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ABSTRACT

Large language models (LLMs) excel at language understanding and generation,
but their enormous computational and memory requirements hinder deployment.
Compression offers a potential solution to mitigate these constraints. However,
most existing methods rely on fixed heuristics and thus fail to adapt to runtime
memory variations or heterogeneous KV cache demands arising from diverse user
requests. To address these limitations, we propose RAP, an elastic pruning frame-
work driven by reinforcement learning (RL) that dynamically adjusts compression
strategies in a runtime-aware manner. Specifically, RAP dynamically tracks the
evolving ratio between model parameters and KV-cache across practical execution.
Recognizing that FFNs house most parameters, whereas parameter-light attention
layers dominate KV-cache formation, the RL agent retains only those components
that maximize utility within the current memory budget, conditioned on instan-
taneous workload and device state. Extensive experiments results demonstrate
that RAP outperforms state-of-the-art baselines, marking the first time to jointly
consider model weights and KV cache on the fly. Anonymous source code is
submitted with the paper and will be publicly available.

1 INTRODUCTION

Large language models (LLMs) has revolutionized artificial intelligence through unprecedented
performance in complex language tasks (Brown et al., 2020; Achiam et al., 2023; microsoft; github).
The autoregressive architectures, however, pair “billion-parameter” with memory-intensive key–value
(KV) caches, inflating both computation and memory footprints (Fedus et al., 2022; Patterson et al.,
2021; Touvron et al., 2023b; Chowdhery et al., 2023; Team et al., 2024). While cloud solutions
mitigate some burdens, emerging edge scenarios, mobile devices and real-time services (Yuan et al.,
2023; Lin et al., 2022; 2024), demand on-device inference that current LLMs cannot sustain. Model
compression is widely used to preserve generative quality while slashing resource costs.

To address LLM deployment bottlenecks, three main compression families have emerged: model
pruning (Ma et al., 2023b; Zhong et al., 2024; Sun et al., 2024; Shao et al., 2024), knowledge
distillation (Sun et al., 2019; Xu et al., 2024; Chen et al., 2024), and quantization (Liu et al., 2024; Lin
et al., 2024). We focus on pruning. Existing schemes(Ma et al., 2023b; Zhong et al., 2024; Sun et al.,
2024; Shao et al., 2024; Ashkboos et al., 2024; Gao et al., 2024; Men et al., 2024; He et al., 2024;
Jaiswal et al., 2024), whether element-, block-, or layer-wise, achieve impressive parameter reductions
but assume static workloads and rely on heuristic policies, neglecting runtime variability, as shown in
Figure 1. Such rigidity overlooks two dominant sources of autoregressive inference runtime variance:
1) Input-driven variance: batch size and sequence length directly scale the KV cache memory (e.g.,
Llama-7B (Touvron et al., 2023a) requires 32 GB of KV cache memory, batch = 16 and length = 4k
tokens, dwarfing the static 14 GB model parameters. 2) System-level variance. Edge devices often
exhibit stochastic runtime variance, for instance, interference from co-running applications, affecting
available memory budgets on the fly. This situation presents a compelling research question:

How to select optimal LLM pruning policy that can adapt to heterogeneous, time-varying request
workloads while satisfying fluctuating memory budgets?

In this paper, we propose RAP, a runtime-adaptive pruning framework that addresses these challenges.
RAP abandons static one-size-fits-all compression in favor of dynamically adjusting the model’s
sparsity level for each inference. As shown in Figure 1, it introduces a reinforcement learning (RL)
agent that observes real-time signals, such as input sequence length, batch characteristics, and current
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Figure 1: Illustration of RAP. (a) Conventional pruning relies on hand-developed heuristics that focus
solely on model weights. (b) RAP employs a runtime-adaptive RL agent that dynamically prunes
LLMs based on real-time user requests and memory budget constraints.

memory availability, and selects an appropriate pruning policy on the fly. This design ensures that
the model stays within memory budgets under tight conditions while preserving as many parameters
as possible when resources allow. By coupling compression decisions with the execution context,
RAP effectively accommodates heterogeneous workloads and fluctuating system constraints that
are impractical for fixed pruning strategies. We formulate adaptive pruning as a sequential decision
process and train the RL agent to maximize efficiency without compromising output quality. The
agent’s reward function balances memory savings against generation fidelity, encouraging policies
that reduce memory usage only to the extent they do not degrade performance. Once trained, the agent
serves as an intelligent controller during inference, guiding the LLM to prune different components
(e.g., attention heads, feed-forward channels, or even entire layers) in response to each request’s
needs. Notably, RAP adds negligible runtime cost, since the learned policy can rapidly compute
pruning decisions. This yields a flexible, context-aware compression mechanism that seamlessly
scales LLM deployments to edge environments. Our experiments demonstrate that RAP outperforms
static pruning baselines across a range of deployment scenarios. Without manual retuning, RAP
adapts to varying batch sizes and sequence lengths, consistently meeting fluctuating memory limits
while maintaining strong task performance. For example, under stringent memory constraints, RAP
prunes a substantial fraction of the model’s weights to fit an LLM on-device yet maintains accuracy
comparable to an unpruned model. Conversely, when memory is abundant, RAP leaves the model
largely intact to maximize accuracy, effectively achieving the best of both worlds. In summary, our
contributions are as follows:

• We propose RAP, a novel runtime-adaptive LLM pruning framework that dynamically adjusts
model size based on real-time input demands and memory constraints.

•We cast the pruning policy selection as a reinforcement learning problem and develop an RL agent
that learns an optimal policy balancing memory efficiency and model fidelity.

•We demonstrate through extensive experiments that RAP consistently outperforms static compres-
sion strategies under dynamic workloads, achieving superior memory savings and faster inference
with minimal impact on output quality.

2 BACKGROUND AND RELATED WORK

2.1 RUNTIME LLM INFERENCE MEMORY BREAKDOWN

Transformer-based LLMs comprise a stack of homogeneous decoder layer, each with a multi-head
attention (MHA) block followed by a feed-forward network (FFN) block. Given that FFNs typically
contain approximately 2× the parameters of their corresponding attention modules, the static parame-
ter memory allocation is predominantly determined by FFN weights, which remain fixed once model
are loaded. During inference, each token x is projected with Wq , Wk, and Wv within MHA to obtain
Q = xWq , K = xWk, and V = xWv; the resulting K and V tensors are appended to the KV cache
across all layers. For Llama2-7B (nlayers = 32, nheads = 32, dhead = 128), the per-token cache cost
is MemoryKV = 2nlayers nheads dhead pa ≈ 0.5 MB, where the factor 2 stores both keys and values.
Figure 3 shows memory footprint across batch size and sequence length. Each pie chart illustrates
the relative proportion of memory consumed by model parameters (FFN in orange, MHA in blue)
and KV cache (gray). As batch size and sequence length gradually extend, memory consumption
transitions from parameter-dominated regimes to KV cache-dominated, highlighting the dynamic
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Figure 2: Distribution and daily variation of a con-
versational LLM inference workload.
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Figure 3: Dynamic memory footprint across
varying batch sizes and sequence lengths.

nature of memory bottlenecks in practical deployment. Once model is loaded into memory, increasing
the batch size or extending the context length does not affect parameter memory consumption but
substantially increases KV cache memory overhead.

KV cache ∝ (batch size)× (sequence length)× nlayers. (1)

Therefore, practical memory scaling is driven almost entirely by the MHA-generated KV cache,
underscoring the need for adaptive compression schemes that address both the FFN-heavy static
parameter and this rapidly expanding dynamic cache.

2.2 EXISTING LLM PRUNING

For runtime LLM inference, pruning strategies (Hu et al., 2021; Liu et al., 2023; Xia et al., 2023;
Yin et al., 2023; Zhang et al., 2023) must balance efficiency, accuracy, and adaptability. 1) Static
vs. dynamic pruning: Static methods (e.g., ISC (Das et al., 2023), SparseGPT (Frantar & Alistarh,
2023), E-Sparse (Li et al., 2023), Wanda (Sun et al., 2024)) apply fixed sparsity without retraining,
achieving up to 50% sparsity but degrading under higher sparsity levels and fundamentally lacking
adaptability. Structured variants (Ashkboos et al., 2024; Chen et al., 2023; Ma et al., 2023b; Zhao
et al., 2024) improve hardware efficiency but require retraining (e.g., LoRA (Hu et al., 2021)). In
contrast, dynamic pruning (An et al., 2024; Federici et al., 2024; Le et al., 2025; Liu et al., 2023)
adapts per input, improving flexibility but retaining full weights and inducing irregular sparsity,
limiting hardware speedups. 2) Parameter-only vs. parameter+KV compression: Most pruning
reduces weights (Ma et al., 2023b; Ashkboos et al., 2024; Li et al., 2023; Sun et al., 2024) but
ignores KV cache, a major runtime bottleneck. While weight pruning shrinks static parameter, it fails
under long-context due to exponentially growing KV cache. Recent methods (e.g., ShortGPT (Men
et al., 2024), BlockPruner (Zhong et al., 2024), LLM-Drop (He et al., 2024), FinerCut (Zhang et al.,
2024b)) prune both parameters and KV cache, reducing computation and memory but often rely on
static rules, sacrificing accuracy. The core trade-off persists: parameter-only pruning is insufficient,
while aggressive KV cache pruning hurts performance. 3) Heuristic vs. learning-based control:
Heuristic methods (Sun et al., 2024; Frantar & Alistarh, 2023; Ma et al., 2023b) use static scores
(e.g., magnitude, saliency), lacking runtime adaptability or end-to-end optimization. Learning-based
policies can jointly optimize for speed, memory, and accuracy. Though RL has proven effective
in (Andrychowicz et al., 2020; Mnih et al., 2015; Zhang et al., 2017), it remains underexplored for
LLM pruning, particularly for coordinated control of parameter and KV cache. RAP addresses this by
introducing an RL-based policy that dynamically prunes both components, enabling runtime-adaptive
and efficient inference beyond static baselines.

