
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RUNTIME-ADAPTIVE PRUNING FOR LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) excel at language understanding and generation,
but their enormous computational and memory requirements hinder deployment.
Compression offers a potential solution to mitigate these constraints. However,
most existing methods rely on fixed heuristics and thus fail to adapt to runtime
memory variations or heterogeneous KV cache demands arising from diverse user
requests. To address these limitations, we propose RAP, an elastic pruning frame-
work driven by reinforcement learning (RL) that dynamically adjusts compression
strategies in a runtime-aware manner. Specifically, RAP dynamically tracks the
evolving ratio between model parameters and KV-cache across practical execution.
Recognizing that FFNs house most parameters, whereas parameter-light attention
layers dominate KV-cache formation, the RL agent retains only those components
that maximize utility within the current memory budget, conditioned on instan-
taneous workload and device state. Extensive experiments results demonstrate
that RAP outperforms state-of-the-art baselines, marking the first time to jointly
consider model weights and KV cache on the fly. Anonymous source code is
submitted with the paper and will be publicly available.

1 INTRODUCTION

Large language models (LLMs) has revolutionized artificial intelligence through unprecedented
performance in complex language tasks (Brown et al., 2020; Achiam et al., 2023; microsoft; github).
The autoregressive architectures, however, pair “billion-parameter” with memory-intensive key–value
(KV) caches, inflating both computation and memory footprints (Fedus et al., 2022; Patterson et al.,
2021; Touvron et al., 2023b; Chowdhery et al., 2023; Team et al., 2024). While cloud solutions
mitigate some burdens, emerging edge scenarios, mobile devices and real-time services (Yuan et al.,
2023; Lin et al., 2022; 2024), demand on-device inference that current LLMs cannot sustain. Model
compression is widely used to preserve generative quality while slashing resource costs.

To address LLM deployment bottlenecks, three main compression families have emerged: model
pruning (Ma et al., 2023b; Zhong et al., 2024; Sun et al., 2024; Shao et al., 2024), knowledge
distillation (Sun et al., 2019; Xu et al., 2024; Chen et al., 2024), and quantization (Liu et al., 2024; Lin
et al., 2024). We focus on pruning. Existing schemes(Ma et al., 2023b; Zhong et al., 2024; Sun et al.,
2024; Shao et al., 2024; Ashkboos et al., 2024; Gao et al., 2024; Men et al., 2024; He et al., 2024;
Jaiswal et al., 2024), whether element-, block-, or layer-wise, achieve impressive parameter reductions
but assume static workloads and rely on heuristic policies, neglecting runtime variability, as shown in
Figure 1. Such rigidity overlooks two dominant sources of autoregressive inference runtime variance:
1) Input-driven variance: batch size and sequence length directly scale the KV cache memory (e.g.,
Llama-7B (Touvron et al., 2023a) requires 32 GB of KV cache memory, batch = 16 and length = 4k
tokens, dwarfing the static 14 GB model parameters. 2) System-level variance. Edge devices often
exhibit stochastic runtime variance, for instance, interference from co-running applications, affecting
available memory budgets on the fly. This situation presents a compelling research question:

How to select optimal LLM pruning policy that can adapt to heterogeneous, time-varying request
workloads while satisfying fluctuating memory budgets?

In this paper, we propose RAP, a runtime-adaptive pruning framework that addresses these challenges.
RAP abandons static one-size-fits-all compression in favor of dynamically adjusting the model’s
sparsity level for each inference. As shown in Figure 1, it introduces a reinforcement learning (RL)
agent that observes real-time signals, such as input sequence length, batch characteristics, and current

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Full LLM

User Request

Static! Heuristic!

Human RL Agent

Memory Budget

Adaptive! Efficient!
Pruned LLM Full LLM

Runtime
Variances

Pruned LLM
(a) (b)

Figure 1: Illustration of RAP. (a) Conventional pruning relies on hand-developed heuristics that focus
solely on model weights. (b) RAP employs a runtime-adaptive RL agent that dynamically prunes
LLMs based on real-time user requests and memory budget constraints.

memory availability, and selects an appropriate pruning policy on the fly. This design ensures that
the model stays within memory budgets under tight conditions while preserving as many parameters
as possible when resources allow. By coupling compression decisions with the execution context,
RAP effectively accommodates heterogeneous workloads and fluctuating system constraints that
are impractical for fixed pruning strategies. We formulate adaptive pruning as a sequential decision
process and train the RL agent to maximize efficiency without compromising output quality. The
agent’s reward function balances memory savings against generation fidelity, encouraging policies
that reduce memory usage only to the extent they do not degrade performance. Once trained, the agent
serves as an intelligent controller during inference, guiding the LLM to prune different components
(e.g., attention heads, feed-forward channels, or even entire layers) in response to each request’s
needs. Notably, RAP adds negligible runtime cost, since the learned policy can rapidly compute
pruning decisions. This yields a flexible, context-aware compression mechanism that seamlessly
scales LLM deployments to edge environments. Our experiments demonstrate that RAP outperforms
static pruning baselines across a range of deployment scenarios. Without manual retuning, RAP
adapts to varying batch sizes and sequence lengths, consistently meeting fluctuating memory limits
while maintaining strong task performance. For example, under stringent memory constraints, RAP
prunes a substantial fraction of the model’s weights to fit an LLM on-device yet maintains accuracy
comparable to an unpruned model. Conversely, when memory is abundant, RAP leaves the model
largely intact to maximize accuracy, effectively achieving the best of both worlds. In summary, our
contributions are as follows:

• We propose RAP, a novel runtime-adaptive LLM pruning framework that dynamically adjusts
model size based on real-time input demands and memory constraints.

•We cast the pruning policy selection as a reinforcement learning problem and develop an RL agent
that learns an optimal policy balancing memory efficiency and model fidelity.

•We demonstrate through extensive experiments that RAP consistently outperforms static compres-
sion strategies under dynamic workloads, achieving superior memory savings and faster inference
with minimal impact on output quality.

2 BACKGROUND AND RELATED WORK

2.1 RUNTIME LLM INFERENCE MEMORY BREAKDOWN

Transformer-based LLMs comprise a stack of homogeneous decoder layer, each with a multi-head
attention (MHA) block followed by a feed-forward network (FFN) block. Given that FFNs typically
contain approximately 2× the parameters of their corresponding attention modules, the static parame-
ter memory allocation is predominantly determined by FFN weights, which remain fixed once model
are loaded. During inference, each token x is projected with Wq , Wk, and Wv within MHA to obtain
Q = xWq , K = xWk, and V = xWv; the resulting K and V tensors are appended to the KV cache
across all layers. For Llama2-7B (nlayers = 32, nheads = 32, dhead = 128), the per-token cache cost
is MemoryKV = 2nlayers nheads dhead pa ≈ 0.5 MB, where the factor 2 stores both keys and values.
Figure 3 shows memory footprint across batch size and sequence length. Each pie chart illustrates
the relative proportion of memory consumed by model parameters (FFN in orange, MHA in blue)
and KV cache (gray). As batch size and sequence length gradually extend, memory consumption
transitions from parameter-dominated regimes to KV cache-dominated, highlighting the dynamic

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

10
May
2024

1711 12 13 14 15 16
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
N

um
be

r o
f t

ok
en

s p
er

 m
in

ut
e

1e7

0 2000 4000 6000 8000
Input Token Length

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
um

be
r

1e6

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 2: Distribution and daily variation of a con-
versational LLM inference workload.

