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Abstract

In this paper, we introduce DermX: a novel dermatological diagnosis and expla-1

nations dataset annotated by eight board-certified dermatologists. To date, public2

datasets for dermatological applications have been limited to diagnosis and lesion3

segmentation, while validation of dermatological explainability has been limited to4

visual inspection. As such, this work is a first release of a dataset providing gold5

standard explanations for dermatological diagnosis to enable a quantitative evalua-6

tion of ConvNet explainability. DermX consists of 525 images sourced from two7

public datasets, DermNetNZ and SD-260, spanning six of the most prevalent skin8

conditions. Each image was enriched with diagnoses and diagnosis explanations by9

three dermatologists. Supporting explanations were collected as 15 non-localisable10

characteristics, 16 localisable characteristics, and 23 additional terms. Derma-11

tologists manually segmented localisable characteristic and described them with12

additional terms. We showcase a possible use of our dataset by benchmarking13

the explainability of two ConvNet architectures, ResNet-50 and EfficientNet-B4,14

trained on an internal skin lesion dataset and tested on DermX. ConvNet visualisa-15

tions are obtained through gradient-weighted class-activation map (Grad-CAM), a16

commonly used model visualisation technique. Our analysis reveals EfficientNet-17

B4 as the most explainable between the two. Thus, we prove that DermX can be18

used to objectively benchmark the explainability power of dermatological diagnosis19

models. The dataset is available at https://github.com/ralucaj/dermx.20

1 Introduction21

Convolutional neural models (ConvNets), the current state-of-the-art method for image analysis,22

are often criticised for being opaque in their decision mechanisms [1]. However, explainability is a23

crucial component in the adoption of machine learning systems in high-stakes applications, such as24

medical diagnosis. Dermatology in particular would highly benefit from automation, given the low25

diagnostic accuracy of general practitioners [2] and the scarcity of specialists [3, 4]. Deep learning26

methods to diagnose skin conditions exist [5–8], but their adoption by the medical system has been27

slow, partially due to their lack of explainability [9, 1, 10].28

Different research groups proposed various explainability methods [11–13], but their use has been29

limited to visual inspection of the outputs to evaluate model performance. Such an approach is30

subjective and difficult to scale. Lesion segmentation masks offered by high quality dermatology31

Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets
and Benchmarks. Do not distribute.

https://github.com/ralucaj/dermx


Table 1: Distribution of images over the public datasets. Initially, 100 images were randomly selected
for each class, apart from viral warts and vitiligo where only 78 and 88 images were available. Some
images were discarded during labelling, giving rise to the count shown below.

Acne Actinic Psoriasis Seborrhoeic Viral Vitiligo
keratosis dermatitis warts

DermNetNZ 52 48 46 12 47 75
SD-260 47 43 51 66 27 11

datasets [14] can partially serve as a basis for objective measurement, although they were not collected32

to explain the diagnosis. However, this shortcoming becomes critical in diseases such as actinic33

keratosis, where the surrounding area is just as important for the diagnosis as the lesion itself [8].34

We introduce DermX, a novel dermatological diagnosis explainability dataset that addresses the35

limitations of existing datasets by collecting dermatologist explanations for six skin diseases: acne,36

actinic keratosis, psoriasis, seborrhoeic dermatitis, viral warts, and vitiligo. Each image is diagnosed37

by three dermatologists and tagged with supporting characteristics [15] and their localisation.38

To demonstrate the intended use of DermX, we benchmark two models trained to diagnose dermato-39

logical conditions. We employ gradient-weighted class-activation maps (Grad-CAM) [13], a deep40

learning visualisation technique commonly used to generate explanations, on ResNet-50 [16] and41

EfficientNet-B4 [17]. Then, we test how their explanations compare to the dermatologist maps.42

The contributions of this paper are twofold:43

1. We release a novel dermatological diagnosis explainability dataset with annotations from44

multiple expert raters;45

2. We benchmark the explainability of two popular model architectures against a gold standard46

explainability dataset.47

2 Dataset48

DermX consists of 525 images of acne, actinic keratosis, psoriasis, seborrhoeic dermatitis, viral49

warts, or vitiligo patients. Eight board-certified dermatologists, with between 4 and 12 years of50

clinical experience, labelled the images with diagnoses and explanations supporting their diagnoses,51

in the form of both global tags and characteristic segmentations. The images were randomly selected52

from DermNetNZ [18] and SD-260 [19], and are available under the Creative Commons licence.53

