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Abstract

Real-world multi-agent systems are often dynamic and continuous, where agents
interact over time and undergo changes in their trajectories. For example, the
COVID-19 transmission in the U.S. can be viewed as a multi-agent system, where
states act as agents and daily population movements between them are interactions.
Estimating the counterfactual outcomes in such systems enables accurate future
predictions and effective decision-making, such as formulating COVID-19 poli-
cies. However, existing methods fail to model the continuous dynamic effects of
treatments on the outcome, especially when multiple treatments are applied simul-
taneously. To tackle this challenge, we propose Causal Graph Ordinary Differential
Equations (CAG-ODE), a novel model that captures the continuous interaction
among agents using a Graph Neural Network (GNN) as the ODE function. The
key innovation of our model is to learn time-dependent representations of treat-
ments and incorporate them into the ODE function, enabling precise predictions
of potential outcomes. To mitigate confounding bias, we further propose two
domain adversarial learning-based objectives, which enable our model to learn bal-
anced continuous representations that are not affected by treatments or interference.
Experiments on two datasets demonstrate the superior performance of CAG-ODE.

1 Introduction

Many real-world multi-agent systems are dynamic and continuous, where agents (nodes) interact and
exhibit complex behaviors over time. This results in time-evolving node trajectories and dynamic
interaction edges. An example is the spread of COVID-19 in the U.S., where states act as agents and
daily migration patterns across states form interaction edges [13, 26]. Estimating the counterfactual
outcomes over time in such systems is crucial for various applications, such as formulating effective
policies and designing medical treatment plans [35, 4, 3]. This can achieve more accurate predictions
than non-causal methods by considering the influence of biased confounders. For example, the health
status of the residents in each state (confounders) can impact their level of adherence to the state’s
policies(treatments), which can influence future confirmed cases/deaths (outcomes). Furthermore,
causal inference for multi-agent dynamical systems enables effective decision-making by addressing
causal questions such as "What if we remove a policy at a specific time" or "What if we change the
order of different policies". Therefore, it serves as a promising tool for policymakers.
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However, two challenges exist when applying causal inference to multi-agent dynamical systems. One
is that most existing methods [35, 4] assume that nodes are independent, meaning their trajectories
are determined solely by their own treatments. Another challenge is that current methods lack the
ability to capture the continuous and dynamic effects of multiple treatments on such systems.

To tackle these challenges, we propose the Causal Graph Ordinary Differential Equations (CAG-
ODE) model to estimate the continuous counterfactual outcome of a multi-agent dynamical system
in the presence of multiple treatments and time-varying confounding and interference. Building
upon the recent success of graph ordinary differential equations (ODE) in capturing the continuous
interaction among agents [13, 12, 25], our key innovation is to learn time-dependent representations
of simultaneous treatments and incorporate them into the ODE function to accurately account for
their casual effects on the system. As nodes and edges are jointly evolving, we utilize two coupled
treatment-induced ODE functions to account for their dynamics respectively. To mitigate confounding
bias, we further design two adversarial learning losses, which enable our model to learn balanced
continuous trajectory representations unaffected by treatments or interference. Experiments on both
real and simulated datasets demonstrate the effectiveness of our proposed model.

2 Problem Definition

We consider a multi-agent dynamical system as an evolving interaction graph Gt = {V, Et}, where
nodes V = {v1, v2, · · · , vN} are agents and Et are the weighted edges among them. WA ={
W1

A,W
2
A, . . . ,W

T
A

}
represents the weighted adjacency matrix sequence, where Wt

A ∈ Rn×n and
wi→j ∈ R is the weight of the directed edge pointing from node i to node j.

Following [16], we denote the observational data at timestamp t as (Xt,At,Yt), where Xt ∈ RN×d1

represents the time-varying covariates (e.g., the health status of residents). At ∈ {0, 1}N×K are
time-dependent treatments, where At

ij = 1 denotes the jth treatment assigned to node i at timestamp
t, and K is the number of heterogeneous treatments. Yt ∈ RN×d2 is the time-dependent outcome,
such as the number of confirmed cases in each state. The historical observations up to time t is
represented as Ht =

{
X

t
,A

t
,Y

t}
, where X

t
,A

t
,Y

t
contain all Xt− ,At− ,Yt−

(
t− ≤ t

)
. We

predict the unbiased potential outcomes E(Yt+
(
At+ = a

)
|Ht,WA)

2. Here, a is the dynamic
treatment trajectory (e.g. sequences of state policies).

We utilize the GraphODE framework [12, 13, 24]to model the dynamic behavior of a multi-agent
system in a continuous manner: żt

i :=
dzt

i

dt = g (zt
1, z

t
2 · · · zt

N ). Here zt
i ∈ Rd denotes the latent

state variable for agent i at timestamp t and g denotes the ODE function that drives the system to
move forward, which is parameterized as a graph neural network (GNN). The latent initial states
z0
1 , · · · z0

N are computed from a spatial-temporal GNN encoder z0
i = fENC(H0). Given the initial

states and the ODE function, the solution zT
i can be evaluated at any desired time T using any

numerical ODE solver [29] on zT
i = z0

i +
∫ T

t=0
g (zt

1, z
t
2 · · · zt

N ) dt. Finally, a decoder outputs the
predicted dynamics based on the latent states. Details can be found in Appendix C.1.

