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ABSTRACT

Multi-modal semantic segmentation augments RGB imagery with an auxiliary
sensing stream X (RGB+X)—such as thermal, LiDAR, event, polarization, or
light field—to enhance robustness under adverse illumination and motion blur.
However, sensor heterogeneity often leads to misaligned features and unstable fu-
sion. To alleviate these issues, we propose a bidirectional polarity-aware cross-
modality fusion (BPCF) module that effectively captures complementary cues
while enhancing feature alignment. We evaluate the framework on five modality
pairings—RGB+Thermal, RGB+LiDAR, RGB+Event, RGB+Polarization, and
RGB+Light Field—and achieve state-of-the-art results on eight public datasets.
Notably, our method delivers a 17% mIoU absolute improvement over the second-
best approach on the MFNet dataset.

1 INTRODUCTION

In autonomous driving and robotic perception,
RGB-only semantic segmentation often suffers
from performance degradation under low illumi-
nation, fast motion, and adverse weather condi-
tions Bijelic et al. (2020). Non-RGB modali-
ties provide complementary cues that can miti-
gate these limitations. For instance, incorporat-
ing thermal, LiDAR, event, light field, and po-
larization data can enhance robustness against
low-light conditions, motion blur, and weather-
induced artifacts Chen et al. (2020a); Bijelic
et al. (2020). Nevertheless, effectively fusing
an increasing number of modalities in a reliable
manner—while fully leveraging the strengths of
each sensor—remains an open challenge.

This problem can be considered from two per-
spectives. The first is the efficient utilization
of complementary information. In multi-modal
scenarios such as RGB–Thermal or RGB–Event,
the same object may exhibit reversed attention
responses across modalities.
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Figure 1: Performance comparison be-
tween our proposed method (Ours) and
CMNeXt Zhang et al. (2023) across dif-
ferent modality combinations, including
RGB–Event, RGB–Thermal, RGB–Light Field,
RGB–LiDAR, and RGB–Polarization.

Recognizing that such negative correlations can also provide valuable cues, we propose a bidirec-
tional polarity-aware linear cross-attention (BPLCA) mechanism. BPLCA decomposes features into
positive and negative components and performs cross-modal attention across both branches. This
design enables the model to capture not only shared but also complementary signals across modali-
ties, leading to more complete and balanced feature integration.

The second perspective is cross-modal feature alignment. Heterogeneous data sources (e.g., RGB,
thermal, LiDAR, events, and polarization) exhibit distinct statistics and styles, where naive fusion
often leads to inconsistent features or an over-reliance on a single modality Liu et al. (2022); Zhang
et al. (2023); Cao et al. (2024). To alleviate this issue, we introduce the dual feature consistency con-
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straint (DFCC), which aligns cross-modal features and promotes coherent semantic representations
across modalities. By integrating the above designs, our framework achieves superior performance
compared to recent state-of-the-art (SOTA) methods across eight multi-modal datasets, as illustrated
in Fig. 1. The main contributions of this work are as follows:

• We propose a multi-modal semantic segmentation framework that supports flexible modal-
ity combinations. It enables effective representation learning across diverse RGB+X con-
figurations, including RGB+Thermal, RGB+LiDAR, RGB+Event, RGB+Polarization, and
RGB+Light Field.

• We develop a bidirectional polarity-aware cross-modality fusion (BPCF) module, which
integrates bidirectional polarity-aware linear cross-attention (BPLCA) with a dual feature
consistency constraint (DFCC) to effectively fuse heterogeneous modalities.

• We introduce a stage-wise constraint loss that progressively enforces consistent cross-
modal feature alignment.

• We conduct extensive experiments on eight multi-modal datasets covering five auxiliary
modalities. Our method consistently outperforms SOTA approaches across all datasets.

2 RELATED WORK

Recognizing the auxiliary benefits of non-RGB modalities, prior work has explored a spectrum of fu-
sion strategies, ranging from pairwise integration of complementary modalities to modality-agnostic
frameworks capable of unifying many sensor types. Dual-branch backbones integrate events over
time and use event-count or activity-rate cues, together with bidirectional cross-attention, to synchro-
nize features across modalities and scales Sun et al. (2021); Zhou et al. (2023); Xie et al. (2024);
Zheng et al. (2024a); Li et al. (2025a). Beyond RGB-event fusion, other auxiliary modalities have
also been explored Prakash et al. (2021); Joze et al. (2020); Hazirbas et al. (2016). Moreover,
KTBNet Cai et al. (2025) proposes a parameter-efficient symmetric framework that balances the
contributions between RGB and an additional modality such as thermal, thereby preventing the
dominance of a single branch. Polarization offers informative cues, being particularly sensitive to
specular reflections and material or surface boundaries. However, prior work on RGB–P segmen-
tation has shown only limited performance Liang et al. (2022); Zhang et al. (2023). In parallel,
RoadFormer Huang et al. (2024) integrates RGB and polarization via a dual-branch fusion block
and achieves commendable performance. Nevertheless, the above designs lack modality-agnostic
generalization, as they are tied to fixed modality combinations. CMX Liu et al. (2022) employs
cross-modal feature rectification and fusion modules for long-range context exchange across modal-
ities. Its successor CMNeXt Zhang et al. (2023) extends scalability through a self-query hub and a
parallel pooling mixer, maintaining compactness while adapting to diverse sensor types. Similarly,
Zheng et al. Zheng et al. (2024b) propose a modality-agnostic pipeline that dynamically selects
the most informative modalities, while their follow-up Zheng et al. (2024a) introduces a modality-
agnostic Feature Fusion (MFF) module that synthesizes heterogeneous sensor streams into a uni-
fied representation. GeminiFusion Jia et al. (2024) further refines cross-modal interactions using
pixel-wise intra- and inter-modal attention, and OmniVec2 Srivastava & Sharma (2024) explores
a large-scale shared representation space for multi-modal and multi-task learning. Although these
works have advanced the field, challenges still remain in fully exploiting complementary informa-
tion across modalities and in achieving consistent feature alignment. In this work, we propose a
bidirectional polarity-aware cross-modality fusion (BPCF) module to alleviate these issues.