Permission to use the data in this project was granted in writing by the owners of both datasets. The54

distribution of diseases is described in Table 1.55

Our work involved several steps. First, we performed several experiments to define the target diseases56

and the nature of the explanations. Second, we defined the diagnosis and explanation ontology, as57

illustrated in Figure 1. Then, the labellers were allowed a short period of time to get accustomed to58

the annotation protocol and the labelling tool by evaluating images from an internal dataset. Finally,59

DermX images were selected and sent to the dermatologists for labelling.60

2.1 Preliminary Investigation61

Nine diseases were initially investigated: psoriasis, rosacea, vitiligo, seborrhoeic dermatitis, pityriasis62

rosea, viral warts, actinic keratosis, acne, and impetigo. These diseases were chosen based on preva-63

lence [20] and the expectation that they could be diagnosed only from images [21]. Dermatologists64

were asked to diagnose and explain their diagnosis in free-text for around 100 images. This step led65

to both the exclusion of rosacea, impetigo, and pityriasis rosea from future experiments due to the66

difficulty in diagnosing them in the absence of an anamnesis, and to the introduction of a structured67

ontology for the diagnosis explanations to avoid manual processing of typos and synonyms.68
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(a) Diagnoses ontology.

(b) Localisable characteristics ontology.

Figure 1: Ontology of the two main types of labels. The list of diagnoses (a) includes the six diseases
and two discard options. Discard options could be chosen when images displayed another disease or
when images were of low quality. Localisable characteristics (b) were tailored to the six diseases
using medical resources [15, 21], and with the help of two senior dermatologists.

2.2 Diagnosis and Explanation Ontology69

Preliminary investigations highlighted the importance of having a consistent explanation ontology.70

After analysing free-text explanations, they were formalised as an extended list of skin lesion charac-71

teristics [15]. The characteristics set was selected to sufficiently explain the six target diseases [21].72

With the help of two senior dermatologists, several other relevant characteristics were added.73

The resulting set of characteristics was split into non-localisable characteristics (e.g. age or sex),74

localisable characteristics (e.g. plaque or open comedo), and additional descriptive terms (e.g. red75

or well-circumscribed), according to the International League of Dermatological Societies (ILDS)76

classification [15]. To match state-of-the-art ConvNet explainability methods, we focus on diagnoses77

and localisable characteristics. Figure 1 illustrates the final DermX ontology, while more information78

about the other two types of labels is available in Appendix Figure 1.79

2.3 Annotation Protocol80

Dermatologists were first asked to diagnose the image, and then tag it with characteristics that explain81

their diagnosis. If the dermatologists were unable to evaluate the image due to poor quality, or if the82

image depicted a different disease than the target conditions, they had the option to discard it.83

Dermatologists could then select diagnosis-relevant non-localisable characteristics as global image84

tags. Afterwards, they could select and localise localisable characteristics. Dermatologists were85

instructed to highlight all relevant areas for each characteristic, and were only allowed to include86

irrelevant areas if separating them from the characteristic was too time consuming or difficult. In87

other words, they were instructed to favour sensitivity over specificity. Finally, basic terms (as defined88

in Figure 1b) could be enriched with additional descriptive terms when required for the diagnosis89

explanation. Once all tags and characteristics were added, the image could be marked as complete.90

After the ontology and annotation protocol were defined, all dermatologists underwent two rounds of91

on-boarding in Darwin, a browser-based labelling tool [22] (Appendix Figure 2).92

2.4 Dataset Analysis93

Once all evaluations were finished, we analysed the data focusing on dermatologist performance94

with regards to the gold standard diagnosis and their inter-rater agreement on both diagnoses and95

supporting characteristics. Figure 2 illustrates an image and its three annotations.96

A total of 566 images were evaluated by eight dermatologists. To better understand the data distribu-97

tion, we tagged each image with a skin tone approximation: light, medium, and dark, equivalent to98

Fitzpatrick skin tones [23] I-II, III-IV, and V-VI, respectively. As any post-hoc meta-data creation, this99
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Figure 2: Example of a DermX image and its labels from three dermatologists. The blue overlay
illustrates the plaque segmentations, while the orange overlay shows the scale segmentations. Pink
shows the overlap between the two characteristics. While all dermatologists agree in some areas,
there are clear disagreements as to which areas contain a certain characteristic.

labelling task is subject to several sources of error, including lighting conditions, missing information100

about the patient, and high inter-rater variance for the Fitzpatrick scale [24]. The distribution is101

skewed towards lighter skin tones, with 368 images, i.e. 65% of the dataset, depicting them. Medium102

skin tones were illustrated in 182 images, i.e. 32% of data, while darker skin tones only appeared in103