3 The Proposed Model: CAG-ODE

We present Causal Graph ODE (CAG-ODE) to predict continuous counterfactual outcomes for multi-
agent dynamical systems with dynamic multi-treatment effects as illustrated in Figure 1. Contrary to
GraphODEs [13, 15], CAG-ODE can perform causal reasoning by injecting treatment effects into the
ODE functions, which we call treatment-induced coupled graph ODE. The multi-treatment effects
are captured by a novel treatment fusing module that assigns temporal weights to the treatments using
an attention mechanism. CAG-ODE also utilizes two adversarial learning losses to ensure unbiased
estimations of counterfactual outcomes.

3.1 Treatment-Induced GraphODE

Treatment Fusing. Treatments can have time-varying effects in multi-agent dynamical systems
and they can occur simultaneously, resulting in a combined effect. We propose a novel treatment

2The potential outcome can be formalized with do operation [30].
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Figure 1: Overall Framework of CAG-ODE.

fusing module that assigns temporal weights to multiple treatments through an attention mechanism
as shown below. Let ek ∈ RK be the one-hot representation of treatment k. We first add it with
the temporal encoding TE[13, 36] to account for the time elapsed since the start of the treatment
t′. At

ik ∈ {0, 1} is an indicator showing whether treatment k is applied to agent i at time t. A
contraction matrix Wq is then used to transform this sparse representation into a more compact form.

ôt
ik = At

ikek +TE (t− t′)1[At
ik = 1], ot

ik = Wqô
t
ik, (1)

TE(∆t)2i = sin
(
∆t/M2i/d

)
,TE(∆t)2i+1 = cos

(
∆t/M2i/d

)
,M = 10000. (2)

We compute the combined treatment representation as a weighted sum of all in-effect treatments
(Eqn 3). We first compute an attention vector mt

i as the tanh-transformed average of all the treatment
representations. Each treatment’s weight is derived from the dot product of its representation and mt

i.

ot
i =

1
K

∑
k

(
mt

i
⊤
ot
iko

t
ik

)
,mt

i = tanh
((

1
K

∑
ko

t
ik

)
Wm

)
. (3)

Treatment-Induced GraphODE. We use two coupled ODEs to predict the latent trajectories
for nodes and edges respectively, accounting for their co-evolution as in [13]. We incorporate
the treatment representations into the ODEs to enable counterfactual predictions in the future.
Specifically, we use a linear transformation W to merge the latent states of nodes Zt and the
treatment representation Ot as W[Zt||Ot] with || as the concatenation operator. Details of the ODE
function can be found at C.2.

Outcome Prediction. Given the treatment representations, the ODE functions, and the latent initial
states, we calculate the reconstruction loss of nodes and edges as:

L⟨Y ⟩ = 1
N

1
T

∑
t∥Yt − Ŷt∥22, L⟨W ⟩ = 1

N2
1
T

∑
t∥Wt

A − Ŵt
A∥2F ,

where Ŷt and Ŵt
A are computed from a decoder based on the latent trajectories (details in Ap-

pendix C.2).

3.2 Domain Adversarial Learning

In observational data, treatment assignments are not randomized but are biased based on time-varying
confounder values. This can lead to increased variance and bias in counterfactual estimation [35]. In
multi-agent dynamical systems, unbalanced interference from neighboring agents further exacerbates
this effect and alters the state of each agent. To obtain an unbiased counterfactual prediction, we
need to ensure that the distribution of latent representation trajectories is invariant to treatments and
interference [16]. To achieve this, we incorporate two adversarial learning losses into the optimization
objective function and use gradient reversal layers for the implementation. We use L⟨A⟩, L⟨G⟩ to
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Table 1: Root Mean Square Error (RMSE) for factual outcome evaluation across different prediction
lengths(the duration for which predictions are made). Ablation study can be found at Appendix F.2.

Dataset Covid-19 Tumor Growth
Prediction Length 7-days 14-days 21-days 14-days 21-days 28-days
CG-ODE 4063 4454 4659 18.37 21.00 24.58
TE-CDE 7999 7470 6832 55.45 55.38 71.23
COVID-POLICY 3973 4268 3944 28.99 42.81 32.91
CAG-ODE 3710 3925 3933 10.91 10.82 14.84

denote the treatment balancing and interference balancing loss respectively. Implementation details
can be found at Appendix C.3.

Overall Loss. The overall loss is defined as the weighted summation of node reconstruction loss,
edge reconstruction loss, treatment balancing loss, and interference balancing loss:

L = L⟨Y ⟩ + λL⟨W ⟩ + αL⟨A⟩ + βL⟨G⟩

4 Experiments

4.1 Experiment Setup

We evaluate the performance of our model using two datasets: 1.) The COVID-19 dataset, which
captures the daily COVID-19 trends of U.S. states from April.12.2020 to Dec.31.2020. The daily
population flows among states are represented as dynamic edges. Treatments are state-level COVID-
19 policies. We ask the model to predict the daily confirmed cases in each state. 2.) The Tumor
Growth simulation dataset [8], which describes the tumor growth dynamics in different regions of
patients, where they may receive differing treatments. We aim to predict the tumor volumes in each
region. Additional details about the datasets can be found in Appendix D.

