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ABSTRACT

Multi-view pose estimation is essential for quantifying animal behavior in sci-
entific research, yet current methods struggle to achieve accurate tracking with
limited labeled data and suffer from poor uncertainty estimates. We address
these challenges with a comprehensive framework combining novel training and
post-processing techniques, and a model distillation procedure that leverages the
strengths of these techniques to produce a more efficient and effective pose esti-
mator. Our multi-view transformer (MVT) utilizes pretrained backbones and en-
ables simultaneous processing of information across all views, while a novel patch
masking scheme learns robust cross-view correspondences without camera cali-
bration. For calibrated setups, we incorporate geometric consistency through 3D
augmentation and a triangulation loss. We extend the existing Ensemble Kalman
Smoother (EKS) post-processor to the nonlinear case and enhance uncertainty
quantification via a variance inflation technique. Finally, to leverage the scaling
properties of the MVT, we design a distillation procedure that exploits improved
EKS predictions and uncertainty estimates to generate high-quality pseudo-labels,
thereby reducing dependence on manual labels. Our framework components con-
sistently outperform existing methods across three diverse animal species (flies,
mice, chickadees), with each component contributing complementary benefits.
The result is a practical, uncertainty-aware system for reliable pose estimation
that enables downstream behavioral analyses under real-world data constraints.

1 INTRODUCTION

Pose estimation has become an indispensable tool for quantifying animal behavior in neuroscience
and ethology (Anderson & Perona, 2014; Pereira et al., 2020). Despite ongoing algorithmic ad-
vances in deep learning-based pose estimation systems (Mathis et al., 2018; Graving et al., 2019;
Pereira et al., 2019; Dunn et al., 2021; Biderman et al., 2024), significant room for improvement
remains, particularly in handling complex, multi-camera setups.

Multi-camera pose estimation methods fall into two paradigms depending on their use of camera
calibration information. Calibrated methods leverage epipolar geometry and triangulation for su-
perior geometric consistency (Qiu et al., 2019; Zhang et al., 2021b; Dunn et al., 2021; Liao et al.,
2024), but require precise camera parameters and break down when cameras are moved (a common
occurrence in longitudinal studies or field settings). Uncalibrated methods offer deployment flexibil-
ity and robustness to camera movement (Shuai et al., 2022; Zhou et al., 2023), but cannot exploit the
powerful geometric constraints that improve pose estimation accuracy when calibration is available.
Furthermore, both calibrated and uncalibrated approaches typically process views independently be-
fore cross-view fusion of features or heatmaps. This late fusion strategy fails to leverage the rich
cross-view correlations available during feature extraction, and limits the ability of these methods to
resolve ambiguous keypoints or occlusions that may be clear from alternative viewpoints.

Pose estimation methods, both single- and multi-view, usually also suffer from poorly calibrated
uncertainty estimates (Biderman et al., 2024). Although some approaches attempt to improve un-
certainty through visibility losses (Doersch et al., 2023) or post-processing techniques using ensem-
bles (Biderman et al., 2024) and Bayesian models (Zhang et al., 2021a), poor uncertainty calibration
remains a critical bottleneck for high-precision scientific applications. Another critical constraint in
our application domain of animal pose estimation is the scarcity of labeled data. This presents a fun-
damental challenge that current methods inadequately address, as they are typically trained on large
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human benchmark datasets like COCO (Lin et al., 2014) or Human3.6M (Ionescu et al., 2013) with
millions of annotations, while animal behavior studies often have only hundreds of labeled frames.

In this work, we introduce a collection of techniques for improving multi-view pose estimation
that addresses these fundamental limitations. Our techniques center on enabling early cross-view
information fusion by utilizing pretrained transformers that process pixel patches from all views
simultaneously, allowing the self-attention mechanism to integrate multi-view information through-
out processing rather than through late fusion strategies employed by existing methods. We develop
a multi-view patch masking scheme that randomly masks pixel patches across views, forcing the
model to learn robust cross-view correspondences and effectively utilize information from alterna-
tive viewpoints. When camera calibration is available, we implement a 3D augmentation scheme
that maintains geometric consistency across the views and apply a 3D triangulation loss to predic-
tions from each pair of views. This 3D loss encourages geometric consistency in the predictions
themselves and provides a complementary learning signal to the patch masking scheme.

To address the challenge of limited labeled data while improving uncertainty calibration, we re-
fine a recent post-processing algorithm called the “Ensemble Kalman Smoother” (EKS) (Biderman
et al., 2024). We implement a nonlinear version and introduce a variance inflation technique that
improves uncertainty estimates for both linear and nonlinear cases. These enhancements enable us
to identify high-quality pseudo-labels from unlabeled data, which we use to train subsequent net-
works in a distillation framework. This approach effectively transfers the knowledge from the EKS
pipeline (which requires training and inference with multiple models) into a single efficient model
that achieves comparable performance with dramatically reduced computational overhead.

We demonstrate the effectiveness of each contribution on three diverse multi-view pose estimation
datasets spanning different animal models: flies (Karashchuk et al., 2021), mice (Warren et al.,
2021), and chickadees (Chettih et al., 2024). The early-fusion multi-view transformer outperforms
its single-view counterpart, with patch masking and the 3D loss contributing unique and comple-
mentary performance benefits. The variance-inflated nonlinear EKS outperforms the original EKS
across all datasets. Finally, we show networks distilled from EKS outperform the original networks,
with performance continuing to improve as additional EKS pseudo-labels are incorporated. To-
gether, these techniques offer a collection of simple, model-agnostic approaches that each contribute
unique benefits and provide more reliable keypoint tracking for downstream behavioral analyses.

2 RELATED WORK

Multi-view pose estimation. Multi-view pose estimation has advanced from a two-stage process
(independent 2D detection + triangulation) to sophisticated cross-view fusion techniques (Neupane
et al., 2024), which can be classified into calibrated approaches (which require known camera param-
eters) and uncalibrated approaches. Early calibrated approaches relied on CNNs to extract heatmaps
from different views, then fused information across views using epipolar geometry (Qiu et al., 2019;
Zhang et al., 2021b; Dunn et al., 2021). Epipolar transformers (He et al., 2020) enabled 2D detectors
to leverage 3D-aware features through attention mechanisms along epipolar lines. This approach
discards information not along the epipolar line from the reference view, which TransFusion (Ma
et al., 2021) addressed by introducing the “epipolar field” concept that incorporates information from
the entire reference view while maintaining knowledge of epipolar constraints. MVGFormer (Liao
et al., 2024) takes a set of initialized queries that encode 3D poses and iteratively refines them using
“appearance” and “geometry” modules. Our 3D augmenations and loss, in contrast, are simple to
implement and do not require specialized modules, allowing their use with any architecture.

