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ABSTRACT

Mathematical reasoning is a fundamental aspect of intelligence, encompassing a spectrum
from basic arithmetic to intricate problem-solving. Recent investigations into the mathemat-
ical abilities of large language models (LLMs) have yielded inconsistent and incomplete
assessments. In response, we introduce MathEval. A comprehensive benchmark designed
to methodically evaluate the mathematical problem-solving proficiency of LLMs across
varied contexts, adaptation strategies, and evaluation metrics. MathEval consolidates 22
distinct datasets, encompassing a broad spectrum of mathematical disciplines, languages
(including English and Chinese), and problem categories (ranging from arithmetic and
competitive mathematics to higher mathematics), with varying degrees of difficulty from
elementary to advanced. In order to surmount the complexities associated with mathemati-
cal reasoning output, which lacks a unified pattern for discerning the true answers, and to
adapt to the outputs of various models and prompts, we propose the utilization of GPT-4
as an automated pipeline for answer extraction and comparison. To broaden the utility of
MathEval beyond the scope of GPT-4, we have harnessed the extensive results from GPT-4
to train a deepseek-7B-based answer comparison model, enabling precise answer validation
for those without access to GPT-4. This model will also be made publicly available. To
mitigate potential test data contamination and truly gauge progress, MathEval incorporates
an annually refreshed set of problems from the latest Chinese National College Entrance
Examination (Gaokao 2023, Gaokao 2024), thereby benchmarking genuine advancements
in mathematical problem solving skills.

1 INTRODUCTION

Mathematics stands as a cornerstone to human intelligence (Ahn et al., 2024), encompassing a comprehensive
range of abilities from basic arithmetic to reasoning. Recently, there has been a rapid increase in research
related to large-scale language models (LLMs) in mathematics, which has swiftly propelled the enhancement
of LLMs’ mathematical reasoning abilities. However, the evaluation of these models remains challenging
due to three primary issues: “incomprehensiveness”, “inadequate adaptation” to varying model types and
datasets, and “‘inconsistency”’.

“Incomprehensiveness” indicates that evaluations often do not cover a wide array of datasets, neglecting
factors such as language diversity, problem types, and complexity levels. This limited scope can skew
perceptions of a model’s versatility and effectiveness. “Inadequate adaptation” highlights the shortcomings
in current evaluations to flexibly accommodate different types of models and datasets. For instance, chat
models, which have been fine-tuned during the alignment phase, are especially sensitive to the structure of
prompts. Similarly, evaluations should also adapt prompts to fit the specific characteristics of each dataset.
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Figure 1: Three core components of MathEval addressing key challenges. MathEval integrates: (1) Math
Scenarios, which encompass languages (Chinese and English), problem types (arithmetic and math word
problems), and educational levels (primary, middle, and high school) to comprehensively address the challenge
of incomprehensiveness; (2) Prompt Adaptation, which selects tailored dataset and model templates based
on specific dataset characteristics and model information, effectively tackling the problem of inadequate
adaptation; (3) LLM-based Evaluation, utilizing GPT-4 for answer extraction and comparison to mitigate
inconsistency issues, with an alternative distilled compare-answer model available for users without access to
GPT-4. This structure ensures a robust and fair evaluation of LLMs’ mathematical reasoning capabilities.

For example, multiple-choice problems may require prompts that include hints to guide the selection from
provided options, whereas math word problems might benefit from prompts that encourage Chain-of-Thought
(CoT) reasoning. “‘Inconsistency”’ arises when the same model yields different performances on identical
datasets, complicating the accurate estimation of its true capabilities. This issue primarily stems from the
difficulty in verifying answers to mathematical word problems, where outputs may include reasoning steps,
equations, and final answers in various formats (e.g., 1/2 and (\frac{1}{2})). Extending this to different
models and various types of datasets further complicates the evaluation. Rule-based methods for extracting
and comparing answers, commonly utilized in benchmarks such as OpenCompass (Contributors, 2023)
and HELM (Liang et al., 2023), often lack robustness. Even minor modifications can significantly alter
the evaluation outcomes, making it impractical to tailor these rules for each specific model and dataset.
Consequently, standardizing the process of extracting and comparing outputs continues to pose a significant
challenge in benchmark evaluations. More related works are discussed in Section 4.

To address these challenges, we introduce MathEval, a comprehensive and unified benchmarking framework,
as illustrated in Figure 1. MathEval incorporates 22 datasets in both Chinese and English, covering a wide
range of mathematical problems from primary to high school levels, and includes a dynamically updated
dataset to prevent test data contamination. Each dataset is meticulously categorized; for instance, the classic
GSM8K (Cobbe et al., 2021) dataset represents the math scenario of English, math word problems, and
primary school tasks. To tackle the adaptation challenge, MathEval employs tailored prompts suitable for
various models and datasets, ranging from zero-shot to few-shot settings. This ensures a thorough assessment
of each model’s capabilities across diverse problem sets, promoting a fair comparison of mathematical
abilities across models. MathEval leverages GPT-4 for both answer extraction and comparison, thereby
avoiding the complexities of regular expression rules and setting a consistent evaluation standard. We have
validated GPT-4’s effectiveness by comparing its outputs against human-annotated result, with only minimal
discrepancies noted. To our knowledge, this is the first comprehensive benchmark specifically designed to
evaluate the mathematical capabilities of LLMs holistically. We have evaluated 52 models across 22 datasets
under varied adaptation conditions, making the results publicly accessible .

Contributions of MathEval are outlined as follows:

2



094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2025

Figure 2: Overview of 22 datasets used in MathEval Framework. The datasets are categorized across
three dimensions: problem type (Arithmetic - Arith, Math Word Problems - MWP), language (Chinese -
CN, English - EN), and educational level (Primary - P, Middle - M, High - H). This organization ensures
comprehensive coverage of various math scenarios for robust evaluation.

• MathEval provides an extensive benchmark that includes a diverse array of mathematical problems across
different types and difficulty levels. This thorough categorization facilitates detailed analyses that can unveil
new insights and directions for future research in the field of LLMs and mathematical reasoning.

• We have developed a standardized method for comparing answers that effectively addresses the complexities
associated with outputs from mathematical word problems (MWPs). For broader accessibility, we also offer
a self-developed compare-answer model for researchers and developers who do not have access to GPT-4.

• Recognizing the potential for data contamination in LLM evaluations, MathEval implements a strategy of
using a dynamically updated dataset. This approach ensures that the evaluation reflects the true, unlearned
capabilities of LLMs in solving mathematical problems, providing a more accurate measure of their realistic
mathematical reasoning ability.

2 MATHEVAL

In this section, we will delve into the essential aspects of MathEval’s implementation by elaborating on
its three main components: math scenarios, prompt adaptations, and evaluation methods. Finally, we will
introduce the entire pipeline to provide a comprehensive understanding of how these components integrate to
form MathEval.

2.1 MATH SCENARIOS

Figure 2 presents MathEval’s compilation of 22 math datasets utilized in leading conference papers since
2010, spanning six scenarios across problem types (arithmetic, math word problems), languages (Chinese,
English), and educational levels (primary to high school). Notably, MathEval uniquely features the Arith3K,
GAOKAO-2023, GAOKAO-2024, TAL-SCQ5K-EN, and TAL-SCQ5K-CN datasets, which are new additions
not previously included in other benchmarks. Specifically, within the problem type dimension of our
MathEval benchmark, three datasets—Arith3K, Big-Bench-Hard-Math, and Math401—focus solely on
arithmetic problems, while the remaining 19 datasets are dedicated to MWPs. For the language dimension, it
is important to note that only MWPs’ datasets require language categorization, and these are nearly evenly
split with 10 in English and 9 in Chinese. Regarding the educational level, 12 datasets target primary school,
9 cater to high school, and only Arith3K is designed for middle school students. Predominantly, the datasets
focus on primary school level English MWP, followed by primary and high school level Chinese MWP
scenarios. Detailed information about each dataset is available in the appendix B.2.
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Figure 3: Four stages of the answer generation process: (a) model and datasets preparation, (b) template
encapsulation, (c) computing scheduling and (d) Answer generation.

Building on this overview, we introduce some new datasets that have not been used by other benchmarks
in MathEval: Arith3K, TAL-SCQ5K-EN, TAL-SCQ5K-CN, GAOKAO-2023 and GAOKAO-2024, each
offering unique characteristics and challenges to the benchmark. For detailed descriptions of these datasets,
please refer to the Appendix B.1.

2.2 PROMPTS ADAPTATION

As shown in Figure 3, the process involves four stages: model and datasets preparation, template encapsulation,
computing scheduling, and answer generation.