Batch Size

Se
qu

en
ce

 L
en

gt
h

1 4 8

10
24

20
48

40
96

25%

49%

26
%

28%

57%

15%

31%

61%

8%

14%

27%59%

16

19%

39%

42%

25%

49%

26
%

9%
17%

74%

14%

27%59%

19%

39%

42%

9%
17%

74%

KV Cache

5%
10%

85%

Parameters FFN Attention

Figure 3: Dynamic memory footprint across
varying batch sizes and sequence lengths.

nature of memory bottlenecks in practical deployment. Once model is loaded into memory, increasing
the batch size or extending the context length does not affect parameter memory consumption but
substantially increases KV cache memory overhead.

KV cache ∝ (batch size)× (sequence length)× nlayers. (1)

Therefore, practical memory scaling is driven almost entirely by the MHA-generated KV cache,
underscoring the need for adaptive compression schemes that address both the FFN-heavy static
parameter and this rapidly expanding dynamic cache.

2.2 EXISTING LLM PRUNING

For runtime LLM inference, pruning strategies (Hu et al., 2021; Liu et al., 2023; Xia et al., 2023;
Yin et al., 2023; Zhang et al., 2023) must balance efficiency, accuracy, and adaptability. 1) Static
vs. dynamic pruning: Static methods (e.g., ISC (Das et al., 2023), SparseGPT (Frantar & Alistarh,
2023), E-Sparse (Li et al., 2023), Wanda (Sun et al., 2024)) apply fixed sparsity without retraining,
achieving up to 50% sparsity but degrading under higher sparsity levels and fundamentally lacking
adaptability. Structured variants (Ashkboos et al., 2024; Chen et al., 2023; Ma et al., 2023b; Zhao
et al., 2024) improve hardware efficiency but require retraining (e.g., LoRA (Hu et al., 2021)). In
contrast, dynamic pruning (An et al., 2024; Federici et al., 2024; Le et al., 2025; Liu et al., 2023)
adapts per input, improving flexibility but retaining full weights and inducing irregular sparsity,
limiting hardware speedups. 2) Parameter-only vs. parameter+KV compression: Most pruning
reduces weights (Ma et al., 2023b; Ashkboos et al., 2024; Li et al., 2023; Sun et al., 2024) but
ignores KV cache, a major runtime bottleneck. While weight pruning shrinks static parameter, it fails
under long-context due to exponentially growing KV cache. Recent methods (e.g., ShortGPT (Men
et al., 2024), BlockPruner (Zhong et al., 2024), LLM-Drop (He et al., 2024), FinerCut (Zhang et al.,
2024b)) prune both parameters and KV cache, reducing computation and memory but often rely on
static rules, sacrificing accuracy. The core trade-off persists: parameter-only pruning is insufficient,
while aggressive KV cache pruning hurts performance. 3) Heuristic vs. learning-based control:
Heuristic methods (Sun et al., 2024; Frantar & Alistarh, 2023; Ma et al., 2023b) use static scores
(e.g., magnitude, saliency), lacking runtime adaptability or end-to-end optimization. Learning-based
policies can jointly optimize for speed, memory, and accuracy. Though RL has proven effective
in (Andrychowicz et al., 2020; Mnih et al., 2015; Zhang et al., 2017), it remains underexplored for
LLM pruning, particularly for coordinated control of parameter and KV cache. RAP addresses this by
introducing an RL-based policy that dynamically prunes both components, enabling runtime-adaptive
and efficient inference beyond static baselines.

3 MOTIVATION

In this section, we present key observations from stochastic workloads, model-intrinsic and system
factors for practical LLM inference.

▶ Takeaway 1: Runtime workloads are inherently dynamic. Modern LLM service platforms must
operate under highly volatile workload conditions (Patel et al., 2024; Li et al., 2024; Jaiswal et al.,
2025). Figure 2, derived from an Azure LLM-inference trace (Stojkovic et al., 2025), reveals that
prompt-length distributions and request arrival rates fluctuate markedly over time, producing a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Sequence length:256. (b) Sequence length: 2048. (c) Sequence length:4096.

Figure 4: Block sensitivity analysis: removing specific MHA and FFN under diff. sequence length.

Inference Memory Occupation
(Static Parameter + Dynamic Kv-Cache)

Available Memory Budget

OOM！
OOM！

Figure 5: Dynamic memory allocation trace for
Llama2-7B on an NVIDIA A40 (40 GB) (NVIDIA
Corporation, 2020). Blue indicates available mem-
ory; red shows real-time usage (model + KV
cache), which scales with workload and cause out-
of-memory (OOM) errors under heavy requests.

2 4 6 8 10 12 14 16 18 20 22 24 26 28
Layer Index

one-shot

greedy

(a) FFN

2 4 6 8 10 12 14 16 18 20 22 24 26 28
Layer Index

one-shot

greedy

(b) MHA

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Importance

Figure 6: Per-block perplexity sensitivity
(FFN vs. MHA) under one-shot and GSI
pruning, with GSI revealing inter-layer het-
erogeneity missed by static one-shot methods.

non-deterministic mix of short conversational turns and burst, long-form inputs. Figure 3 illustrates
how memory allocation transitions from parameter-dominated regimes at low batch sizes to KV
cache-dominated scenarios as batch size and sequence length scale up, fundamentally reshaping
inference memory bottlenecks. These findings reveal a fundamental limitation in current serving
infrastructures: static resource allocation and heuristic per-request throttling mechanisms fail to
satisfy Quality of Experience (QoE) demands for latency and memory efficiency when facing the
inherently dynamic and unpredictable nature of real-time inference workloads.

▶ Takeaway 2: Homogeneous blocks exhibit heterogeneous impact. Current transformer architectures
exhibit seemingly homogeneous layers (§2.1), yet their internal blocks (MHA and FFN) contribute
heterogeneously to generation quality. Prior studies have broadly differentiated layer importance (Ma
et al., 2023a; Zhang et al., 2024a; Yao et al., 2024; Pan et al., 2024) or assumed fixed superiority of
FFN over MHA (He et al., 2024). However, as summarized in Figure 4, the impact of MHA and
FFN removal on perplexity (PPL) varies significantly across layers, challenging coarse-grained or
uniform assumptions. Moreover, solely optimizing FFN cannot alleviate the KV cache bottleneck that
arises in long sequences and large batch sizes. Additionally, block importance demonstrates dynamic
shifts across different request lengths, underscoring the limitations of existing static, heuristic-based
pruning strategies (Yao et al., 2024; Pan et al., 2024; Ma et al., 2023a; Men et al., 2024). These
insights highlight the critical imperative for adaptive method that dynamically discerns and leverages
block-level sensitivity to accommodate heterogeneous runtime computational demands.

▶ Takeaway 3: Real-world systems demonstrates runtime variance. Real-world LLM inference
systems rarely maintain consistent memory availability (Wang et al., 2024; Yu et al., 2023; Xu
et al., 2022). Instead, they encounter dynamic memory variability driven by heterogeneous LLM
workloads and interference by co-running applications. Azure LLM service traces (Stojkovic et al.,
2025) show that prompt-length and request-arrival spikes can induce instantaneous GPU-memory
fluctuations of up to 5–10. Concurrent workloads further disrupt cache and bandwidth allocation,
exacerbating contention and latency instability. As Figure 5 illustrates, these memory surges often
preempt co-running applications and invalidate the fixed-budget assumptions of existing pruning and
scheduling methods, highlighting a critical gap between current serving frameworks and real-world,
memory-dynamic inference environments.