3 MOTIVATION

In this section, we present key observations from stochastic workloads, model-intrinsic and system
factors for practical LLM inference.

▶ Takeaway 1: Runtime workloads are inherently dynamic. Modern LLM service platforms must
operate under highly volatile workload conditions (Patel et al., 2024; Li et al., 2024; Jaiswal et al.,
2025). Figure 2, derived from an Azure LLM-inference trace (Stojkovic et al., 2025), reveals that
prompt-length distributions and request arrival rates fluctuate markedly over time, producing a
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(a) Sequence length:256. (b) Sequence length: 2048. (c) Sequence length:4096.

Figure 4: Block sensitivity analysis: removing specific MHA and FFN under diff. sequence length.

Inference Memory Occupation
(Static Parameter + Dynamic Kv-Cache)

Available Memory Budget

OOM！
OOM！

Figure 5: Dynamic memory allocation trace for
Llama2-7B on an NVIDIA A40 (40 GB) (NVIDIA
Corporation, 2020). Blue indicates available mem-
ory; red shows real-time usage (model + KV
cache), which scales with workload and cause out-
of-memory (OOM) errors under heavy requests.
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Figure 6: Per-block perplexity sensitivity
(FFN vs. MHA) under one-shot and GSI
pruning, with GSI revealing inter-layer het-
erogeneity missed by static one-shot methods.

non-deterministic mix of short conversational turns and burst, long-form inputs. Figure 3 illustrates
how memory allocation transitions from parameter-dominated regimes at low batch sizes to KV
cache-dominated scenarios as batch size and sequence length scale up, fundamentally reshaping
inference memory bottlenecks. These findings reveal a fundamental limitation in current serving
infrastructures: static resource allocation and heuristic per-request throttling mechanisms fail to
satisfy Quality of Experience (QoE) demands for latency and memory efficiency when facing the
inherently dynamic and unpredictable nature of real-time inference workloads.

▶ Takeaway 2: Homogeneous blocks exhibit heterogeneous impact. Current transformer architectures
exhibit seemingly homogeneous layers (§2.1), yet their internal blocks (MHA and FFN) contribute
heterogeneously to generation quality. Prior studies have broadly differentiated layer importance (Ma
et al., 2023a; Zhang et al., 2024a; Yao et al., 2024; Pan et al., 2024) or assumed fixed superiority of
FFN over MHA (He et al., 2024). However, as summarized in Figure 4, the impact of MHA and
FFN removal on perplexity (PPL) varies significantly across layers, challenging coarse-grained or
uniform assumptions. Moreover, solely optimizing FFN cannot alleviate the KV cache bottleneck that
arises in long sequences and large batch sizes. Additionally, block importance demonstrates dynamic
shifts across different request lengths, underscoring the limitations of existing static, heuristic-based
pruning strategies (Yao et al., 2024; Pan et al., 2024; Ma et al., 2023a; Men et al., 2024). These
insights highlight the critical imperative for adaptive method that dynamically discerns and leverages
block-level sensitivity to accommodate heterogeneous runtime computational demands.

▶ Takeaway 3: Real-world systems demonstrates runtime variance. Real-world LLM inference
systems rarely maintain consistent memory availability (Wang et al., 2024; Yu et al., 2023; Xu
et al., 2022). Instead, they encounter dynamic memory variability driven by heterogeneous LLM
workloads and interference by co-running applications. Azure LLM service traces (Stojkovic et al.,
2025) show that prompt-length and request-arrival spikes can induce instantaneous GPU-memory
fluctuations of up to 5–10. Concurrent workloads further disrupt cache and bandwidth allocation,
exacerbating contention and latency instability. As Figure 5 illustrates, these memory surges often
preempt co-running applications and invalidate the fixed-budget assumptions of existing pruning and
scheduling methods, highlighting a critical gap between current serving frameworks and real-world,
memory-dynamic inference environments.