Model and Dataset Preparation: This phase encompasses the establishment of model and dataset configu-
rations for the ensuing stages. Users have the option to employ their own dataset and model configurations to
expand the current benchmark or to evaluate their own models using MathEval. For the model configuration,
the elements include: (1) Model name: The identifier for the model being used; (2) Prompt template: The
general structure of prompts used by the model; (3) System prompt (MSP): The official system prompt from
the model description or technical report; (4) User prompt (MUP): A token or phrase indicating the start or
end of a user message; (5) Bot prompt (MBP): Similar to the user prompt, it indicates the start or end of a bot
response; For the dataset configuration, the components consist of: (1) Data metadata: Information used to
populate different parts of the template; (2) Question prompt (DQP): Indicates where the question is located
and specifies the different types of questions; (3) Answer prompt (DAP): Specifies the kind of answer that
needs to be generated, option from A to D or a specific answer; (4) Options prompt (DOP): Indicates where
the options are located within the template; (5) Chain of Thought (CoT) prompt: Guides the model to output
different types of CoT reasoning for each dataset. For example, in multiple-choice questions, the CoT should
reason through each choice before providing the final answer; This detailed preparation ensures that both the
model and datasets are configured correctly to facilitate accurate and contextually appropriate responses in
the following stages. More details are discussed in Appendix H.1

Template Encapsulation: We encapsulate our final input prompt based on both model and dataset configura-
tions. There are two scenarios: zero-shot prompt and few-shot prompt. Both settings use a combination of the
previously discussed configuration elements. We include these two scenarios because base LLM models are
generally not proficient in zero-shot scenarios, as they tend to continue generating content beyond the desired
response. Introducing few-shot examples allows for a fair comparison by providing context and examples,
thereby guiding the model to generate more accurate and contextually appropriate answers.

4



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2025

Figure 4: Two evaluation methods. (a)(b)(e) depict a two-stage method involving answer extraction and
verification using GPT-4. (c)(d)(e) illustrate the training data construction of the comparison model and its
training process.

Calculation Scheduling and Answer Generation: The final two stages of our methodology are Calculation
Scheduling and Answer Generation1. At Calculation Scheduling stage, the task is automatically partitioned
based on the available computational resources. This partitioning also takes into account the model size and
dataset size, ensuring an efficient parallel processing to expedite the inference stage. Ultimately, this results
in the generation of completion answers for both zero-shot and few-shot scenarios.

2.3 EVALUATION METHODS

The conventional metric for evaluation entails designing specific answer extraction rules tailored to the models
and datasets, followed by a matching process. While this traditional approach can yield stable results, it
suffers from a lack of robustness. Minor variations in the output can lead to significantly different outcomes.
Moreover, crafting answer extraction rules for each model and dataset based on their output formats introduces
quadratic complexity, making rule-based evaluation criteria inefficient. Consequently, we adopt a general
evaluation method that can be easily and cost-effectively extended to new datasets and models, thereby
enhancing the fairness of the evaluation process through a unified standard.

We initially employed a two-stage evaluation method, as depicted in Figure 4a and 4b. In the first stage,
answer extraction, the generated response is processed to isolate the specific answer. In the subsequent stage,
answer verification, the extracted answer is compared against the ground truth to produce a comparison
result. Given the robustness of methods based on LLMs, such as GPT-4 (OpenAI, 2023), these models exhibit
strong comprehension capabilities and can handle diverse output formats. In contrast, rule-based methods
offer greater stability in obtaining results. Consequently, in both evaluation pipelines, we primarily utilize
outputs from GPT-4, supplementing them with regex-based results when GPT-4 fails. Detailed instructions for
answer extraction and verification using GPT-4 are provided in Appendix F. Additionally, a comprehensive

1Please refer code in https://anonymous.4open.science/r/MathEval-505B/README.md
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comparison between the regex-rule-based method and our GPT-4-as-judgement method is presented in
Appendix F.4.

Subsequently, as illustrated in Figure 4c and 4d, we developed an answer comparison model that takes as
input the question, the model-generated answer, and the reference (golden) answer, and outputs a detailed,
step-by-step analysis to extract and assess the correctness of the generated answers. This process represents
a holistic, end-to-end evaluation activity. By consolidating what was previously a bifurcated process, this
method enhances both the stability and cost-efficiency of the evaluation approach. An exemplar of the training
data utilized is provided in Appendix G.1. We collected a total of 2,217,328 evaluation results derived from
GPT-4 under the former two-stage paradigm, which served as the training dataset for our DeepSeek-7b
(Shao et al., 2024) based answer comparison model. While both methodologies offer distinct advantages, we
predominantly employ the initial method—the two-stage process leveraging GPT-4—as our principal source
of results.

3 EXPERIMENT

3.1 EVALUATED MODELS

52 different models have been evaluated, we have categorized these models into three distinct groups. The
first group consists of open-source models, characterized by their accessibility in terms of model weights
and architecture. The second group comprises closed-source models, which are accessible only through
APIs without disclosure of their underlying architecture or weights. The third category specifically includes
open-source models that have been fine-tuned on math domain data, allowing for a more tailored analysis in
this specific area. Models within each categorized group listed in Appendix C.

3.2 COMPARE ANSWER MODELS

Figure 5: Comparison of Absolute Differences from Human Answers Across Different Compare-answer
Models.

In this section, we explore the methodologies selected for the compare-answer task, a notably challenging
aspect of mathematical benchmark. This complexity is well-acknowledged within the academic community,
as highlighted in several case studies included in the Appendix G.2. Many benchmarks in this field also
encounter difficulties due to their reliance on rule-based extraction and matching approaches. These methods
typically struggle to accommodate the diverse output behaviors exhibited by different models. Furthermore,
there has been a lack of focused research on this domain, particularly in terms of a systematic analysis of the
accuracy of answer matching across various models. This section aims to address these gaps by detailing our
approach and the rationale behind our methodological choices.

To authenticate the precision of our methodology, we have organized a large-scale human annotation process
of the model output results, which was carried out over the course of approximately one month. We have
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selected GPT4, DeepSeek-Math-7B-Base, DeepSeek-Math-7B-Instruct, and DeepSeek-Math-7B-RL as the
basis for validation. Five annotators were assigned to annotate each line of outputs, and the majority vote
result was considered the final decision on the correctness of the model output. The details of the data can
be found in Appendix G.3. The overall Fleiss’ Kappa (Fleiss, 1971) achieved a score of 0.8871, indicating
significant inter-annotator agreement. We believe the human annotation result is reliable and treat the overall
average accuracy as the golden standard.

We evaluated two methods for answer comparison. The first is our two-stage GPT4-based judgment depicted
in Section 2.3. The second is a fine-tuned DeepSeek-7B-Base model (Finetuned-DeepSeek) trained on our
private answer-comparison data and GPT4 output comparison data (partially verified by human annotators to
fix potential errors). We computed the overall average accuracy for each answer-comparison method using
19 selected datasets out of 22 from the four chosen models. The results are shown in Figure 5, where the
y-axis represents the absolute difference between the proposed answer-comparison method and the human
evaluation result, with larger values indicating worse performance. We present the zero-shot, few-shot,
and best-of-two previous settings in this figure, focusing primarily on the best-of-two setting. Initially, we
observed that GPT4 performed consistently well across all models, with an absolute difference ranging from
0 to 0.1. Both methods performed poorly on the output of DeepSeek-Math-7B-Base, likely due to the base
model’s tendency to output useless tokens and inability to stop at the correct position, which poses challenges
for the answer-comparison model. Notably, Finetuned-DeepSeek achieved the same performance as human
annotators on the output of DeepSeek-Math-7B-RL, demonstrating the effectiveness of our method. Given
GPT4’s consistent performance, it will be our primary model for further analysis. We have open-sourced our
custom Finetuned-DeepSeek model to provide a viable alternative for those without access to GPT-4.

3.3 EVALUATION RESULTS

The main results of MathEval are detailed in Table 1, comprehensive results for additional models can be
found in Appendix D. We calculated the arithmetic mean accuracy for each model across 22 datasets and
ranked the models within each group based on this metric, which we refer to as the overall average. In the
subsequent analysis, the overall average is predominantly used as the primary metric for evaluation. To ensure
the credibility of our evaluation results, as detailed in Appendix F.3, we compared our evaluated results from
GPT-4 with the reported metrics of each published model on the GSM8K and MATH datasets, which are
commonly used for assessing math-solving abilities. The minor discrepancies observed demonstrate the
reliability of our evaluation pipeline.

Top1 in 3 categories models. Claude-3.5-Sonnet, a closed-source model, has demonstrated exceptional
performance, surpassing GPT-4 by a significant margin with an average accuracy of 77.0%. This superiority
is evident across various dimensions, particularly in its advanced understanding of both English and Chinese
languages. Claude-3.5-Sonnet’s proficiency in handling high school level problems further highlights its
reasoning capabilities. For open-source models, Qwen2-72B-Instruct leads the pack with an impressive
average accuracy of 74.4%. This model’s performance is followed closely by Qwen15-110B-Chat, which also
shows strong results, indicating that the newer large-parameter chat models possess superior mathematical
abilities. In the math domain, despite having only 7 billion parameters, deepseek-math-7b-rl stands out
with an average accuracy of 63.0%, showcasing the effectiveness of its post-training. However, it still trails
behind the top-5 open-source models, which are all outperformed by the top-3 closed-source models. This
underscores the importance of model parameter size in achieving leading mathematical capabilities and
highlights the current gap between open-source and closed-source models.

3.4 DISCUSSION

With MathEval, we have uncovered several intriguing insights. We will delve into these findings in detail
within this section.
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Table 1: Summary of principal outcomes from MathEval. Abbreviations used: ’En.’ for English, ’Cn.’ for
Chinese, ’Arith.’ for Arithmetic, ’Prim’ for Primary, ’Mid.’ for Middle, and ’Avg’ for average score. The
table displays the top-six performing models in each category.