3 METHOD

As shown in Fig. 2, our model adopts an encoder–decoder architecture with stage-wise fusion mod-
ules. Each modality is first encoded by a dedicated Transformer backbone Xie et al. (2021). Follow-
ing prior work Liu et al. (2022); Zhang et al. (2023), we incorporate ScoreNet to flexibly integrate
RGB with one or more auxiliary modalities. For multiple auxiliary inputs, ScoreNet selects the most
informative feature at each spatial location. The stage-wise BPCF fusion modules then combine the
hierarchical feature representations from the two modality branches. Finally, the fused multi-scale
features are aggregated by an MLP-based segmentation head to produce dense predictions.
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Figure 2: Overview of the proposed multi-modal semantic segmentation framework. Each modality
is independently encoded using a dedicated Transformer backbone. RGB and auxiliary modality fea-
tures are then progressively fused through the proposed fusion module in a stage-by-stage manner.
Finally, the fused multi-scale features are passed to the segmentation head to generate predictions.

3.1 FEATURE EXTRACTION

ScoreNet. To extract the most informative modality features, we employ ScoreNet with a dynamic
selection mechanism. Specifically, ScoreNet processes each patch in each auxiliary modality as
follows:

Si,j = Softmax(Linear(GELU(Linear(Norm(Xi,j))))), i ∈ [1,M ], j ∈ [1, N ]. (1)

where Si,j denotes the informative score for the i-th input modality on the j-th patch token, M
refers to the number of modalities and N = H ×W refers to the number of patches. For each patch
token, the embedding from the modality with the highest score is dynamically selected and fused
into a single auxiliary input to complement the primary RGB data:

xa = {Xm,j |j ∈ H ×W,m = argmax
i

(Si,j)}. (2)

Backbone. Subsequently, the primary RGB data and the dynamically selected auxiliary modality
are encoded by parallel Transformer backbones (MiT) Xie et al. (2021). The extracted multi-level
features are then passed to the proposed stage-wise fusion moldues. The process can be formulated
as follows:

xr = MiT(xr), xa = MiT(xa). (3)

3.2 BIDIRECTIONAL POLARITY-AWARE CROSS-MODALITY FUSION MODULE

To effectively integrate heterogeneous cues from
RGB and auxiliary modalities, we introduce a
bidirectional polarity-aware cross-modality fu-
sion (BPCF) module, as illustrated in Fig. 3.
The BPCF is composed of two key parts: bidi-
rectional polarity-aware linear cross-attention
(BPLCA) and dual feature consistency con-
straint (DFCC). The BPLCA facilitates com-
prehensive cross-modal interaction by employ-
ing symmetric cross-gating and polarity-aware
cross-linear attention. Meanwhile, the DFCC en-
hances feature alignment by exploiting statistical
correlations and applying the consistency con-
straint loss Lstage, complemented by a refinement
block to generate the final fused output.

Figure 3: The overall structure of the BPCF
module. It consists of a bidirectional polarity-
aware linear cross-attention (BPLCA) part and a
dual feature consistency constraint (DFCC) part.

Bidirectional polarity-aware linear cross-attention (BPLCA). To comprehensively fuse comple-
mentary cues from the RGB stream and the auxiliary modality stream, our BPLCA is designed with
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dual cross-modal fusion branches. First, an efficient cross-gating mechanism is applied to activate
relevant features. Second, a symmetric polarity-aware linear cross-attention (PLCA) is introduced
(see Fig. 4), which preserves informative negative evidence while maintaining the linear-time and
linear-memory efficiency of kernelized attention. Formally, let xr, xa ∈ RN×C represent the ex-
tracted features from the RGB and auxiliary branches, reshaped into sequences of N=HW tokens
with C channels. Two 1×1 convolutions are then used to perform per-location linear projections:

xproj
r = Conv1×1(xr), x

proj
a = Conv1×1(xa). (4)

We then realize bidirectional interaction via symmetric cross-gating using the element-wise
(Hadamard) product ◦:

x′
r = xproj

r + (xproj
r ◦ xproj

a ), x′
a = xproj

a + (xproj
r ◦ xproj

a ). (5)

To further enhance cross-modal interaction, the
fused features are passed into the PLCA, as illus-
trated in Fig. 4. Within PLCA, the input features
are projected into four distinct matrices: query
(Q), key (K), value (V ), and gating (G). Among
these, the gating matrix G plays a pivotal role
in realizing polarity-aware attention Meng et al.
(2025), whose mechanism will be detailed in the
following section.

