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Abstract
Elucidating the functional effect of missense vari-
ants is of crucial importance, yet challenging. To
understand the impact of such variants, we fine-
tuned the ESM2 protein language model to clas-
sify 20 protein features at amino acid resolution.
We used the resulting models to: 1) identify pro-
tein features that are enriched in either pathogenic
or benign missense variants, 2) compare the char-
acteristics of proteins with reference or alternate
alleles to understand how missense variants affect
protein functionality. We show that our model can
be used to reclassify some variants of unknown
significance. We also demonstrate the usage of
our models for understanding the potential effect
of variants on protein features.

1. Introduction
Recent advancement in sequencing technologies and bioin-
formatic analyses have enhanced their usability in clinical
settings (Bagger et al., 2024). This has led to the genera-
tion of vast amounts of clinical-grade, personal genetic data.
Many of the putatively deleterious variants identified in the
coding regions of the genome are missense variants that may
alter the protein function (Chen et al., 2023). Determining
the clinical significance and potential impact of each variant
poses significant challenges (Miosge et al., 2015).

In the context of diagnostic genetic testing, a commonly
used approach is to follow the ACMG/AMP guidelines
(Richards et al., 2015), which propose a standardized frame-
work for the interpretation of sequence variants. It provides
a set of criteria to gather various evidences such as pop-
ulation data (Chen et al., 2023; Auton et al., 2015) and
computational data (Cheng et al., 2023; Ioannidis et al.,
2016).
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One criterion that is used in the classification of missense
variants, with grade PM1 (moderate evidence of pathogenic-
ity), is “location in a mutational hot spot and/or critical and
well-established functional domain (e.g. active site of an
enzyme) without benign variation” (Richards et al., 2015).
However, the determination of such regions is challeng-
ing since it requires the careful identification of functional
domains and the quantification of pathogenic/benign enrich-
ment (Harrison et al., 2019). Previous studies have used dis-
ease databases such as ClinVar (Landrum et al., 2013) along
with population data (Chen et al., 2023; Auton et al., 2015)
to identify regions that are enriched with pathogenic vari-
ants (Quinodoz et al., 2022; Iqbal et al., 2020; Pérez-Palma
et al., 2019). However, only a small portion of proteins
were analyzed due to incomplete annotation of the human
proteome. Moreover, there was no attempt at understanding
the impact of missense variants on protein features.

In this study we aim to harness the power of protein lan-
guage models (Bepler & Berger, 2021), ESM2 in particular
(Lin et al., 2023), for variant classification and interpreta-
tion. Previous studies have shown the effective fine-tuning
of ESM2 for various tasks (Schmirler et al., 2023; Schreiber,
2023). Here, we fine-tune the model for identification of
various protein features at amino acid resolution, then utilize
it to: 1) find features that are enriched in pathogenic/benign
variants, which can be considered as critical functional re-
gions, 2) compare the characteristics of proteins with refer-
ence or alternate alleles to understand how missense variants
affect protein functionality. We show the application of our
models to reclassify variants of unknown significance (VUS)
in gnomAD (Chen et al., 2023). We also demonstrate how
we can use our models to gain insight into the protein- and
feature-specific impact of missense variants.

2. Methods
2.1. Data collection

We selected 20,434 human proteins from UniProtKB/Swiss-
Prot (Boutet et al., 2007) and extracted their amino acid
sequence as well as their protein family membership. We
annotated the proteins with 20 features including:
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• Functional features: active site, binding site, and DNA
binding site

• Sub-cellular location: topological domain and trans-
membrane

• Post-transcriptional modification (PTM) and process-
ing: disulfide bond, modified residue, propeptide, sig-
nal peptide, and transit peptide

• Structure: β-strand, α-helix, and turn

• family and domain: coiled coil, compositional bias,
domain, motif, region, repeat, and zinc finger