4 RAP DESIGN

In this section, we present the design of RAP. Specifically, we first introduce greedy sequential
importance analysis §4.1 to thoroughly assess the impact of individual transformer blocks. Then, we
explain how we formulate the problem of runtime dynamic pruning as an RL task §4.2.

4
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4.1 GREEDY SEQUENTIAL IMPORTANCE

As discussed in §3, blocks exhibit heterogeneous contributions to model performance. Conventional
one-shot pruning methods (Ma et al., 2023b; Zhong et al., 2024) that remove layers solely based
on individual sensitivity ignore inter-layer dependencies, often leading to substantial performance
degrades under aggressive compression ratio. The deep composition of nonlinear activations and
residual connections in LLMs induces strong inter-layer dependencies (Ling et al., 2024; Meng et al.,
2024), rendering the network fragile to architectural changes. Consequently, excising even a single
layer can trigger a cascade of representational errors that corrupts the entire model’s functionality. To
mitigate this, we propose Greedy Sequential Importance (GSI) analysis. As detailed in Algorithm 1,
GSI performs iterative pruning by progressively removing the block whose exclusion results in the
minimal deterioration, followed by re-evaluating after each step. This step-wise recalibration controls
error accumulation, stabilizes accuracy over successive pruning stages, and achieves a more balanced
compression–performance trade-off compared to static, one-shot methods. Figure 6 further highlights
that one-shot pruning neglects inter-layer heterogeneity, leading to suboptimal pruning decisions.
In this paper, we select perplexity as the proxy metric for the GSI algorithm to measure the impact
of block removal on overall model performance, since perplexity is a widely-accepted metric for
generative capabilities of LLM. Alternatively, task-specific downstream metrics can serve as a proxy
to enable pruning decisions more aligned with target scenarios. Overall, GSI offers a principled
and adaptive approach to LLM compression, effectively balancing model size reduction with task
performance preservation.

Algorithm 1 Greedy Sequential Importance (GSI) using perplexity as the proxy metric

Require: Pre-trained modelM, evaluation corpus C, target prune ratio ρ
Ensure: Pruned modelM(t), pruned blocks {Bkt

}, perplexities {Pkt
}

1: M(0) ←M, t← 0 ▷ Initialization
2: while PruneRatio(M(t)) < ρ do
3: t← t+ 1
4: for all block Bi inM(t−1) do
5: M̂i ←M(t−1) \Bi ▷ Candidate Model
6: Pi ← exp

(
− 1

|C|
∑

w∈C log pM̂i
(w)

)
▷ Perplexity

7: end for
8: k ← argmini Pi ▷ Greedy Selection
9: M(t) ← M̂k ▷ Model Update

10: end while
11: returnM(t), {Bk1

, . . . , Bkt
}, {Pk1

, . . . , Pkt
}

4.2 RL-GUIDED PRUNING DECISIONS

To address the dynamic inference environments characterized by user-request workloads and system
runtime variance, we propose RAP an adaptive pruning framework based on reinforcement learning.
Figure 7 presents the design overview of RAP. ① At each inference step, RAP observes the real-time
request characteristic, model configuration, and available memory budget to determine the current
execution state. ② Based on this state, the RL agent selects a pruning policy that satisfies the memory
constraint while aiming to preserve model performance. ③ The base model then executes the selected
pruning policy by removing the corresponding FFN and MHA blocks, and subsequently performs
inference on the compressed architecture. ④ Finally, RAP evaluates inference metrics, including
memory overhead and perplexity, to derive a reward that quantifies how effectively the selected action
balances computational efficiency with model performance. We next define the core RL components,
State, Action, and Reward, to formalize the optimization space of RAP.

STATE: the state at the t-th timestep st = (sReq
t , sModel

t , sSys
t ) ∈ S consists of three components:

• sReq
t = (Rbs, Rsql) captures the real-time request characteristics, consisting of the batch

size Rbs and sequence length Rsql.

• sModel
t =

(
{MHAimp,i}Ni=1, {FFNimp,i}Ni=1

)
, representing importance score of each MHA

and FFN block computed via GSI algorithm §4.1, where N denotes the total number of
blocks, capturing the granular block-level model configuration.
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Figure 7: Design overview of RAP. (1) Runtime statistics from inference environment are encoded
into execution state. (2) RL agent selects FFN/MHA blocks for pruning. (3) Resulting memory con-
sumption and performance constitute the reward. (4) Agent gains reward and reinforces, completing
an online loop for dynamically balanced efficiency and accuracy.

• sSys
t = (Sysavail, Sysreq) represents the runtime system memory state, where Sysavail

denotes the currently available system memory, and Sysreq indicates the anticipated memory
overhead after executing the selected pruning policy.