Modern transformer-based approaches exploit the attention mechanism to enable learning implicit
cross-view relationships without explicit geometric constraints. The MTF-Transformer (Shuai et al.,
2022) pioneered calibration-free multi-view fusion by extracting features from individual views,
then fusing features with a transformer head that adjusts pose features using confidence scores to
reduce the effect of unreliable 2D detections. MHVformer (Zhou et al., 2023) extends this paradigm
with hierarchical multi-view fusion, demonstrating that learned attention mechanisms can effec-
tively replace hand-crafted geometric constraints. Our multi-view transformer and patch masking
approaches are further examples of calibration-free techniques, and like the 3D augmentations and
losses, are agnostic to the architecture of the backbone network (as long as it processes sequences
of patch embeddings), making them flexible additions to any pose estimation pipeline.
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Pose estimation post-processing. Post-processing of pose estimation outputs comes in two main
categories: single-view (2D) methods and multi-view (3D) methods. Single-view approaches are
typically simpler, and include median filters (Mathis et al., 2018; Syeda et al., 2024) and autoen-
coders (Karashchuk et al., 2021). Multi-view methods offer distinct advantages by leveraging infor-
mation across camera views, for example with hierarchical Bayesian models (Zhang et al., 2021a) or
probabilistic physics-based models (Biderman et al., 2021). Among general multi-view approaches,
Anipose (Karashchuk et al., 2021) provides techniques for improving 3D pose estimation through
both single-view filters and a triangulation module that integrates temporal and spatial regularization
across the whole skeleton. Similarly, GIMBAL (Zhang et al., 2021a) implements a Bayesian model
with spatiotemporal constraints over the entire skeleton, using a switching linear dynamical sys-
tem for temporal smoothness and a hierarchical von Mises-Fisher distribution for spatial constraints
on limb lengths and articulation angles. The linear Ensemble Kalman Smoother (EKS) (Biderman
et al., 2024) offers a calibration-free approach that implements spatiotemporal constraints over sin-
gle keypoints and further improves performance using ensembles of networks. Our variance-inflated
nonlinear EKS is a calibration-based extension that is more accurate in datasets with large lens dis-
tortions and provides improved uncertainty estimates, which are critical for scientific applications.

Distillation. Traditional distillation approaches tailored for pose estimation have focused on com-
pressing large teacher networks into smaller student models while maintaining performance (Li
et al., 2021; Yang et al., 2023). More recently, pseudo-labeling strategies have emerged as a power-
ful learning paradigm, where confident predictions on unlabeled data are used to expand the training
set (Huang et al., 2023; Li & Lee, 2023), with SelfPose3d a notable example that incorporates geo-
metric consistency in pseudo-label generation (Srivastav et al., 2024). Our work extends this line of
research by introducing a novel distillation framework that transfers the knowledge from an ensem-
ble of models processed through multi-view EKS into a single efficient network.

3 METHODS

We first discuss our improvements to pose estimation network training: the multi-view vision trans-
former (MVT), which can be used with any generic vision transformer (VIT) backbone; patch mask-
ing, which provides a rich training signal for the cross-view spatial attention of the MVT and does
not require camera calibration; and 3D augmentations and loss, which exploit camera calibration
information and are agnostic to the pose estimation backbone. Next, we discuss our improvements
to the Ensemble Kalman Smoother (EKS) post-processor, which provides improvements over single
model predictions. Finally, we discuss how we distill the EKS post-processor into a single model
that is more efficient than EKS and more performant than any single model of the original ensemble.

3.1 MULTI-VIEW VISION TRANSFORMER

All of the multi-view pose estimation techniques discussed in the Related Work section employ be-
spoke architectural elements. While these architectures may provide good performance with enough
training data, they do not allow us to easily exploit general pretrained backbones that are useful when
training models with a small number of labels. Furthermore, algorithmic simplicity is desirable for
our application domain, where users are often experimental labs with little experience maintaining
and debugging exotic architectures. Here we propose a simple strategy that allows the model to take
advantage of multiple views and is also compatible with generic VIT backbones: rather than pro-
cess pixel patches from each view independently, we process all patches simultaneously, allowing
the standard self-attention mechanism to pool information within and across views.

The standard image VIT (Dosovitskiy et al., 2020) data pipeline (Fig. 1, top) starts with a 2D image
x ∈ RH×W×C (where H , W , C are height, width, channels) and splits it into 2D patches, each
with shape (P × P ×C), where the patch size P is typically 16. Each patch is reshaped to a vector
of length P 2C, and all patches are concatenated into a sequence of the N flattened 2D patches
xp ∈ RN×(P 2C), where N is the total number of patches. Each flattened patch xp,i is mapped with
a trainable linear projection to a patch token zi = Wprojxp,i + bproj. A standard fixed 1D position
encoding pi ∈ RD is added to the patch tokens to retain information about the patch location.

To extend this framework to V camera views (Fig. 1, bottom), we apply the same patch embed-
ding pipeline independently to each view x(v), v = 1, . . . , V . Each pixel patch is projected and
enriched with a fixed positional encoding pi as before, with an additional learnable view encod-
ing vv , resulting in z̃

(v)
i = Wprojx

(v,i) + bproj + pi + vv . Concatenating all patches from
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Single-view transformer (SVT): process views separately

Multi-view transformer (MVT): process views simultaneously
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Figure 1: Multi-view transformer with patch masking and 3D loss. Top: Single-view transformer architec-
ture. Input frames are split into patches, embedded into a latent space, combined with a fixed position encoding,
and processed through a Vision Transformer (VIT). Outputs are reshaped and passed to a heatmap head. The
model is trained with a mean square error (MSE) loss between predicted and ground truth heatmaps. Multiple
views are processed independently. Bottom: Multi-view transformer architecture. Pixel patches are randomly
masked before patch embedding, then added to a fixed positional and learnable view encodings. A single VIT
processes all views simultaneously. The model also produces predicted 3D keypoints using 2D heatmaps and
camera calibration, which are compared against ground truth 3D keypoints with an additional MSE loss.

all views forms the joint input sequence Z0 ∈ R(NV )×D for the VIT encoder, which produces
ZEnc = ViTEncoder(Z0). We regroup ZEnc by view and reshape to the original 2D patch grids.
Following ViTPose (Xu et al., 2022), which showed that VIT backbones retain accuracy with min-
imal decoders, we employ a lightweight shared upsampling head to map each per-view grid into
keypoint heatmaps. See Appendix B.1 for details.