2.2. Fine-tuning

For each feature, we split the annotated proteins into 70%
training, 15% validation, and 15% testing. To minimize the
data leakage, we split the data based on the UniProt protein
family membership, which accounts for protein sequence
similarity. Afterwards, we fine-tuned ESM2 (12 layers,
35M parameters) for each feature separately to perform
amino acid classification based on absence/presence of the
feature. We trained each model for 5 epochs, and kept the
checkpoint with lowest validation loss. We used one Nvidia
L4 (24GB) GPU for training. This workflow resulted in
20 fine-tuned models, each one specialized in amino acid
classification for the corresponding feature. We evaluated
each model on their test set using various metrics including
precision, recall, F1, area under curve (AUC), and Matthews
correlation coefficient (MCC). For the next steps, we kept
only the models with F1 ≥ 0.5. Figure 1 summarizes the
fine-tuning workflow.

2.3. Protein annotation inference

For each feature, we extracted the amino acid sequences
from all proteins that lacked information about that feature.
We utilized the corresponding fine-tuned model to predict
presence or absence of the feature at each amino acid. To
check the quality of predictions, we compared the distri-
bution of phyloP conservation scores (Siepel et al., 2005)
and REVEL pathogenicity scores (Ioannidis et al., 2016)
between labeled and predicted amino acids.

2.4. Applications

• Variant classification: according to the ACMG/AMP
guidelines (Richards et al., 2015), missense variants
that are located in a mutational hot spot and/or critical
functional domains are more likely to be pathogenic
(moderate evidence of pathogenicity, PM1). To identify
such regions, we obtained 41,749 missense pathogenic
and 50,975 missense benign variants from ClinVar
(Landrum et al., 2013) (variants with conflicting clas-
sification were removed). We also extracted 46,832

Figure 1. Fine-tuning ESM2 for amino acid classification: 20,434
human protein sequences were downloaded from UniPro-
tKB/SwissProt. Each sequence was annotated with 20 features
at the amino acid resolution. For each feature, ESM2 was
fine-tuned to perform amino acid classification based on pres-
ence/absence of the feature. This resulted in 20 fine-tuned ESM2
models. AA, amino acid; NA, not available. Figure created with
BioRender.com.

non-redundant missense variants with minor-allele fre-
quency ≥ 0.02 from gnomAD (Chen et al., 2023), and
added them to the set of benign variants (they are con-
sidered benign due to high frequency in population,
BS1 criteria Appendix A). We performed two-sided
Fisher’s exact test to identify protein features that are
significantly enriched in pathogenic or benign variants.
After detecting regions with enrichment of pathogenic
variants, we used them to reclassify variants of unkown
significance (VUS) in gnomAD. To do so, we extracted
all missense variants from gnomAD, and assigned a
probability of pathogenicity (PoP) without using PM1
(full description in Appendix A). Then we focused on
VUS and calculated a new PoP score by adding the
PM1 evidence which is applied for missense variants
located in regions with high enrichment of pathogenic
variants. Finally, we calculated the fraction of VUS
that were reclassified by adding PM1.

• Variant interpretation: to understand the potential im-
pact of a missense variant on the protein, we designed a
workflow that can provide insight into the variant mech-
anism (Figure 2). In summary, we pass the reference
and alternate protein sequences into ESM2 fine-tuned
models. Then we subtract the prediction probabilities
of alternate features from reference features. To detect
a gain or loss of a certain feature upon mutation, amino
acid label must change and the absolute value of differ-
ential score should exceed a threshold (we chose 0.5 as
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the threshold but it is possible to have a lower threshold
to increase sensitivity or a higher threshold to increase
specificity). By doing so, we can predict the changes
in protein features at amino acid resolution, which
can be helpful for designing follow-up functional stud-
ies. To demonstrate this application, we downloaded
6,974 curated variants across 107 genes from ClinGen
(Rehm et al., 2015), and kept genes with at least one
pathogenic and one benign missense variants. Then we
applied the variant interpretation workflow (Figure 2)
for all the selected variants.