16 images, i.e. 3% of the time. A similar analysis, with similar drawbacks, has been performed for104

the age distribution of patients. Young patients, described as approximately below 30, are depicted in105

108 images, i.e. 19% of the dataset. A similar amount of images, 147 or 26% of the data illustrates106

elderly people, defined as people over 60. The remaining 311 images, i.e. 55% of DermX, showcase107

adult patients.108

From 1698 unique evaluations on 566 images, 411 evaluations were either tagged as other disease109

or as too low quality to evaluate. These 411 evaluations were removed from the dataset, leading to110

some images having fewer than three evaluations. Two evaluations tagged an image with multiple111

diagnoses, and were disregarded from the analysis. Images where all evaluations were discarded112

were also removed from the dataset. In the rest of the paper, we will only focus on the remaining113

1285 evaluations associated with 525 images.114

The diagnostic accuracy of dermatologists with regards to the gold standard varies between115

0.92 to 0.99. Seborrhoeic dermatitis is the most difficult disease to diagnose, while vitiligo is116

the easiest. Pair-wise F1 scores for the inter-rater agreement lies between 0.86 and 1.0 (Table 2).117

Inter-rater agreement on characteristics (Table 3a) varies significantly more, partially due to the lower118

number of selections per class. Most basic terms display the highest levels of agreement, with F1119

scores between 0.65 and 0.88. The two low performing basic terms, macule and nodule, have low120

selection rates. Several additional terms as defined in Figure 1b, such as open and closed comedones,121

display levels of agreement similar to the basic terms.122

Outlining characteristics is a more difficult task, as also confirmed by the low inter-rater F1 scores (also123

known as Dice score when computed for the positive class, see Table 3b). The lower F1 values can124

also be explained by the annotation protocol specification to prioritise sensitivity over specificity.125

In terms of sensitivity, we notice the same trend as in the binary agreement: dermatologists tend to126

agree more on the basic terms. Agreement differences stem from the difficulty in outlining some of127

these characteristics. For example, comedones cover smaller areas, and dermatologists differed in128

their approach to outlining them.129

Overall, the contrast between high agreement on diagnoses and low agreement on supporting char-130

acteristics illustrates how different experts perceive explanations in different ways. Although they131

generally agree on the diagnosis, dermatologists focus on different characteristics to explain their132

decision. To properly evaluate a model’s explanations, we must therefore consider the opinions of133

multiple experts.134

3 Explainability Benchmark for Two Architectures135

Using the DermX dataset, we evaluate the explainability of ConvNets trained for skin lesion diagnosis136

by applying Grad-CAM on two models, ResNet-50 and EfficientNet-B4, and comparing the results to137
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Table 2: Diagnostic performance (a) and inter-rater agreement (b) on DermX. Dermatologists have
high agreement with both the gold standard label and with each other. Seborrhoeic dermatitis stands
out as a difficult disease to diagnose, while vitiligo, viral warts and acne appear to be easier.

(a) Dermatologist diagnosis performance with regards to the gold standard (mean±std).

F1 Sensitivity Specificity

Acne 0.98± 0.01 0.99± 0.01 0.99± 0.01
Actinic keratosis 0.94± 0.05 0.92± 0.08 0.99± 0.01
Psoriasis 0.92± 0.03 0.98± 0.02 0.96± 0.02
Seborrhoeic dermatitis 0.87± 0.07 0.81± 0.11 0.99± 0.01
Viral warts 0.98± 0.02 0.96± 0.03 1.00± 0.00
Vitiligo 0.99± 0.01 0.98± 0.02 1.00± 0.00

(b) Dermatologist inter-rater agreement on diagnosis (mean±std).

F1 Sensitivity Specificity

Acne 0.95± 0.19 0.95± 0.19 1.00± 0.01
Actinic keratosis 0.90± 0.19 0.91± 0.20 0.99± 0.02
Psoriasis 0.94± 0.07 0.95± 0.09 0.99± 0.02
Seborrhoeic dermatitis 0.90± 0.10 0.92± 0.13 0.99± 0.02
Viral warts 0.99± 0.03 0.99± 0.04 1.00± 0.01
Vitiligo 0.98± 0.03 0.98± 0.05 1.00± 0.01

the DermX explanation maps. We selected Grad-CAM for generating the models’ attention maps due138

to its high prevalence in the medical image analysis literature [8, 25]. The Keras [26] implementation139

of these experiments is available at https://github.com/leoilab/dermx-experiments.140

3.1 Experimental Setup141

Both architectures were pre-trained on ImageNet and fine-tuned on 3214 images of the six target skin142

conditions from an internal clinical dataset. Images from this dataset and their associated diagnoses143

were obtained during face-to-face consultations with a dermatologist. All patients included in this144

dataset gave their consent for both research and commercial use of their images. Each model was145

trained five times, and the results presented are the mean over all trained models.146