3.2 PATCH MASKING

The self-attention of the MVT enables the network to utilize information from multiple views, which
is particularly advantageous for handling occlusions. To encourage the model to develop this cross-
view reasoning during training, we introduce a pixel space patch masking scheme inspired by the
success of masked autoencoders (He et al., 2022) and dropout (Srivastava et al., 2014). Rather than
dropping tokens before encoding as in He et al. (2022), we mask patches directly in the input image
before patchification, which is more similar to an extreme form of data augmentation mimicking
frequent occlusions. We use a training curriculum that starts with a short warmup period where
no patches are masked, then increase the ratio of masked patches from 10% to 50% by the end of
training. This technique creates gradients that flow through the attention mechanism and encourage
cross-view information propagation, which in turn develops internal representations that capture
statistical relationships between the different views. We also implement a related view masking
technique, where we randomly mask entire views, but find patch masking produces more stable
training dynamics (Fig. 6) and better overall performance (Fig. 7). See Appendix B.2 for details.

3.3 3D AUGMENTATIONS AND LOSS

The MVT produces a 2D heatmap for each keypoint in each view. Without explicit geometric
constraints, it is possible for these individual 2D predictions to be geometrically inconsistent with
each other. If we have access to camera parameters, we can use this additional information to
encourage geometric consistency in the outputs. We first take the soft argmax of the 2D heatmaps
to get predicted coordinates, following Biderman et al. (2024). Then, for each keypoint, and for
each pair of views, we triangulate both the ground truth keypoints and the predictions, and compute
the mean square error between the two. The 3D loss is weighted by a hyperparameter, which we
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set to be the same for both calibrated datasets (Fig. 10). This loss does not require any architectural
modifications, and is therefore compatible with a wide range of backbones. It is also complementary
to the patch masking scheme, as the 3D loss prevents the model from making predictions that are
locally plausible in each view but globally impossible when considered together (Fig. 11).

Data augmentation is a fundamental ingredient to deep learning’s success (Mumuni & Mumuni,
2022), especially in the limited-label regime in which we are interested. The 3D loss requires geo-
metrically consistent input images, which precludes applying geometric augmentations like rotation
to each view independently. Instead, we triangulate the ground truth labels and augment the 3D
poses by translating and scaling in 3D space. The augmented 3D pose is then projected back to
individual 2D views. These augmentations do not affect the camera parameters; rather, they are
equivalent to keeping the cameras fixed and scaling and translating the subject within the scene. For
each view, we then estimate the affine transformation from the original to augmented 2D keypoints,
and apply this transformation to the original image (Fig. 8). See Appendix B.3 for details.

3.4 VARIANCE-INFLATED, NONLINEAR, MULTI-VIEW ENSEMBLE KALMAN SMOOTHER

The linear multi-view Ensemble Kalman Smoother (mvEKS), introduced in Biderman et al. (2024),
leverages multi-view constraints by modeling each body part independently, positing that all 2D
observations of a given body part should lie in a 3D latent subspace (spatial constraint) and evolve
smoothly in time (temporal constraint) (Fig. 3). In this work, we introduce two key advances to the
EKS framework. First, we implement a nonlinear version of EKS that utilizes camera calibration
information when available. Second, we implement a variance inflation technique that improves
both accuracy and uncertainty estimates, both of which we exploit during distillation.

Linear mvEKS. Successful post-processing requires identifying which predictions need correction
by accurately quantifying uncertainty for each keypoint on each frame. As shown in the original
EKS publication (Biderman et al., 2024), the ensemble variance provides a more accurate signal of
model uncertainty than network confidence scores. The mvEKS framework integrates this uncer-
tainty signal with spatiotemporal constraints using a probabilistic ‘state-space’ modeling approach.

We begin with the predictions of an ensemble of M pose estimation networks for a single keypoint
across V camera views, X̃ ∈ RT×2V×M , where T represents the number of frames, and the factor
of 2 accounts for the (x, y) coordinates of the keypoint in each camera view. First, we compute the
median and variance across the ensemble dimension to obtain the ensemble median X and variance
D matrices in RT×2V . We then define a state-space model for X and D as zt ∼ N (zt−1, sEt),
where the state vector z ∈ R3 captures the 3D nature of the data (Fig. 13), and s is a smoothing
parameter scaling the latent dynamics noise matrix Et, for which we implement an automatic hy-
perparameter selection strategy (Fig. 14). The 3D latent is then linearly mapped to each of V 2D
camera views as xt ∼ N (Wzt + µx, Dt), where W is the projection matrix, µx is an offset, and
Dt represents the observation uncertainty. Parameter estimation is described in Appendix D.1. We
perform inference using standard Kalman filter-smoother recursions.

Nonlinear mvEKS. The linear observation model from the previous section works well for datasets
with minimal camera distortion. We can partially address larger distortions by increasing the la-
tent space dimensionality (Fig. 13), though this approximation may fail when animals appear near
frame edges where distortion is most severe. For calibrated camera setups, we can improve ac-
curacy by replacing mvEKS’s linear observations with nonlinear camera projections f , yielding
xt ∼ N (f(zt), Dt). The result is a nonlinear Gaussian state space model, and we perform infer-
ence using the Dynamax package (Linderman et al., 2025). See Appendix D.2 for details.

Inflating observed variances for improved uncertainty calibration. Although ensemble variance
provides better uncertainty estimates than individual network confidence scores, ensembles can still
be overconfident in certain cases. These overconfident predictions can compromise mvEKS infer-
ence and lead to inaccurate posterior variances. To address this limitation, we implement a variance
inflation procedure for predictions that are geometrically inconsistent across camera views.

For each observation x corresponding to a single view, time point, and keypoint, we estimate what
this prediction should be (denoted as x̂) based on observations from all other views using either
the linear or nonlinear models defined above and an uninformative prior in the latent space. We
then assess the discrepancy between x and x̂ using the Mahalanobis distance, which generalizes the
standard z-score to multivariate distributions. If this distance exceeds a threshold value (e.g., 5), it
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indicates a significant mismatch between the observation and predictions from other views, relative
to the posterior variance. In such cases, we double the ensemble variance for x, recalculate the Ma-
halanobis distance, and iterate until the distance falls below the threshold, as increasing the variance
progressively reduces the calculated distance. We repeat this procedure for each observation. We
then fit mvEKS using the inflated ensemble variances. See Appendix D.3 for details.

3.5 DISTILLATION

Vision transformer performance scales well with data size (Zhai et al., 2022), and we observe the
same behavior for our MVT (Fig. 12). However, significantly increasing labeled frames is infeasible
for most experimental labs, especially as the annotation burden grows with camera count. To expand
the labeled training pool, we leverage our improved EKS accuracy and uncertainty estimates through
a pseudo-labeling approach. We apply EKS to training session videos and compute the summed
EKS posterior predictive variance across all keypoints and views for each frame. From each video,
we retain the Nf frames with lowest variance to filter out low-quality frames where initial estimates
lack geometric consistency. Since this pool likely contains many near-duplicate instances, we ensure
diversity by performing k-means clustering on the 3D poses (from 3D PCA or triangulation) using
Nv clusters, then selecting the frame closest to each cluster center. This yields Nv pseudo-labeled
frames per video, where the pseudo-labels maintain geometric consistency across views as outputs
of mvEKS. After selecting pseudo-labeled frames, we simply combine them with ground truth labels
and retrain a single EKS-distilled model using the identical training procedure as the initial ensemble
members. See Appendix E for details.