Figure 2. Variant interpretation using fine-tuned ESM2 models: to
understand the impact of a missense variant, the reference and
alternate protein sequences are passed into the ESM2 fine-tuned
models. Then the difference between the prediction probabilities of
alternate and reference features is calculated. Finally, a threshold
is applied to detect gain or loss of features upon mutation. Figure
created with BioRender.com.

3. Results
3.1. Fine-tuning and performance evaluation

Figure S1 shows the number of annotated human proteins
in UniProtKB/Swiss-Prot per feature. For each feature,
we used the train split to fine-tune ESM2 for amino acid
classification, and the validation split to select the model
checkpoint with the lowest validation loss. We evaluated
the models using the feature-specific test sets (Figure 3).
All the fine-tuned models showed acceptable performance
with F1 ≥ 0.5 except models for classification of modified
residue, turn, and motif. For next steps, we excluded these
three models.

3.2. Protein annotation inference

We used the fine-tuned models to predict presence or ab-
sence of the features in proteins with no annotations. The
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Figure 3. Performance of fine-tuned models: feature-specific test
splits were used to evaluate the performance of the fine-tuned
models. Models with F1 ≥ 0.5 were kept for the next steps. Of
note the dataset was highly imbalanced, so the performance of a
random binary classifier is lower than F1 = 0.5.

number of labeled/predicted proteins and amino acids are
shown in Figure S2. To check the quality of predictions,
we compared the distribution of conservation scores (phy-
loP 100 way, Figure S3) and variant pathogenicity scores
(REVEL, Figure S4) between labeled and predicted amino
acids. Overall we observed similar distributions across dif-
ferent features.

3.3. Applications

• Variant classification: using pathogenic variants from
ClinVar and benign variants from ClinVar/gnomAD,
we performed two-sided Fisher’s exact test to identify
protein features that are significantly associated with
pathogenic or benign variants. Figure 4 shows that
10 features are enriched in pathogenic variants includ-
ing active site, binding site, DNA binding site, trans-
membrane, disulfide bond, β-strand, α-helix, domain,
repeat, and zinc finger. After detecting these 10 fea-
tures, we used them to reclassify 1,692,568 VUS (with
0.1 < PoP < 0.9) in gnomAD. We calculated a new
PoP score by adding the PM1 evidence which is ap-
plied for missense variants located in the 10 protein fea-
tures with significantly high enrichment of pathogenic
variants. This resulted in the reclassification of 110,304
(6.5%) variants from VUS to pathogenic.

• Variant interpretation: we identified 771 curated vari-
ants in 54 genes that had at least one pathogenic and
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Figure 4. Enrichment of features in pathogenic or benign variants:
for each feature, a two-sided Fisher’s exact test was performed
using the pathogenic variants from ClinVar and benign variants
from ClinVar/gnomAD. Ten features were significantly enriched in
pathogenic variants (red dots), while seven features were enriched
in benign variants (blue dots).

one benign missense variant from ClinGen (Rehm
et al., 2015). To understand the potential impact of each
missense variant, we utilized the workflow introduced
in Figure 2. We observed that pathogenic missense
variants impact certain protein features, especially loss
of functional domains (Figure 5A). Regarding benign
variants, we observed that they can only result in loss
of compositional bias and region (Figure 5B), meaning
that proteins can tolerate mutations in these features,
which is in agreement with our previous observation
(Figure 4). To demonstrate the power of our method,
we chose two pathogenic variants (GAA:p.Cys103Gly
and HNF4A:p.Arg63Gln) with deleterious effect on
protein domains and DNA binding site, respectively.
We observed that GAA:p.Cys103Gly results in the com-
plete loss of P-type domain from the mutant protein, as
well as loss of disulfide bonds and α-helix (Figure 6).
Regarding HNF4A:p.Arg63Gln, we could detect a par-
tial loss of DNA binding domain as well as loss of the
zinc fingers (Figure 7).