A hyper-parameter search was run on an 80/20 training/validation split for the internal dataset. We147

investigated data augmentation parameters (rotation, shear, zoom, brightness), learning rates, and148

the number of layers to be fine-tuned. Once the optimal hyper-parameter setup was found (Ap-149

pendix Table 2), the two architectures were trained on the entire internal dataset defined in Table 4.150

The validation F1 score on the internal dataset was 0.73 for ResNet-50 and 0.79 for EfficientNet-B4.151

Finally, the models were tested on the 525 DermX images. All experiments were performed on AWS152

EU (Ireland) instances, summing up to two GPU weeks (NVIDIA V100).153

3.2 Results154

The expected impact of the data distribution shift was made obvious by the model diagnostic155

performance. Diagnostic accuracy with respect to the gold standard is 0.34 ± 0.03, and 0.42 ± 0.09156

for ResNet-50 and EfficientNet-B4, respectively (Table 5). Both methods represent a significant157

improvement over the chance accuracy of 0.17. Vitiligo is predicted with both the lowest sensitivity158

as well as F1 score for both models, while the highest-ranked diagnosis class for both models was159

acne. As seen in Table 5, EfficientNet-B4 outperformed the ResNet-50 on four out of six diseases,160

with a difference of 13.5 points in average for F1 score.161

We evaluate the explainability of the two ConvNets by comparing their attention maps to the162

characteristic segmentations. The union of all characteristics segmented by a dermatologist for163

an image was also compared to the attention map, as a way to check whether the models take into164

account the entire area selected by dermatologists as important to their decision. To quantify the165
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Table 3: An inter-rater analysis for supporting characteristics (a) shows significant variation in their
selection and agreement rates. Characteristics commonly considered important for diagnosing one of
the diseases (e.g. comedones, plaques) have higher agreement rates, while uncommon characteristics
(e.g. leukotrichia, telangiectasia) display low selection and agreement rates. Overlap measures (b)
show similar differences between raters. Due to the focus on outlining sensitivity at the expense of
specificity, most characteristics have a low F1 score. Sensitivity values are high in characteristics that
occupy larger areas and that often display well-circumscribed borders (e.g. plaque, scale), but tend to
be lower in smaller characteristics (e.g. comedones, pustules).

(a) Dermatologist inter-rater agreement for the presence or absence of characteristics (mean±std).

F1 Sensitivity Specificity Evaluations Images

Basic terms
Macule 0.13± 0.24 0.17± 0.31 0.93± 0.10 110 93
Nodule 0.07± 0.22 0.08± 0.26 0.97± 0.05 47 44
Papule 0.65± 0.15 0.69± 0.20 0.86± 0.10 385 213
Patch 0.72± 0.17 0.77± 0.22 0.91± 0.10 335 185
Plaque 0.78± 0.11 0.80± 0.16 0.84± 0.11 592 306
Pustule 0.69± 0.29 0.72± 0.32 0.97± 0.03 161 80
Scale 0.88± 0.09 0.89± 0.12 0.92± 0.09 550 257

Additional terms
Closed comedo 0.52± 0.27 0.61± 0.35 0.96± 0.05 108 63
Cyst 0.06± 0.22 0.06± 0.23 0.99± 0.02 16 14
Leukotrichia 0.18± 0.38 0.18± 0.38 1.00± 0.01 12 8
Open comedo 0.65± 0.30 0.71± 0.34 0.97± 0.05 132 73
Scar 0.45± 0.29 0.54± 0.38 0.95± 0.06 112 74
Sun damage 0.46± 0.39 0.49± 0.43 0.97± 0.04 101 63
Telangiectasia 0.08± 0.25 0.09± 0.27 0.99± 0.02 13 10
Thrombosed capillaries 0.31± 0.40 0.35± 0.45 0.97± 0.05 67 38

(b) Dermatologist inter-rater localisation agreement for localisable characteristics (mean±std).