4.2 Performance Evaluation

We conduct a comparative analysis of our model with three baseline models: one non-causal
continuous multi-agent baseline CG-ODE [13], and two causal models: TE-CDE [35] and COVID-
Policy [26]. We also compare variants of our model, including models without treatment balancing,
interference balancing, both components, or the attention module. The results of factual Outcome
predictions are shown in Table 1, and the results of counterfactual outcome predictions is displayed in
Appendix F.3. As the COVID-19 is a real-world dataset that does not have counterfactual outcomes,
we evaluate only the Tumor Growth dataset. To assess the accuracy of short-term and long-term
predictions, the prediction lengths for the COVID-19 and Tumor Growth datasets are set to 7, 14, 21
days and 14, 21, and 28 days, respectively. We include longer-range predictions on the Tumor-Growth
dataset in Appendix F.4.

Factual Outcome Predictions. Table 1 shows that our model, CAG-ODE, consistently outperforms
the baseline models across all prediction lengths for both datasets. This underscores the effectiveness
of our model in capturing the dynamic interactions among objects, especially over longer time periods.
Comparing our model with TE-CDE, we observe a performance gap that highlights the benefits
of incorporating interference balancing and spatial correlation in the model. Additionally, on the
Tumor Growth dataset, our model outperforms the COVID-POLICY model, indicating its broader
generalizability across different types of data. Furthermore, our model exhibits proficiency in both
short-term and long-term predictions. The analysis of our model variants further emphasizes the
importance of each component in the model. Additional experiments with different configurations
and multiple runs using the Tumor Growth dataset can be found in Appendix F.5.

5 Conclusion

In this paper, we introduce CAG-ODE for estimating continuous counterfactual outcomes in multi-
agent-dynamical systems considering dynamic multi-treatment effects. Our model builds upon
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existing GraphODEs and we propose a novel treatment fusing module that captures the dynamic
effects of multiple treatments occurring simultaneously. Through extensive experiments on two
datasets, we demonstrate the superior performance of CAG-ODE across various prediction settings,
validating its effectiveness. Furthermore, we leverage our model to analyze policy effects for the
COVID-19 transmission, providing valuable insights for policymakers (in Appendix F.1).
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A Related Works

A.1 Graph Ordinary Differential Equations for Continuous Multi-agent Dynamical Systems

To model the interactions among agents in a dynamical system, recent studies [12, 13, 39, 31] propose
using a Graph Neural Network (GNN) as the ODE function g which is learned. Also known as the
GraphODE framework, it follows an encoder-processor-decoder architecture. The encoder computes
latent initial states for all agents based on historical observations. The GNN-based ODE function then
predicts the latent trajectories starting from the learned initial states. Finally, a decoder extracts the
predicted dynamic features. In order to regularize the generated trajectories, GraphODE frameworks
often adopt a variational autoencoder (VAE) structure [19], where the encoder computes and samples
from approximated posterior distributions for initial states. GraphODEs are promising in making
long-range predictions and can handle irregularly-sampled observations effectively [12, 39].

A.2 Causal Inference Over Time

Existing time-dependent causal inference methods mainly differ in how they deal with confounding.
They differ from traditional statistical time series analysis [20, 40, 2] which we do not discuss in
this paper. Traditionally, many statistical tools that are applied, such as marginal structural models
(MSMs) [32], utilize the inverse probability of treatment weighting (IPTW), which are linear in
treatment and covariate effect. More recently, researchers use representation learning based balancing
approaches to aim to learn representations that are not predictable of the treatments in order to ensure
unbiased outcome prediction [5, 28]. This is achieved by training the model with both the prediction
loss and the treatment balancing loss. However, one major limitation is that they are all discrete
methods, which can offer poor performance on continuous systems such as the spread of COVID-
19. Currently, there are a series of works [35, 4, 9, 7] that estimate the continuous counterfactual
outcomes through neural ordinary differential equations (ODEs) or neural controlled differential
equations (CDEs). Despite their success, they assume that nodes are independent of each other, which
is unsuitable for multi-agent dynamical systems. One recent work [1] proposed to parameterize the
ODE function with a GNN to generalize to multi-agent settings. However, a major limitation is that
this model cannot handle evolving graph structures (edges).

A.3 Graph Neural Networks (GNNs) for Dynamical System Simulations

Graph Neural Networks (GNNs) are a class of neural networks that operate on graph-structured
data by passing local messages [22, 37, 38, 13]. They have been extensively employed in various
applications such as node classification, link prediction, and recommendation systems. By viewing
each agent as a node and interaction among agents as edges, GNNs have shown to be efficient
for approximating pair-wise node interactions and achieved accurate predictions for multi-agent
dynamical systems [21, 33]. The majority of existing studies propose discrete GNN-based simulators
where they take the node features at time t as input to predict the node features at time t+1. To further
capture the long-term temporal dependency for predicting future trajectories, some work utilizes
recurrent neural networks such as RNN, LSTM or self-attention mechanism to make prediction at
time t +1 based on the historical trajectory sequence within a time window [10, 34, 11]. However, they
all restrict themselves to learn a one-step state transition function. Therefore, when we successively
apply these one-step simulators to previous predictions in order to generate the rollout trajectories,
error accumulates and impairs the prediction accuracy, especially for long-range prediction.

