMs. These tasks are designed to serve as proxy unit tests for
rapidly prototyping of new hybrid LM architectures. In our experiments, we use harder variants of the MAD tasks, in which
we use a larger vocabulary size of 128 instead of the default 16 for most of the tasks, along with fewer training examples.
For simplicity, we omit the compression task as it requires the use of encoder-decoder architectures.

• In-context recall. MAD utilizes a multi-query associative recall task, challenging models to retrieve values linked to keys
within input sequences, testing their in-context learning ability across randomly shuffled mappings. We use a vocab size
of 128 and 800 training examples.

• Fuzzy in-context recall. This is a variant of in-context recall to assess a model’s ability to semantically group adjacent
tokens. Variable-length keys and values are randomly paired, testing the model’s capacity for fuzzy recall. We use a vocab
size of 128 and 800 training examples.

• Noisy in-context recall. This is an adaptation of in-context recall to evaluate a model’s capacity to disregard irrelevant
information. This involves inserting tokens from a separate vocabulary randomly among key-value pairs, enhancing the
memorization challenge. We use a vocab size of 128, a noise vocab size of 16 with 80% noise, and 800 training examples.

• Selective Copying. MAD employs a selective copying task to evaluate a model’s ability to remember and replicate
specific tokens from an input sequence while disregarding randomly inserted noise tokens, emphasizing the preservation
of token order. We use a vocab size of 128 with 96 tokens to copy, and 800 training examples.

• Memorization. MAD assesses language models’ factual knowledge retention through a memorization task, where models
learn fixed key-value mappings without in-context computation, testing pure memorization ability. For this task, we use a
vocab size of 8192.

Long Range Arena. Long Range Arena (LRA) (Tay et al., 2021) is a benchmark consisting of various tasks of different
modalities that evaluate how well models can learn long-context data. For simplicity, we omit byte-level document retrieval
as it requires two forward passes per example.

15

Pretrained Hybrids with MAD Skills

• Long ListOps. This task is designed to understand whether the architecture is able to model hierarchically structured data
in a long-context (Nangia & Bowman, 2018).

• Byte-level text classification. This task attempts to test the model’s ability to deal with compositionality as in the real
world, the model needs to compose characters into words and words into higher-phrases in not so well defined boundaries
making it a challenging task, we use IMDB dataset(Maas et al., 2011) in the LRA paper (Tay et al., 2021).

• Image classification on a sequence of pixels. This task aims to understand whether a model is able to capture the
2D spatial structure when presented with a flattened 1D version of an image to classify, we use pixel information from
CIFAR10(Krizhevsky, 2009) dataset.

• Pathfinder. This task helps to understand whether a model can reason about whether the given 2 dots in an image are
connected by a path having dashes or not. The sequence length is 1024 i.e a 32x32 image is flattened and provided as
input to the model (Linsley et al., 2018; Kim et al., 2020).

• Pathfinder-X. An extreme version of Pathfinder with a higher resolution, such as 64x64 and 128*128, which results in a
sequence length of up to 16K

Penn Treebank completions. We generate a synthetic dataset of generated text from pretrained GPT-Neo-125M (Black
et al., 2021) and pretrained Mamba-130M models (Gu & Dao, 2023). We prompt both models using the first four words of
every example in the Penn Treebank (Marcus et al., 1993b) validation set, which yields two natural slices of our dataset:
sentence completions generated by GPT-Neo and those generated by Mamba.

Natural language tasks. We evaluate the ability to fine-tune Manticore on natural language datasets. Specifically, we
evaluate on Penn Treebank (Marcus et al., 1993a), the Alpaca instruction tuning dataset (Taori et al., 2023), and an i.i.d.
split of the ELI5 training set (Fan et al., 2019). Additionally, we use one billion tokens sampled from the FineWeb dataset
(Penedo et al., 2024) to pretrain our projector weights.

H. A Call for Action & Community Recommendations
Throughout our research process, we noted a handful of opportunities that help to democratize LM research. Should these
opportunities be taken up by the research community, we believe they could help to democratize and help to decentralize
community-driven LM research, all which enabling further research on pretrained hybrids.