Models Language Type Grade Avg.En. Cn. MWP Arith. Prim. Mid. High
Closed-source Models

Claude-3.5-Sonnet 84.7 67.2 76.4 80.8 90.0 57.3 61.8 77.0
WenXin 4.0 78.3 65.7 72.4 93.1 88.2 89.6 56.3 75.2
Gemini1.5Pro 81.9 63.8 73.3 81.9 88.8 46.9 58.5 74.5
GLM4 76.5 61.3 69.3 60.9 83.1 32.4 52.2 68.1
Spark-3.5 72.8 60.6 67.0 68.4 81.5 41.2 51.1 67.2
GPT4 72.4 45.9 59.8 67.1 79.6 38.3 38.3 60.8

Open-source Models
Qwen2-72B-Instruct 81.8 64.7 73.7 78.7 88.7 57.3 57.2 74.4
Qwen15-110B-Chat 76.3 57.3 67.3 68.6 84.0 40.8 48.4 67.5
Qwen2-72B 73.0 57.0 65.4 65.4 79.7 35.3 49.7 65.4
LLama-3-70B-Instruct 76.6 51.7 64.8 68.8 82.3 42.4 45.3 65.4
Qwen2-7B-Instruct 75.8 52.7 64.8 67.4 81.3 46.3 45.8 65.2
Qwen15-72B-Chat 71.7 55.1 63.8 62.8 79.6 33.4 45.7 63.7

Math Domain Models
deepseek-math-7b-rl 74.0 50.3 62.8 64.4 79.5 44.0 43.0 63.0
deepseek-math-7b-instruct 69.7 46.7 58.8 57.7 75.7 36.6 38.3 58.7
internlm2-math-20b 66.0 44.7 55.9 41.3 68.4 28.8 37.4 53.9
MetaMath-70B 57.6 27.7 43.4 32.1 58.3 12.5 23.3 41.9
MAmmoTH-70B 56.5 27.6 42.8 30.9 56.6 11.4 23.9 41.2
GAIRMath-Abel-70B 53.5 30.8 42.7 25.5 53.3 11.5 26.3 40.4

Closed-source models exhibit a higher capability range than open-source models and math domain models.
As shown in the Figure 6a, not only does it exhibit the highest capability ceiling, but it also maintains a
high capability floor, with only GPT-3.5 lagging slightly. This indicates that closed-source models typically
exhibit consistently superior performance in mathematical tasks. Nevertheless, we also observed that the 25th
percentile range of closed-source models is encompassed by the capability range of open-source models. This
suggests that excellent open-source models can achieve performance comparable to closed-source models.

Open-source models exhibit a wide range of capabilities influenced by both the type of base model and
the size of the model parameters, as shown in Figure 6b. While the size of the model parameters does not
directly determine the model’s mathematical abilities, it can increase the potential upper limit of these abilities.
Consistent with general conclusions, we observe that the mathematical ability of models with the same base
architecture has a linear relationship with the logarithm of their parameter sizes. Additionally, chat models
consistently outperform base models, reflecting the stabilizing effect of post-training. Furthermore, analyzing
the lines of similar color in the figure reveals that the slopes of models with the same base architecture are
remarkably uniform. Interestingly, newer series exhibit steeper slopes, indicating that their mathematical
abilities improve more effectively with an increase in parameter size.
For problem type dimension, as shown in Figure 6d, the scarcity of arithmetic-related datasets leads
to significant fluctuations in arithmetic capabilities across models, represented by the blue line. Models
highlighted in blue, positioned below the average difference line, exhibit stronger arithmetic abilities compared
to their capabilities in solving MWPs. For closed-source models, the notable deviations of WenXin 4.0 may
be due to their arithmetic plugins. We did not use API versions with plugins for GPT-4, which could affect
their performance in arithmetic tasks. Other open-source models like LLama-3-70B and internlm2-base-20b
also show strong arithmetic capabilities. Conversely, models above the average difference line, highlighted in
red, are predominantly fine-tuned on MWPs data. This includes specialized models such as MAmmoTH-70B,
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Figure 6: MathEval evaluation results. (a)-(c) show the discovery of closed-source models, open-source
models, and math domain models. (d) compares the model-level capabilities across problem type dimensions.

MetaMath-70B, and GAIRMath-Abel-70b. A similar trend is evident in internlm2-math-20b and internlm2-
chat-20b, which, unlike the more arithmetic-proficient internlm2-base-20b, likely benefitted from targeted
fine-tuning on MWPs datasets during the post-training phase. Additionally, models like Qwen1.5-72B,
Qwen-72B, and GLM4 also demonstrate enhanced capabilities in handling MWPs.

Few-shot/zero-shot setting is a relatively consistent part of prompts adaptation. We aim to maintain
consistency while ensuring fairness, making it important to understand how different few-shot/zero-shot
settings affect model capabilities. Specifically, our evaluation includes three settings: few-shot, zero-shot, and
the higher accuracy between few-shot and zero-shot at the dataset level. As shown in the Figure 7, the ”dataset-
level higher” setting consistently outperforms using either few-shot or zero-shot alone across all models. It
also produces smoother curves with fewer outliers, indicating that this setting contributes to the robustness
and fairness of the evaluation. When comparing zero-shot and few-shot, zero-shot generally performs better
on most models, with only some base models showing significantly lower performance (represented by red
dashed lines). Notably, the base models in the Qwen series do not exhibit this phenomenon.

We conduct more discussions in Apendix E.
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Figure 7: Comparison of prompts adaptation settings: few-shot, zero-shot and datset-level higher. Base
models are highlighted in red on the x-axis, while post-training models are shown in black.

4 RELATED WORK

Benchmarks orient LLMs. General benchmarks provide a comprehensive evaluation of LLMs and are
widely used across various natural language understanding tasks to assess their performance. The MMLU
(Hendrycks et al., 2021a) benchmark is notable for its extensive collection of 57 tasks covering diverse
domains, offering comprehensive challenges across varying subjects and levels of complexity. AGIEval
(Zhong et al., 2023) is centered on standardized exams like the SAT, LSAT, and GRE, testing models’
reasoning, problem-solving, and language comprehension skills. The broader BIG-Bench (Srivastava et al.,
2022) initiative includes a diverse set of tasks designed to probe models on novel and complex linguistic
capabilities, challenging them to demonstrate their robustness and versatility in a wide array of cognitive
tasks beyond traditional benchmarks.

Domain-specific benchmarks are crucial for evaluating how well LLMs handle specialized tasks requiring
deep field knowledge. HaluEval (Li et al., 2023) assesses hallucination detection in LLMs using annotated
samples, revealing that models frequently generate unverifiable information. LongBench (Bai et al., 2023b)
tests long-context comprehension in English and Chinese across 21 datasets, showing that expanding context
windows and enhancing memory mechanisms improve long-sequence understanding.

To the best of our knowledge, there is currently no comprehensive mathematical evaluation benchmark. A
similar mathematical benchmark, Lila (Mishra et al., 2023), focuses on extending datasets by collecting task
instructions and solutions as Python programs and then exploring some models’ out-of-domain capabilities.
A comprehensive benchmark for assessing the mathematical abilities of various models remains absent.

5 CONCLUSION

In this papar, we proposed MathEval, the first comprehensive evaluation benchmark for the mathematical
capabilities of large language models (LLMs). Our evaluation encompassed 52 models across 22 datasets,
organized into distinct scenarios along three dimensions. Our pipeline facilitates flexible adaptation to
various datasets and models. Moreover, we propose an LLM-based approach for the automatic extraction
and verification of mathematical answers, serving as a general and precise metric. We hope that MathEval
will help provide an impartial evaluation of the mathematical abilities of LLMs, advancing the continuous
improvement of LLM mathematical capabilities and expanding practical applications.

10
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A APPENDIX

B DATASETS DETAILS

B.1 UNIQUE DATASET DESCRIPTION

Arith3K is a high quality arithmetic evaluation dataset we constructed, consists of 3 main categories and
15 sub-categories, totaling 3,000 problems. It includes 12 types of mathematical operations, ranging from
simple arithmetic and logarithmic operations to factorials, trigonometric functions, and complex compound
operations. We systematically combined numbers and operators, and used Python code along with SymPy to
verify the correctness of each expression. This makes Arith3K the most challenging dataset among arithmetic
collections in our benchmark, designed to comprehensively assess the computational abilities of LLMs across
varied difficulty levels.

TAL-SCQ5K-EN and TAL-SCQ5K-CN are comprehensive mathematical competition datasets available in
English and Chinese, respectively. Each dataset comprises 5,000 multiple-choice questions, divided into
3,000 for training and 2,000 for testing, covering primary, junior high, and high school level mathematics.
These datasets are particularly valuable for Chain of Thought (CoT) training as they include detailed solution
steps. Furthermore, all mathematical expressions within the questions are formatted in standard text-mode
LaTeX, ensuring clarity and consistency in presentation. To maintain the high quality of the TAL-SCQ
datasets, each question undergoes a rigorous review process by two qualified teachers before being included.
Moreover, an independent quality validation was conducted on a randomly selected sample of 200 problems,
all of which were approved by independent teachers, with no identified issues.