ACTION: At each pruning step t, given N layers model and input state st, the action set is defined
as At = {(a1, . . . , a2N ) | ai ∈ {0, 1}}, where 2N binary indicators represent whether to retain
(ai = 1) or remove (ai = 0) each of the 2N transformer blocks (one MHA and one FFN per layer)
at step t. Simultaneous multi-block selection creates an intractable action space of size 22N ; for
example, Llama2-7B with 64 blocks, this yields approximately 264 ≈ 1.8× 1019 possible actions.
To address this computational challenge, we decompose the decision into sequential single-block
selections, reducing the action space to 2N decision step. However, directly applying one-shot
top-k pruning proves suboptimal, as demonstrated in § 4.1, since block importance dynamically
changes after each removal. More precisely, we utilize GSI-derived importance scores to iteratively
remove the least important block at each step. After each removal, we re-assess the importance
hierarchy among remaining blocks and select the next least important candidate, repeating this greedy
selection until the peak memory footprint meets the memory budget constraint. While the approach
requires iterative decision-making, the RL agent employs a lightweight 2-layer MLP with minimal
parameters, ensuring computational overhead remains negligible compared to the inference costs of
billion-parameter LLMs.

REWARD: To ptimize a pruned model under a fixed memory budget presents a multi-objective
challenge. We address this by formulating a unified reward as a weighted sum of two specialized
metrics: Rppl, reflecting language modeling performance via perplexity, and Rmem, which penalizes
peak memory consumption during inference.

Rt =

2N∑
i=1

(At)i

(
αRppl

i − βRmem
i

)
(2)

Here, N is the total number of blocks. At each time step t, At is a binary action vector where
(At)i = 1 indicates that block i is preserved while (At)i = 0 will remove block i. The terms Rppl

i
(detailed in § 4.2) and Rme

i denote the perplexity importance and estimated memory footprint of block
i, respectively. The hyperparameters α and β act as reward scale factors, tuning the accuracy–memory
trade-off and penalizing bottleneck workloads when necessary. Specifically, in this paper, we set
α = 1, β = 0.3. A detailed description of RL-agent algorithm can be found in Appendix A.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Model and Dataset. We implemented RAP using PyTorch (Paszke et al., 2019) and the HuggingFace
Transformers library (Wolf et al., 2019) for managing models and datasets. All experiments were
conducted on NVIDIA A40 GPUs (NVIDIA Corporation, 2020). For GSI, we used the Alpaca
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Table 1: Zero-shot performance of pruned versus dense model under different memory budgets. 1

100% memory budget indicates exceeding peak inference memory usage (parameters + KV cache).
Budget Schemes Perplexity ↓ Commonsense Task (%) ↑

WikiText2 PTB BoolQ PIQA WinoG. HellaS. ARC-e ARC-c OBQA Avg.

Llama2-7B
100%1 Dense 5.47 24.09 77.74 79.11 68.97 75.98 74.62 46.25 44.20 66.70

80%

LLMPruner (Ma et al., 2023b) 28.42 278.05 50.63 68.82 54.14 52.66 49.33 30.20 34.59 48.63
SliceGPT (Ashkboos et al., 2024) 58.33 211.33 61.99 65.29 58.08 43.43 52.27 32.08 28.99 48.88

ShortGPT (Men et al., 2024) 79.49 171.02 62.17 60.12 60.38 43.70 41.25 30.12 35.00 47.53
MHA-Drop (He et al., 2024) 1068.99 1579.65 46.08 54.56 50.83 29.12 28.62 27.47 25.20 37.41

FFN-Skip (Jaiswal et al., 2024) 28720.72 32216.40 42.80 49.35 51.22 26.69 27.18 28.49 26.60 36.05
RAP 11.80 46.56 62.81 73.99 63.38 65.77 60.35 36.69 36.60 57.08

60%

LLMPruner 96.52 711.38 55.96 61.15 50.83 38.09 35.06 27.13 28.40 42.38
SliceGPT 348.26 590.12 61.04 54.56 49.49 28.99 30.68 23.46 25.40 39.09
ShortGPT 964.92 2219.93 55.57 50.98 50.51 27.83 26.39 27.47 26.60 37.91

MHA-Drop 6731.72 7914.86 37.83 49.89 49.88 25.72 26.05 25.43 26.80 34.51
FFN-Skip 202008.00 160986.48 44.83 50.64 48.60 25.86 25.72 28.92 28.19 36.13