Qr = x′
rqr, Kr = x′

rkr, Vr = x′
rvr, Gr = x′

rgr;

Qa = x′
aqa, Ka = x′

aka, Va = x′
ava, Ga = x′

aga.
(6)

where qr, kr, vr, gr, qa, ka, va, ga denote the learn-
able linear projections for the RGB and auxiliary
branches, respectively.

Following the kernelization strategy
in Katharopoulos et al. (2020), vanilla at-
tention can be reformulated using a similarity
function defined by a feature map ϕ(·). The i-th
row of the attention result is formulated as:

Attention(Q,K, V )i =

∑
j sim(Qi,Kj)Vj∑
j sim(Qi,Kj)

,

(7)

Figure 4: Illustration of PLCA. Features from
RGB and auxiliary modality are deeply fused
through the PLCA component.

sim(x, y) = κ(x, y) = ϕ(x)Tϕ(y). (8)

This kernelization renders the similarity function decomposable. By exploiting distributive and
associative properties, the final attention computation becomes:

Attention(Q,K, V ) =
ϕ(Q)T

(∑
j ϕ(Kj)Vj

)
ϕ(Q)T

(∑
j ϕ(Kj)

) . (9)

Notably, Eq. 9 avoids the O(N2D) pairwise computations Q⊤
i Kj by precomputing the terms∑

j ϕ(Kj)Vj and
∑

j ϕ(Kj), thereby reducing the overall time complexity to O(ND2). Standard
non-negative feature maps like ReLU discard negative information. This information is retained by
decomposing queries and keys into positive (Q+) and negative (Q−) parts via Q = Q+−Q− where
Q+ = ReLU(Q) and Q− = ReLU(−Q). The same decomposition is applied to the key matrix K.
Then the inner product can be decomposed into:

⟨qi, kj⟩ = ⟨q+i , k
+
j ⟩+ ⟨q−i , k

−
j ⟩ − ⟨q−i , k

+
j ⟩ − ⟨q+i , k

−
j ⟩. (10)
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Then the linear-decomposable similarity function in Eq. 8 can be derived as

sim(x, y) = ϕ(qi)
Tϕ(kj)

= ((ϕ(qi)
+)Tϕ(kj)

+ + (ϕ(qi)
−)Tϕ(kj)

−)− ((ϕ(qi)
+)Tϕ(kj)

− + (ϕ(qi)
−)Tϕ(kj)

+).
(11)

Thus, we can accept a non-positive feature map ϕ in the kernel. To process these non-negative
components, we employ a channel-wise learnable feature map, ϕ(x), defined as:

ϕ(x) = xP ,where P = 1 + α · sigmoid(W ) (12)

where P is a dynamically computed exponent, determined by a hyperparameter α and a d-
dimensional learnable parameter vector W , which learns to weigh the relative importance of dif-
ferent channels. To explicitly model the interactions between polarities, we first concatenate the
positive and negative components along the channel dimension (denoted by ∥), then capture the
interactions between Q and K for same-signed (++, −−) and opposite-signed (+−, −+) pairs
separately while ensuring all kernelized terms remain non-negative. The value (V ) is partitioned
accordingly with Vr = V s

r ∥ V o
r and Va = V s

a ∥ V o
a , while both split tensors have half of the channels

from the original one. Based on these decompositions, we then compute the intermediate fusion re-
sults for the RGB and auxiliary modalities, distinguishing between same-signed and opposite-signed
correlations, substituting Eq. 11 into Eq. 9:

xs
r =

ϕ(Q+
a ∥Q−

a )T
∑

j ϕ(K
+
r ∥K−

r )j(V
s

r )j

ϕ(Q+
a ∥Q−

a )T
∑

j ϕ(K
+
r ∥K−

r )j
, xo

r =
ϕ(Q−

a ∥Q+
a )

T
∑

j ϕ(K
+
r ∥K−

r )j(V
o

r )j

ϕ(Q−
a ∥Q+

a )T
∑

j ϕ(K
+
r ∥K−

r )j
;

xs
a =

ϕ(Q+
r ∥Q−

r )T
∑

j ϕ(K
+
a ∥K−

a )j(V
s

a )j

ϕ(Q+
r ∥Q−

r )T
∑

j ϕ(K
+
a ∥K−

a )j
, xo

a =
ϕ(Q−

r ∥Q+
r )

T
∑

j ϕ(K
+
a ∥K−

a )j(V
o

a )j

ϕ(Q−
r ∥Q+

r )T
∑

j ϕ(K
+
a ∥K−

a )j
.