The GAOKAO-2023 and GAOKAO-2024 datasets are derived from the most recent Chinese National College
Entrance Examination and consist of both multiple-choice and mathematical word problems. These datasets,
which reflect actual exam content, will be updated on an annual basis with forthcoming versions such as
GAOKAO-20252. These consistent updates are designed to help alleviate potential contamination of test data.

We focus on K-12 education levels due to their broad applicability and the availability of extensive datasets.
However, we recognize that incorporating higher-level mathematics—such as undergraduate topics and
competition math problems like PutnamBench—would provide deeper insights into the models’ capabilities
across varying difficulty levels. We are actively working to include these more challenging problems in future
iterations of MathEval.

2Dataset will be updated annualy in our Github
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B.2 DATASET CATEGORIZATION AND DETAILED PROBLEM ANALYSIS

In this section, we conduct a detailed analysis of the differences among the datasets and our categorization of
them to avoid the issue of measuring the same ability dimensions. First, in Table 2, we present each of our
datasets and their corresponding classifications, including language, problem type, and corresponding grade
level (which can partially reflect the difficulty level).

To further analyze the distinctions between the datasets, we examined the data distribution of problems in
the different datasets to ensure that they are dissimilar. For each dataset, we first randomly sampled 200
query problems and obtained their representations using the LLaMa-3-8B Dubey et al. (2024) model. We
performed t-SNE dimensionality reduction on these representations, with the visualization shown in Figure 9
and the cosine similarity situation in Figure 8.

For the calculation of cosine similarity, we computed the cosine similarity between each query across every
pair of datasets and finally took the absolute value of the average as their correlation. We found that the
correlation scale between dataset queries ranges from 0 to 0.8, and according to statistics, 75.32% are less
than 0.6, and 60.17% are less than 0.5. This demonstrates the dissimilarity between dataset queries, reflecting
that to some extent they measure different abilities.

Moreover, we made a surprising discovery in the t-SNE results: the t-SNE naturally formed three clusters. One
cluster consists of English datasets (SVAMP, GSM8K, MathQA, MATH, Dolphin-1878, OlympiadBench-EN,
etc.), another cluster consists of Chinese datasets (CMMLU-Math, Math23K, Ape210K, TAL-SCQ5K-CN,
etc.), and a third cluster consists of arithmetic problems (Big-Bench-Hard-Math, Math401, Arith3K). From
component 1, we can observe that on the left are the English datasets, in the middle are the arithmetic
problems, and on the right are the Chinese datasets.

Further observing the Chinese and English clusters, we find that as the t-SNE component 2 value decreases
(from top to bottom in the figure), the problems become increasingly difficult, and the corresponding grade
levels also rise. This perfectly reflects that our difficulty levels are distributed across various grades, with
corresponding datasets at each level. This shows that our 22 datasets measure different aspects, whether in
terms of difficulty or language.

Figure 8: Average cosine similarity of query embeddings between each pair of the 22 datasets.
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Figure 9: t-SNE visualization of query embeddings from the 22 datasets.

C MODEL CATEGORIES AND SOURCES

Closed-source models: GPT-4, GPT-3.53, GLM44, WenXin 4.05, Spark-3.56, Gemini-1.5-Pro7, Claude-3.5-
Sonnet8

Open-source models: Qwen, Qwen1.5 and Qwen2 (Bai et al., 2023a);(Yang et al., 2024), LLaMa2, LLaMa3
and LLaMa3.1 (Touvron et al., 2023);(Dubey et al., 2024), Mistral (Jiang et al., 2023), InternLM2 (Cai et al.,
2024), Moss-Moon (Sun et al., 2023), Baichuan2 (Yang et al., 2023), ChatGLM3 Du et al. (2022)

Math domain models: WizardMath (Luo et al., 2023), MAmmoTH (Yue et al., 2023), MetaMath (Yu et al.,
2023), Llemma (Azerbayev et al., 2023), GAIRMath-Abel (Chern et al., 2023), Deepseek-Math (Shao et al.,
2024)

3GPT-4 & GPT-3.5 version 2024-02-01
4https://open.bigmodel.cn
5https://cloud.baidu.com/qianfandev
6https://xinghuo.xfyun.cn/spark
7https://deepmind.google/technologies/gemini/pro/
8https://www.anthropic.com/news/claude-3-5-sonnet
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Table 2: 22 datasets used in MathEval, along with their references and three-dimensional categories.

Model Language Problem Type Grade

AGIEval-Math (Zhong et al.,
2023)

Chinese Math word problem High School

Ape210K (Zhao et al., 2020) Chinese Math word problem Primary School

Arith3K (Ours) - Arithmetic Middle School

ASDiv-a (Miao et al., 2020) English Math word problem Primary School

Big-Bench-Hard-Math (Suzgun
et al., 2022)

- Arithmetic Primary School

CMMLU-Math (Li et al., 2024) Chinese Math word problem High School

Dolphin1878 (Shi et al., 2015) English Math word problem Primary School

GAOKAO-2023 (Ours) Chinese Math word problem High School

GAOKAO-2024 (Ours) Chinese Math word problem High School

GAOKAO-Math (Zhang et al.,
2024)

Chinese Math word problem High School

GSM8K (Cobbe et al., 2021) English Math word problem Primary School

MAWPS (Koncel-Kedziorski et al.,
2016)

English Math word problem Primary School

Math23K (Wang et al., 2017) Chinese Math word problem Primary School

Math401 (Yuan et al., 2023) - Arithmetic Primary School

MATH (Hendrycks et al., 2021b) English Math word problem High School

MATHQA (Amini et al., 2019) English Math word problem Primary School

MMLU-Math (Hendrycks et al.,
2021a)

English Math word problem High School

TAL-SCQ5K-CN (Ours) Chinese Math word problem Primary School

TAL-SCQ5K-EN (Ours) English Math word problem Primary School

SVAMP (Patel et al., 2021) English Math word problem Primary School

OlympiadBench-CN (He et al.,
2024)

Chinese Math word problem High School

OlympiadBench-EN (He et al.,
2024)

English Math word problem High School

D MATHEVAL MAIN RESULT

Due to space constraints, the detailed performance of each dataset for every model are not included in this
paper. However, these details will be made available upon the paper’s acceptance. We have summarized the
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average results across each domain and the total arithmetic average scores in Table 3 and Table 4. All models
are ranked by their arithmetic average within each source, and a comprehensive final ranking across all
categories is provided in Table 5. Abbreviations used: ’En.’ for English, ’Cn.’ for Chinese, ’MWP’ for Math
word problem, ’Arith.’ for Arithmetic, ’Prim’ for Grade School, ’Mid.’ for Middle School, ’High’ for High
School, and ’Avg’ for overall average score. We also calculated the Pearson correlation coefficients between
datasets based on the evaluation results of the models, reflecting the linear relationships among the datasets,
as shown in Figure 10. The Pearson correlation coefficients between datasets are relatively high because we
are assessing mathematical abilities, which are inherently strongly correlated. If a model’s computational
ability improves, its problem-solving ability will naturally improve. Similarly, if a model’s accuracy increases
on high school-level questions, its success rates on easier middle school and elementary school problems will
also be higher. The high Pearson correlations we observed demonstrate the robustness of our benchmark.

Nevertheless, we still selected 22 datasets for two main reasons. First, we want our test results to be more
robust; only with as much data as possible can we truly reflect the actual performance of the models, and
potentially discover any poor performance on certain datasets. Second, through the query analysis in the
previous section, we found that our 22 datasets cover different languages and difficulty levels, ensuring a
balanced and comprehensive representation across these dimensions.

Table 3: Final ranking for closed-source and math domain models from MathEval.

Models Language Type Grade Avg.En. Ch. MWP Arith. Prim. Mid. High
Closed-source Models

Claude-3.5-Sonnet 84.7 67.2 76.4 80.8 89.9 57.3 61.8 77.0
WenXin 4.0 78.3 65.7 72.4 93.1 88.2 89.6 56.3 75.2
Gemini-1.5-Pro 81.9 63.8 73.3 81.9 88.8 46.9 58.5 74.5
GLM4 76.5 61.3 69.3 60.9 83.1 32.4 52.2 68.1
Spark-3.5 72.8 60.6 67.0 68.4 81.5 41.2 51.1 67.2
GPT-4 72.4 45.9 59.8 67.1 79.6 38.3 38.3 60.8
GPT-3.5 61.2 34.8 48.7 54.9 66.7 35.4 28.2 49.5

Math Domain Models
Deepseek-Math-7B-RL 74.0 50.3 62.8 64.4 79.5 44.0 43.0 63.0
Deepseek-Math-7B-Instruct 69.7 46.7 58.8 57.7 75.7 36.6 38.3 58.7
InternLM2-Math-20B 66.0 44.7 55.9 41.3 68.4 28.8 37.4 53.9
MetaMath-70B 57.6 27.7 43.4 32.1 58.3 12.5 23.3 41.9
MAmmoTH-70B 56.5 27.6 42.8 30.9 56.6 11.4 23.9 41.2
GAIRMath-Abel-70B 53.5 30.8 42.7 25.5 53.3 11.5 26.3 40.4
WizardMath-70B 50.3 27.2 39.4 30.6 51.3 12.6 23.5 38.2
Deepseek-Math-7B-base 36.0 27.4 31.9 31.5 39.8 21.7 22.4 31.9
Llemma-34B 37.6 22.4 30.4 36.9 38.5 13.7 23.7 31.3
WizardMath-13B 35.3 17.6 26.9 19.3 34.3 7.1 16.6 25.8
Llemm-7B 27.5 19.0 23.4 30.9 29.5 8.9 19.4 24.5
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Table 4: Final ranking for open-source models from MathEval.