F1 Sensitivity Specificity

Basic terms
Macule 0.04± 0.12 0.08± 0.20 0.95± 0.13
Nodule 0.03± 0.15 0.06± 0.22 0.98± 0.04
Papule 0.20± 0.28 0.33± 0.36 0.96± 0.10
Patch 0.45± 0.40 0.59± 0.39 0.93± 0.12
Plaque 0.48± 0.39 0.62± 0.37 0.93± 0.12
Pustule 0.24± 0.23 0.38± 0.33 0.99± 0.03
Scale 0.48± 0.32 0.60± 0.33 0.94± 0.10

Additional terms
Closed comedo 0.08± 0.17 0.24± 0.36 0.93± 0.15
Cyst 0.04± 0.13 0.08± 0.18 1.00± 0.01
Dermatoglyph-disruption 0.33± 0.41 0.48± 0.42 0.98± 0.04
Leukotrichia 0.31± 0.33 0.45± 0.38 0.96± 0.06
Open comedo 0.14± 0.19 0.29± 0.33 0.93± 0.15
Scar 0.12± 0.23 0.26± 0.36 0.91± 0.14
Sun damage 0.35± 0.43 0.51± 0.45 0.75± 0.28
Telangiectasia 0.06± 0.16 0.13± 0.25 0.97± 0.05
Thrombosed capillaries 0.21± 0.30 0.36± 0.38 0.99± 0.02

similarity between the attention maps and the expert-generated maps, we compute the F1 score,166

sensitivity and specificity following their fuzzy implementation defined in Crum et al. [27] (Appendix167

Table 3).168
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Table 4: Data used for training and testing the methods, split by disease. An internal clinical dataset
was employed for training the models, while DermX was used for testing.

Acne Actinic Psoriasis Seborrhoeic Viral Vitiligo
keratosis dermatitis warts

Training 1177 165 975 113 606 178
DermX 99 91 97 78 74 86

Table 5: Model diagnostic performance with regards to the gold standard, aggregated over five models.
ResNet-50 (a) is out-performed on four out of six diseases by EfficientNet-B4 (b). The training data
impact can be seen in the high scores for acne and low scores for vitiligo for both models.

(a) ResNet-50 diagnostic performance with regards to the gold standard (mean±std).

F1 Sensitivity Specificity

Acne 0.53 ± 0.11 0.43 ± 0.14 0.96 ± 0.02
Actinic keratosis 0.32 ± 0.11 0.23 ± 0.12 0.97 ± 0.02
Psoriasis 0.44 ± 0.04 0.78 ± 0.20 0.60 ± 0.18
Seborrhoeic dermatitis 0.39 ± 0.19 0.41 ± 0.28 0.92 ± 0.08
Viral warts 0.15 ± 0.06 0.14 ± 0.07 0.86 ± 0.04
Vitiligo 0.04 ± 0.02 0.03 ± 0.02 0.90 ± 0.05

(b) EfficientNet-B4 diagnostic performance with regards to the gold standard (mean±std).

F1 Sensitivity Specificity

Acne 0.65 ± 0.32 0.62 ± 0.33 0.97 ± 0.02
Actinic keratosis 0.55 ± 0.11 0.45 ± 0.15 0.96 ± 0.02
Psoriasis 0.57 ± 0.12 0.90 ± 0.09 0.67 ± 0.23
Seborrheic dermatitis 0.45 ± 0.22 0.41 ± 0.22 0.95 ± 0.03
Viral warts 0.07 ± 0.04 0.06 ± 0.04 0.86 ± 0.04
Vitiligo 0.00 ± 0.01 0.00 ± 0.01 0.90 ± 0.03

Similar to the diagnostic performance, the explainability of EfficientNet-B4 is higher than that of169

ResNet-50 in terms of both F1 score and sensitivity. However, ResNet-50 outperforms EfficientNet-170

B4 in terms of specificity on most characteristics and on the union of all characteristics (Table 6).171

These observations are also apparent upon visual inspection of the dermatologists segmentations172

created by dermatologists and the Grad-CAM visualisations in Figure 3. Much like dermatologists,173

both models have higher sensitivity scores for basic terms, albeit at a smaller difference. Within174

additional terms, cyst, scar, and sun damage all reach sensitivity levels similar to basic terms. This175

may be due to lower selection rates, as is the case for cyst, or because of the larger areas covered by176

scar and sun damage in images.177

4 Discussion and Conclusion178

Our experiments showcase the intended use of DermX: as an explainability benchmark for dermato-179

logical diagnosis ConvNets. By comparing the model explanations to those of the experts not only180

can we identify the most promising research directions, but also learn about strategies to improve181

the existing models. For example, if models under consideration systematically miss certain charac-182

teristics (i.e. express near-zero sensitivity by never selecting the same areas as the dermatologists),183

one solution is to ensure that training data represents the characteristic well enough by including184

both positive and negative samples. Another possible outcome is that models consistently highlight185

different areas than humans (i.e. express low specificity by including areas deemed irrelevant by the186

dermatologists). In this case, ensuring the models are not learning irrelevant characteristics might187

be done by appropriate training data augmentation. Alternatively, if domain experts confirm that188

the areas highlighted are relevant for the diagnosis, this knowledge might be used to better educate189

humans, similar to the actinic keratosis seminar held by Tschandl et al. [8].190
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Table 6: Explainability of ResNet-50 (a) and EfficientNet-B4 (b) as similarity measures between
dermatologists-segmented supporting characteristics and model activation maps. For each image, the
union of all dermatologist characteristic maps was also compared against the activation maps. All
activation maps were computed with regards to the gold standard diagnosis using Grad-CAM.