4 EXPERIMENTAL SETUP

Datasets. We demonstrate our contributions on three datasets spanning different animal models
(Fig. 2). In “Treadmill Mouse,” head-fixed mice run on a circular treadmill while avoiding a moving
obstacle (Warren et al., 2021). Seven keypoints are labeled in each of two views, captured at 250
Hz . In “Fly-Anipose,” head-fixed flies behave spontaneously on an air-supported ball (Karashchuk
et al., 2021). Thirty keypoints are labeled in each of six views, captured at 300 Hz. In “Chickadee,”
freely moving chickadees engage in seed caching behavior in a large arena (Chettih et al., 2024).
Eighteen keypoints are labeled in each of six views, captured at 60 Hz.

Baselines. For baselines we compare to our own single-view implementation of ViTPose (Xu et al.,
2022), which outperforms ResNet-50 (a widely used backbone in animal pose estimation pack-
ages (Mathis et al., 2018; Biderman et al., 2024)) on two of three datasets (Fig. 5). Our baseline
MVT implementation uses the same upsampling head as the single-view ViTPose, such that all
performance improvements are directly attributable to the early fusion, multi-view processing. For
all transformers we use a VIT-S/16 architecture pretrained on ImageNet using DINO (Caron et al.,
2021), as we find this backbone compares favorably to other backbones like VIT-B/16 pretrained on
ImageNet using either DINO or masked autoencoding (He et al., 2022), and Segment Anything (Kir-
illov et al., 2023) (Fig. 5). For post-processing, we consider ensembling-based baselines (ensemble
median, linear EKS) as well as the established triangulation package Anipose (Karashchuk et al.,
2021). We describe distillation baselines in more detail in a later section.

Evaluation. We train models on 200 frames using three random seeds for the train/validation split.
We use the ensemble standard deviation (e.s.d.) for a given keypoint and frame to assess keypoint
“difficulty” following Biderman et al. (2024)–a larger e.s.d. across seeds and models means less
consensus. We report pixel error as a function of e.s.d., with values at threshold n showing errors for
keypoints with e.s.d. > n. The leftmost side of each plot shows the error for all keypoints; moving
rightward progressively filters to include only more difficult keypoints (those with higher e.s.d.).

5 RESULTS

5.1 MULTI-VIEW TRANSFORMERS

The multi-view transformer trained with patch masking and 3D loss (which we refer to as MVT++)
consistently outperforms the single-view transformer (SVT) baseline across all datasets, producing
smoother predictions with lower reprojection errors (Fig. 2). Ablation experiments reveal the multi-
view architecture alone provides substantial gains over SVT on Treadmill Mouse and Fly-Anipose
datasets, with comparable performance on Chickadee (Fig. 2). While models using either patch
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Figure 2: Multi-view transformer with patch masking and 3D loss improves pose estimation. a: Top:
Experimental setup and labeled keypoints. Bottom: Example frames for a single instance. b: Example traces
from single-view transformer (SVT; teal), and the multi-view transformer with patch masking and 3D loss
(MVT++; purple; except for Treadmill Mouse, which lacks camera parameters). Bottom panels show 3D
reprojection error (using 3D PCA for Treadmill Mouse), indicating more consistent predictions across views
for MVT++. c: Pixel error as a function of keypoint difficulty (lower is better). Dashed vertical lines indicate
the percentage of data used for the pixel error computation. Fly diagram from Karashchuk et al. (2021).

masking or 3D loss individually outperform the base MVT, their combination achieves the best
performance across all datasets, demonstrating these components’ complementary benefits (Fig. 11).

To verify generalizability across different data regimes, we trained models on subsets of 100 and 400
labeled frames. The MVT++ maintains its advantage over SVT even with only 100 labeled frames,
and notably, the performance gap actually increases with more training data, indicating the model
scales effectively while remaining robust in limited-data scenarios (Fig. 12). This scaling behavior
further motivates our EKS-based distillation pipeline.

5.2 MULTI-VIEW EKS

The mvEKS (Fig. 3a,b) provides uncertainty estimates that ideally correlate with prediction errors.
When predictions from multiple views align (Fig. 3c), the posterior predictive uncertainty remains
low, reflecting high confidence in accurate estimates. When views disagree due to occlusions or
ambiguities (Fig. 3d), the variance inflation procedure activates, inflating the posterior predictive
variance (green crosses) while simultaneously correcting the prediction. In more challenging sce-
narios where views disagree but ensemble variance remains low (Fig. 3e), predictions may still be
incorrect, resulting in a mismatch between model confidence and actual error. The variance infla-
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Figure 3: Multi-view Ensemble Kalman Smoother (mvEKS) improves pose estimation. a: Keypoints are
modeled as projections from a 3D latent that evolves smoothly over time. Low-uncertainty observations from
reliable camera views help correct high-uncertainty observations through spatial and temporal constraints. b:
Traces of a mouse paw from two camera views. The optimal smoothing parameter (green) recovers the true os-
cillatory motion in the partly occluded Top view, while oversmoothing (purple) distorts the temporal dynamics.
c: Multi-view observation where predictions are consistent across views, requiring no variance inflation. d:
Inconsistent predictions across views detected by variance inflation, where the more confident predictions are
correct. Orange crosses are ensemble median with ensemble variance; green crosses are corrected predictions
from mvEKS with posterior predictive variance. e: Inconsistent predictions between views where a highly con-
fident but incorrect prediction in the top view dominates; mvEKS is unable to override the confident error, but
the variance inflation procedure adjusts the posterior predictive variance to reflect the remaining uncertainty.
f: The ensemble median (orange) outperforms individual MVT++ models (purple); nonlinear variance-inflated
mvEKS (light green) achieves the best performance. Treadmill mouse (uncalibrated setup) uses linear mvEKS.

tion procedure addresses this by increasing the posterior uncertainty, appropriately flagging these
predictions as unreliable–even when the prediction cannot be perfectly corrected (Fig. 15).

We perform an ablation study to demonstrate the impact of different mvEKS components (Fig. 3f).
The ensemble median outperforms individual MVT++ ensemble members. For calibrated datasets,
our nonlinear EKS model achieves further improvements and outperforms Anipose, and dramati-
cally outperforms linear EKS (Fig. 16). Note uncalibrated setups cannot use Anipose or nonlinear
EKS, and linear EKS still proves an effective multi-view post processor.