(13)
To capture sophisticated relations between same-signed and opposite-signed parts, we employ a
learnable, element-wise mixing that weights the same-signed and opposite-signed streams via gating
tensors, G = Gs ∥Go. The final polarity-aware outputs are then produced through gated fusion:

x′′
r = (xs

r ◦Gs
a) ∥ (xo

r ◦Go
a), x

′′
a = (xs

a ◦Gs
r) ∥ (xo

a ◦Go
r ) (14)

Notably, the query matrix Q and gating matrix G are designed to interact with the other modality in
the cross-modality design of the PLCA component. This mechanism preserves the integrity of the
original content alignment by mitigating excessive influence from the complementary modality, yet
still allows for the infusion of necessary cross-modal information.

Dual feature consistency constraint (DFCC).
To strengthen cross-modal feature alignment
while maintaining consistency, we introduce the
DFCC. As shown in Fig. 5, DFCC integrates a
feature consistency constraint with a refinement
block in a unified design, jointly enabling seman-
tic alignment and feature enhancement. Specif-
ically, given enhanced RGB and auxiliary fea-
tures x′

r, x′
a ∈ RB×C×H×W and fused features

x′′
r , x′′

a ∈ RB×C×H×W , we first compute fea-
ture statistics to align the feature spaces across
both streams:

x̂r =
x′

r − µ(x′
r)

σ(x′
r)

, x̂a =
x′

a − µ(x′
a)

σ(x′
a)

; (15)
Figure 5: Illustration of DFCC.

where,

µ(x) =
1

HW

H∑
h=1

W∑
w=1

x, σ(x) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(
x− µ(x)

)2
. (16)
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where µ(x) and σ(x) denote the channel-wise mean and standard deviation, respectively. DFCC
then learns adaptive affine modulation parameters from the fused features x′′

r and x′′
a . Specifically,

the global average pooling operations are first applied:

zr = AvgPool(x′′
r ), za = AvgPool(x′′

a ). (17)

Subsequently, MLPs are employed to generate branch-specific modulation parameters:

γr = MLP(zr), βr = MLP(zr),

γa = MLP(za), βa = MLP(za).
(18)

The normalized features are then modulated as:

yr = γr · x̂r + βr, ya = γa · x̂a + βa. (19)

Finally, the two streams are concatenated and fed into the refinement block, which comprises two
parallel paths: a 1 × 1 convolutional shortcut that preserves identity information, and a nonlinear
transformation branch that enhances feature fusion. The nonlinear branch sequentially applies a
1 × 1 convolution for channel reduction, a 3 × 3 depthwise convolution for spatial interaction,
a ReLU activation, and another 1 × 1 convolution to restore the channel dimension, followed by
normalization. The final output is then obtained by summing the two paths:

yf = Refinement(yr ∥ ya). (20)

Moreover, to further enhance cross-modal consistency, we incorporate a stage-wise constraint loss
within DFCC. At each fusion stage, the features yr and ya are computed by averaging over the
channel dimension:

αr = Norm(Mean(yr, dim = 1)),

αa = Norm(Mean(ya, dim = 1)).
(21)

where Norm(a) = a−min(a)
max(a)−min(a)+ϵ is applied pixel-wise. The stage-wise constraint loss is then

defined as the mean squared error (MSE) between the normalized features:

Lstage = ∥αr − αa∥22. (22)

This objective encourages both modalities to produce consistent responses, thereby improving fea-
ture alignment.

3.3 LOSS FUNCTION

Our proposed model is trained using a combination of segmentation and alignment objectives. For
the primary segmentation task, we employ the standard pixel-wise cross-entropy loss, commonly
used in dense prediction tasks:

LCE = − 1

N

N∑
i=1

log
exp(pi,yi)∑C
j=1 exp(pi,j)

. (23)

where N = H ×W denotes the number of valid pixels, C is the number of classes, pi,j represents
the logit for class j at pixel i, and yi is the corresponding ground-truth label. The overall training
objective combines the segmentation loss with the stage-wise constraint loss as follows:

Ltotal = λ1 · LCE + λ2 ·
4∑

i=1

L(i)
stage. (24)

where λ1 and λ2 balance the segmentation and stage-level constraint losses. In our experiments, we
set λ1 = 1 and λ2 = 0.1.

4 COMPARISON WITH STATE-OF-THE-ARTS

We evaluate our approach on eight widely used multi-modal datasets: MFNet Ha et al. (2017),
KITTI-360 Liao et al. (2022), DDD17 Binas et al. (2017), DSEC Gehrig et al. (2021), DE-
LIVER Zhang et al. (2023), UrbanLF Sheng et al. (2022), MCubeS Liang et al. (2022), and ZJU Xi-
ang et al. (2021). Additional dataset details are provided in the Appendix.
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Table 1: Semantic segmentation results on the MFNet RGB-Thermal dataset.