(a) Explainability of ResNet-50 model (mean±std).

F1 Sensitivity Specificity

Basic terms
Macule 0.07 ± 0.02 0.15 ± 0.02 0.88 ± 0.02
Nodule 0.05 ± 0.01 0.19 ± 0.04 0.88 ± 0.02
Papule 0.06 ± 0.01 0.17 ± 0.02 0.88 ± 0.02
Patch 0.13 ± 0.01 0.12 ± 0.01 0.89 ± 0.03
Plaque 0.18 ± 0.05 0.19 ± 0.04 0.89 ± 0.01
Pustule 0.02 ± 0.01 0.21 ± 0.08 0.87 ± 0.02
Scale 0.16 ± 0.05 0.21 ± 0.05 0.88 ± 0.01

Additional terms
Closed comedo 0.07 ± 0.01 0.15 ± 0.03 0.87 ± 0.03
Cyst 0.03 ± 0.01 0.21 ± 0.05 0.86 ± 0.03
Dermatoglyph disruption 0.06 ± 0.06 0.09 ± 0.12 0.90 ± 0.03
Leukotrichia 0.11 ± 0.02 0.14 ± 0.03 0.90 ± 0.01
Open comedo 0.08 ± 0.01 0.15 ± 0.03 0.87 ± 0.03
Scar 0.13 ± 0.04 0.16 ± 0.04 0.88 ± 0.02
Sun damage 0.22 ± 0.04 0.14 ± 0.03 0.92 ± 0.06
Telangiectasia 0.10 ± 0.02 0.16 ± 0.06 0.90 ± 0.04
Thrombosed capillaries 0.03 ± 0.03 0.10 ± 0.16 0.91 ± 0.03

Union 0.17 ± 0.01 0.16 ± 0.01 0.90 ± 0.00

(b) Explainability of EfficientNet-B4 model (mean±std).

F1 Sensitivity Specificity

Basic terms
Macule 0.09 ± 0.03 0.27 ± 0.07 0.80 ± 0.03
Nodule 0.03 ± 0.01 0.20 ± 0.08 0.82 ± 0.03
Papule 0.07 ± 0.01 0.23 ± 0.07 0.80 ± 0.03
Patch 0.21 ± 0.04 0.28 ± 0.06 0.80 ± 0.03
Plaque 0.29 ± 0.01 0.38 ± 0.03 0.81 ± 0.04
Pustule 0.02 ± 0.01 0.28 ± 0.14 0.82 ± 0.05
Scale 0.26 ± 0.01 0.44 ± 0.03 0.80 ± 0.04

Additional terms
Closed comedo 0.08 ± 0.03 0.21 ± 0.10 0.83 ± 0.04
Cyst 0.02 ± 0.01 0.20 ± 0.14 0.85 ± 0.03
Dermatoglyph disruption 0.05 ± 0.02 0.09 ± 0.05 0.79 ± 0.06
Leukotrichia 0.07 ± 0.03 0.14 ± 0.10 0.82 ± 0.04
Open comedo 0.08 ± 0.04 0.19 ± 0.10 0.83 ± 0.04
Scar 0.16 ± 0.09 0.25 ± 0.13 0.82 ± 0.03
Sun damage 0.42 ± 0.05 0.31 ± 0.05 0.90 ± 0.02
Telangiectasia 0.14 ± 0.01 0.35 ± 0.04 0.79 ± 0.04
Thrombosed capillaries 0.01 ± 0.01 0.07 ± 0.02 0.80 ± 0.05

Union 0.25 ± 0.02 0.29 ± 0.04 0.82 ± 0.03
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Figure 3: Examples of explanation for images where both models correctly predicted the gold
standard diagnosis. From left to right: the original image, the union of all characteristics selected by
all dermatologists labelling the image, an EfficientNet-B4 Grad-CAM visualisation, and a ResNet-50
Grad-CAM visualisation. In all cases, the EfficientNet-B4 visualisation is closer to the dermatologist
map than the ResNet-50 visualisation. ResNet-50 appears to be more specific, focusing on smaller,
more noticeable lesions. More examples can be found in Appendix Figures 4, 5, and 6.