B Assumptions

To make potential outcomes identifiable from observational data, we adhere to the following three
standard assumptions as in existing works [5, 35, 1]:

Assumption 1: Consistency. The potential outcome is equal to the observed factual outcome given
any treatment assignment a: Yt+(At+ = a) = Y t+ .

Assumption 2: Overlap. At any time point t+, there is some positive probability of treatment
assignment regardless of the historical observation: 0 < P (At+ = a | Ht) < 1,∀Ht, t < t+.
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The last assumption defines unconfoundedness (strong ignorability) in multi-agent dynamical
systems. We first define the interference effects caused by neighbors’ treatments of node i as
Gt

i =
∑

j∈Ni

1
|Ni|A

t
j ∈ RK , which is the proportion of treated nodes in node i’s neighbors for each

treatment type. We refer to Gt
i as interference summary, which assumes that a node is only influenced

by treatments of its immediate neighbors as in previous studies [1, 27, 17].

Assumption 3: Strong Ignorability for Multi-Agent Dynamical Systems. Given the historical
observations and the graph structure sequences, the potential outcome trajectory is independent of
the treatments and interference summary: Yt+(At+ = a) ⊥ At+ ,Gt+ | Ht,WA.∀a, t.
It ensures that it is sufficient to only condition on the historical observations and graph sequences up
to t to block all backdoor paths so as to estimate the potential outcome at any time in the future.

With these three assumptions, the potential outcome trajectory can be identified as:
E
(
Yt+(At+ = a) | Ht,G

)
= E

(
Yt+ | At+ ,Gt+ ,Ht,G

)
. This enables us to estimate the po-

tential outcomes by training a machine learning model using observational data, and use the same
model to predict counterfactual outcomes given new treatment trajectories.

C Detailed Description on Model Architecture

C.1 Details of Encoder

Step1. Dynamic Node Representation Learning
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Figure 2: Encoder Computation Flow of Initial States (Adapted from [13]).
The encoder generates the latent initial states for agents and their edges, which are the starting point
for future trajectories. It follows the architecture described in [14], which computes the posterior
distributions of nodes and edges based on historical observations up to time t0 and then samples
the latent initial states. As agents are mutually influenced over time, the encoder leverages a spatio-
temporal GNN to output the latent initial states for all agents using a two-step procedure. It first
constructs a spatio-temporal graph, where each node represents an observation at a timestamp. Edges
are built between nodes of connected agents within a single timestamp (spatial edges) and between
nodes representing observations of the same agent over time (temporal edges). Based on the graph, it
employs a GNN to obtain the structural representation for agent i’s observation at time t, denoted
as ht

i, through ht
i = fGNNE(Ht). Next, the model computes the sequence representation for each

agent, by summarizing its observation node sequence as ui = fseq(h
−T1
i , · · · , h−1

i ), where T1 is
the observation length. Finally, a neural network calculates the mean and variance of the posterior
normal distribution for agent i, from which the latent initial state is sampled:

z0
i ∼ qϕ(z

0
i |H0) = N (µz0

i
, σ2

z0
i
), µz0

i
, σz0

i
= fdist(ui). (4)

Next, the latent initial state for an edge is given by z0
i→j = fedge([z

0
i , z

0
j ]), where fedge is parameter-

ized by a neural network and [ , ] is concatenation operation.

Dynamic Node Representation Learning. To integrate the spatial-temporal structure of multi-agent
dynamical systems, we construct a graph as illustrated in Figure 2, where each node represents an
observation of an agent at a specific timestamp. Consequently, we need to establish two types of
edges: spatial edges at the same timestamp and temporal edges across different timestamps. The
spatial edges are formed according to the adjacency matrices, denoted as wi(t)→j(t). For the temporal
edges, we only consider edges from an agent’s own previous observations to later observations,
denoted as wi(t)→i(t′). Our default setting is t′ = t+ 1 as illustrated in Figure 2 in which we have
temporal edges between consecutive observations.

The latent representations of observations are learned from this spatial-temporal graph through an
attention mechanism approach. The propagation among L GNN layers is depicted in Equation(5).
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hl
i(t′) = hl

i(t′) + σ

 ∑
j(t)∈Ni(t′)

elj(t)→i(t′) ×Wvĥ
l−1
j(t)


elj(t)→i(t′) = wj(t)→i(t′) × αl

j(t)→i(t′)

αl
j(t)→i(t′) =

(
Wkĥ

l−1
j(t)

)T (
Wqh

l−1
i(t′)

)
· 1√

d

ĥl−1
j(t) = hl−1

j(t) +TE (t− t′)

TE(∆t)2i = sin

(
∆t

100002i/d

)
,TE(∆t)2i+1 = cos

(
∆t

100002i/d

)
(5)

Here, hl
i(t) represents the agent i at time t from layer l. The attention score elj(t)→i(t′) is defined as

the product of edge weights wj(t)→i(t′) and affinity score αl
j(t)→i(t′), which is computed using the

representations of the sender and receiver nodes. Additionally, we incorporate temporal embedding,
denoted as TE, into the sender node’s representation to establish temporal distinction. Then, the final
representation is obtained from the L layer as hi(t) = hL

i(t).