RAP 84.78 592.65 57.16 58.26 53.75 37.81 37.79 26.02 30.20 43.00

Llama3-8B
100% Dense 6.13 9.91 81.35 80.78 72.61 79.14 77.69 53.33 45.00 69.99

80%

LLMPruner 48.94 99.33 62.17 65.02 51.93 42.32 41.33 25.50 29.40 45.37
SliceGPT 143.93 71.99 61.87 65.94 54.05 42.51 54.37 31.06 27.80 48.23
ShortGPT 37412.61 41988.11 56.82 58.59 54.85 37.71 36.99 30.20 28.00 43.30

MHA-Drop 529.00 737.98 37.80 53.92 50.20 26.87 30.47 23.81 27.20 35.75
FFN-Skip 164387.73 149698.12 55.77 51.47 50.74 25.90 25.75 25.25 28.00 37.56

RAP 12.98 27.15 68.84 76.55 66.11 65.55 62.12 39.51 39.60 59.77

60%

LLMPruner 4009.81 1882.99 40.48 50.05 52.33 26.26 26.77 25.94 27.00 35.55
SliceGPT 2844.28 1084.03 40.86 53.86 48.93 27.97 32.07 23.04 25.80 36.08
ShortGPT 13284.81 13512.55 41.44 50.98 50.03 26.74 25.46 25.34 26.80 35.26

MHA-Drop 1757.11 2102.15 37.83 51.90 50.12 26.04 27.86 22.95 25.80 34.64
FFN-Skip 624965.25 765475.19 51.93 51.95 50.03 26.02 24.03 26.96 28.59 37.08

RAP 246.53 355.47 52.20 56.69 50.36 31.91 33.54 24.23 27.40 39.48

dataset (Taori et al., 2023) to compute perplexity importance. We evaluated RAP over representative
LLMs: Llama2-7B (Touvron et al., 2023c), Llama3-8B (Dubey et al., 2024), Qwen1.5-7B (Bai
et al., 2023) and Qwen2.5-7B (Yang et al., 2024). We assessed model performance using the LM
Evaluation Harness (Gao et al., 2023) following Llama’s evaluation protocol to perform zero-shot
task classification on common sense reasoning datasets: BoolQ (Clark et al., 2019), PIQA (Bisk et al.,
2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2019), ARC-easy (Clark
et al., 2018), ARC-challenge (Clark et al., 2018), and OpenbookQA (Mihaylov et al., 2018). We
tested the model generative ability using WikiText2 (Merity et al., 2016) and PTB (Marcus et al.,
1993) dataset. A detailed description of the benchmarks can be found in Appendix B.1.

Baselines. To validate the effectiveness of RAP, we compared several structured pruning methods:
1) LLMPruner (Ma et al., 2023a): Structural pruning via gradient-weight analysis to remove non-
critical coupled layers; omits post-training for fair comparison but incurs pruning-policy overhead.
2) SliceGPT (Ashkboos et al., 2024): PCA-based post-training sparsification reduces embedding
dimensions by projecting hidden representations shallow-to-deep. 3) ShortGPT (Men et al., 2024):
Layer-pruning reveals redundancy in LLMs by removing redundant layers with minimal performance
loss. 4) MHA-Drop (He et al., 2024): Cosine-similarity-guided pruning of entire multi-head attention
layers for inference acceleration. 5) FFN-Skip (Jaiswal et al., 2024): Input-adaptive dynamic skipping
of FFN layers during decoding for faster generation with negligible quality trade-offs. A detailed
description of the baseline models can be found in Appendix B.2. Notably, we diverge from previous
works by evaluating all methods under identical memory budget, rather than a fixed pruning ratio. We
posit that the pruning ratio is a misleading proxy for actual memory footprint, a claim substantiated
by our empirical results which reveal a significant discrepancy. This gap arises primarily from
the disproportionate memory overhead of runtime KV cache, which parameter counts alone fail to
capture. By focusing on a fixed memory budget, our evaluation framework more accurately reflects
the constraints of real-world deployment on resource-limited device, yielding more practical and
reliable conclusions.

5.2 OVERALL PERFORMANCE

In this section, we evaluate LLama2-7B and LLama3-8B under 80% and 60% unified memory
budgets, covering both parameters and KV cache. For clarity, 80% memory budget corresponds
to 80% of the peak memory footprint of the original, unpruned model, formally expressed as
80% ∗max(param. + KV cache). Sparsity is progressively increased for each method until the total
memory overhead meets the target budget constraint. Detail pruning settings for all baselines are
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Figure 8: Effectiveness of GSI and RL Agent. Zero-shot performance of RAP−GSI, RAP−RL versus
RAP evaluation on Llama2-7B under (a) 80% and (b) 60% memory budgets.

detailed in Table 4 of Appendix C. Evaluated results with the same setting for Qwen1.5-7B and
Qwen2.5-7B can be found in Table 3 of Appendix C.