4 RAP DESIGN

In this section, we present the design of RAP. Specifically, we first introduce greedy sequential
importance analysis §4.1 to thoroughly assess the impact of individual transformer blocks. Then, we
explain how we formulate the problem of runtime dynamic pruning as an RL task §4.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 GREEDY SEQUENTIAL IMPORTANCE

As discussed in §3, blocks exhibit heterogeneous contributions to model performance. Conventional
one-shot pruning methods (Ma et al., 2023b; Zhong et al., 2024) that remove layers solely based
on individual sensitivity ignore inter-layer dependencies, often leading to substantial performance
degrades under aggressive compression ratio. The deep composition of nonlinear activations and
residual connections in LLMs induces strong inter-layer dependencies (Ling et al., 2024; Meng et al.,
2024), rendering the network fragile to architectural changes. Consequently, excising even a single
layer can trigger a cascade of representational errors that corrupts the entire model’s functionality. To
mitigate this, we propose Greedy Sequential Importance (GSI) analysis. As detailed in Algorithm 1,
GSI performs iterative pruning by progressively removing the block whose exclusion results in the
minimal deterioration, followed by re-evaluating after each step. This step-wise recalibration controls
error accumulation, stabilizes accuracy over successive pruning stages, and achieves a more balanced
compression–performance trade-off compared to static, one-shot methods. Figure 6 further highlights
that one-shot pruning neglects inter-layer heterogeneity, leading to suboptimal pruning decisions.
In this paper, we select perplexity as the proxy metric for the GSI algorithm to measure the impact
of block removal on overall model performance, since perplexity is a widely-accepted metric for
generative capabilities of LLM. Alternatively, task-specific downstream metrics can serve as a proxy
to enable pruning decisions more aligned with target scenarios. Overall, GSI offers a principled
and adaptive approach to LLM compression, effectively balancing model size reduction with task
performance preservation.

Algorithm 1 Greedy Sequential Importance (GSI) using perplexity as the proxy metric

Require: Pre-trained modelM, evaluation corpus C, target prune ratio ρ
Ensure: Pruned modelM(t), pruned blocks {Bkt

}, perplexities {Pkt
}

1: M(0) ←M, t← 0 ▷ Initialization
2: while PruneRatio(M(t)) < ρ do
3: t← t+ 1
4: for all block Bi inM(t−1) do
5: M̂i ←M(t−1) \Bi ▷ Candidate Model
6: Pi ← exp

(
− 1

|C|
∑

w∈C log pM̂i
(w)

)
▷ Perplexity

7: end for
8: k ← argmini Pi ▷ Greedy Selection
9: M(t) ← M̂k ▷ Model Update

10: end while
11: returnM(t), {Bk1

, . . . , Bkt
}, {Pk1

, . . . , Pkt
}

4.2 RL-GUIDED PRUNING DECISIONS

To address the dynamic inference environments characterized by user-request workloads and system
runtime variance, we propose RAP an adaptive pruning framework based on reinforcement learning.
Figure 7 presents the design overview of RAP. ① At each inference step, RAP observes the real-time
request characteristic, model configuration, and available memory budget to determine the current
execution state. ② Based on this state, the RL agent selects a pruning policy that satisfies the memory
constraint while aiming to preserve model performance. ③ The base model then executes the selected
pruning policy by removing the corresponding FFN and MHA blocks, and subsequently performs
inference on the compressed architecture. ④ Finally, RAP evaluates inference metrics, including
memory overhead and perplexity, to derive a reward that quantifies how effectively the selected action
balances computational efficiency with model performance. We next define the core RL components,
State, Action, and Reward, to formalize the optimization space of RAP.

STATE: the state at the t-th timestep st = (sReq
t , sModel

t , sSys
t) ∈ S consists of three components:

• sReq
t = (Rbs, Rsql) captures the real-time request characteristics, consisting of the batch

size Rbs and sequence length Rsql.

• sModel
t =

(
{MHAimp,i}Ni=1, {FFNimp,i}Ni=1

)
, representing importance score of each MHA

and FFN block computed via GSI algorithm §4.1, where N denotes the total number of
blocks, capturing the granular block-level model configuration.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Real-time Request

Full LLM

Runtime Variance

Inference Environment

RL Agent

Length,
Batch Size

Model
Characteristics

Memory
Budget

RL-based Engine

Runtime-adaptive LLM

② Pruning Action

Pruning & Inference3

FFN/MHA Pruning
④ Reward

① Execution State

Figure 7: Design overview of RAP. (1) Runtime statistics from inference environment are encoded
into execution state. (2) RL agent selects FFN/MHA blocks for pruning. (3) Resulting memory con-
sumption and performance constitute the reward. (4) Agent gains reward and reinforces, completing
an online loop for dynamically balanced efficiency and accuracy.

• sSys
t = (Sysavail, Sysreq) represents the runtime system memory state, where Sysavail

denotes the currently available system memory, and Sysreq indicates the anticipated memory
overhead after executing the selected pruning policy.

ACTION: At each pruning step t, given N layers model and input state st, the action set is defined
as At = {(a1, . . . , a2N) | ai ∈ {0, 1}}, where 2N binary indicators represent whether to retain
(ai = 1) or remove (ai = 0) each of the 2N transformer blocks (one MHA and one FFN per layer)
at step t. Simultaneous multi-block selection creates an intractable action space of size 22N ; for
example, Llama2-7B with 64 blocks, this yields approximately 264 ≈ 1.8× 1019 possible actions.
To address this computational challenge, we decompose the decision into sequential single-block
selections, reducing the action space to 2N decision step. However, directly applying one-shot
top-k pruning proves suboptimal, as demonstrated in § 4.1, since block importance dynamically
changes after each removal. More precisely, we utilize GSI-derived importance scores to iteratively
remove the least important block at each step. After each removal, we re-assess the importance
hierarchy among remaining blocks and select the next least important candidate, repeating this greedy
selection until the peak memory footprint meets the memory budget constraint. While the approach
requires iterative decision-making, the RL agent employs a lightweight 2-layer MLP with minimal
parameters, ensuring computational overhead remains negligible compared to the inference costs of
billion-parameter LLMs.

REWARD: To ptimize a pruned model under a fixed memory budget presents a multi-objective
challenge. We address this by formulating a unified reward as a weighted sum of two specialized
metrics: Rppl, reflecting language modeling performance via perplexity, and Rmem, which penalizes
peak memory consumption during inference.

Rt =

2N∑
i=1

(At)i

(
αRppl

i − βRmem
i

)
(2)

Here, N is the total number of blocks. At each time step t, At is a binary action vector where
(At)i = 1 indicates that block i is preserved while (At)i = 0 will remove block i. The terms Rppl

i
(detailed in § 4.2) and Rme

i denote the perplexity importance and estimated memory footprint of block
i, respectively. The hyperparameters α and β act as reward scale factors, tuning the accuracy–memory
trade-off and penalizing bottleneck workloads when necessary. Specifically, in this paper, we set
α = 1, β = 0.3. A detailed description of RL-agent algorithm can be found in Appendix A.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Model and Dataset. We implemented RAP using PyTorch (Paszke et al., 2019) and the HuggingFace
Transformers library (Wolf et al., 2019) for managing models and datasets. All experiments were
conducted on NVIDIA A40 GPUs (NVIDIA Corporation, 2020). For GSI, we used the Alpaca

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Zero-shot performance of pruned versus dense model under different memory budgets. 1

100% memory budget indicates exceeding peak inference memory usage (parameters + KV cache).
Budget Schemes Perplexity ↓ Commonsense Task (%) ↑

WikiText2 PTB BoolQ PIQA WinoG. HellaS. ARC-e ARC-c OBQA Avg.