Sequence Representation Learning. Then, we employ self-attention to compute the sequence
representation of observed temporal information for each node, where ĥi(t) = hi(t) + TE(t).

ui =
1

N

T∑
t=1

(aT
i ĥi(t)ĥi(t)),ai = tanh

((
1

N

T∑
t=1

ĥi(t)

)
Wa

)
(6)

Finally, the mean and variance of the posterior distribution is obtained through a neural network fddist
from the sequence representation ui.

z0
i ∼ qϕ(z

0
i |H0) = N (µz0

i
, σ2

z0
i
), µz0

i
, σz0

i
= fdist(ui).

Next, the latent initial state for an edge is given by z0
i→j = fedge([z

0
i , z

0
j ]), where fedge is parameter-

ized by a neural network and [, ] is concatenation operation.

C.2 Details of GraphODE

Specifically, the co-evolution of nodes and edges is depicted in Eqn 7. W̃t
A = D−1Wt

A is the
normalized adjacency matrix and D is the diagonal degree matrix defined as Dii =

∑
j W

t
Aij .

fe, fself, fedge2value are all implemented as Multi-Layer Perceptrons (MLPs). To incorporate the
treatment effect into the function, we use a linear transformation W to merge the latent states of
nodes Zt and the treatment representation Ot. In this way, the latent trajectories of agents are affected
not only by their own past trajectories and treatments but also by the trajectories and treatments of
their interacting agents.

dZt

dt
= σ

(
W̃t

AW[Zt,Ot]
)
− Zt + Z0,

dzt
i→j

dt
= fe

([
zt
i , z

t
j

])
+ fself

(
zt
i→j

)
,

Wt
Aij = fedge2value

(
zt
i→j

)
, W̃t

A = D−1Wt
A.

(7)

Finally, we compute the predicted trajectories for each agent and their interactions based on the
decoding likelihoods in Eqn (8), where fdecN and fdecE are node and edge decoding functions
respectively, both implemented as MLPs. They output the means of the normal distributions p(yt

i |zt
i)

and p(wt
i→j |zt

i), which we treat as the predicted values from our model.

yt
i ∼ p(yt

i |zt
i) = fdecN(z

t
i), wt

i→j ∼ p(wt
i→j |zt

i) = fdecE(z
t
i). (8)

C.3 Details of Domain Adversarial Learning

Treatment Balancing The treatment combinations Ât can be predicted using a decoder from the
latent state zt

i . Formally, Ât
i· = dA(r(z

t
i)), where dA is a neural network attempting to recover
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treatments from latent state zt
i , and the gradient reversal layer, denoted by r, reverses the sign of

gradient during back-propagation. The treatment balancing can be expressed as the minimization of
the following loss term through the construction of min-max games:

L⟨A⟩ =
1

N

1

T

1

K

N∑
i=1

T∑
t=1

K∑
k=1

∑
j∈{0,1}

1[(At
ik = j)]− log(dj,kA (r(zt

i))),

where dj,kA represents the logits of dA(·) for predicting j on k-th treatment. Note that we achieve
treatment balancing by letting the latent representations zt

i not be predictable for each individual
treatment. This is because the representation of multiple treatments is essentially a linear combination
of the individual treatments. If each individual treatment is not predictable based on zt

i , then it is also
impossible to use such representation to predict when multiple treatments occur together.

Interference Balancing Similar to treatment balancing, the interference prediction can be formally
represented as Ĝt

i = dG(r([Z
t
i , A

t
i])), where dG denotes a neural network designed to estimate

interference. As interference is a continuous variable, we employ continuous domain adversarial
training to accomplish interference balancing. By incorporating a gradient reversal layer, interference
balancing can be achieved by minimizing the following loss term:

L⟨G⟩ =
1

N

1

T

1

K

N∑
i=1

T∑
t=1

∥dG(r([zt
i ,o

t
i]))−Gt

i∥22.

C.4 ODE Solver

We use the fourth order Runge-Kutta method from the torchdiffeq python package [6] as the ODE
solver, for solving the ODE systems on a time grid that is five times denser than the observed time
points. We also utilize the Adjoint method described in [6] to reduce memory use.

C.5 Decoders

We implemented all of our decoders using two-layer fully connected neural networks. The node
feature decoder’s input dimension matches the latent state dimension d, while the output dimension
is one, reflecting our outcome of interest. The edge decoder’s input dimension is 2d and the output
dimension is 1. The treatment decoder also has an input dimension equal to the latent state’s
dimension d. However, its output dimension matches the number of distinct treatments, predicting
the probability of each treatment being chosen. Lastly, the interference decoder’s input dimension
is the sum of the latent state dimension and the treatment embedding dimension, i.e. 2d. Its output
dimension mirrors the number of treatment options. For all decoders, the latent hidden dimension is
half of their respective input dimensions.

D Dataset Details

D.1 COVID-19 Dataset

Our experiments used the dataset provided by the Johns Hopkins Coronavirus Resource Center
(JHU) 3 from April 12th to December 31st, 2020. That is, we consider 264 time points, with each
point representing one day. The dataset contains a comprehensive range of information, but for
our experiments, we focus on up to 7 specific features. These features include the daily counts of
confirmed cases, deaths, recovered cases, active cases, incident rate (cases per 100,000 people),
mortality rate (calculated as the number of recorded deaths multiplied by 100 divided by the number
of cases), and testing rate (total test results per 100,000 people). It’s worth noting that while the JHU
dataset provides cumulative data for confirmed, deaths, recovered, and active cases, our experiments
and models specifically consider the daily increases in these features (e.g., the number of new cases
reported each day).