5.3 DISTILLATION

Our distillation approach simply and effectively transfers knowledge from the ensemble to a single
efficient model (Fig. 4). As expected, EKS improves upon the base MVT++ architecture (green vs

8
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Figure 4: Pseudo-label-based distillation of EKS improves pose estimation. a: Schematic of our distillation
procedure. b: The distilled MVT+EKS model (orange) outperforms initial ensemble member MVT++ models
(purple), but does not reach the performance of EKS (green). Enforcing geometric consistency on the dis-
tilled model output (pink) brings single-model performance levels equal to that of the full MVT+EKS pipeline
(green). For calibrated setups, we also compare against the state-of-the-art ResNet-50+Anipose baseline (gray),
which performs comparably to our single network distilled model without any post-processing.

purple). The distilled MVT++ model, trained with high-quality pseudo-labels generated by EKS,
achieves improvements over the original MVT++ despite using identical architecture and training
procedures (orange vs purple). While the single distilled model does not reach the full performance
of the MVT+EKS pipeline, it represents a significant advance in inference efficiency, delivering
much better performance than any individual ensemble member while requiring only a single for-
ward pass. Since the distilled model does not enforce geometric consistency during inference, we
further enhance it by applying triangulation and reprojection, yielding our best overall performance
(pink). This demonstrates our distillation framework successfully captures the knowledge learned
by the ensemble, producing a practical single-model solution that approaches the accuracy of our
full multi-model pipeline. This performance is enabled by our proposed frame selection method; we
find that randomly selecting frames leads to degraded distillation performance (Fig. 17). We note
that our distilled model improves upon the current state-of-the-art, Resnet-50+Anipose (gray).

6 DISCUSSION

We introduce an uncertainty-aware framework for data-efficient multi-view animal pose estimation
comprising three complementary components: improved pose estimation networks (Fig. 2), en-
hanced post-processing with the variance-inflated, nonlinear Ensemble Kalman Smoother (Fig. 3),
and effective pseudo-label distillation (Fig. 4). We demonstrate how these components work to-
gether to improve performance across diverse, data-limited animal pose estimation datasets. Our
framework provides benefits at every stage regardless of camera calibration availability, enabling
easy adaptation to various experimental setups. Another key strength lies in the framework’s sim-
plicity: it requires no large or complex architectures that demand extensive training data, and is
readily adaptable to stronger pretrained backbones as they emerge. This framework can be further
improved by combining it with other techniques for limited-data regimes, such as domain-specific
pretraining (Wang et al., 2025) and semi-supervised learning (Biderman et al., 2024), bringing us
closer to simple solutions for accurate multi-view pose estimation in scientific research settings.
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A DATASETS

A.1 TREADMILL MOUSE

Head-fixed mice run on a circular treadmill while avoiding a moving obstacle (Warren et al., 2021).
The treadmill has a transparent floor and a mirror mounted inside at 45◦, allowing a single camera to
capture two roughly orthogonal views (side and bottom views via the mirror) at 250 Hz. The camera
is positioned at a large distance from the subject (∼1.1 m) to minimize perspective distortion. Frame
sizes are 406×396 pixels. We split each frame vertically into its respective views in order to make a
“multi-camera” dataset. Each view is reshaped during training to 128×256 pixels. Seven keypoints
on the mouse’s body are labeled in each view. The training/test sets consist of 789/253 instances,
respectively. We use a 3-dimensional latent space for mvEKS (Fig. 13).

A.2 FLY-ANIPOSE

Head-fixed flies behave spontaneously on an air-supported ball, captured by six cameras at 300
Hz (Karashchuk et al., 2021). Frame sizes vary by view, and frames are reshaped during training to
256×256 pixels. Thirty keypoints are labeled in each view–five joints on each of six legs.

Our pose estimation models require labels for all views at a given instant in time, and although some
of this data is available in the Anipose repository (https://datadryad.org/dataset/
doi:10.5061/dryad.nzs7h44s4), we took a different approach to ensure a large quantity
of high-quality, simultaneously labeled frames. For a subset of sessions in the data repository that
contain Anipose predictions, we treat a subset of these predictions as labels for training our own
models. We first remove any instance where average 3D reprojection error is >10 pixels. When
then run k-means clustering on the remaining 3D poses (using 25 clusters per session) and select
one example per cluster. The training/test sets consist of 377/300 instances, respectively. We use a
3-dimensional latent space for mvEKS (Fig. 13).

A.3 CHICKADEE

Freely moving chickadees engage in seed caching behavior in a large arena, captured by six cameras
at 60 Hz (Chettih et al., 2024). Frame sizes vary by view but are approximately 3000×1500 pixels.
We created a cropped dataset using the ground truth labels to define a bounding box around the bird,
and reshaped the cropped frames to 320×320. Each view is reshaped during training to 256×256
pixels. Eighteen keypoints on the chickadee’s body are labeled in each view. The training/test
set consists of 433/143 instances, respectively. We use a 6-dimensional latent space for mvEKS
(Fig. 13).

To produce the cropped unlabeled videos for distillation, we implemented a two-stage top-down
pose estimation pipeline (Pereira et al., 2020). First, we trained a coarse detector network on full
resolution frames downsampled to 256×256 pixels to localize the bird within each frame. We
then computed a bounding box around the bird in each view, ran inference using a pose estima-
tion model trained specifically on cropped frames, and transformed the resulting predictions back to
full-resolution coordinates before applying mvEKS.

B MULTI-VIEW POSE ESTIMATION

B.1 MULTI-VIEW TRANSFORMER

The power of our multi-view transformer (MVT) approach is that it does not require any bespoke
or complex architectures, which can require large amounts of data to properly train (Nogueira et al.,
2025). Instead, we use encoders from off-the-shelf pretrained transformers combined with simple
heatmap heads, which (1) reduces the number of parameters we need to train from scratch; and (2)
forces all of the complex cross-view information propagation into the backbone.

We compared a variety of backbones easily accessible through Hugging Face:

• VIT/B-16 pretrained on ImageNet with masked autoencoding (He et al., 2022), available at
https://huggingface.co/facebook/vit-mae-base. The “base” VIT con-
tains ∼80M parameters, which is 4x larger than the ResNet-50 (∼20M parameters). The
“16” indicates the model utilizes a patch size of 16×16 pixels.
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• VIT/B-16 pretrained on ImageNet with DINO (Caron et al., 2021), available at https:
//huggingface.co/facebook/dino-vitb16.