Llama2-7B
100%1 Dense 5.47 24.09 77.74 79.11 68.97 75.98 74.62 46.25 44.20 66.70

80%

LLMPruner (Ma et al., 2023b) 28.42 278.05 50.63 68.82 54.14 52.66 49.33 30.20 34.59 48.63
SliceGPT (Ashkboos et al., 2024) 58.33 211.33 61.99 65.29 58.08 43.43 52.27 32.08 28.99 48.88

ShortGPT (Men et al., 2024) 79.49 171.02 62.17 60.12 60.38 43.70 41.25 30.12 35.00 47.53
MHA-Drop (He et al., 2024) 1068.99 1579.65 46.08 54.56 50.83 29.12 28.62 27.47 25.20 37.41

FFN-Skip (Jaiswal et al., 2024) 28720.72 32216.40 42.80 49.35 51.22 26.69 27.18 28.49 26.60 36.05
RAP 11.80 46.56 62.81 73.99 63.38 65.77 60.35 36.69 36.60 57.08

60%

LLMPruner 96.52 711.38 55.96 61.15 50.83 38.09 35.06 27.13 28.40 42.38
SliceGPT 348.26 590.12 61.04 54.56 49.49 28.99 30.68 23.46 25.40 39.09
ShortGPT 964.92 2219.93 55.57 50.98 50.51 27.83 26.39 27.47 26.60 37.91

MHA-Drop 6731.72 7914.86 37.83 49.89 49.88 25.72 26.05 25.43 26.80 34.51
FFN-Skip 202008.00 160986.48 44.83 50.64 48.60 25.86 25.72 28.92 28.19 36.13

RAP 84.78 592.65 57.16 58.26 53.75 37.81 37.79 26.02 30.20 43.00

Llama3-8B
100% Dense 6.13 9.91 81.35 80.78 72.61 79.14 77.69 53.33 45.00 69.99

80%

LLMPruner 48.94 99.33 62.17 65.02 51.93 42.32 41.33 25.50 29.40 45.37
SliceGPT 143.93 71.99 61.87 65.94 54.05 42.51 54.37 31.06 27.80 48.23
ShortGPT 37412.61 41988.11 56.82 58.59 54.85 37.71 36.99 30.20 28.00 43.30

MHA-Drop 529.00 737.98 37.80 53.92 50.20 26.87 30.47 23.81 27.20 35.75
FFN-Skip 164387.73 149698.12 55.77 51.47 50.74 25.90 25.75 25.25 28.00 37.56

RAP 12.98 27.15 68.84 76.55 66.11 65.55 62.12 39.51 39.60 59.77

60%

LLMPruner 4009.81 1882.99 40.48 50.05 52.33 26.26 26.77 25.94 27.00 35.55
SliceGPT 2844.28 1084.03 40.86 53.86 48.93 27.97 32.07 23.04 25.80 36.08
ShortGPT 13284.81 13512.55 41.44 50.98 50.03 26.74 25.46 25.34 26.80 35.26

MHA-Drop 1757.11 2102.15 37.83 51.90 50.12 26.04 27.86 22.95 25.80 34.64
FFN-Skip 624965.25 765475.19 51.93 51.95 50.03 26.02 24.03 26.96 28.59 37.08

RAP 246.53 355.47 52.20 56.69 50.36 31.91 33.54 24.23 27.40 39.48

dataset (Taori et al., 2023) to compute perplexity importance. We evaluated RAP over representative
LLMs: Llama2-7B (Touvron et al., 2023c), Llama3-8B (Dubey et al., 2024), Qwen1.5-7B (Bai
et al., 2023) and Qwen2.5-7B (Yang et al., 2024). We assessed model performance using the LM
Evaluation Harness (Gao et al., 2023) following Llama’s evaluation protocol to perform zero-shot
task classification on common sense reasoning datasets: BoolQ (Clark et al., 2019), PIQA (Bisk et al.,
2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2019), ARC-easy (Clark
et al., 2018), ARC-challenge (Clark et al., 2018), and OpenbookQA (Mihaylov et al., 2018). We
tested the model generative ability using WikiText2 (Merity et al., 2016) and PTB (Marcus et al.,
1993) dataset. A detailed description of the benchmarks can be found in Appendix B.1.

Baselines. To validate the effectiveness of RAP, we compared several structured pruning methods:
1) LLMPruner (Ma et al., 2023a): Structural pruning via gradient-weight analysis to remove non-
critical coupled layers; omits post-training for fair comparison but incurs pruning-policy overhead.
2) SliceGPT (Ashkboos et al., 2024): PCA-based post-training sparsification reduces embedding
dimensions by projecting hidden representations shallow-to-deep. 3) ShortGPT (Men et al., 2024):
Layer-pruning reveals redundancy in LLMs by removing redundant layers with minimal performance
loss. 4) MHA-Drop (He et al., 2024): Cosine-similarity-guided pruning of entire multi-head attention
layers for inference acceleration. 5) FFN-Skip (Jaiswal et al., 2024): Input-adaptive dynamic skipping
of FFN layers during decoding for faster generation with negligible quality trade-offs. A detailed
description of the baseline models can be found in Appendix B.2. Notably, we diverge from previous
works by evaluating all methods under identical memory budget, rather than a fixed pruning ratio. We
posit that the pruning ratio is a misleading proxy for actual memory footprint, a claim substantiated
by our empirical results which reveal a significant discrepancy. This gap arises primarily from
the disproportionate memory overhead of runtime KV cache, which parameter counts alone fail to
capture. By focusing on a fixed memory budget, our evaluation framework more accurately reflects
the constraints of real-world deployment on resource-limited device, yielding more practical and
reliable conclusions.

5.2 OVERALL PERFORMANCE

In this section, we evaluate LLama2-7B and LLama3-8B under 80% and 60% unified memory
budgets, covering both parameters and KV cache. For clarity, 80% memory budget corresponds
to 80% of the peak memory footprint of the original, unpruned model, formally expressed as
80% ∗max(param. + KV cache). Sparsity is progressively increased for each method until the total
memory overhead meets the target budget constraint. Detail pruning settings for all baselines are

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

BoolQ PIQA WinoG. HellaS. ARC-e ARC-c OBQA Avg.
20

30

40

50

60

70

A
cc

u
ra

cy
 (

%
)

RAP -GSI -RL

BoolQ PIQA WinoG. HellaS. ARC-e ARC-c OBQA Avg.
10

20

30

40

50

60

A
cc

u
ra

cy
 (

%
)

RAP -GSI -RL

Figure 8: Effectiveness of GSI and RL Agent. Zero-shot performance of RAP−GSI, RAP−RL versus
RAP evaluation on Llama2-7B under (a) 80% and (b) 60% memory budgets.

detailed in Table 4 of Appendix C. Evaluated results with the same setting for Qwen1.5-7B and
Qwen2.5-7B can be found in Table 3 of Appendix C.

Generation Ability. As shown in Table 1, RAP shows the smallest perplexity drift among all
structured-pruning baselines. Specifically, at the 80% budget perplexity rises by only +6.3 on
WikiText2 and +22.6 on PTB, outperforming the next-best method by 16.6 and 9.6, respectively.
This advantage persists more pronounced under the harsher 60% cap, stemming from learning an
architecturally-aware pruning policy targeting MHA when KV cache is the primary bottleneck and
FFN blocks when parameter memory dominates. This asymmetric strategy adapts to the architectural
nuances of different models. For instance, the FFN-heavy Llama3-8B (which uses GQA (Ainslie
et al., 2023)) is highly sensitive to FFN removal, whereas the standard Llama2-7B is more degraded
by pruning MHA. This learned selectivity allows RAP to navigate architectural trade-offs, preserving
crucial generative capabilities even under severe compression.

Downstream Task Performance. We next evaluate zero-shot commonsense reasoning for the
same memory budgets. As shown in Table 1, RAP again delivers the highest accuracy. Under the
80% budget it preserves 86% of dense accuracy and surpasses the leading baseline by +7.7% on
Llama2-7B and +11.5% on Llama3-8B, with the largest gains on HellaSwag and ARC-e. Under an
aggressive 60% memory budget, while all methods degrade, RAP proves uniquely resilient. It is the
sole method to retain over 50% of the dense model’s performance, achieving scores of 43.0% on
Llama2-7B (0.6% ↑ vs. runner-up) and 39.5% on Llama3-8B (2.4% ↑). These results indicate that
RAP’s memory-aware, block-level pruning, which considers both parameter and KV cache memory
constraints, provides superior performance retention compared to conventional approaches under
severe memory limitations.