To capture dynamic interaction edges, we use a temporal mobility flow network among a selection of
47 states based on COVID-19 USFlows [18].

3https://coronavirus.jhu.edu/about/how-to-use-our-data
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The treatments are represented as statewide policies that aimed to combat the spread of COVID-19.
We identify 58 different statewide policies enacted throughout 2020, from the data given by the
Department of Health & Human Services 4. Each state enacted around 20 of these policies during the
time period of April 2020 to December 2020, where the dataset provides the start and end dates of
each enacted policy. In our model, treatments are encoded such that for each time point, the value is
either 1 or 0 depending on whether the particular policy is enacted (for a given state) at that time or
not, respectively.

Overall, the model receives input data for a total of 264 time points, covering each of the 47 states,
and includes 7 features. Alongside this, the model is also provided with treatments and a mobility
graph. Prior to being used as input for our models, the data is normalized. However, when calculating
the test loss for comparison with other baseline models, the output is unnormalized. Our goal is to
predict either the number of confirmed cases or the number of deaths for a future period of 7, 14, or
21 days.

D.2 Tumor Growth Dataset

We extend the state-of-the-art pharmacokinetic-pharmacodynamic (PK-PD) model of tumor growth
proposed by [8] to simulate a more complex scenario where multiple tumor regions within a single
patient interact with each other. The original model characterizes patients suffering from non-small
cell lung cancer and models the evolution of their tumor under the combined effects of chemotherapy
and radiotherapy. For a detailed description of the original model, we refer the readers to the
original paper [8]. In our extended model, we incorporate two new terms: an interference term and a
neighborhood covariate term. The volume of the tumor in region i at t+ 1 days after diagnosis is
modeled as follows:

Vi(t+ 1) =

1 + ρ log

(
K

Vi(t)

)
︸ ︷︷ ︸

Tumor Growth

− βcCi(t)︸ ︷︷ ︸
Chemotherapy

−
(
αrdi(t) + βrdi(t)

2
)︸ ︷︷ ︸

Radiotherapy

+ eit︸︷︷︸
Noise

Vi(t)

+

 1

Ni

∑
j∈Ni

ιcCj(t)


︸ ︷︷ ︸

Chemotherapy Interference

+

 1

Ni

∑
j∈Ni

(
ιrdj(t) + ιrdj(t)

2
)

︸ ︷︷ ︸
Radiotherapy Interference

+

 1

Ni

∑
j∈Ni

κVj(t)


︸ ︷︷ ︸

Neighborhood Covariates

where the parameters K, ρ, βc, αr, βr are sampled from the prior distributions described in [8],
and eit ∼ N(0, 0.012) is a noise term that accounts for randomness in the tumor growth. The prior
means for βc and αr are adjusted to create three patient subgroups S(i) ∈ {1, 2, 3} as described in
[4]. The chemotherapy drug concentration follows an exponential decay with a half life of 1 day. The
time-varying confounding is introduced by modeling chemotherapy and radiotherapy assignment as
Bernoulli random variables, with probabilities pc and pr depending on the tumor diameter. For more
details, we refer the reader to the paper [4]. For our newly defined interference and neighborhood
covariate terms, we set the hyperparameters ιc and ιr to 0.01, and κ to 0.001. These values were
carefully chosen to reflect the strength of the interference and neighborhood covariates in the dataset.
The number of tumors in each patient Ni is fixed to 15, and for each tumor region, the number of
edges connected between the tumor regions is defined randomly from the range of 22 to 45. For
additional experiments shown in Appendix F.4, the number of tumor region for each patient is fixed
to 5, and the number of edges ranges from 6 to 10. The dataset is input into our model similar to the
COVID-19 dataset. Both chemotherapy and radiotherapy are encoded into 0 or 1 value depending
on whether it was applied at a specific time point. The input data consists of 60 time points with 4
features, which include tumor volume, patient type, and the two treatments. The data is normalized
for model input but unnormalized for test loss calculation. The model’s objective is to predict tumor
volume for future periods of 7, 14, or 21 days. We also create a longer range dataset with 120 time
points, which is described in F.4.

4https://catalog.data.gov/dataset/covid-19-state-and-county-policy-orders-9408a
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E Training Details

Our model implementation is available at https://anonymous.4open.science/r/
CAG-ODE-repo. We employ the AdamW optimizer, as proposed in the study by Loshchilov et al.
[23], to train our model. The initial learning rate is set at η = 0.005, and the batch size is set as 8 to
accommodate memory constraints.

The Graph Neural Network (GNN) used for the encoder has a singular layer with a hidden dimension
of 64. Similarly, the GNN that parameterizes the ODE function is also comprised of a single layer.
The dimension of the latent state is set at 20, and the dimension for the embedded treatments is 5.

We assign a weight of 10 for both the treatment balancing term α and the interference balancing term
β. Additionally, the weight designated for the edge reconstruction error λ is set at 0.5.