Generation Ability. As shown in Table 1, RAP shows the smallest perplexity drift among all
structured-pruning baselines. Specifically, at the 80% budget perplexity rises by only +6.3 on
WikiText2 and +22.6 on PTB, outperforming the next-best method by 16.6 and 9.6, respectively.
This advantage persists more pronounced under the harsher 60% cap, stemming from learning an
architecturally-aware pruning policy targeting MHA when KV cache is the primary bottleneck and
FFN blocks when parameter memory dominates. This asymmetric strategy adapts to the architectural
nuances of different models. For instance, the FFN-heavy Llama3-8B (which uses GQA (Ainslie
et al., 2023)) is highly sensitive to FFN removal, whereas the standard Llama2-7B is more degraded
by pruning MHA. This learned selectivity allows RAP to navigate architectural trade-offs, preserving
crucial generative capabilities even under severe compression.

Downstream Task Performance. We next evaluate zero-shot commonsense reasoning for the
same memory budgets. As shown in Table 1, RAP again delivers the highest accuracy. Under the
80% budget it preserves 86% of dense accuracy and surpasses the leading baseline by +7.7% on
Llama2-7B and +11.5% on Llama3-8B, with the largest gains on HellaSwag and ARC-e. Under an
aggressive 60% memory budget, while all methods degrade, RAP proves uniquely resilient. It is the
sole method to retain over 50% of the dense model’s performance, achieving scores of 43.0% on
Llama2-7B (0.6% ↑ vs. runner-up) and 39.5% on Llama3-8B (2.4% ↑). These results indicate that
RAP’s memory-aware, block-level pruning, which considers both parameter and KV cache memory
constraints, provides superior performance retention compared to conventional approaches under
severe memory limitations.

5.3 ABLATION STUDY

To explore the contribution of each component in RAP, we design two ablation variants: (1) RAP−GSI,
which disables the iterative, Greedy Sequential Importance scorer and instead applies standard static,
one-shot perplexity scoring across all requests; and (2) RAP−RL, which removes the RL agent and
randomly drops blocks, where ‘−’ means disable or remove proposed module.

Effectiveness of GSI. To isolate the contribution of the Greedy Sequential Importance,
we implement a static baseline that performs one-shot perplexity evaluation on all blocks

Table 2: Ablation study on perplexity.

Budget Schemes Perplexity ↓
WikiText2 PTB

80%
MODEL−RL 313.51 535.75
MODEL−GSI 42.04 492.97
MODEL 11.80 46.56

60%
MODEL−RL 7249.24 9059.14
MODEL−GSI 803.72 977.01
MODEL 74.78 592.65

initially, then removes the k blocks with the lowest im-
portance to meet the memory budget, without iterative
re-evaluation after each removal. Figure 8 and Table 2
reveal that this shortcut severely erodes quality: perplexity
on WikiText2 increases to 42.04 and average common-
sense accuracy reduces by 13.17%. The degradation arises
from latent inter-block dependencies in transformer stacks.
Conventional one-shot methods, which score each block
independently within the context of the full model, pro-
duce misleadingly optimistic importance estimates. These estimates become invalid under multi-block
pruning scenarios, as they fail to account for inter-block dependencies. GSI addresses this by itera-
tively pruning the least critical block and then recalibrating the importance of all remaining blocks
within the new, contracted architecture. This sequential, state-aware evaluation yields more faithful
importance scores, leading to superior performance in high compression regimes.
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Figure 10: Penalty factors (α and β) sensitivity.

Effectiveness of RL Agent. We next ablate the RL agent that converts GSI scores into real-time
actions by comparing RAP with a naı̈ve “Random-Drop” baseline that discards the same number
of blocks but chooses them uniformly at random. As Figure 8 and Table 2 show, both variants
satisfy the memory target, yet RAP obviously exceeds the random baseline on generation ability (
-301.71 on WikiText2) and downstream performance ( +18.37%). Crucially, RAP accomplishes this
online: its RL controller makes block-selection decisions conditioned on the current KV/parameter
split, so the policy can tighten or relax MHA/FFN pruning as the request mix shifts. Random-Drop
lacks such awareness; each inference call therefore risks violating latency or memory constraints on
resource-constrained devices. In short, RL preserves GSI’s quality while adding workload-adaptive
guarantees, making RAP the more practical choice for on-device deployment.

5.4 FRAMEWORK ANALYSIS

Robustness of RAP. To verify that RAP’s learning dynamics are not brittle to initialization, we retrain
the agent on Llama2-7B with three independent random seeds. Figure 9 plots the seed-wise expected-
reward curves. All trajectories increase smoothly and converge within a narrow band, showing that
the agent consistently discovers high-quality pruning policies despite stochastic exploration. This
stability stems from the architecture introduced above: (i) the Greedy Sequential Importance scorer
supplies a well-shaped, low-variance reward signal, and (ii) the memory-aware action mask constrains
the search space so early missteps cannot derail policy improvement. Collectively, these components
make RAP’s reinforcement learning process both robust and generalizable across random seeds.