5.3 ABLATION STUDY

To explore the contribution of each component in RAP, we design two ablation variants: (1) RAP−GSI,
which disables the iterative, Greedy Sequential Importance scorer and instead applies standard static,
one-shot perplexity scoring across all requests; and (2) RAP−RL, which removes the RL agent and
randomly drops blocks, where ‘−’ means disable or remove proposed module.

Effectiveness of GSI. To isolate the contribution of the Greedy Sequential Importance,
we implement a static baseline that performs one-shot perplexity evaluation on all blocks

Table 2: Ablation study on perplexity.

Budget Schemes Perplexity ↓
WikiText2 PTB

80%
MODEL−RL 313.51 535.75
MODEL−GSI 42.04 492.97
MODEL 11.80 46.56

60%
MODEL−RL 7249.24 9059.14
MODEL−GSI 803.72 977.01
MODEL 74.78 592.65

initially, then removes the k blocks with the lowest im-
portance to meet the memory budget, without iterative
re-evaluation after each removal. Figure 8 and Table 2
reveal that this shortcut severely erodes quality: perplexity
on WikiText2 increases to 42.04 and average common-
sense accuracy reduces by 13.17%. The degradation arises
from latent inter-block dependencies in transformer stacks.
Conventional one-shot methods, which score each block
independently within the context of the full model, pro-
duce misleadingly optimistic importance estimates. These estimates become invalid under multi-block
pruning scenarios, as they fail to account for inter-block dependencies. GSI addresses this by itera-
tively pruning the least critical block and then recalibrating the importance of all remaining blocks
within the new, contracted architecture. This sequential, state-aware evaluation yields more faithful
importance scores, leading to superior performance in high compression regimes.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120

Time Step (k)

−5

0

5

10

15

R
ew

a
rd

Seed 1

Seed 2

Seed 3

Figure 9: RL reward across different seeds.

α=0.2

α=0.4

α=0.6α=0.8

α=1.0

β=0.1

β=0.2

β=0.3β=0.4

β=0.5

Figure 10: Penalty factors (α and β) sensitivity.

Effectiveness of RL Agent. We next ablate the RL agent that converts GSI scores into real-time
actions by comparing RAP with a naı̈ve “Random-Drop” baseline that discards the same number
of blocks but chooses them uniformly at random. As Figure 8 and Table 2 show, both variants
satisfy the memory target, yet RAP obviously exceeds the random baseline on generation ability (
-301.71 on WikiText2) and downstream performance (+18.37%). Crucially, RAP accomplishes this
online: its RL controller makes block-selection decisions conditioned on the current KV/parameter
split, so the policy can tighten or relax MHA/FFN pruning as the request mix shifts. Random-Drop
lacks such awareness; each inference call therefore risks violating latency or memory constraints on
resource-constrained devices. In short, RL preserves GSI’s quality while adding workload-adaptive
guarantees, making RAP the more practical choice for on-device deployment.

5.4 FRAMEWORK ANALYSIS

Robustness of RAP. To verify that RAP’s learning dynamics are not brittle to initialization, we retrain
the agent on Llama2-7B with three independent random seeds. Figure 9 plots the seed-wise expected-
reward curves. All trajectories increase smoothly and converge within a narrow band, showing that
the agent consistently discovers high-quality pruning policies despite stochastic exploration. This
stability stems from the architecture introduced above: (i) the Greedy Sequential Importance scorer
supplies a well-shaped, low-variance reward signal, and (ii) the memory-aware action mask constrains
the search space so early missteps cannot derail policy improvement. Collectively, these components
make RAP’s reinforcement learning process both robust and generalizable across random seeds.

Impact of penalty factors α and β. RAP reward function integrates task utility with two penalty
terms, weighted by α and β, to discourage accuracy degradation (importance decay) and excessive
memory usage, respectively. By sweeping α ∈ [0.2, 1.0] and β ∈ [0.1, 0.5], users can tune the
performance–efficiency trade-off to match deployment needs. As shown in Figure 10, higher α
values guide the policy to preserve critical blocks, while higher β values encourage pruning memory-
intensive ones. The optimal reward ridge emerges at large α and moderate β; we adopt α=1.0 and
β=0.3 in all experiments.

Overhead Analysis. As shown in Figure 11 in Appendix C. RAP’s RL controller adds negligible
deployment overhead. While Llama2-7B has ∼6.7B parameters and requires 33GB memory for
2048-token inference at batch size 8, the controller has just 18K parameters over 3.7×105× reduction.
Latency overhead is negligible: the unpruned model requires 52.73s for inference with sequence
length 2048 and batch size 8, whereas a policy step completes in 0.5s (< 1% overhead). Even
including the one-time 302s offline policy training, the amortized cost is negligible. This efficiency
stems from the controller’s compact two-layer MLP, which processes Greedy Sequential Importance
scores and applies memory-aware masking to accelerate pruning.

6 CONCLUSION

This paper addresses the deployment challenges of LLMs caused by their excessive computational
and memory demands. While compression techniques have been proposed to mitigate these con-
straints, existing methods rely on static heuristics and fail to adapt to runtime memory fluctuations
or heterogeneous KV cache requirements stemming from diverse user workloads. To overcome
these limitations, we introduce RAP, an elastic pruning framework powered by RL that dynamically
optimizes compression strategies in real-time based on system conditions. This work bridges the
gap between static compression techniques and dynamic real-world deployment scenarios, offering a
scalable solution for efficient LLM inference in heterogeneous environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We affirm adherence to the ICLR Code of Ethics. This work studies compression methods for
large language models and does not involve human subjects, personally identifiable information, or
sensitive attributes. All datasets and pretrained weights used are publicly available and were accessed
and used in accordance with their licenses and terms of use; no data scraping outside the providers’
terms was performed. We disclose our use of LLM-based writing assistance in a separate LLM-usage
section in Appendix E. Potential risks include lowering the computational barrier for deploying more
capable models in resource-constrained settings; to mitigate misuse concerns, we evaluate only on
standard public benchmarks, refrain from releasing domain-specific models for sensitive applications,
and provide documentation to support responsible use. The authors take full responsibility for the
integrity and accuracy of the reported results.

REPRODUCIBILITY STATEMENT

We provide an anonymized artifact in the supplemental materials containing: (i) source code; (ii)
configuration files with all hyperparameters; and (iii) step-by-step commands to regenerate all
main result. The main paper and appendix details data preprocessing, evaluation metrics, and
training/inference procedures, together with hardware specifications and estimated compute budgets.
Unless otherwise stated, results are averaged over multiple seeds and we report mean ± standard
deviation; deviations from this protocol are explicitly noted. These materials enable end-to-end
reproduction of every quantitative claim in the paper.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive struc-
tured pruning for large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10865–10873, 2024.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge
distillation. arXiv preprint arXiv:2402.03216, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tianyi Chen, Tianyu Ding, Badal Yadav, Ilya Zharkov, and Luming Liang. Lorashear: Efficient large
language model structured pruning and knowledge recovery. arXiv preprint arXiv:2310.18356,
2023.