Our benchmarking results demonstrate that there is still a considerable gap among explanations191

provided by the models trained for this task and the expert dermatologists. For example, the highest192

sensitivity achieved for a characteristic by a model on the benchmark is 0.44 ± 0.03 for scale by193

EfficientNet-B4, which is still significantly below the expert agreement of 0.60 ± 0.33. Building194

models that can reach expert level, both in terms of the diagnostic performance and the diagnostic195

reasoning, would require incorporating such expert annotations in the training process. One solution196

could be using characteristics maps to guide the attention of a model towards the clinically relevant197

areas in an image. However, collection of such data is a challenging and laborious task, requiring198

multiple highly trained dermatologists to meticulously segment and tag the data with a rich set of199

characteristics. From a more practical point of view, we can still draw conclusions on how explainable200

each model is, even with the low performance observed for both models. DermX can also serve as201

an external validation dataset for diagnostic tools in general – an important validation aspect of all202

healthcare-oriented diagnostic tools [28].203
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The first release of DermX presented in this work has several limitations. First, only a small number204

of conditions was selected, which, although highly prevalent [20], are not representative of the whole205

variety of dermatological diseases. One risk associated with this selection is that future explainable206

models may focus on this smaller set, at the expense of other, more dangerous conditions. Second,207

expert annotations were limited to up to three dermatological evaluations per image. Diagnostic208

reasoning is not a simple task, and is subject to inter-rater variability as seen in our analysis in209

Section 2.4. Increasing the number of the dermatologists per image will help make the measurements210

more robust. Moreover, the distribution of skin tones in the dataset is skewed towards lighter skin.211

Although the annotation process was subject to various sources of error, e.g. illumination issues,212

missing patient information, and labeller experience, the data further highlights the well known213

low representation of people of colour in publicly available datasets [29]. Finally, in terms of the214

characteristics chosen, the labelling dermatologists could not select the absence of a characteristic as215

an important factor in their diagnosis decision.216

In the future, we aim to continuously expand the dataset with more data points to enable training of217

diagnostic models along with learning the supportive characteristics. The dataset will be enriched218

with more conditions and more dermatologists to make the next DermX releases more comprehensive219

and objective. We will also expand our labelling protocol by including characteristic negation, and220

thus expanding the explainability from only supporting characteristics to counterfactual reasoning. In221

terms of ethical and representation concerns, we aim to select more images illustrating darker skin222

tones. This action is subject to the availability of such images in published skin lesion datasets.223

To conclude, we introduce DermX, the first dermatological dataset created for diagnosis explainability.224

We expect it to serve as a benchmark to meaningfully improve the performance of the ConvNets built225

for dermatological diagnosis, and as a possible basis for explainable diagnosis models.226
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A Appendix356

(a) Diagnoses ontology.

(b) Non-localisable characteristics ontology.

(c) Localisable characteristics ontology.

(d) Additional descriptive terms for localisable characteristics.

Figure 1: Ontology of the four types of labels. The list of diagnoses (1a) includes the six diseases
and two discard options for images that either displayed another disease or were of low quality.
Non-localisable characteristics (1b) were added to the ILDS classification as global image tags after
being flagged as relevant by our senior dermatologists. Localisable characteristics (1c) and additional
descriptive terms (1d) were tailored for the six diseases from medical resources [15, 21], and with the
help of two senior dermatologists.

14



Figure 2: Labelling tool interface, exemplified for a psoriasis case from the SD-260 dataset. In
the global tag search box (area 1, bottom right), dermatologists can select the disease, relevant
demographics information, and lesion distribution. The brush selection menu (area 2, top left) allows
them to select and mark localisable characteristics on the image. The full annotation menu (area 3,
top right) is used to select of additional descriptive terms for the localised basic terms.

(a) Confusion matrix for each ResNet-50 runs.

(b) Confusion matrix for each EfficientNet-B4 runs.

Figure 3: Confusion matrix for all models trained. Both ResNet-50 (a) and EfficentNet-B4 (b) show
a bias towards predicting psoriasis, and predict vitiligo in very few cases.
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Table 1: Dermatologist inter-rater agreement for the presence or absence of characteristics, including
the number of evaluations (evals) and the number of images where they were identified.