Method Venue Backbone mIoU (%)
PAP Zhang et al. (2019) CVPR’19 ResNet-18 50.5
ABMDRNet Zhang et al. (2021) CVPR’21 ResNet-18 54.8
GMNet Zhou et al. (2021b) TIP’21 ResNet-50 57.3
EGFNet Zhou et al. (2022) AAAI’22 ResNet-152 54.8
DooDLeNet Frigo et al. (2022) CVPR’22 ResNet-101 57.3
CMX Liu et al. (2022) TITS’23 MiT-B4 59.7
CMNeXt Zhang et al. (2023) CVPR’23 MiT-B4 59.9
KTBNet Cai et al. (2025) CVPR’25 Swin-B 59.9

Ours - MiT-B4 76.9

Table 2: Semantic segmentation results on the KITTI-360 RGB-LiDAR dataset.

Method Venue Backbone mIoU (%)
PMF Zhuang et al. (2021) ICCV21 SalsaNext 54.5
TransFuser Prakash et al. (2021) CVPR21 RegNetY 56.6
TokenFusion Wang et al. (2022) CVPR22 MiT-B2 54.6
HRFuser Broedermann et al. (2023) ITSC23 HRFormer-T 48.7
CMX Liu et al. (2022) TITS23 MiT-B2 64.3
CMNeXt Zhang et al. (2023) CVPR23 MiT-B2 65.3

Ours - MiT-B2 66.8

Table 3: Semantic segmentation results on the DDD17 and DSEC RGB-Event datasets.

Method Venue Modal DDD17 DSEC
mIoU (%) Acc. (%) mIoU (%) Acc. (%)

E2VID Rebecq et al. (2019) TRAMI’19 Event 48.47 85.84 44.08 80.06
OpenESS Kong et al. (2024) CVPR’24 Event 63.00 91.05 57.21 90.21
KWYAF Li et al. (2025b) AAAI’25 Event 57.69 90.04 57.75 90.87
ESEG-L Zhao et al. (2025) AAAI’25 Event 59.97 90.68 57.55 91.47

CMX Liu et al. (2022) TITS’23 RGB+Event 71.88 95.64 72.42 95.07
CMNeXt Zhang et al. (2023) CVPR’23 RGB+Event 72.67 95.74 72.54 95.10
HMNet-L Hamaguchi et al. (2023) CVPR’23 RGB+Event - - 55.00 89.80
EISNet Xie et al. (2024) TMM’24 RGB+Event 75.03 96.04 73.07 95.12
Hybrid-Segmentation Li et al. (2025a) AAAI’25 RGB+Event 67.31 95.07 66.57 94.27

Ours - RGB+Event 77.85 97.10 74.77 95.60

Results on MFNet. We evaluate our method on the MFNet dataset, a popular benchmark for RGB-
thermal semantic segmentation. As shown in Tab. 1, our model achieves 76.9% mIoU, significantly
outperforming prior methods such as KTBNet Cai et al. (2025) (59.9%) and CMNeXt Zhang et al.
(2023) (59.9%). In particular, our approach yields a 17% absolute improvement over KTBNet,
highlighting its superior capability for RGB-thermal segmentation.The proposed method establishes
a new SOTA result on the MFNet dataset.

Results on KITTI-360. As shown in Tab. 2, our model achieves 66.8% mIoU, outperforming
all competing fusion methods. In particular, PMF Zhuang et al. (2021), TransFuser Prakash et al.
(2021), TokenFusion Wang et al. (2022), and HRFuser Broedermann et al. (2023) lag significantly
behind. Moreover, our approach surpasses CMX Liu et al. (2022) (64.3%) and CMNeXt Zhang
et al. (2023) (65.3%), further demonstrating the effectiveness of the proposed fusion mechanism.
These results highlight the superiority of our method for RGB-LiDAR segmentation, particularly in
large-scale outdoor scenes.

Results on DDD17 and DSEC. Tab. 3 summarizes the results on the DDD17 and DSEC datasets.
Our model achieves 77.85% mIoU and 97.10% Pixel Acc on DDD17 dataset and 74.77% mIoU and

7
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Table 4: Semantic segmentation results on the DELIVER RGB-Event dataset.

Method Venue Modal Resolution mIoU (%)
TokenFusion Wang et al. (2022) CVPR’22 RGB+Event 1024×1024 45.6
HRFuser Broedermann et al. (2023) ITSC’23 RGB+Event 1024×1024 42.2
CMX Liu et al. (2022) TITS’23 RGB+Event 1024×1024 56.5
CMNeXt Zhang et al. (2023) CVPR’23 RGB+Event 1024×1024 57.5
Any2Seg Zheng et al. (2024a) ECCV’24 RGB+Event 512×512 57.8
KTBNet Cai et al. (2025) CVPR’25 RGB+Event - 58.4

Ours - RGB+Event 512×512 60.3

Table 5: Semantic segmentation results on the UrbanLF-real and UrbanLF-syn datasets. “LF80”,
“LF33”, and “LF8” denote using 80, 33, and 8 sub-aperture views as auxiliary modalities.