A search engine for pretrained models. Surprisingly, we were unable to easily search for pretrained LMs of certain sizes
or with certain properties (using Huggingface or otherwise). Tools like this should exist: this would not only significantly
democratize LMs, but it would help to reduce monopolies on LM releases and usage, and thereby decentralize LM research.

Standardized, block-structured LM implementations. We found that standard tools such as Huggingface and PyTorch
were insufficient to cleanly access intermediate activations across several model implementations. This could be resolved
by adopting standard implementations or structures for LMs that share the common block structure that we describe in
Section A.1. Instead, our solution was to fork implementations of several Huggingface models, which is time-consuming,
error-prone, and non-scalable. A solution to this problem would enable and encourage further research on pretrained hybrid
models, which in turn helps to democratize LM research.

Removing tokenizers from LM pipelines. We believe that there are too many possible tokenizers, and that tokenizers
have a significant potential to introduce merge conflicts in model merging/pretrained hybrid pipelines. In response to this
challenge, in our work, we simply chose an arbitrary tokenizer and relearned our embeddings and LM head from scratch in
all of our experiments. Possible solutions to this problem would be: as a community, we agree on a standard (small) set of
tokenizers, or we eliminate tokenizers altogether by learning character or byte-level LMs.

I. Limitations
At various points in Section 4, we described limitations with using DARTS (the off the shelf NAS search algorithm that we
used) for search, in that it was not always able to recover the best architecture in the search space. A potential limitation of
Manticore is that it relies on the existence of good gradient-based NAS search algorithms, potentially tailored to our search
space. However, we postulate that this is possible, and we leave the task of developing new search techniques to future work.

16

Pretrained Hybrids with MAD Skills

J. Compute Resources
We ran our experiments on the following GPU hardware:

• 2x Nvidia RTX A6000 GPUs with 48GB GPU memory hosted locally in a nook in the lead author’s house and in a friend’s
basement.

• 2x Nvidia RTX 4090 GPUs with 24GB GPU memory each hosted locally in other friends’ basements.

• 2x Nvidia Tesla V100 GPUs with 16GB GPU memory each hosted on AWS (p3.2xlarge instances).

In total, we estimate that our total number of GPU hours across all experiments (those which failed as well as those included
in the paper) amounted to roughly 750 GPU hours. We estimate that less than half of these hours accounted for experiments
that were not ultimately included in the paper.

K. Broader Impacts and Safeguards
We acknowledge the possibility of misuse with respect to any form of LM research. In our work, among other things, we
enable the creation of pretrained hybrid models from existing pretrained models. This has potentially positive and negative
social impacts for the community. As a positive potential social impact, we enable the community to much more easily
create their own hybrid models of various sizes without large scale pretraining—this has as much potential for positive
impact in that these models can be used for good. On the other hand, the ability to create large pretrained hybrids, potentially
with custom sets of skills, has the potential to open the door to misuse. To safeguard against such things, we will include
appropriate licenses and rules for usage when we ultimately deploy a Python package for the community to more broadly
use our framework.

L. Expanded Version of Figure 2 (Right)
To show how the architectures evolve over search on all of the MAD tasks in our mixture weights programming experiment,
we provide a more detailed version of Figure 2 (Right) – this is shown in Figure 3. Here, we plot the architecture trajectories
throughout training on all of the MAD tasks, and superimpose them onto the architecture-loss landscape of the Penn
Treebank completions task. The trajectories roughly follow what appears to be a gradient in the loss landscape, and all of
the trajectories are roughly similar. We derive our final ‘programmed’ alphas by taking the average of the final alpha values
on each of the MAD tasks, after training.

17

Pretrained Hybrids with MAD Skills

0.0 0.2 0.4 0.6 0.8 1.0
Mamba (second block)

0.0

0.2

0.4

0.6

0.8

1.0

M
am

ba
 (f

irs
t b

lo
ck

)

 sweep: two Manticore blocks
fuzzy-in-context-recall trajectory
in-context-recall trajectory
memorization trajectory
noisy-in-context-recall trajectory
selective-copying trajectory
Programmed s

1.4

1.6

1.8

2.0

2.2

Eval loss

Figure 3. Mixture weight sweeps on Penn Treebank completions using pretrained GPT-Neo-125M and Mamba-130M as our component
models. There is a region of the search space where we improve over Mamba when using two Manticore blocks, and our technique for
hybrid programming using MAD discovers this region.

18