• VIT/S-16 pretrained on ImageNet with DINO, available at https://huggingface.
co/facebook/dino-vits16. The “small” VIT contains ∼20M parameters, on par
with ResNet-50.

• VIT/B-16 Segment Anything (Kirillov et al., 2023), available at https://
huggingface.co/facebook/sam-vit-base.

We train the single-view version of each model with three random seeds (Appendix C) and com-
pare to our ResNet-50 baseline pretrained with the Animal AP10K dataset (Yu et al., 2021). The
transformers all outperform the ResNet for both Treadmill Mouse and Chickadee, but not for Fly-
Anipose (Fig. 5). VIT/S-DINO is the best performing transformer for both Treadmill Mouse and
Fly-Anipose, while being the worst for Chickadee. Given these results, we chose VIT/S-DINO for
our subsequent experiments due to considerably faster training time than the “base” models (2-3×
faster) and lower memory requirements, an important constraint for our domain application where
we expect individual labs to be running these models on single consumer-grade GPUs.
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Figure 5: Comparison of pretrained transformer and ResNet-50 backbones. VIT/B is a “base” model
(∼80M parameters), VIT/S is a “small” model (∼20M parameters); ResNet-50 has ∼20M parameters.

B.2 PATCH AND VIEW MASKING

The success of masked autoencoding in self-supervised vision transformers (He et al., 2022) inspired
us to take a similar approach in the supervised domain of pose estimation. For each labeled instance,
we randomly select patches and zero their pixel values before adding position and view encodings.
This data augmentation mimics occlusions and forces the transformer to fully exploit cross-view
self-attention. We use curriculum learning starting after 700 iterations with 10% patch masking per
view, linearly increasing to 50% by iteration 5000.

We also experimented with masking entire views rather than 16×16 patches, using a curriculum that
masks single random views after 800 iterations, then two random views after 2900 iterations (if the
dataset contains more than two views). However, view masking creates unstable training dynamics
with discrete loss jumps (Fig. 6) and provides inferior performance compared to patch masking
across datasets (Fig. 7). Additionally, view masking presents generalization challenges for datasets
with varying numbers of views, while patch masking applies uniformly to any setup. We therefore
adopt patch masking as our default strategy.
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Figure 6: Patch masking produces smoother training curves than view masking. Heatmap mean square
error loss for the Fly-Anipose dataset (six views) for two different pixel masking strategies.
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Figure 7: Patch masking outperforms view masking across datasets.

B.3 3D AUGMENTATIONS

We apply the same non-geometric augmentations to all datasets and models using the imgaug
package with the indicated parameters and probabilities p:

• MotionBlur(k=5, angle=90), p = 0.5

• CoarseDropout(p=0.02, size percent=0.3, per channel=0.5), p =
0.5

• CoarseSalt(p=0.01, size percent=(0.05, 0.1), p = 0.5

• CoarsePepper(p=0.01, size percent=(0.05, 0.1), p = 0.5

• AllChannelsHistogramEqualization(), p = 0.1

• Emboss(alpha=(0, 0.5), strength=(0.5, 1.5), p = 0.1

For the single-view models (both ResNets and transformers), we apply additional geometric aug-
mentations, i.e. those which affect the locations of the corresponding keypoints:

• Affine(rotation=(-25, 25), p = 0.4

• ElasticTransformation(alpha=(0, 10), sigma=5), p = 0.5

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• CropAndPad(percent=(-0.15, 0.15), keep size=False), p = 0.4

Standard data augmentation pipelines apply transformations independently to each view, creating
problems for multi-view models–particularly those using a 3D consistency loss–that require geo-
metrically consistent augmentations across views for each labeled instance. We therefore implement
a 3D data augmentation scheme that maintains geometric consistency.

First, we triangulate 2D ground truth labels using camera parameters to obtain 3D keypoint posi-
tions. We randomly scale keypoints by median-centering, multiplying by a random factor drawn
from U(0.8, 1.2), then reapplying the median. Next, we randomly translate keypoints by computing
a bounding box in each dimension using the minimum and maximum keypoint coordinates, multi-
plying its width by a random factor from U(−0.25, 0.25), and shifting keypoints by the result (such
that the shift will be a maximum of 25% of the width of the animal in any direction). Since camera
parameters remain fixed, this is equivalent to scaling and translating the subject within the recorded
area. To augment images, we reproject the transformed 3D keypoints back to each camera view, es-
timate view-specific affine transformations between original and augmented labels using OpenCV’s
estimateAffinePartial2D, then apply these transformations to the images (Fig. 8).
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Figure 8: Example 3D augmentations. Augmentations for datsets with camera calibration parameters combine
scale and translation in the 3D space with view-independent appearance augmentations (e.g., pixel noise and
brightness).

On Fly-Anipose and Chickadee datasets, our 3D augmentation performs equivalently to
independent-view augmentations (Fig. 9), verifying that the 3D scale and translation hyperparame-
ters are reasonable. The true benefit of this augmentation scheme emerges when paired with the 3D
consistency loss, detailed next.
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Figure 9: 3D augmentations compare similarly to view-independent augmentations.

B.4 3D LOSS

To compute the 3D loss, we first triangulate ground truth 2D labels using camera parameters. For
each camera pair, we apply OpenCV’s undistortPoints and triangulatePoints func-
tions, then take the median across all pairs for the final 3D position, following Karashchuk et al.
(2021). Ground truth points that move outside the frame boundary during augmentation are marked
as NaN and excluded from triangulation and loss computation.

Next, we compute the soft argmax (2D spatial expectation) of predicted heatmaps for each keypoint
and view. This differentiable operation enables coordinate estimates in downstream losses. Using
the same camera parameters, we triangulate the 2D coordinate predictions for each camera pair and
compute mean squared error between ground truth 3D keypoints and triangulated predictions for
each pair. This forces every view to incorporate information from all other views for all keypoints.
The final loss is the mean MSE across all keypoints in the batch, weighted by a scaling factor that
balances this loss with the 2D heatmap loss. We find the same scaling factor works well across both
datasets (e0.3) and therefore use this value for all subsequent experiments (Fig. 10).
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Figure 10: Comparison of log weight values for 3D loss.
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We find that combining the 3D loss with the patch masking scheme is more powerful than either
alone (Fig. 11). View masking creates gradients that flow through the attention mechanisms and
cross-view information propagation pathways. This encourages the development of internal repre-
sentations that capture statistical relationships between different views, regardless of whether those
relationships are geometrically motivated. The 3D loss creates gradients that flow back through the
triangulation operation, which means the model receives feedback about how small changes in 2D
predictions affect 3D geometric consistency. This encourages the development of internal represen-
tations that are naturally geometrically aware. In other words, the view masking ensures the model
can handle missing information gracefully, while the 3D loss ensures that the strategies it learns for
handling missing information are geometrically sound.
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Figure 11: Patch masking and 3D loss offer complementary performance benefits.