Models Language Type Grade Avg.En. Ch. MWP Arith. Prim. Mid. High
Open-source Models

Qwen2-72B-Instruct 77.6 63.0 70.7 73.1 85.1 40.4 55.6 71.0
LlaMa-3-70B-Instruct 73.4 49.0 61.8 67.5 79.3 40.3 42.8 62.6
Qwen15-110B-Chat 66.1 55.1 60.9 67.0 75.9 35.9 45.8 61.8
LlaMa-3.1-70B-Instruct 72.0 42.7 58.1 66.1 75.5 35.5 40.1 59.2
Qwen2-7B-Instruct 66.4 49.9 58.6 61.1 73.4 30.4 42.8 58.9
Qwen15-72B-Chat 60.1 51.7 56.1 60.0 68.7 24.9 44.0 56.6
Qwen-72B-Chat 56.3 50.8 53.7 49.6 63.9 20.3 42.4 53.1
Qwen2-72B 56.9 34.8 46.5 65.2 61.1 35.3 34.3 49.0
LlaMa-3-8B-Instruct 60.9 33.5 47.9 46.5 64.2 22.6 28.5 47.7
Qwen-14B-Chat 50.3 39.9 45.4 47.3 57.7 19.7 32.4 45.6
LlaMa-3.1-8B-Instruct 59.0 26.6 43.6 52.2 60.6 24.1 26.0 44.8
Qwen-72B 42.1 43.2 42.6 45.3 49.9 14.6 36.9 43.0
Qwen15-7B-Chat 48.7 35.8 42.6 42.7 55.9 17.8 27.6 42.6
Qwen15-72B 38.3 42.5 40.3 46.9 49.0 12.8 34.0 41.2
Qwen15-110B 35.0 41.2 37.9 48.9 40.6 18.8 40.1 39.4
LlaMa-3.1-70B 47.4 24.0 36.3 53.0 52.4 22.2 22.0 38.6
LlaMa-3-70B 42.1 29.2 36.0 49.9 49.6 0.8 26.4 37.9
ChatGLM3-6B 42.8 29.4 36.5 42.9 47.4 13.0 26.6 37.3
LlaMa2-70B-chat 46.5 21.8 34.8 28.7 46.8 14.5 19.0 33.9
Qwen15-7B 35.1 29.9 32.6 27.6 42.0 17.9 20.1 31.9
Qwen2-7B 32.9 29.2 31.2 35.3 37.0 20.7 25.9 31.7
Qwen-14B 32.7 29.7 31.3 34.6 36.2 14.6 27.7 31.7
LlaMa-3.1-8B 37.5 18.2 28.4 36.3 40.9 12.5 16.0 29.4
InternLM2-chat-20b 34.0 25.4 29.9 21.4 34.7 11.1 22.7 28.7
LlaMa2-70B 33.3 18.1 26.1 26.9 33.5 11.0 18.3 26.2
InternLM2-base-20b 28.0 18.8 23.7 39.4 31.8 14.2 19.1 25.8
Mistral-7B-Instruct-v01 34.2 14.4 24.8 25.7 33.2 11.9 15.3 24.9
Mistral-7B-Instruct 34.7 14.1 24.9 24.7 33.5 11.8 14.9 24.9
LlaMa2-13B-chat 32.4 17.5 25.3 20.0 31.8 10.0 16.6 24.6
LlaMa2-7B-chat 28.4 14.9 22.0 18.6 28.0 8.2 14.4 21.5
LlaMa-3-8B 26.4 15.9 21.5 21.6 28.7 9.4 13.1 21.5
Baichuan2-13B 25.6 16.6 21.3 21.9 25.5 11.3 17.0 21.4
LlaMa2-13B 22.0 12.7 17.6 16.3 20.7 7.7 14.1 17.4
LlaMa2-7B 17.2 12.1 14.8 16.7 16.9 8.4 13.3 15.0
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Table 5: Comprehensive final ranking across all categories from MathEval.

Models Language Type Grade Avg.En. Cn. MWP Arith. Prim. Mid. High
Claude-3.5-Sonnet 84.7 67.2 76.4 80.8 89.9 57.3 61.8 76.9
WenXin 4.0 78.3 65.7 72.4 93.1 88.2 89.6 56.3 75.2
Gemini-1.5-Pro 81.9 63.8 73.3 81.9 88.8 46.9 58.5 74.5
Qwen2-72B-Instruct 81.8 64.7 73.7 78.7 88.7 57.3 57.2 74.4
GLM4 76.5 61.3 69.3 60.9 83.1 32.4 52.2 68.1
Qwen15-110B-Chat 76.3 57.3 67.3 68.6 84.0 40.8 48.4 67.5
Spark-3.5 72.8 60.6 67.0 68.4 81.5 41.2 51.1 67.2
Qwen2-72B 73.0 57.0 65.4 65.4 79.7 35.3 49.7 65.4
LLaMa-3-70B-Instruct 76.6 51.7 64.8 68.8 82.3 42.4 45.3 65.4
Qwen2-7B-Instruct 75.8 52.7 64.8 67.4 81.3 46.3 45.8 65.2
Qwen15-72B-Chat 71.7 55.1 63.8 62.8 79.6 33.4 45.7 63.7
LLaMa-3.1-70B-Instruct 77.9 46.6 63.1 66.9 81.0 38.1 43.4 63.6
Deepseek-Math-7B-RL 74.0 50.3 62.8 64.4 79.5 44.0 43.0 63.0
Qwen-72B-Chat 67.8 55.2 61.8 57.0 75.3 32.9 45.4 61.1
GPT-4 72.4 45.9 59.8 67.1 79.6 38.3 38.3 60.8
Qwen15-110B 70.3 52.6 61.9 53.7 75.7 18.8 45.6 60.8
Deepseek-Math-7B-Instruct 69.7 46.7 58.8 57.7 75.7 36.6 38.3 58.7
Qwen-72B 68.7 50.3 60.0 46.1 71.2 17.1 45.1 58.1
Qwen2-7B 69.9 46.5 58.8 52.6 73.1 33.0 40.5 57.9
Qwen15-72B 65.0 48.9 57.4 47.9 69.5 15.2 42.8 56.1
InternLM2-Math-20B 66.0 44.7 55.9 41.3 68.4 28.8 37.4 53.9
LLaMa-3.1-8B-Instruct 70.8 34.3 53.5 52.6 71.4 25.2 32.5 53.4
Qwen-14B-Chat 59.4 46.1 53.1 51.1 66.1 28.2 37.9 52.8
LLaMa-3-8B-Instruct 63.7 35.4 50.3 46.8 67.1 23.3 29.8 49.8
GPT-3.5 61.2 34.8 48.7 54.9 66.7 35.4 28.2 49.5
InternLM2-Chat-20B 60.7 37.7 49.8 36.3 62.4 25.6 31.2 47.9
Qwen-14B 52.5 43.4 48.2 46.1 60.9 14.6 34.2 47.9
Qwen15-7B-Chat 55.7 38.9 47.7 43.3 62.0 19.8 30.3 47.1
ChatGLM3-6B 54.3 37.8 46.5 43.8 60.8 14.7 30.1 46.1
LLaMa-3.1-70B 53.4 31.3 42.9 53.0 60.4 22.2 25.3 44.3
MetaMath-70B 57.6 27.7 43.4 32.1 58.3 12.5 23.3 41.9
Qwen15-7B 50.7 34.8 43.2 30.5 54.9 17.9 26.1 41.4
MAmmoTH-70B 56.5 27.6 42.8 30.9 56.6 11.4 23.9 41.2
GAIRMath-Abel-70B 53.5 30.8 42.7 25.5 53.3 11.5 26.3 40.4
LLaMa-3-70B 42.1 30.9 36.8 51.8 50.4 6.4 27.0 38.8
WizardMath-70B 50.3 27.2 39.4 30.6 51.3 12.6 23.5 38.2
LLaMa2-70B-chat 49.0 22.6 36.5 29.5 48.5 14.5 20.6 35.5
Deepseek-Math-7B-base 36.0 27.4 31.9 31.5 39.8 21.7 22.4 31.9
LLaMa-3.1-8B 40.4 20.2 30.9 36.3 43.9 12.5 17.2 31.6
Llema-34b 37.6 22.4 30.4 36.9 38.5 13.7 23.7 31.3
Mistral-7B-Instruct-v01 44.2 17.5 31.6 25.7 42.3 11.9 17.4 30.8
Mistral-7B-Instruct 43.9 16.8 31.1 24.7 42.0 11.8 16.5 30.2
Baichuan2-13B 36.3 24.9 30.9 22.5 39.6 11.3 18.6 29.7
LLaMa2-70B 39.1 19.9 30.0 27.9 39.6 11.0 18.7 29.7
InternLM2-Base-20B 31.6 22.8 27.4 43.3 38.5 14.2 19.4 29.6
LLaMa2-13B-chat 40.1 20.0 30.6 20.2 39.1 10.0 18.1 29.2
LLaMa2-7B-chat 35.3 18.5 27.4 18.6 34.3 8.2 17.3 26.2
WizardMath-13B 35.3 17.6 26.9 19.3 34.3 7.1 16.6 25.8
Llema-7B 27.5 19.0 23.4 30.9 29.5 8.9 19.4 24.5
LLaMa-3-8B 30.5 15.9 23.6 21.6 30.8 9.4 14.9 23.3
LLaMa2-13B 25.3 13.3 19.6 16.3 23.9 7.7 14.2 19.2
LLaMa2-7B 20.8 12.2 16.7 16.7 19.9 8.4 13.4 16.7
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Figure 10: Pearson correlation coefficients between datasets based on model evaluation results.