Method Venue Modal Real Syn
mIoU (%) mIoU (%)

SegFormer Xie et al. (2021) NeurIPS’21 RGB 82.20 78.53
OCR Yuan et al. (2020) TCSVT’22 RGB 78.60 79.36

DAVSS Zhuang et al. (2020) TCSVT’20 Video 75.91 74.27
TMANet Wang et al. (2021) ICIP’ 21 Video 77.14 76.41

SA-Gate Chen et al. (2020b) ECCV’ 20 RGB-D - 79.53

PSPNet-LF Zhao et al. (2017) CVPR’17 RGB+LF33 78.10 77.88
OCR-LF Sheng et al. (2022) TCSVT’22 RGB+LF33 79.32 80.43
CMNeXt Zhang et al. (2023) CVPR’23 RGB+LF8 83.22 80.74
CMNeXt Zhang et al. (2023) CVPR’23 RGB+LF33 82.62 80.98
CMNeXt Zhang et al. (2023) CVPR’23 RGB+LF80 83.11 81.02

Ours - RGB+LF8 82.59 80.98
Ours - RGB+LF33 83.30 81.22
Ours - RGB+LF80 83.99 81.91

95.60% Pixel Acc on DSEC dataset. Compared with the second-best RGB+Event fusion method,
EISNet Xie et al. (2024), our approach consistently outperforms it in both mIoU and Pixel Acc.
In contrast, event-only models such as ESEG-L Zhao et al. (2025), KWYAF Li et al. (2025b), and
OpenESS Kong et al. (2024) achieve considerably lower scores, underscoring the importance of
multi-modal fusion. These results validate the effectiveness of our method and set a new SOTA on
the DDD17 and DSEC datasets.

Results on DELIVER. We further evaluate our approach on the DELIVER dataset, which pro-
vides high-resolution (1024 × 1024) RGB-event pairs for semantic segmentation. Owing to GPU
memory limitations, we train and evaluate our model on resized inputs of 512 × 512. As shown in
Tab. 4, our method achieves 60.3% mIoU. Notably, even at half the original resolution, it surpasses
recent SOTA methods such as KTBNet Cai et al. (2025) (58.4%), Any2Seg Zheng et al. (2024a)
(57.8%), and CMNeXt Zhang et al. (2023) (57.5%). These results underscore the robustness of our
fusion framework, even under reduced input resolution.

Results on UrbanLF. As shown in Tab. 5, our model achieves 83.99% mIoU on UrbanLF-real
and 81.91% mIoU on UrbanLF-syn, outperforming CMNeXt Zhang et al. (2023) (83.22%/80.74%).
Even under different sub-aperture configurations, our framework maintains strong performance,
achieving 83.30%/81.22% with LF33 and 82.59%/80.98% with LF8. Compared with RGB-only
and video-based methods, our approach delivers substantial improvements, underscoring the advan-
tage of integrating sub-aperture views with RGB guidance.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Semantic segmentation results on the MCubeS dataset with different modality combina-
tions. “A” denotes AoLP, “D” denotes DoLP, and “N” denotes NIR.

Method Venue Modal mIoU (%)
MCubeSNet Liang et al. (2022) CVPR’22 RGB+A 39.10
CMNeXt Zhang et al. (2023) CVPR’23 RGB+A 48.42
Ours - RGB+A 50.09
MCubeSNet Liang et al. (2022) CVPR’22 RGB+A+D 42.00
CMNeXt Zhang et al. (2023) CVPR’23 RGB+A+D 49.48
Ours - RGB+A+D 51.14
MMTM Joze et al. (2020) CVPR’20 RGB+A+D+N 39.71
DRConv Chen et al. (2021) CVPR’21 RGB+A+D+N 34.63
DDF Zhou et al. (2021a) CVPR’21 RGB+A+D+N 36.16
TransFuser Prakash et al. (2021) CVPR’21 RGB+A+D+N 37.66
MCubeSNet Liang et al. (2022) CVPR’22 RGB+A+D+N 42.86
CMNeXt Zhang et al. (2023) CVPR’23 RGB+A+D+N 51.54
Ours - RGB+A+D+N 52.22

Results on MCubeS. Tab. 6 presents the results on the MCubeS dataset. Using all four modali-
ties (RGB+A+D+N), our method outperforms all compared approaches, including CMNeXt Zhang
et al. (2023) and MCubeSNet Liang et al. (2022). Experiments with different modality combinations
further demonstrate that each additional modality (A, D, and N) contributes to improved segmenta-
tion performance. Overall, fusing all four modalities yields the best results. The results for the ZJU
dataset are provided in the Appendix.