B.5 DATA SCALING

All analyses utilize models trained with 200 labeled frames, as this is a reasonable amount of labeled
data for a given experimental setup. We also test models using half (100) and twice as many (400)
frames to better understand how performance of our different contributions–multi-view transformer,
patch masking, and 3D loss–scale with data amounts (Fig. 12). Unsurprisingly, with more labels
the performance for all models improves, but more interestingly the full MVT also increases the
performance gap over the baselines.

C POSE ESTIMATION TRAINING

We use Lightning Pose (Biderman et al., 2024) to train supervised pose estimation models on each
dataset. Additional details of the model architecture can be found in the original Lightning Pose
publication.

For training and inference, we process all camera views simultaneously for each time point. Each
batch element comprises one image per camera view (e.g., with six views, a batch size of four
contains 24 total images). We use a batch size of eight instances per network.

During training of single-view models, we apply standard image augmentations to labeled frames,
including geometric transformations (rotations, crops), color space manipulations (histogram equal-
ization), and kernel filters (motion blur). For data augmentation in multi-view models with camera
calibration, see Appendix B.3.

We split the non-test data into 95% for training and 5% for validation. To simulate a limited-data
scenario, we randomly select only 100, 200, or max(400, total train frames) instances
from the training set. All evaluations use the model iteration with the lowest validation loss. Differ-
ent ensemble members use different random seeds for the train/validation split.
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Figure 12: Model performance as a function of labeled data. Rightmost results for Fly-Anipose use the
maximum of 377 labeled frames.

We train our models for 5000 iterations using the Adam optimizer (Kingma & Ba, 2014) with an
initial learning rate of 0.001, which is halved at iterations 2000, 3000 and 4000. The pretrained
backbone remains frozen for the first 400 iterations.

D VARIANCE-INFLATED NONLINEAR ENSEMBLE KALMAN SMOOTHER

We first discuss the PCA-based linear version of EKS, describing both parameter initialization and
our new automatic smoothing procedure. This version of EKS relies on the low-dimensionality of
the multi-view data, which we find across all datasets (Fig. 13), and does not require camera cali-
bration. The next section describes the nonlinear EKS, which can provide improved performance,
especially for setups with larger lens distortion. Finally, we describe in detail the variance inflation
procedure that leads to better uncertainty estimates.

D.1 LINEAR EKS

The linear EKS model described in the main text is

zt ∼ N (zt−1, sEt) (1)
xt ∼ N (Wzt + µx, Dt) (2)

We initialize model parameters by restricting to frames with low ensemble variance and use Prin-
cipal Component Analysis (PCA) to estimate W and µx. We then take temporal differences of the
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Figure 13: Multi-view observations are low-dimensional. Variance explained for increasing numbers of
Principal Component dimesnions for each dataset. Three dimensions explain more than 99% of the variance
for the mouse and fly datasets, while the chickadee dataset (which includes more camera distortion) requires
five dimensions to exceed 99% variance explained.

resulting PCA projections and compute their covariance to initialize Et. Finally, we set Dt as a
diagonal matrix defined by the ensemble variance at time t.

Selecting the optimal smoothing parameter s in Eq. 1 is crucial: too large leads to undersmoothing,
while too small causes oversmoothing (Fig. 3b). The optimal parameter occupies a well-defined
minimum in the log-likelihood loss landscape (Fig. 14a) and must be learned from data, as it varies
substantially across keypoints and videos (Fig. 14b). To perform automatic tuning of this param-
eter, we implement a simple non-gradient-based optimization procedure that utilizes the Nelder-
Mead simplex algorithm (Nocedal & Wright, 2006). This procedure only requires evaluations of the
Kalman log-likelihood, computed using a single Kalman filter (forward) pass. This non-gradient-
based approach allows us to easily incorporate nonlinear elements into the mvEKS model. However,
this approach may also be less computationally efficient since it does not use gradient evaluations.

We initialize s using the standard deviation of the temporal differences of the initial PCA projections,
which we have found to often found to lie near the minimum of the log-likelihood loss function.
To improve the computational efficiency, we implemented a version of EKS that parallelizes over
keypoints using the JAX library (Bradbury et al., 2018).
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D.2 NONLINEAR EKS

The nonlinear EKS model uses camera calibration parameters to map the latent state zt in Eq. 1 to
the observations xj

t in view j:

xj
t ∼ N

(
fj(zt), D

j
t

)
, (3)

where fj represents a standard camera model with radial and tangential distortion (Hartley & Zis-
serman, 2003). To clearly describe this transformation, we adopt the following notation: “world”
coordinates zt are denoted as (X̃, Ỹ , Z̃), and final “image” coordinates xj

t for a single view as
(u, v). What follows describes the coordinate transformation for a single view; we apply this trans-
formation to the world coordinates for every view (each with its own parameters) and concatenate
to arrive at the final observations xt.

Step 1: World to camera coordinates. We first transform world coordinates to 3D camera-based
coordinates using the camera extrinsics: a rotation matrix R and translation vector t that define the
camera’s position relative to the world coordinate system:(

X
Y
Z

)
= R

X̃

Ỹ

Z̃

+ t. (4)

Step 2: Perspective projection. The camera coordinates are then normalized by dividing by the
depth Z, which performs perspective projection onto the image plane:

x = X/Z (5)
y = Y/Z. (6)

Step 3: Distortion correction. Real cameras introduce distortion that must be modeled. We apply
two types:

Radial distortion accounts for lens curvature effects based on distance r from the image center:

r2 = x2 + y2 (7)
dr = 1 + k1r

2 + k2r
4, (8)

where k1 and k2 are calibrated distortion coefficients.

Tangential distortion corrects for lens misalignment:

xt = 2p1xy + p2(r
2 + 2x2) (9)

yt = 2p2xy + p1(r
2 + 2y2). (10)

The combined distorted coordinates are:

xd = x · dr + xt (11)
yd = y · dr + yt. (12)

Step 4: Pixel coordinates. Finally, we apply the intrinsic camera matrix containing focal lengths
(fx, fy) and optical centers (cx, cy) to convert to pixel coordinates:(

u
v
1

)
=

(
fx 0 cx
0 fy cy
0 0 1

)(
xd

yd
1

)
. (13)

The nonlinear function fj thus combines the camera extrinsics (R, t), distortion parameters (k1, k2,
p1, p2), and camera intrinsics (fx, fy , cx, cy). For both Fly-Anipose and Chickadee datasets these
parameters are obtained using standard camera calibration techniques, as described in Karashchuk
et al. (2021).
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D.3 VARIANCE INFLATION

We start with the general case of computing the Mahalanobis distance with an uninformative prior;
the next section details how to apply this to multi-view pose estimation for outlier detection.