We predict trajectory rollouts across varying lengths and use Root Mean Square Error (RMSE) as the
evaluation metric. Specifically, we train our model in a sequence-to-sequence setting where we split
the trajectory of each training sample into two parts [t1, tK ] and [tK+1, tT ]. We condition the model
on the first part of observations and predict the second part. To fully utilize the data points within
each trajectory, we generate training and validation samples by splitting each trajectory into several
chunks using a sliding window. Details can be found in Appendix E.

We train our model in a sequence-to-sequence setting, where we split the trajectory of each training
sample into two parts [t1, tK ] and [tK+1, tT ]. We condition the model on the first part of observations
and predict the second part. To fully utilize the data points within each trajectory, we generate training
and validation samples by splitting each trajectory into several chunks using a sliding window with
three hyperparameters: the observation length and prediction length for each sample, and the interval
between two consecutive chunks (samples). We summarize the procedure in Algorithm 1, where
K is the number of trajectories and d is the input feature dimension. For both datasets, we set the
observation length to be 7 and the interval to be 3. We ask the model to make predictions at varying
lengths for evaluation.
Algorithm 1: Data Splitting Procedure.

Input: Original Training trajectories Xinput ∈ RK×N×T×d;
Observation length O; Prediction length M ; Interval I; Trajectory length T .
Output: Training samples after splitting Xtrain.

1 sample_length = O +M ;
2 num_chunk = (T - sample_length )//interval + 1;
3 for i in range (0,K) do
4 for j in range(0,num_chunk,I) do
5 Generate the split training sample as Xinput[i, :, j : j + sample_length, :]
6 Add the training sample to the training set Xtrain.
7 end
8 end

F Additional Experiment Results

F.1 Case Study about COVID-19 policies

We conduct a case study to show the impact of different treatments, e.g., COVID-19 related policies,
on the COVID-19 dataset as shown in Figure 3. Specifically, we consider four different policy
intervention methods and report the resulting average changes in the number of daily confirmed cases
across all states in the U.S.:

First, we focus on the removal of policies in three states that have the highest number of announced
policies during the time frame of the COVID-19 dataset. By masking out these policies, we observe
an increase in the average number of confirmed cases across states in the future. This increase is
attributed to both in-state disease spread and population flow to other states. The removal of policies
exacerbates the spread of COVID-19 over an extended period, as shown in Figure 3(a), indicating
that our model captures the dynamic interference resulting from agents’ interactions.
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(a) Remove partial states’ policy (b) Change policy start date (c) Remove policy across states. (d) Change relative time of policies

Figure 3: Case Study for changing different policies on the COVID-19 dataset

We then explore the effect of changing the starting time of a specific policy for all states. We change
the "No Public Gatherings" policy starting time for each state to be 15 days earlier, 15 and 30 days
later respectively. As shown in Figure 3(b) when announcing the policy earlier, we observe a decrease
in the average number of daily confirmed cases in the future, while announcing the policy later leads
to an increase. This intuitive outcome highlights the capability of our model in capturing the causal
relationships between policy interventions and COVID-19 spread.

Next, we analyze the impact of the top three most frequent policies across all states by removing
them separately. As shown in Figure 3(c), the "Public Gatherings" policy has the largest effect in
reducing the spread of COVID-19, even though the most frequent policy is "Emergency Funds". This
demonstrates the potential of our model in assisting policymakers to identify the relative importance
of each policy over time.

Finally, we study the effects of different orders in policy announcements, specifically focusing on
the simultaneous or closely timed announcements of "No Public Gatherings" and "No Traveler from
Outside States" policies. We change the announcement dates for the two policies in each state to
mimic three scenarios shown in Figure 3 (d). We found that initializing the announcement of "No
Public Gatherings" early generally contributes to a reduction in the spread of COVID-19 compared
with "No Traveler from Outside States". We further analyze the daily population flow during the given
time frame, and found that the majority of population flows are within the same states, indicating that
residents of each state pose a high risk of virus transmission compared to people from other states.
These insights suggest prioritizing the earlier announcement of the "No Public Gatherings" policy
over the "No Traveler from Outside States" policy can better mitigate the spread of COVID-19.

These case study results demonstrate the effectiveness of our model CAG-ODE in analyzing the
impact of various treatments or policies on the dynamics of COVID-19 spread. CAG-ODE captures
the complex interactions between treatments, disease spread, and population flow, providing valuable
insights for policymakers in making informed decisions.

F.2 Ablation Study

To further analyze the performance of our model, we also compare variants of our model. Each
variant excludes a specific component to assess its individual impact on performance. The variants
include models without treatment balancing, interference balancing, both components or the attention
module. As shown in Table 2, all model variants perform worse than CAG-ODE, indicating the
rationality of our model design.