F1 Sensitivity Specificity Evals Images

Non-localisable characteristics
Demographics
Elderly 0.50± 0.29 0.58± 0.37 0.93± 0.09 186 117
Young 0.29± 0.29 0.36± 0.39 0.90± 0.13 168 123
Female 0.14± 0.23 0.18± 0.33 0.94± 0.10 84 67
Male 0.14± 0.22 0.20± 0.35 0.91± 0.13 140 113
Dark skin 0.00± 0.00 0.00± 0.00 0.97± 0.05 30 30
Light skin 0.10± 0.22 0.14± 0.31 0.82± 0.27 222 193
Distribution
Acral distribution 0.33± 0.29 0.38± 0.38 0.92± 0.08 149 100
Exposed areas 0.47± 0.33 0.54± 0.38 0.89± 0.12 255 172
Extensor sites 0.28± 0.32 0.31± 0.38 0.95± 0.06 85 59
Intertriginous 0.00± 0.00 0.00± 0.00 0.99± 0.01 9 9
Köbnerization 0.05± 0.20 0.06± 0.23 0.98± 0.02 19 17
Palmo-plantar 0.31± 0.33 0.36± 0.41 0.97± 0.04 74 52
Periorificial 0.16± 0.35 0.16± 0.36 0.99± 0.02 24 18
Seborrhoeic region 0.66± 0.24 0.74± 0.30 0.92± 0.10 287 160
Symmetrical 0.21± 0.24 0.26± 0.33 0.93± 0.07 105 85

Localisable characteristics
Basic terms
Macule 0.13± 0.24 0.17± 0.31 0.93± 0.10 110 93
Nodule 0.07± 0.22 0.08± 0.26 0.97± 0.05 47 44
Papule 0.65± 0.15 0.69± 0.20 0.86± 0.10 385 213
Patch 0.72± 0.17 0.77± 0.22 0.91± 0.10 335 185
Plaque 0.78± 0.11 0.80± 0.16 0.84± 0.11 592 306
Pustule 0.69± 0.29 0.72± 0.32 0.97± 0.03 161 80
Scale 0.88± 0.09 0.89± 0.12 0.92± 0.09 550 257
Additional terms
Closed comedo 0.52± 0.27 0.61± 0.35 0.96± 0.05 108 63
Cyst 0.06± 0.22 0.06± 0.23 0.99± 0.02 16 14
Dermatoglyph disruption 0.32± 0.37 0.33± 0.39 0.97± 0.04 86 50
Leukotrichia 0.18± 0.38 0.18± 0.38 1.00± 0.01 12 8
Open comedo 0.65± 0.30 0.71± 0.34 0.97± 0.05 132 73
Scar 0.45± 0.29 0.54± 0.38 0.95± 0.06 112 74
Sun damage 0.46± 0.39 0.49± 0.43 0.97± 0.04 101 63
Telangiectasia 0.08± 0.25 0.09± 0.27 0.99± 0.02 13 10
Thrombosed capillary 0.31± 0.40 0.35± 0.45 0.97± 0.05 67 38

Table 2: Optimal hyper-parameter setup and other training parameters for ResNet-50 and EfficientNet-
B4, as identified after a hyper-parameter search.

ResNet-50 EfficientNet-B4

Rotation 20 20
Shear 0 0.5
Zoom 0.25 0.5
Brightness 0.25-1 0.5-1
Learning rate 0.01 0.001
Optimiser Adam Adam
Training epochs 30 15
Image size 300× 400 300× 400
Weighted classes On On
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Table 3: Similarity metrics used for comparison of models attention maps (A) and dermatologists
characteristics segmentations (S).

Similarity metric Formula

F1 score
2
∑

p∈pixels min(Ap,Sp)∑
p∈pixels(Ap)+

∑
p∈pixels(Sp)

Sensitivity
∑

p∈pixels min(Ap,Sp)∑
p∈pixels(Sp)

Specificity
∑

p∈pixels min(1−Ap,1−Sp)∑
p∈pixels(1−Sp)

Figure 4: Explanation for images where ResNet correctly predicted the class, while EfficientNet
did not. From left to right: the original image, the union of all characteristics selected by all
dermatologists labelling the image, an EfficientNetB4 Grad-CAM visualisation, and a ResNet-50
Grad-CAM visualisation.
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Figure 5: Explanation for images where EfficientNet correctly predicted the class, while ResNet
did not. From left to right: the original image, the union of all characteristics selected by all
dermatologists labelling the image, an EfficientNet-B4 Grad-CAM visualisation, and a ResNet-50
Grad-CAM visualisation.
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Figure 6: Explanation for images where neither of the two models correctly predicted the class, while
EfficientNet did not. From left to right: the original image, the union of all characteristics selected by
all dermatologists labelling the image, an EfficientNet-B4 Grad-CAM visualisation, and a ResNet-50
Grad-CAM visualisation.
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