Let x ∈ Rn be a vector of observations. We describe these observations with a standard linear latent
variable model:

p(x|z) = N (x|Wz+ µx, D), (14)
where z ∈ Rd is a set of unobserved latent variables. For simplicity we will assume D is a diag-
onal matrix (note that with this assumption Eq. 14 becomes the generative model of Factor Analy-
sis (Bishop, 2006)).

The posterior distribution of the latents given the observations is

p(z|x) = N (z|BWTD−1(x− µx), B) (15)
= N (z|µz|x, B), (16)

where B = (I +WTD−1W )−1 if the prior on z is N (0, I). However, this is a strong assumption,
and instead we can use an uninformative prior where z ∼ limσ→∞ N (0, σI); this results in

B = (WTD−1W )−1. (17)

Next we will consider the posterior predictive distribution p(x′|x), which describes the distribution
of a new observation x′ given the observed data x:

p(x′|x) = N (x′|Wµz|x + µx, D +WBWT ). (18)

We can now use this information to compute the distance between the original observation x and
the posterior predictive distribution, which is essentially measuring the reprojection error of the
observation scaled by a covariance matrix. If we define Q = D +WBWT (the covariance of the
posterior predictive distribution), then the Mahalanobis distance is computed as

dMaha = (x− x′)TQ−1(x− x′). (19)

For more information on these derivations see Bishop’s Pattern Recognition and Machine Learning
textbook (Bishop, 2006).

Mahalanobis distance for multi-view pose estimation. We would like to use the Mahalanobis
distance to measure reprojection errors of multi-view pose estimates; this distance can then provide
a metric for the quality of pose estimates without ground truth labels.

This metric will be computed one body part at a time (across all camera views). Assume we have
V camera views. For a given instant in time there will be an (x, y) prediction across all V views;
stack these values into a single vector x = [x1, y1, . . . , xV , yV ] ∈ R2V . This 2V -dimensional
vector represents a point in 3D space, so we can model it with the linear latent variable model of
Eq. 14. The unique approach here is that instead of learning a single covariance matrix D for all
observations, we will utilize observed ensemble variances that change from one observation to the
next.

Now, if we consider the posterior predictive variance as defined in Eq. 18, the resulting Q would
represent a single, joint measure of discrepancy across all camera views simultaneously. However,
we would like to compute the posterior predictive variance Qv for a single view v that incorporates
information from the other views. Conditioning on the observations from the other views is straight-
forward in a linear model. Let us define Dv ∈ R2×2 as the diagonal block of observed variances in
D for view v; and W v ∈ R2×3 as the two rows of the loading matrix W that correspond to view v.
Then

Qv = Dv +W vB(W v)T . (20)
Finally, if we define xv = [xv, yv] to be the observations for view v, then

dvMaha = (xv − xv ′)TQ−1(xv − xv ′). (21)

This distance dvMaha is the one we compare against a threshold to determine if the observed ensemble
variances in Dv should be increased (in our case, scaled by a factor of two).
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Figure 15: Variance inflation resolves cross-view inconsistencies in multi-view pose estimation. a: Exam-
ple traces from the ensemble median, (linear) mvEKS, and mvEKS with variance inflation for a single keypoint
in Treadmill Mouse (left hind paw) across top and bottom views of a held-out video. A segment with an oc-
cluded paw is shaded in gray. Frames with high Mahalanobis distance indicate low confidence or disagreement
across camera views. mvEKS improves temporal smoothness and cross-view coherence compared to the en-
semble median, while variance inflation further resolves residual inconsistencies by penalizing overconfident
predictions and enforcing agreement across views. b: Sequence of frames (299–302) corresponding to the
occlusion region in a. The ensemble median exhibits cross-view disagreement under occlusion. mvEKS shows
improved consistency, and variance-inflated mvEKS fully aligns top and bottom view predictions through in-
creased uncertainty regularization.

Special case: two camera views. The above is a general procedure that becomes more robust as
the number of camera views V increases. However, with only two views (V = 2), we face potential
indeterminacy issues. When predictions from both views are inconsistent yet each has low ensemble
variance, it is impossible to determine which view (if either) is correct. Therefore, in the two-view
case, if the Mahalanobis distance exceeds our threshold for one view, we inflate the variance in both
views rather than trying to identify the problematic view (Fig. 15).

E ENSEMBLING AND DISTILLATION

Our distillation pipeline processes EKS predictions consisting of 2D keypoint coordinates accom-
panied by uncertainty estimates. The pipeline employs a two-stage selection procedure designed to
ensure both prediction quality and pose diversity.

Stage 0: Inference and post-processing. After model training is complete (here, we use ensembles
of three networks, each with a different train/validation data split), inference is run on videos from
the training set. The predictions are then post-processed with EKS.

Stage 1: Quality-based filtering. Frames are first filtered based on uncertainty estimates. When
available, we utilize the posterior variance from the EKS; otherwise, ensemble variance is applied
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Figure 16: Calibrated post-processor comparison. Nonlinear EKS (light green) outperforms both linear EKS
(dark green) and Anipose run on the ensemble median (i.e., same input as the EKS models; orange).

(for example, when using the ensemble median rather than EKS as a baseline). To quantify instance-
level confidence, we compute the maximum variance across all keypoints and views:

σ2
max = max

k,v

{
σ2
x,kv, σ

2
y,kv

}
, (22)

where k indexes keypoints and v indexes views. Frames are ranked by σ2
max, and the Nf frames with

the lowest values are retained, prioritizing predictions with the lowest variance. We set Nf = 450
for Fly-Anipose (where videos are short, ∼600 frames), Nf = 21, 000 for Treadmill Mouse (where
videos are long, ∼30,000 frames) and Nf = 1200 for Chickadee (where videos are ∼1800 frames).

Stage 2: Diversity-based filtering. The subset of high-confidence frames is then subjected to clus-
tering in 3D pose space to promote diversity. When camera parameters are available, 3D poses
are obtained via triangulation; otherwise, PCA-based projection is used. k-means clustering is per-
formed to identify representative poses. For each cluster j, we select the frame closest to its center:

i∗j = argmin
i∈Cj

∥∥x3D
i − cj

∥∥2 , (23)

with Cj denoting the set of frames assigned to cluster j.

The final selected frames are then converted into pseudo-labels using the original 2D EKS predic-
tions. Empirically, we find that incorporating variance inflation—by leveraging the posterior vari-
ance from EKS—provides a more reliable quality measure compared to ensemble-based variance
(Fig. 15), leading to improved frame selection.
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Figure 17: Pseudo-label based distillation pipeline. Targeted frame selection outperforms random selection.
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