Aakanksha Chowdhery, Sharan Narang, and Jacob Devlin. Palm: Scaling language modeling with
pathways. J. Mach. Learn. Res., 24:240:1–240:113, 2023. URL http://jmlr.org/papers/
v24/22-1144.html.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions, 2019. URL
https://arxiv.org/abs/1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Rocktim Jyoti Das, Mingjie Sun, Liqun Ma, and Zhiqiang Shen. Beyond size: How gradients shape
pruning decisions in large language models. arXiv preprint arXiv:2311.04902, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Marco Federici, Davide Belli, Mart van Baalen, Amir Jalalirad, Andrii Skliar, Bence Major, Markus
Nagel, and Paul Whatmough. Efficient llm inference using dynamic input pruning and cache-aware
masking. arXiv preprint arXiv:2412.01380, 2024.

William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning. arXiv
preprint arXiv:2209.01667, 2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

Shangqian Gao, Chi-Heng Lin, Ting Hua, Zheng Tang, Yilin Shen, Hongxia Jin, and Yen-Chang
Hsu. Disp-llm: Dimension-independent structural pruning for large language models. Advances
in Neural Information Processing Systems, 37:72219–72244, 2024.

github. GitHub Copilot: Your AI pair programmer. https://github.com/features/
copilot.

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all attention is
needed. arXiv preprint arXiv:2406.15786, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Ajay Jaiswal, Bodun Hu, Lu Yin, Yeonju Ro, Shiwei Liu, Tianlong Chen, and Aditya Akella. Ffn-
skipllm: A hidden gem for autoregressive decoding with adaptive feed forward skipping. arXiv
preprint arXiv:2404.03865, 2024.

Shashwat Jaiswal, Kunal Jain, Yogesh Simmhan, Anjaly Parayil, Ankur Mallick, Rujia Wang, Re-
nee St Amant, Chetan Bansal, Victor Rühle, Anoop Kulkarni, et al. Serving models, fast and slow:
optimizing heterogeneous llm inferencing workloads at scale. arXiv preprint arXiv:2502.14617,
2025.

11

http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://arxiv.org/abs/1905.10044
https://zenodo.org/records/10256836
https://github.com/features/copilot
https://github.com/features/copilot

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qi Le, Enmao Diao, Ziyan Wang, Xinran Wang, Jie Ding, Li Yang, and Ali Anwar. Probe pruning:
Accelerating llms through dynamic pruning via model-probing. arXiv preprint arXiv:2502.15618,
2025.

Baolin Li, Yankai Jiang, Vijay Gadepally, and Devesh Tiwari. Llm inference serving: Survey of
recent advances and opportunities. arXiv preprint arXiv:2407.12391, 2024.

Yun Li, Lin Niu, Xipeng Zhang, Kai Liu, Jianchen Zhu, and Zhanhui Kang. E-sparse: Boost-
ing the large language model inference through entropy-based n: M sparsity. arXiv preprint
arXiv:2310.15929, 2023.

Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han. On-device
training under 256kb memory. Advances in Neural Information Processing Systems, 35:22941–
22954, 2022.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Gui Ling, Ziyang Wang, Yuliang Yan, and Qingwen Liu. Slimgpt: Layer-wise structured pruning
for large language models. arXiv preprint arXiv:2412.18110v1, 2024. URL https://arxiv.
org/abs/2412.18110v1.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantization
with learned rotations. arXiv preprint arXiv:2405.16406, 2024.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023a.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In Advances in Neural Information Processing Systems, 2023b.

Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus
of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Xiang Meng, Shibal Ibrahim, Kayhan Behdin, Hussein Hazimeh, Natalia Ponomareva, and Rahul
Mazumder. Osscar: One-shot structured pruning in vision and language models with combinatorial
optimization. In Proceedings of the 41st International Conference on Machine Learning, pp.
325–335. PMLR, 2024. URL https://openreview.net/pdf?id=ZctlF8RlV4.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

microsoft. Your Everyday AI Companion — Microsoft Bing. https://www.bing.com/new.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

12

https://arxiv.org/abs/2412.18110v1
https://arxiv.org/abs/2412.18110v1
https://openreview.net/pdf?id=ZctlF8RlV4
https://www.bing.com/new

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

NVIDIA Corporation. NVIDIA A40 GPU. https://www.nvidia.com/en-us/
data-center/a40/, 2020.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: layerwise
importance sampling for memory-efficient large language model fine-tuning. Advances in Neural
Information Processing Systems, 37:57018–57049, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri, Saeed Maleki, and Ricardo
Bianchini. Splitwise: Efficient generative llm inference using phase splitting. In 2024 ACM/IEEE
51st Annual International Symposium on Computer Architecture (ISCA), pp. 118–132. IEEE,
2024.

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training. arXiv
preprint arXiv:2104.10350, 2021.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/
1907.10641.

Hang Shao, Bei Liu, and Yanmin Qian. One-shot sensitivity-aware mixed sparsity pruning for large
language models. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 11296–11300. IEEE, 2024.

Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Torrellas, and Esha Choukse. Dynamollm:
Designing LLM inference clusters for performance and energy efficiency. In IEEE International
Symposium on High Performance Computer Architecture, HPCA 2025, Las Vegas, NV, USA,
March 1-5, 2025, pp. 1348–1362. IEEE, 2025. doi: 10.1109/HPCA61900.2025.00102. URL
https://doi.org/10.1109/HPCA61900.2025.00102.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models, 2024. URL https://arxiv.org/abs/2306.11695.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
compression. arXiv preprint arXiv:1908.09355, 2019.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023c. URL https://arxiv.
org/abs/2307.09288.

13

https://www.nvidia.com/en-us/data-center/a40/
https://www.nvidia.com/en-us/data-center/a40/
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://doi.org/10.1109/HPCA61900.2025.00102
https://arxiv.org/abs/2306.11695
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yuxin Wang, Yuhan Chen, Zeyu Li, Xueze Kang, Zhenheng Tang, Xin He, Rui Guo, Xin Wang,
Qiang Wang, Amelie Chi Zhou, et al. Burstgpt: A real-world workload dataset to optimize llm
serving systems. arXiv preprint arXiv:2401.17644, 2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin,
and Shuaiwen Leon Song. Flash-llm: Enabling cost-effective and highly-efficient large generative
model inference with unstructured sparsity. arXiv preprint arXiv:2309.10285, 2023.

Fei Xu, Jianian Xu, Jiabin Chen, Li Chen, Ruitao Shang, Zhi Zhou, and Fangming Liu. igniter:
Interference-aware gpu resource provisioning for predictable dnn inference in the cloud. IEEE
Transactions on Parallel and Distributed Systems, 34(3):812–827, 2022.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. A survey on knowledge distillation of large language models. arXiv preprint
arXiv:2402.13116, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Kai Yao, Penglei Gao, Lichun Li, Yuan Zhao, Xiaofeng Wang, Wei Wang, and Jianke Zhu. Layer-wise
importance matters: Less memory for better performance in parameter-efficient fine-tuning of
large language models. arXiv preprint arXiv:2410.11772, 2024.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal,
Mykola Pechenizkiy, Yi Liang, et al. Outlier weighed layerwise sparsity (owl): A missing secret
sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Minchen Yu, Ao Wang, Dong Chen, Haoxuan Yu, Xiaonan Luo, Zhuohao Li, Wei Wang, Ruichuan
Chen, Dapeng Nie, and Haoran Yang. Faaswap: slo-aware, gpu-efficient serverless inference via
model swapping. arXiv preprint arXiv:2306.03622, 2023.

Jinliang Yuan, Chen Yang, Dongqi Cai, Shihe Wang, Xin Yuan, Zeling Zhang, Xiang Li, Dingge
Zhang, Hanzi Mei, Xianqing Jia, et al. Mobile foundation model as firmware. arXiv preprint
arXiv:2308.14363, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

Da Zhang, Hamid Maei, Xin Wang, and Yuan-Fang Wang. Deep reinforcement learning for visual
object tracking in videos. arXiv preprint arXiv:1701.08936, 2017.

Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang. Lo-
raprune: Pruning meets low-rank parameter-efficient fine-tuning. arXiv preprint arXiv:2305.18403,
2023.

Yang Zhang, Yanfei Dong, and Kenji Kawaguchi. Investigating layer importance in large language
models. arXiv preprint arXiv:2409.14381, 2024a.

Yang Zhang, Yawei Li, Xinpeng Wang, Qianli Shen, Barbara Plank, Bernd Bischl, Mina Rezaei, and
Kenji Kawaguchi. Finercut: Finer-grained interpretable layer pruning for large language models.
arXiv preprint arXiv:2405.18218, 2024b.

Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao. Apt: Adaptive pruning and tuning pretrained
language models for efficient training and inference. arXiv preprint arXiv:2401.12200, 2024.

Longguang Zhong, Fanqi Wan, Ruijun Chen, Xiaojun Quan, and Liangzhi Li. Blockpruner: Fine-
grained pruning for large language models. arXiv preprint arXiv:2406.10594, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A DETAIL OF RL-AGENT ALGORITHM

A.1 PROBLEM FORMULATION

We cast RAP as a finite-horizon MDPM = (S,A,P,R, γ) with horizon H≤2N , where N is the
number of transformer layers and each layer contributes one MHA block and one FFN block (thus
2N removable blocks).

State. At decision step t, the state st ∈ S concatenates request-, model-, and system-level features:

st =
(
sReq
t , sModel

t , sSys
t

)
,

with
sReq
t = (Rbs, Rsql), sModel

t =
(
{MHA

(t)
imp,i}

N
i=1, {FFN

(t)
imp,i}

N
i=1

)
,

sSys
t = (Sys

(t)
avail, Ŝys

(t)

req).

Here MHA
(t)
imp,i and FFN

(t)
imp,i are the current Greedy Sequential Importance (GSI) scores recom-

puted after each removal (see Alg. 1); Sys(t)avail is the available GPU memory observed at time t; and

Ŝys
(t)

req is the agent’s estimate of the peak memory after applying the candidate action.

Action. We adopt sequential single-block decisions compatible with DQN:

A = {0, 1, 2, . . . , 2N}.

Action at = 0 denotes STOP; at ∈ {1, . . . , 2N} removes the corresponding block (one of the N
MHA or N FFN blocks). An action mask invalidates pruned blocks and can optionally disable
actions predicted to break correctness constraints. The episode terminates when either: (i) STOP is
taken, or (ii) the peak memory fits the budget.

Transition. Given (st, at), the environment deterministically updates the pruned architectureMt 7→
Mt+1 by excising the selected block if at>0, then re-evaluates the GSI scores on the contracted
model to produce st+1. Runtime memory availability Sys

(t+1)
avail can be treated as exogenous.

Discount. We set γ = 0.99.

A.2 MEMORY MODEL (PEAK GPU FOOTPRINT)

Consistent with the main text, the peak inference memory comprises static parameters and dynamic
KV cache. Let bprec be bytes per scalar (e.g., 2 for bfloat16). For a model stateM (after some blocks
are removed) and a request tuple (Rbs, Rsql), we estimate

Memparam(M) = bprec

∑
B∈B(M)

#params(B), (3)

MemKV(M, Rbs, Rsql) = bprec · 2
∑

ℓ∈L(M)

nheads,ℓ dhead,ℓ Rbs Rsql, (4)

where B(M) and L(M) denote remaining blocks and layers, respectively; the factor 2 stores keys
and values. The peak is

Mempeak(M, Rbs, Rsql) = Memparam(M) +MemKV(M, Rbs, Rsql).

This matches the linear KV-cache scaling with batch and sequence length emphasized in the main
paper.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 DQN-BASED POLICY LEARNING WITH ACTION MASKING

Let Qθ(s, a) be the action-value function and Qθ̄ its target copy. We adopt masked ε-greedy:

π(a|s) =
{

uniform over valid actions with prob. ε,
argmaxa∈Avalid(s) Qθ(s, a) with prob. 1− ε,

whereAvalid(s) removes already-pruned blocks and can optionally include feasibility heuristics. With
transitions (st, at, rt, st+1, done) stored in replay buffer D, we minimize

L(θ) = E(s,a,r,s′,d)∼D

[(
Qθ(s, a)− y

)2]
, y = r + γ(1− d) max

a′∈Avalid(s′)
Qθ̄(s

′, a′).

We soft-update the target network periodically: θ̄ ← τθ + (1− τ)θ̄.

A.4 PSEUDOCODE: DQN TRAINING AND ONLINE EXECUTION

Algorithm 2 RAP Controller Training via Masked DQN

Require: Dense modelMdense; proxy corpus C; distribution over requests (Rbs, Rsql) and budgets
B; replay buffer D; discount γ; schedule εt

1: Initialize Qθ, target Qθ̄ ← Qθ; initialize optimizer; set α=1.0, β=0.3, η=1, ζ=0.1
2: for episode = 1, . . . , E do
3: Sample request (Rbs, Rsql) and budget B; setM0 ←Mdense; t← 0
4: Run GSI to obtain initial importance scores for s0; build action mask Avalid(s0)
5: while t < H do
6: Select at by masked ε-greedy from Qθ(st, ·)
7: if at = 0 then ▷ STOP
8: Compute rt by Eq. equation 2 (withMt+1=Mt), set done← True
9: else

10: Mt+1 ←Mt \Bat ; recompute GSI scores; update mask
11: Compute rt by Eq. equation 2 and done←

[
Mempeak(Mt+1) ≤ B

]
12: end if
13: Store (st, at, rt, st+1, done) in D
14: Sample a minibatch from D; update θ by minimizing L(θ); periodically update Qθ̄
15: if done then break
16: elset← t+ 1
17: end if
18: end while
19: end for

Algorithm 3 RAP Online Execution at Inference Time

Require: Trained Qθ; incoming request (Rbs, Rsql); measured B = Sysavail
1: M0 ←Mdense; run GSI to get initial s0; t← 0
2: while Mempeak(Mt) > B and t < H do
3: Build Avalid(st); choose at = argmaxa∈Avalid(st) Qθ(st, a)
4: if at = 0 then break
5: end if
6: Mt+1 ←Mt \Bat ; recompute GSI; t← t+ 1
7: end while
8: return prunedMt; run inference

B DATASETS AND BASELINES

B.1 COMMONSENE REASONING

The details of the benchmarks are as follows:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• BoolQ (Clark et al., 2019): yes/no questions which are naturally occurring and generated in
unprompted and unconstrained settings. There are 3270 questions in the test set.

• PIQA (Bisk et al., 2020): questions with two solutions requiring physical commonsense.
There are 1830 questions in the test set.

• HellaSwag (Zellers et al., 2019): commonsense NLI questions including a context and
several endings which complete the context. There are 10042 questions in the test set.

• WinoGrande (Sakaguchi et al., 2019): fill-in-a-blank task with binary options to choose the
right option for a given sentence which requires commonsense reasoning. There are 1267
questions in the test set.

• ARC-easy (Clark et al., 2018) & ARC-challenge (Clark et al., 2018): the Challenge Set
and Easy Set of ARC dataset of genuine grade-school level, containing 2376/1172 multiple-
choice science questions in the test set, respectively.

• OpenbookQA (Mihaylov et al., 2018): uestions requiring multi-step reasoning, use of
additional commonsense knowledge, and rich text comprehension. There are 500 questions
in the test set.

B.2 BASELINES

• LLMPruner (Ma et al., 2023a), which adopts structural pruning that selectively removes non-
critical coupled structures based on weights and gradient information, maximally preserving
the majority of the LLM’s functionality. LLMPruner applies post training to the pruned
model, but for fair comparison, we do not apply post training to it. However, LLMPuner
requires extra overhead for pruning its gradient-base pruning policy.