F.3 Counterfactual Outcome Predictions

In Table 3, we evaluate the performance when 25%, 50%, and 75% of all observed treatments in each
experiment are randomly flipped. The purpose of this experiment is to examine the robustness of
the models to counterfactual treatment scenarios, and since CG-ODE does not incorporate causal
modeling, it is excluded in this experiment. CAG-ODE outperforms others by a wide margin across all
settings. These findings collectively demonstrate the superiority of our proposed model, CAG-ODE,
in capturing the dynamics of multi-agent systems and making accurate predictions across different
time horizons. We additionally include the visualization of the learned balanced latent representations
in Appendix F.6.
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Dataset Covid-19 Tumor Growth
Prediction Length 7-days 14-days 21-days 14-days 21-days 28-days
CG-ODE 4063 4454 4659 18.37 21.00 24.58
TE-CDE 7999 7470 6832 55.45 55.38 71.23
COVID-POLICY 3973 4268 3944 28.99 42.81 32.91
CAG-ODE 3710 3925 3933 10.91 10.82 14.84
w/o L⟨G⟩ 3800 3987 3990 15.57 16.28 16.62
w/o L⟨A⟩ 3840 4100 4069 17.90 14.69 20.19
w/o L⟨G⟩ ,L⟨A⟩ 3793 4089 3953 17.28 16.72 24.36
w/o attention 3867 3958 4256 18.91 17.55 34.45

Table 2: Root Mean Square Error (RMSE) for factual outcome evaluation across different prediction
lengths(the duration for which predictions are made). For the COVID-19 dataset, we report the mean
accuracy with multiple runs.

Prediction Length 14-days 21-days 28-days
Treatment F.R. 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

TE-CDE 95.61 103.2 100.8 98.65 103.0 97.93 118.3 124.0 121.4
COVID-POLICY 22.99 23.00 22.97 31.85 31.66 32.11 25.46 26.09 26.33
CAG-ODE 17.23 16.98 16.96 18.64 18.84 18.85 19.91 19.88 19.87
w/o L⟨G⟩ 20.62 20.53 20.51 19.70 19.60 19.55 21.10 21.41 21.38
w/o L⟨A⟩ 22.17 22.35 22.35 20.19 20.10 20.09 20.83 21.14 21.15
w/o L⟨G⟩, L⟨A⟩ 19.78 19.75 19.71 19.34 19.29 19.27 21.31 21.40 21.34
w/o attention 19.09 18.37 18.13 22.16 21.78 21.65 27.70 27.44 27.38

Table 3: Root Mean Square Error (RMSE) for counterfactual Outcome evaluation on the Tumor
Growth dataset with treatment flipping ratio. Treatment F.R. (Treatment Flipping Ratio) represents
the ratio of treatments that are flipped.

F.4 Longer-range Prediction for the Tumor Growth Dataset

In Table 4, we evaluate the performance of our model. An extended version of the simulation dataset
with a range of 120 days was used in the experiment. Considered prediction lengths are 35, 49, and
63 days.

Prediction Length 35-days 49-days 63-days
Treatment F.R. 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

CAG-ODE 35.00 34.68 34.50 34.12 37.92 37.88 46.71 47.28 48.12

Table 4: Root Mean Square Error (RMSE) for counterfactual outcome evaluation on the longer-range
Tumor Growth dataset with treatment flipping ratio: 25%, 50%, 75%.

As anticipated, the prediction errors exhibit a moderate increase with longer prediction lengths, as
the added duration poses a greater challenge for accurate predictions. Note that the prediction error
remains relatively stable when the treatment flipping ratio is increased from 25% to 75%. This
observation suggests that the utilization of treatment balancing and interference balancing techniques
effectively mitigates the risk of overfitting to confounding factors, ensuring CAG-ODE’s robustness.

F.5 Additional Experiment on Tumor Growth Dataset

In order to address the limitations of available datasets and to further validate the robustness of
our model, we generated an additional synthetic dataset that models tumor growth by changing the
configurations. Compared to the tumor-growth dataset that was used in Table ??, this new dataset has
a lower number of 5 tumor regions per patient and includes a larger sample size of 300 patients.

F.6 Visualization of Learned Balanced Representations

To further understand the effect of treatment balancing loss in CAG-ODE, we visualize the 2-D
T-SNE projections of the latent representations of nodes on the COVID-19 dataset, i.e. zt

i as shown
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in Figure 4. Specifically, we visualize the latent node representations under two different treatments:
"State-of-Emergency" and "No-Public-Gathering". Under each treatment (policy), we use different
colors to denote whether a node receives such treatment (treated) or not (control). As shown in
Figure 4(a) and (c), the distributions of the learned representations are more distinguishable between
the two groups, compared with Figure 4(b) and (d) which have the treatment balancing loss. This
indicates that CAG-ODE indeed learns balanced latent representations by employing the treatment
balancing loss.

（a) ”State-of-Emergency”
w/o. Treatment Balancing

（b) ”State-of-Emergency”
with Treatment Balancing

（c) ”No-Public-Gathering”
w/o. Treatment Balancing

（d) ” No-Public-Gathering”
with Treatment Balancing

Figure 4: Treatment Balancing Visualization on the COVID-19 Dataset.

G Limitations

One limitation of CAG-ODE is that when inferring the future trajectories of nodes, we simply
assume that all nodes are connected and jointly infer such edge evolution. This would bring huge
computational costs when generalized to large-scale dynamical systems. In the future, we will
consider more efficient sampling methods to accelerate the edge inference procedure to scale up our
model. Another line of future work would be how to model more complex multiple treatment effects,
including competing, hierarchical relationships.

H Broader Impacts

Our work significantly enhances the performance of causal inference over multi-agent dynamical
systems, which can potentially benefit a wide range of fields including public health, biology, physics,
and robotics. Our work also advances the recent study of continuous graphODE for modeling
multi-agent system dynamics, providing an efficient tool for further research on AI for science.
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