E MATHEVAL RESULTS DISCUSSION

For the language dimension, as illustrated in Figure 11a, we observed that the mathematical capabilities
in Chinese consistently trail those in English. To account for the potential impact of problem difficulty,
we compared the math capabilities in English and Chinese separately for primary and high school grade
subsets. As Figures 11b and 11c demonstrate, this trend persists in the primary school subset, while the
differences between Chinese and English capabilities are negligible in the high school subset. This could be
attributed to primary school problems requiring more language comprehension. Models with stronger Chinese
mathematical abilities, such as WenXin 4.0 and Spark-3.5, primarily developed by Chinese companies,
are displayed in blue font below the average difference line. Conversely, models with stronger English
capabilities, represented in red, include Mistral-7B-Instruct, LLaMa2-70B-chat, LLama-3.1-8B-Instruct, and
LLama-3.1-70B-Instruct, etc. These are instruction fine-tuned models primarily developed by companies
based in English-speaking countries, may exhibit weaker performance in Chinese due to the relative scarcity
of Chinese math problems in their fine-tuning data. Another category, including MAmmoTH-70B and
MetaMath-70B, comprises math domain fine-tuned models that exclusively use augmentation data from
English datasets.

Math domain models enhance the capabilities of base models by leveraging specialized data from the
mathematical domain for continued pre-training, supervised fine-tuning and reinforcement learning (RL).
As shown in Figure 6c, models fine-tuned on LLaMa2-70B and Deepseek-math-7b-base exhibit more than
double the improvement, highlighting that post-training significantly boosts the model’s specialized abilities,
extending beyond specific datasets.

Comparison of mathematical abilities across three dimensions As shown in Figures 6d, 11, and 12,
models tend to exhibit consistent performance within the same dimension, such as language, grade, or
problem type. For example, a model that performs well on English problems is likely to perform similarly
on Chinese problems. However, evaluating different types of mathematical abilities is crucial not only for
completeness but also to identify relative differences in model capabilities. These differences, often resulting
from the model’s data and training process, provide valuable insights for future improvements.
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For the grade dimension, given the presence of only one middle school dataset, our discussion will center
on the model capabilities for primary and high school math problems. As Figure 12a illustrates, models
consistently perform better on primary school problems than on high school problems, likely due to inherent
differences in difficulty. Notably, Claude-3.5-Sonnet and Gemini-1.5-Pro, demonstrate significantly higher
accuracy on primary school problems. This may be attributed to the stronger comprehension abilities of these
models, as primary school problems are predominantly word problems. Conversely, the Llemma-7B and
Llemma-34B models, display a smaller advantage. We hypothesize that this could be due to their pre-training
data, created with AlgebraicStack, which contains complex mathematical knowledge, including symbolic and
formal math. Additionally, in Figures 12b and 12c, we re-evaluated the models’ capabilities based on problem
difficulty within the Chinese and English subsets. We found that only GPT-3.5 showed a weakened strength
in primary school math abilities within the Chinese subset. The other conclusions remain largely consistent.

Potential Data Contamination, by conducting comprehensive evaluations across all datasets, we identified
potential data contamination issues that were not apparent when analyzing a small subset of data. Specifically,
Figure 13 illustrates discrepancies in model performance on the Gaokao-2023 dataset—a newly introduced set
of questions that none of the models had encountered during training or fine-tuning phases. In the upper chart
of Figure 13, we present the Chinese subsets rank (blue bars) and the Gaokao-2023 rank changes (orange
and green bars) for each model. A smaller rank indicates better performance. The orange bars represent
models whose rank increased (indicating poorer performance) on Gaokao-2023 relative to other datasets,
while the green bars represent models whose rank decreased (indicating better performance) on Gaokao-2023.
Our analysis reveals that certain models, notably ChatGLM3-6B and Baichuan2-13B, exhibit a significant
increase in rank when evaluated on Gaokao-2023, suggesting a drop in their relative performance on this new
dataset. This discrepancy implies that these models may have benefited from potential data contamination
in the other datasets, artificially inflating their performance. Furthermore, many of the Qwen-series models
display orange bars, indicating a deterioration in their performance ranking on Gaokao-2023 compared to
other datasets. This pattern suggests that these models may have been trained on data overlapping with
our evaluation sets, leading to inflated performance on those datasets but not on the unseen Gaokao-2023.
In contrast, most base models (those not undergoing SFT and RLHF) exhibit green bars, improving their
performance ranking on Gaokao-2023. This observation supports the notion that chat models are more
susceptible to data contamination due to their exposure to a wider range of data during instruction fine-tuning
stages, which may include similar mathematical word problems.

F GPT-4 INSTRUCTIONS FOR EVALUATION METHODS

F.1 INSTRUCTIONS FOR ANSWER EXTRACTION

Refer to Figure 14.

F.2 INSTRUCTIONS FOR ANSWER VERIFICATION

Refer to Figure 15.

F.3 VALIDATION OF EVALUATION RESULTS

To ensure the credibility of our evaluation results, we conducted a comparative analysis between our MathEval
results and the reported metrics from published models on the GSM8K and MATH datasets, which are standard
benchmarks for assessing math-solving capabilities. The primary objective was to validate the reliability
and accuracy of our evaluation pipeline by identifying discrepancies and confirming the effectiveness of our
methodology.
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Model MATH-Reported MATH-MathEval GSM8k-Reported GSM8K-MathEval
GPT-4 45.8 48.36 92 94.54
GPT-3.5 28 31.38 57.1 72.71
LLaMA2-7B 2.5 5.76 14.6 17.74
LLaMA2-7B-chat 3.9 7.22 26.3 26.84
LLaMA2-13B 3.9 7.58 28.7 26.16
LLaMA2-13B-chat 5.2 9.02 37.1 43.37
LLaMA2-70B 13.5 15.22 56.8 58.86
LLaMA2-70B-chat 10.4 14.98 59.3 59.59
ChatGLMv2-6B 6.5 5.06 32.37 17.44
Baichuan2-13B-base 10.08 12.4 52.77 53.9
Qwen-14B 24.8 35.1 61.3 62.77
Qwen-14B-chat 18.4 42.72 60.1 64.14
MOSS-003-base-16B 2.4 3.26 6.9 7.88
MammoTH-70B 41.8 21.84 76.9 71.19
GAIRMath-Abel-70b 28.26 28.7 83.62 82.11
InternLM-20B 7.9 16.62 52.6 46.1
Llemma-7b 18 17.06 36.4 36.01
Llemma-34b 25 24.52 51.5 51.48
MetaMath-70B 26.6 27.52 82.3 77.56

Table 6: Comparison of Model Performance: Reported Results vs. Our Evaluation Results.

We experimented with various prompts over three rounds, selecting the one that demonstrated the smallest
discrepancy between its results and those publicly reported by most methods, particularly on the GSM8K and
MATH datasets. As shown in Table 6, the analysis reveals minor discrepancies between MathEval’s results
and the reported metrics. For instance, the GPT-4 model shows a slight improvement with MathEval, scoring
48.36 on the MATH dataset and 94.54 on the GSM8K dataset, compared to the original reported metrics of
45.8 and 92, respectively. This suggests that MathEval’s evaluation approach aligns well with established
performance metrics. Similarly, GPT-3.5 exhibits a notable increase in the GSM8K (5-shot) metric with
MathEval, scoring 72.71 compared to the reported 57.1, possibly due to differences in evaluation criteria
or MathEval’s robustness in interpreting outputs. Conversely, the ChatGLMv2-6B model shows decreased
performance with MathEval, scoring 5.06 on the MATH dataset and 17.44 on the GSM8K dataset, compared
to the reported metrics of 6.5 and 32.37, respectively. This indicates that MathEval may be more stringent or
that the model’s outputs are less compatible with our evaluation criteria. Despite these outliers, approximately
78.95% of the models exhibit discrepancies of less than 6% between MathEval results and reported metrics,
underscoring the reliability of our evaluation pipeline.