4. Discussion
This study introduces an innovative application of the ESM2
protein language model to enhance our understanding of
the functional implications of missense variants. Through
fine-tuning of ESM2 on specific protein features, we have

Figure 5. Predicted impact of {(A) pathogenic, (B) benign} mis-
sense variants on protein features: 771 curated variants in 54 genes
that had at least one pathogenic and one benign missense variant
were identified from ClinGen. The variant interpretation workflow
(Figure 2) was applied to each variant separately, and the number
of amino acids that lost or gained a feature upon mutation were
recorded.

developed a toolset capable of classifying and interpreting
missense variants with remarkable detail and accuracy.

Using our fine-tuned models, we quantified the burden of
pathogenic variants in protein features and used them to
reclassify 6.5% of VUS in gnomAD as pathogenic. We also
demonstrate the power of our models to discern changes in
protein features caused by missense variants. For instance,
our analysis of specific pathogenic variants revealed loss of
P-type domain in GAA and DNA binding domain in HNF4A,
which can be directly linked to disease mechanisms.

Since our fine-tuned models can perform inference using
CPU and only require protein sequences as input, they can
be easily used by biologists and clinicians. Non-expert
users can adopt our models to understand the molecular
basis of missense variants and use them to design follow-up
functional studies.

While our method shows promise, there are limitations.
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Figure 6. Predicted impact of p.Cys103Gly variant on GAA: the
variant interpretation workflow (Figure 2) was used to predict the
changes in protein features due to GAA:p.Cys103Gly variant. Each
dot represents the loss or gain of a feature in the corresponding
position. GAA:p.Cys103Gly is predicted to cause the complete
loss of P-type domain from the mutant protein.

Some protein features were excluded due to poor model
performance, reflecting the inherent complexity of these
features. Moreover, while our models perform well with an-
notated data, their predictions for less characterized protein
regions need more rigorous validation.

Our study demonstrates a powerful application of machine
learning in the genomic field. This might support progress in
personalized medicine, with downstream benefits for patient
diagnosis and treatment planning.

Code Availability
The code for this study is available here. All the fine-tuned
models can be accessed here.
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A. Appendix
We used ACMG/AMP guidelines (Richards et al., 2015) to classify the variants into putative pathogenicity groups, as
described in our previous works (Saadat et al., 2023; Saadat & Fellay, 2024). In summary, we gather all the available
evidences for a variant. Table 1 summarizes all the ACMG/AMP criteria that we used.

 1 

 
 Strong Supporting Supporting Moderate Strong 

Population and 

controls 

MAF is high in the 

population (BS1) 

  MAF is rare in the 

population (PM2) 

 

Computational   MIssense in a gene 

where mostly 

truncating variants 

cause disease (BP1) 

 

Computational 

evidence suggest no 

impact on gene 

product (BP4) 

Computational 

evidence supports 

a deleterious effect 

on the gene 

product (PP3) 

Novel missense 

change at an 

amino acid residue  

Where a different 

pathogenic 

missense change 

has been seen 

before (PM5) 

 

Same amino 

acid change as 

an established 

pathogenic 

variant (PS1) 

Functional Well-established 

functional studies 

show no 

deleterious effect 

(BS3) 

 Missense in a gene 

with low rate of 

benign missense 

variants and 

missense variants 

are common 

mechanism of 

disease (PP2) 

Mutational hotspot 

or well-studied 

functional domain 

without benign 

variation (PM1) 

Well-established 

functional 

studies show a 

deleterious 

effect (PS3) 

 

Benign Pathogenic 

Table 1. the summary of ACMG/AMP criteria used for variant classification. MAF: minor allele frequency

To calculate the probability of pathogenicity (PoP), we use the Bayesian framework developed by Tavtigian et al. (2018).
For a given variant, the PoP is calculated as follow:

Px = number of pathogenic criteria applied at the level of x
x ∈ {Strong,Moderate,Supporting}

By = number of benign criteria applied at the level of y
y ∈ {Strong,Supporting}

odds of pathogenicity (OP) = 350(
PStrong

2 +
PModerate

4 +
PSupporting

8 −
BStrong

2 −
BSupporting

8 )

probability of pathogenicity (PoP) = OP×0.1
((OP−1)×0.1+1)

8
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