4.1 ABLATION STUDIES

Tab. 7 summarizes the ablation results on the
MFNet, DSEC, and DDD17 datasets, highlight-
ing the contributions of each proposed com-
ponent in terms of mIoU. Models are trained
for 60 epochs on MFNet and DSEC, and 40
epochs on DDD17. Specifically, introducing
BPLCA yields substantial gains, with a +6.45%
mIoU improvement on MFNet, demonstrating
that BPLCA effectively enhances cross-modal
interaction.

Table 7: Ablation study of different architectures
on the MFNet, DSEC, and DDD17 datasets.

Architecture MFNet DSEC DDD17
mIoU (%) mIoU (%) mIoU (%)

Baseline 67.21 74.26 76.91
+ BPLCA 73.66 74.04 77.57
+ BPLCA + DFCC 76.36 74.29 77.73
+ BPLCA + Lstage 76.57 74.37 77.63
+ BPLCA + DFCC + Lstage 76.74 74.77 77.85

Incorporating DFCC further boosts performance—particularly on MFNet (76.36%)—by refining
feature consistency. The dense stage-wise loss Lstage provides additional supervision and stabi-
lizes optimization, leading to further improvements across all datasets. Finally, combining BPLCA,
DFCC, and Lstage achieves the best performance: 76.74% mIoU on MFNet, 74.77% on DSEC,
and 77.85% on DDD17. Overall, these results confirm that the three components are complemen-
tary: BPLCA strengthens modality fusion, DFCC enforces feature consistency, and Lstage supplies
multi-level supervision—together delivering significant segmentation improvements.

5 CONCLUSION

In this work, we presented a multi-modal semantic segmentation framework that flexibly integrates
RGB with diverse auxiliary modalities, including thermal, LiDAR, event, light field, and polariza-
tion data. Our approach features a selective fusion mechanism that dynamically activates the most
informative auxiliary modality at each spatial location, a bidirectional polarity-aware linear cross-
attention (BPLCA) combined with a dual feature consistency constraint (DFCC) for feature-aligned
fusion, and a stage-wise supervision loss that progressively enforces cross-modal consistency. Ex-
tensive experiments on eight public benchmarks demonstrate that our method consistently outper-
forms SOTA approaches.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT
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purposes. We acknowledge that semantic segmentation and multimodal perception techniques may
potentially be applied in sensitive domains (e.g., surveillance, autonomous driving), and we encour-
age responsible use of our methods.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of our model architecture, training set-
tings, and experimental protocols in the paper. All hyperparameters and loss functions are explicitly
specified. Furthermore, we will release the source code, pretrained models, and instructions for
reproducing the reported results upon publication. This allows other researchers to validate our
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A APPENDIX

A.1 USE OF LLMS

We used ChatGPT (OpenAI) solely for grammar polishing and improving readability in the intro-
duction and related work sections. No content generation, data analysis, or result creation was
performed using large language models (LLMs).

A.2 DATASETS

An overview of the datasets used in our experiments is provided in Tab. 8.

Table 8: Summary of multi-modal datasets used in our experiments.

Dataset Modality Classes Train / Test Resolution

MFNet Ha et al. (2017) RGB-Thermal 8 784 / 392 480× 640
KITTI-360 Liao et al. (2022) RGB-LiDAR 19 49004 / 12276 1408× 376
DDD17 Binas et al. (2017) RGB-Event 5 15950 / 3890 200× 346
DSEC Gehrig et al. (2021) RGB-Event 11 8082 / 2809 440× 640
DELIVER Zhang et al. (2023) RGB-Event-Depth 25 3893 / 1897 1024× 1024
UrbanLF Sheng et al. (2022) RGB-Light Field 14 580 / 80 (Real), 172 / 28 (Syn) 623× 432, 640× 480
MCubeS Liang et al. (2022) RGB-AoLP-DoLP-NIR 20 302 / 102 1224× 1024
ZJU Xiang et al. (2021) RGB-Polarization 8 344 / 50 1224× 1024

RGB-T MFNet Ha et al. (2017) is a driving-scene dataset with 1,569 aligned RGB-thermal pairs
across 8 semantic classes. It provides 784/392/392 images for training, validation, and testing,
respectively, covering both daytime and nighttime conditions.

RGB-L KITTI-360 Liao et al. (2022) is a suburban driving dataset, providing 49,004 training and
12,276 validation images with a resolution of 1408× 376. Following the Cityscapes dataset Cordts
et al. (2016), it defines 19 semantic classes.

RGB-E DDD17 Binas et al. (2017) includes over 12 hours of driving data collected with a
DAVIS346B sensor, providing event streams and grayscale images at 200 × 346 resolution. We
generate pseudo-labels using EV-SegNet Alonso & Murillo (2019), resulting in 5 semantic classes
and splits of 15,950/3,890 samples.

RGB-E DSEC Gehrig et al. (2021) contains over 10k RGB-event frames with 11 categories, cap-
tured from stereo cameras in urban and rural environments. We follow Xie et al. (2024) for prepro-
cessing and dataset splits (8082/2809 for training/testing).