F.4 COMPARISON BETWEEN REGEX-RULE-BASED METHOD AND GPT-4-AS-JUDGEMENT METHOD

We have verified that GPT-4 outperforms regex-based methods. Due to the uncontrolled nature of LLM
outputs, regex rules can never exhaustively cover all possible scenarios. We provide precision and recall
metrics for the answer extraction phase, comparing GPT-4 and regex rules on specific datasets, as shown in
Figure 16. Additionally, precision metrics for the answer verification phase are included in Figure 17. The
regex rules were derived from OpenCompass (Contributors, 2023).
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G ANSWER COMPARISON

G.1 TRAINING DATA EXAMPLE

The training data were derived from the output of GPT-4, as illustrated in the Figure 18. The results from the
model predictions present challenges for rule-based answer verification.

G.2 CHALLENGE FOR ANSWER VERIFICATION

The initial challenge lies in answer extraction, a task that can be complex due to the variability of model
outputs. As demonstrated in Figure 22, the use of regular expressions (regex) can often lead to errors due to
its inability to understand semantics. On the other hand, GPT-4, with its capability to comprehend semantics,
can usually extract the correct answer. However, there are instances where GPT-4 may not return a result,
highlighting the potential for regex to serve as a complementary approach.

Answer comparison presents another level of complexity, even when the extraction process is correctly
executed. As illustrated in Figure 23, comparing answers can be challenging due to variations in the way
answers are represented. For instance, GPT-4 can correctly compare cases like ”9” and ”nine cookies were
eaten” as shown in Figure 23b. It’s able to understand and display the compared answer, a task that regular
expressions (regex) would fail to accomplish due to their inability to comprehend semantic equivalences.

G.3 HUMAN ANNOTATION FOR ANSWER COMPARISON

The summarized result for answer comparison annotation are shown in Table 7

Table 7: Overall Average Score for Different Evaluated Models

Compare Answer Methods Evaluated Models

GPT4 DeepSeek-math-
7B-Base

DeepSeek-math-
7B-Instruct

DeepSeek-math-
7B-RL

Human Annotated 0.6264 0.4685 0.6120 0.6684
Two-stage with GPT4 0.6757 0.3523 0.6501 0.6976
Finetuned-DeepSeek-7B 0.6627 0.2266 0.6288 0.6638
δ GPT4 to Human 0.0493 0.1162 0.0381 0.0292
δ DeepSeek to Human 0.0363 0.2419 0.0168 0.0046

Detailed accuracy for each dataset annotated by human shown in Table 8

H PROMPT ADAPTATION

H.1 MODEL AND DATASET PREPARATION

We provide an example of model configuration for Qwen-72B-Chat and dataset configuration for MathQA in
Figure 19. The final prompt is derived based on these configurations. An example of the final input prompt is
presented in Figure 20. In this example, the template configured from the model configuration is represented
in blue, while the template from the dataset configuration is indicated in brown.

Figure 20 and Figure 21 illustrates examples of the final input prompt under both zero-shot and few-shot
conditions. For the few-shot settings, we use three shots as standard. However, due to space constraints, the
figure only displays one shot example. The process to extend this to three shots is straightforward.
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Table 8: Detailed result of human annotation for 19 datasets on four selected evaluated models.

Datasets Evaluated Models

GPT4 DeepSeek-Math-
7B-Base

DeepSeek-Math-
7B-Instruct

DeepSeek-Math-
7B-RL

AGIEval-0shot 0.4817 0.1631 0.455 0.5023
AGIEval-3shot 0.4894 0.3716 0.455 0.5126

BBH-0shot 0.828 0.172 0.624 0.676
BBH-3shot 0.836 0.568 0.704 0.756

GAOKAO-BENCH-0shot 0.4861 0.2801 0.4514 0.5046
GAOKAO-BENCH-3shot 0.4375 0.5023 0.4815 0.5648

GSM8K-0shot 0.9242 0.4094 0.8165 0.8666
GSM8K-8shot 0.3927 0.6262 0.8089 0.8749
MathQA-0shot 0.6992 0.3109 0.593 0.6529
MathQA-3shot 0.6811 0.4938 0.591 0.6355
ape210k-0shot 0.6284 0.417 0.6628 0.7246
ape210k-3shot 0.6242 0.3648 0.6564 0.7184
arith std-0shot 0.3473 0.1621 0.3253 0.3797
arith std-3shot 0.3407 0.247 0.2213 0.293
asdiv-a-0shot 0.9672 0.4262 0.9672 0.9672
asdiv-a-3shot 0.959 0.8689 0.877 0.8571
cmmlu-0shot 0.481 0.3607 0.483 0.5161
cmmlu-3shot 0.479 0.3988 0.4088 0.4128

dolphin1878-0shot 0.7059 0.1444 0.6471 0.7807
dolphin1878-3shot 0.7219 0.1444 0.4385 0.6898

gaokao-2023-choice-0shot 0.3818 0.1589 0.2523 0.3832
gaokao-2023-choice-3shot 0.3727 0.3458 0.2897 0.3925
gaokao-2023-mwp-0shot 0.102 0.1429 0.2245 0.2653
gaokao-2023-mwp-3shot 0.1429 0.1633 0.1837 0.1837

math-0shot 0.4068 0.2168 0.4242 0.4756
math-4shot 0.4604 0.3286 0.4258 0.4782

math23k-0shot 0.6772 0.4096 0.8774 0.9176
math23k-3shot 0.6832 0.4933 0.7389 0.8766
math401-0shot 0.7556 0.3627 0.6359 0.6808
math401-3shot 0.7581 0.6509 0.6434 0.1446
mawps-0shot 0.4958 0.6261 0.9244 0.9244
mawps-3shot 0.5042 0.7941 0.7395 0.9118
mmlu-0shot 0.6238 0.3208 0.5731 0.6958
mmlu-3shot 0.6191 0.4552 0.4634 0.5778
scq ch-0shot 0.4305 0.174 0.32 0.3895
scq ch-3shot 0.427 0.2795 0.327 0.3685
scq en-0shot 0.7595 0.351 0.6185 0.689
scq en-3shot 0.5285 0.422 0.438 0.5645
svamp-0shot 0.839 0.418 0.846 0.865
svamp-3shot 0.837 0.585 0.392 0.393
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Figure 11: Comparison of math capabilities between Chinese and English language in (a) all MWP datasets,
(b) primary school subsets and (c) high school subsets.
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Figure 12: Comparison of math capabilities between primary and high school in (a) all MWP datasets, (b)
English subsets and (c) Chinese subsets.
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Figure 13: Top: Chinese Subsets Rank and Gaokao-2023 Rank Change by Model. Bottom: Overall Average
Rank and Gaokao-2023 Rank Change by Model.
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Figure 14: Instruction Prompt of Answer Extraction.30
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Figure 15: Instruction Prompt of Answer Verification.

31



1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

Under review as a conference paper at ICLR 2025

Figure 16: Precision and Recall for Answer Extraction between Regex-Rule and GPT-4

Figure 17: Precision for Answer Verification between Regex-Rule and GPT-4
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Figure 18: One training example of our Finetuned-DeepSeek model
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Figure 19: Example of Model and Dataset Configuration
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Figure 20: Example of Final Input Metadata and the Corresponding Zero-Shot Prompt
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Figure 21: Example of Input Few-Shot Prompt
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Question Model Output GPT-4 Extraction Regex Rule Extraction

Calculate the following math word 
problem: 172 students are forming teams 
for a mountaineering competition. Each 
team should have 18 students. How many 
teams can they form?

Answer:

The students can be divided into 18 
teams by 172 students / 18 teams = 9 
students / team. So they can be divided 
into 9 teams.

9 18

Calculate the following math word 
problem: Paul was reading through his 
favorite book series. Each week he read 
four different books. How many books 
would he have read through after five 
weeks?

Answer:

If Paul read four books each week for five 
weeks, he would have read 4 * 5 = 20 
books.

20 books 4

Calculate the following math word 
problem: Rob also compared the Empire 
State Building and the Petronas Towers. 
What is the height difference between the 
two if the Empire State Building is 443 m 
tall and the Petronas Towers is 452 m tall?

Answer:

The Empire State Building is 443 meters 
tall and the Petronas Towers is 452 meters 
tall. The height difference between the two 
buildings is 452 - 443 = 9 meters.

9 meters 443

Calculate the following math word 
problem: Bryan took a look at his books 
as well. If he has 56 books in each of his 9 
bookshelves, how many books does he 
have in total?

Answer:

He has 7 bookshelves. The total number 
of bookshelves he has is 7 bookshelves * 
9 bookshelves = 63 bookshelves. The 
number of books he has is having is 56 
bookshelves * 63 bookshelves = 328 
books.