• SliceGPT (Ashkboos et al., 2024), which is a post-training sparsification scheme that
replaces each weight matrix with a smaller matrix, reducing the embedding dimension of the
network. Specifically, they applied PCA to the hidden representation from shallow to deep
layers, and incorporated the dimension reduction matrix into existing network parameters.

• DISP-LLM (Gao et al., 2024), which introduces a dimension-independent structural pruning
scheme that breaks inter-layer width coupling. This post-training method uses gradient-
based optimization via a learned hyper-network to determine which neurons to remove in
each layer, enabling flexible layer-specific width reduction without additional fine-tuning.

• ShortGPT (Men et al., 2024) reveals significant redundancy among LLMs by proposing a
layer-pruning method that removes redundant layers with minimal performance degradation

• MHA-Drop (He et al., 2024), which prunes entire multi-head self-attention layers of Trans-
former blocks to accelerate inference. By removing a fraction of the attention layers based
on cosine similarity-based importance, this approach achieves notable speedups with minor
impact on the model performance.

• FFN-Skip (Jaiswal et al., 2024), which applys inference-time skipping strategy that omits
selected feed-forward network layers to reduce computation. It leverages an input-adaptive
criterion to dynamically skip FFN blocks during decoding, yielding faster generation with
negligible degradation in output quality.

C MORE RESULTS

Table 3 shows additional results on Qwen-1.5-7B and Qwen-2.5-7B, which confirms the proposed
RAP is architecture-agnostic: it preserves competitive perplexity and downstream accuracy across
two distinct generations of the Qwen series, implying that the same pruning strategy can be ported to
other modern transformer backbones with minimal modification.

D LIMITATION

Despite its promising results, RAP still faces several important limitations. First, the Greedy Se-
quential Importance procedure relies on repeated perplexity measurements over an external corpus

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

99.7%

0.3%

99.1%

0.9%

99.0%

1.0%

Parameters Inference Peak Memory(GB) Inference Time(s)

Llama2-7B RL Agent

Figure 11: Overhead analysis comparing the RL agent and Llama2-7B in terms of parameter, peak
memory usage, and inference latency, illustrating the negligible cost of deploying the RL controller.

Table 3: Zero-shot performance of pruned versus dense model under different memory budgets. 1

100% memory budget indicates exceeding peak inference memory usage (parameters + KV cache).

Budget Schemes Perplexity ↓ Commonsense Task (%) ↑
WikiText2 PTB BoolQ PIQA WinoG. HellaS. ARC-e ARC-c OBQA Avg.

Qwen1.5-7B
100%1 Dense 7.95 11.93 82.45 79.05 66.14 76.90 62.25 42.83 41.60 64.46

80%

ShortGPT (Men et al., 2024) 16.88 24.88 43.98 72.69 58.41 59.11 54.50 33.70 32.20 50.66
MHA-Drop (He et al., 2024) 14.26 22.73 59.91 75.90 58.96 67.61 61.73 41.89 37.20 57.59

FFN-Skip (Jaiswal et al., 2024) 94.77 123.12 45.26 59.19 51.30 36.67 36.41 22.70 28.00 39.93
RAP 18.88 30.88 64.50 73.39 56.51 59.98 56.26 36.09 38.60 55.05

60%

ShortGPT 445.24 701.1 54.55 56.08 51.07 32.49 32.37 24.23 28.40 39.89
MHA-Drop 628.12 676.62 45.87 54.45 51.45 33.16 33.08 25.67 29.59 39.05
FFN-Skip 1889780.25 2455505.75 46.7 51.69 49.64 26.41 25.21 25.85 28.79 36.33

RAP 54.48 68.33 54.76 61.70 51.07 39.72 44.28 24.32 29.59 43.64

Qwen2.5-7B
100% Dense 6.85 11.36 84.61 79.71 73.00 78.95 77.40 51.01 47.40 70.30

80%

ShortGPT 523.53 2154.89 72.20 66.59 56.35 48.50 61.99 40.27 36.40 54.62
MHA-Drop 115.11 184.05 42.75 71.38 57.46 55.60 52.90 39.25 40.40 51.39
FFN-Skip 141.24 175.33 48.69 61.26 53.51 42.08 45.16 31.14 30.00 44.55

RAP 13.56 20.33 70.46 72.74 60.62 63.93 57.87 37.29 35.19 56.87

60%

ShortGPT 3460.52 4107.47 38.59 54.03 52.80 27.61 26.56 23.63 25.40 35.52
MHA-Drop 9099.49 16067.49 48.47 54.30 50.99 28.23 29.67 27.38 32.20 38.75
FFN-Skip 1628213.25 1434617.50 45.78 52.12 48.93 26.83 24.54 27.3 27.6 36.16

RAP 306.13 423.79 47.80 57.99 51.07 33.64 34.33 26.54 30.80 40.31

Schemes Llama2-7B 80% Llama2-7B 60% Llama3-8B 80% Llama3-8B 60%

LLMPruner 35% 45% 35% 45%
SliceGPT 40% 65% 40% 65%
ShortGPT ∼37% ∼75% ∼31% ∼75%

MHA-Drop ∼26% ∼32% ∼12% ∼15%
FFN-Skip ∼52% ∼64% ∼65% ∼81%

RAP ∼24% ∼30% ∼31% ∼42%

Table 4: The pruning ratio of model weight within the memory budget for different heuristics schemes.

(a) Sequence length:256. (b) Sequence length: 2048. (c) Sequence length:4096.

Figure 12: Block sensitivity analysis: removing specific MHA and FFN under diff. sequence length

(Alpaca), which may become computationally prohibitive for models with tens-of-billions of parame-
ters or for domains lacking a representative calibration set, thereby limiting scalability. Secondly,
while the online controller adds negligible inference latency, the offline reinforcement-learning stage
still demands several hundred seconds of GPU time and shows sensitivity to the reward coefficients
α, β, suggesting non-trivial tuning effort for new hardware or workload profiles. Thirdly, the current
state representation tracks only batch size, sequence length and instantaneous memory, omitting

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

latency, energy and heterogeneous device characteristics; as a result, the learned policy may yield
sub-optimal trade-offs when such factors dominate deployment objectives. Finally, we note that
addressing the challenges of long-context inference, which leads to substantial growth in the KV
cache and is often infeasible on resource-constrained devices, is beyond the scope of this paper.
Nevertheless, we believe our method’s demonstrated efficiency in compressing the KV cache provides
a promising foundation for future community efforts in long-context inference compression.

E THE USE OF LARGE LANGUAGE MODELS

We used LLMs solely as a writing-assistance tool to polish our paper (grammar, wording, concision,
and minor LATEX formatting). The LLM did not contribute to research ideation, problem formulation,
method design, experiments, data analysis, results, or conclusions, and it was not used to generate
citations or technical content. All suggestions were reviewed and, when adopted, edited by the authors,
who take full responsibility for the paper’s content; no proprietary data beyond the manuscript text
was shared with the tool.

19

	Introduction
	Background and Related Work
	Runtime LLM Inference Memory Breakdown
	Existing LLM Pruning

	Motivation
	RAP Design
	Greedy Sequential Importance
	RL-Guided Pruning Decisions

	Experiments
	Experimental Setup
	Overall Performance
	Ablation Study
	Framework Analysis

	Conclusion
	Detail of RL-Agent Algorithm
	Problem Formulation
	Memory Model (Peak GPU Footprint)
	DQN-based Policy Learning with Action Masking
	Pseudocode: DQN Training and Online Execution

	Datasets and Baselines
	Commonsene Reasoning
	Baselines

	More Results
	Limitation
	The Use of Large Language Models