RGB-X DELIVER Zhang et al. (2023) is a large-scale synthetic benchmark built in the CARLA
simulator, supporting multi-modal segmentation across RGB, depth, event, and LiDAR streams.
It contains over 47k annotated frames from six camera views under diverse conditions, including
challenging weather (fog, rain, night) and five sensor degradation types (e.g., motion blur, exposure
imbalance, LiDAR jitter). The dataset defines 25 semantic classes covering urban elements such as
vehicles, roads, pedestrians, and vegetation.

RGB-LF UrbanLF Sheng et al. (2022) is a light-field dataset for urban-scene segmentation, in-
cluding both real (580/80/164) and synthetic (172/28/50) subsets, each with 14 semantic classes.
Central-view annotations are used for supervision.

RGB-P MCubeS Liang et al. (2022) consists of 500 samples with aligned RGB, NIR, and polariza-
tion cues (DoLP, AoLP), annotated with 20 material categories. The dataset is split into 302/96/102
for training, validation, and testing.

RGB-P ZJU Xiang et al. (2021) is a polarization semantic segmentation dataset collected in outdoor
scenes. Each sample contains four polarized RGB images at 0◦, 45◦, 90◦, and 135◦, from which
AoLP and DoLP are derived using Stokes parameters. It provides 344 training and 50 validation
samples across 8 semantic classes, with image resolution of 1224× 1024.
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Figure 6: Qualitative results across multiple modalities. Our model consistently produces sharper
boundaries and more accurate object recognition under challenging conditions.

A.3 IMPLEMENTATION DETAILS

All models are trained on a single NVIDIA RTX 3090 GPU with a batch size of 2. We adopt
AdamW Loshchilov & Hutter (2019) as the optimizer, with an initial learning rate of 6 × 10−5,
momentum of 0.9, weight decay of 0.01, and epsilon of 1 × 10−8. The learning rate is scheduled
using polynomial decay with a power of 0.9, preceded by a 10-epoch linear warm-up. Input images
are resized to dataset-specific resolutions. Moreover, standard data augmentations are applied, in-
cluding random resizing within [0.5, 2.0], horizontal flipping, color jitter, Gaussian blur, and random
cropping.

A.4 QUALITATIVE ANALYSIS

In Fig. 6, we present qualitative comparisons on five representative datasets: MFNet Ha et al. (2017)
(RGB-Thermal), KITTI-360 Liao et al. (2022) (RGB-LiDAR), DSEC Gehrig et al. (2021) (RGB-
Event), ZJU-RGBP Xiang et al. (2021) (RGB-Polarization), and UrbanLF-real Sheng et al. (2022)
(RGB-LightField). On MFNet, our method more clearly distinguishes pedestrians—particularly
small and distant ones—that the baseline often fails to separate from the background. On KITTI-360,
it delineates roadside trees with sharper boundaries and smoother transitions between vegetation and
surrounding regions. On DSEC, our model suppresses spurious responses in the background sky,
yielding more stable predictions under fast-motion conditions. On ZJU-RGBP, improvements are
evident around reflective surfaces, where pedestrians and vehicle windows are predicted with higher
accuracy and fewer artifacts. On UrbanLF-real, our approach provides more consistent segmentation
of riders, pedestrians, and background elements, maintaining coherent parsing even under occlusion.
Across all benchmarks, these qualitative visualizations show that our fusion strategy consistently
produces more reliable results, underscoring its superiority across diverse sensing scenarios.
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Table 9: Semantic segmentation results on the ZJU RGB-P dataset. “P(A+D)” denotes using both
AoLP and DoLP as auxiliary input.

Method Venue Backbone Modal mIoU (%)
SwiftNet Orsic et al. (2019) CVPR’19 - RGB 80.3

CMX Liu et al. (2022) TITS’23 MiT-B4 RGB+A 92.6
Ours - MiT-B4 RGB+A 92.8
CMX Liu et al. (2022) TITS’23 MiT-B4 RGB+D 92.5
Ours - MiT-B4 RGB+D 93.1
NLFNet Yan et al. (2021) ROBIO’21 - RGB+P(A+D) 84.4
EAFNet Xiang et al. (2021) OE’21 - RGB+P(A+D) 85.7
RoadFormer+ Huang et al. (2024) TIV’24 - RGB+P(A+D) 93.0
Ours - MiT-B4 RGB+P(A+D) 93.8

A.5 FURTHER RESULTS ANALYSIS

Results on ZJU. On the ZJU dataset, our method achieves 93.8% mIoU with both A and D inputs,
surpassing all competing methods (see Tab. 9). Under different modality settings, it attains 92.8%
with RGB+A and 93.1% with RGB+D, outperforming CMX Liu et al. (2022) in both cases. These
results highlight the complementary role of polarization cues and demonstrate the effectiveness of
our fusion strategy.

A.6 LIMITATIONS AND FUTURE WORK

Despite these promising results, several limitations remain. The computational overhead of
transformer-based dual encoders is still significant, especially at high resolutions or when handling
multiple modalities simultaneously. Future work may explore lightweight backbones, efficient at-
tention mechanisms, or model compression techniques to improve scalability.
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