328 books 7

(a) Answer extraction by GPT4 and regex rule from OpenCompass for asdiv-a dataset of ChatGLM3

Question Model Output GPT-4 Extraction Regex Rule Extraction

Solve the following math word problem and choose a final 
choice among the provided choices A,B,C,D,E : When the 
following numbers are put in order of size, which comes in the 
middle? $0.75, 79\textbackslash\%, \frac79, 0.7, \frac57$ A: $
$0.75$$ ;B: $79\textbackslash\%$ ;C: $\frac79$ ;D: $0.7$ ;E: $
\frac57$ 

Answer:

B<s>[INST] Solve the following math word problem 
and choose a final choice among the provided 
choices A,B,C,D,E : A bicycle wheel has $24$ 

spokes. If each spoke is $0.3$$\text{m}$ long, how 
many meters long is the wheel? A: $$2.4$$ ;B: $
$24$$ ;C: $$0.3$$ ;D: $$0.024$$ ;E: $$0.003$$ 


Answer: B</s>

B

Solve the following math word problem and choose a final 
choice among the provided choices A,B,C,D,E : Which ratio is 
NOT the same as the ratio $$12:60$$? Choose the letter. A: $
$6:30$$ ;B: $$2:10$$ ;C: $$1:5$$ ;D: $$5:1$$ ;E: $$24:120$$ 

Answer:

B<s>The ratio 2:10 is not the same as the ratio 
12:60.</s>


Therefore, the correct answer is (B) 2:10.</s>
B B

Solve the following math word problem and choose a final 
choice among the provided choices A,B,C,D,E : What is the 
missing number in the box? $$\boxed{~ ~ ?~ ~ ~}-2852=2569$
$ A: $$4321$$ ;B: $$283$$ ;C: $$4311$$ ;D: $$5421$$ 

Answer:

The missing box number is 4321</s> A 4321

Solve the following math word problem and choose a final 
choice among the provided choices A,B,C,D,E : A number 
consists of $5$ ten thousands, $6$ thousands, $1$ tens and 
$3$ ones. What number is it? A: $$5613$$ ;B: $$56013$$ ;C: $
$50613$$ ;D: $$05613$$ ;E: $$56031$$ 

Answer:

The answer is 56013</s></s> B 56013

(b) Answer extraction by GPT4 and regex rule from OpenCompass for SCQ-EN dataset of LLaMa2-7B-Base Model

Question Model Output GPT-4 Extraction Regex Rule 
Extraction

There is a single choice question:

Question: Write the prime factorization of 48. Use exponents where 
possible.

A. 4 • 8

B. 6 • 8

C. 2^3 • 3^2

D. 2^4 • 3

Please give your answer from the four options A, B, C, D.

Answer:

Let's think step by step.

1. The problem asks us to write the prime factorization of 48 using exponents where 
possible.

2. To find the prime factorization of 48, we need to break down 48 into its prime factors.

3. The prime factorization of 48 is $2^4 \cdot 3$.

4. We can write 48 as $2^4 \cdot 3^1$ or $2^4 \cdot 3$.

5. [Final solution] Therefore, the prime factorization of 48 is $2^4 \cdot 3$.

By problem, the option corresponding to $2^4 \cdot 3$ is D.

So our selection is option D. #### D </s>

D
 D


There is a single choice question:

Question: Find the number that makes the statement true: 48 m = 
Box mm.

A. 48,000

B. 480

C. 4,800

D. 5

Please give your answer from the four options A, B, C, D.

Answer:

Let's think step by step.

1. The problem states that we need to find the number that makes the statement true: 48 
m = Box mm.

2. To convert meters to millimeters, we need to multiply the number of meters by 1000. 
Therefore, 48 meters is equal to 48 * 1000 = 48,000 millimeters.

3. [Final solution] Therefore, the number that makes the statement true is 48,000.

By problem, the option corresponding to 48,000 is A.

So our selection is option A. #### A </s>

A
 A


There is a single choice question:

Question: Divide. 7,285 ÷ 4

A. 1,801

B. 1,801 R1

C. 1,821

D. 1,821 R1

Please give your answer from the four options A, B, C, D.

Answer:

Let's think step by step.

1. The problem states that we need to divide 7,285 by 4.

2. To solve this, we can perform long division.

3. We start by dividing 7,285 by 4. The quotient is 1,821 and the remainder is 1.

4. Therefore, the final result is 1,821 R1.

5. By problem, the option corresponding to 1,821 R1 is D.

6. So our selection is option D. #### D </s>

D
 D


There is a single choice question:

Question: A tank is in the shape of a triangular prism. If the 
triangular base has an area of 116 square feet, and the tank is 30 
feet tall, how much water would the tank contain when it is full?

A. 1725 ft^3

B. 1740 ft^3

C. 3480 ft^3

D. 6960 ft^3

Please give your answer from the four options A, B, C, D.


Let's think step by step.

30 feet. Therefore, the volume of the tank is 116 * 30 = 3480 cubic feet.


3. [Final solution] Therefore, the final result is 3480 cubic feet. By problem, the option 
corresponding to 3480 is C. So our selection is option C. #### C </s>

C
 B


(c) Answer extraction by GPT4 and regex rule from OpenCompass for MMLU dataset of GAIRMath Model

Figure 22: Case Study: Answer Extraction by GPT4 and Regex Rule from Various Datasets and Models.
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Question Ground Truth Answer Extracted Answer Compare Result by 
GPT-4

Compare Result by 
Rule

There is a multiple choice question:

Question:in one hour , a boat goes 19 km along the stream 
and 5 km against the stream . the speed of the boat in still 
water ( in km / hr ) is :

a ) 2 , b ) 4 , c ) 7 , d ) 12 , e ) 15

Please give your answer from the five options a, b, c, d, e.

Answer:

d D correct incorrect

There is a multiple choice question:

Question:find the greatest number which leaves the same 
remainder when it divides 21 , 57 and 105 .

a ) 18 , b ) 8 , c ) 12 , d ) 16 , e ) none of these

Please give your answer from the five options a, b, c, d, e.

Answer:

c (C) 12 correct incorrect

There is a multiple choice question:

Question:if x is a number such that x ^ 2 + 5 x - 6 = 0 and 
x ^ 2 - 5 x + 4 = 0 , then x =

a ) - 1 , b ) 1 , c ) 4 , d ) - 6 , e ) 6

Please give your answer from the five options a, b, c, d, e.

Answer:

b b, d incorrect correct

There is a multiple choice question:

Question:find the l . c . m of 15 , 18 , 28 and 30 .

a ) 1800 , b ) 1260 , c ) 1460 , d ) 1600 , e ) 960

Please give your answer from the five options a, b, c, d, e.

Answer:

b b), c), e) incorrect correct

(a) Answer comparison by GPT4 and regex rule from OpenCompass for MathQA dataset of GPT-3.5

Question Ground Truth 
Answer Extracted Answer Compare Result by 

GPT-4
Compare Result by 

Rule

Calculate the following math word problem: Jill gets paid $20 per 
hour to teach and $30 to be a cheerleading coach. If she works 50 
weeks a year, 35 hours a week as a teacher and 15 hours a week as 
a coach, what's her annual salary?

Answer:

57500 $57,500/year correct incorrect

Calculate the following math word problem: Gus spent $20.00 at the 
grocery store. He bought 2 bag of chips for $2.00 each, a bucket of 
fried chicken for $8.00 and a bottle of soda for $1.00. How much did 
the apple pie cost?

Answer:

7 $20.00 - $13.00 = $7.00 correct incorrect

Calculate the following math word problem: Cedar Falls Middle 
School has students in grades 4 – 7 and each year they are 
challenged to earn as many Accelerated Reader points as they can. 
The 10 students in each grade with the most points get to try an 
escape room set up by the teachers. Only 8 students can try the 
escape room at a time. They have 45 minutes to try and escape. If 
every group uses their full 45 minutes, how long will it take for 
everyone to try the escape room?

Answer:

225 225 minutes (or 3.75 hours) correct incorrect

Calculate the following math word problem: Marcel runs a bicycle 
store. His main products are three types of bikes: MTB, BMX, and 
Trekking. The price of one MTB is $500, BMX is half the price of an 
MTB, and a Trekking bike is $450. In one month, Marcel sold a total 
of 300 bikes among the types listed. Half of them were Trekking 
bikes, and 15% were BMX bikes. The rest of the sold bikes were 
MTB type. How much did Marcel earn from selling bicycles during 
that month?

Answer:

131250 $131,250 correct incorrect

(b) Answer comparison by GPT4 and regex rule from OpenCompass for GSM8K dataset of LLaMa2-13B-Chat Model

Question Ground Truth Answer Extracted Answer Compare Result by 
GPT-4

Compare Result by 
Rule

Calculate the following math word problem: 
Olivia had eighty-one pieces of paper in her 
folder. She used fifty-six pieces. How many 
pieces does she have now?

Answer:

25 Olivia has twenty-five pieces 
of paper now. correct incorrect

Calculate the following math word problem: 
A package had eighteen cookies in it. After 
eating some there were nine left. How many 
were eaten?

Answer:

9 Nine cookies were eaten. correct incorrect

Calculate the following math word problem: 
David has zero fewer apples than Marin. 
Marin has three apples. How many apples 
does David have?

Answer:

3 David has three apples. correct incorrect

Calculate the following math word problem: 
Eight balls were in the basket. Some of the 
balls were removed from the basket. Now 
there are six balls. How many balls were 
removed from the basket?

Answer:

2 Two balls were removed 
from the basket. correct incorrect

(c) Answer comparison by GPT4 and regex rule from OpenCompass for Asdiv-a dataset of Mistral-7B-Instruct Model

Figure 23: Case Study: Answer Comparison by GPT4 and Regex Rule from Various Datasets and Models.
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