Impact of penalty factors α and β. RAP reward function integrates task utility with two penalty
terms, weighted by α and β, to discourage accuracy degradation (importance decay) and excessive
memory usage, respectively. By sweeping α ∈ [0.2, 1.0] and β ∈ [0.1, 0.5], users can tune the
performance–efficiency trade-off to match deployment needs. As shown in Figure 10, higher α
values guide the policy to preserve critical blocks, while higher β values encourage pruning memory-
intensive ones. The optimal reward ridge emerges at large α and moderate β; we adopt α=1.0 and
β=0.3 in all experiments.

Overhead Analysis. As shown in Figure 11 in Appendix C. RAP’s RL controller adds negligible
deployment overhead. While Llama2-7B has ∼6.7B parameters and requires 33GB memory for
2048-token inference at batch size 8, the controller has just 18K parameters over 3.7×105× reduction.
Latency overhead is negligible: the unpruned model requires 52.73s for inference with sequence
length 2048 and batch size 8, whereas a policy step completes in 0.5s ( < 1% overhead). Even
including the one-time 302s offline policy training, the amortized cost is negligible. This efficiency
stems from the controller’s compact two-layer MLP, which processes Greedy Sequential Importance
scores and applies memory-aware masking to accelerate pruning.

6 CONCLUSION

This paper addresses the deployment challenges of LLMs caused by their excessive computational
and memory demands. While compression techniques have been proposed to mitigate these con-
straints, existing methods rely on static heuristics and fail to adapt to runtime memory fluctuations
or heterogeneous KV cache requirements stemming from diverse user workloads. To overcome
these limitations, we introduce RAP, an elastic pruning framework powered by RL that dynamically
optimizes compression strategies in real-time based on system conditions. This work bridges the
gap between static compression techniques and dynamic real-world deployment scenarios, offering a
scalable solution for efficient LLM inference in heterogeneous environments.
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ETHICS STATEMENT

We affirm adherence to the ICLR Code of Ethics. This work studies compression methods for
large language models and does not involve human subjects, personally identifiable information, or
sensitive attributes. All datasets and pretrained weights used are publicly available and were accessed
and used in accordance with their licenses and terms of use; no data scraping outside the providers’
terms was performed. We disclose our use of LLM-based writing assistance in a separate LLM-usage
section in Appendix E. Potential risks include lowering the computational barrier for deploying more
capable models in resource-constrained settings; to mitigate misuse concerns, we evaluate only on
standard public benchmarks, refrain from releasing domain-specific models for sensitive applications,
and provide documentation to support responsible use. The authors take full responsibility for the
integrity and accuracy of the reported results.

REPRODUCIBILITY STATEMENT

We provide an anonymized artifact in the supplemental materials containing: (i) source code; (ii)
configuration files with all hyperparameters; and (iii) step-by-step commands to regenerate all
main result. The main paper and appendix details data preprocessing, evaluation metrics, and
training/inference procedures, together with hardware specifications and estimated compute budgets.
Unless otherwise stated, results are averaged over multiple seeds and we report mean ± standard
deviation; deviations from this protocol are explicitly noted. These materials enable end-to-end
reproduction of every quantitative claim in the paper.
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A DETAIL OF RL-AGENT ALGORITHM

A.1 PROBLEM FORMULATION

We cast RAP as a finite-horizon MDPM = (S,A,P,R, γ) with horizon H≤2N , where N is the
number of transformer layers and each layer contributes one MHA block and one FFN block (thus
2N removable blocks).

State. At decision step t, the state st ∈ S concatenates request-, model-, and system-level features:

st =
(
sReq
t , sModel

t , sSys
t

)
,

with
sReq
t = (Rbs, Rsql), sModel

t =
(
{MHA

(t)
imp,i}

N
i=1, {FFN

(t)
imp,i}

N
i=1

)
,

sSys
t = (Sys

(t)
avail, Ŝys

(t)

req).

Here MHA
(t)
imp,i and FFN

(t)
imp,i are the current Greedy Sequential Importance (GSI) scores recom-

puted after each removal (see Alg. 1); Sys(t)avail is the available GPU memory observed at time t; and

Ŝys
(t)

req is the agent’s estimate of the peak memory after applying the candidate action.

Action. We adopt sequential single-block decisions compatible with DQN:

A = {0, 1, 2, . . . , 2N}.

Action at = 0 denotes STOP; at ∈ {1, . . . , 2N} removes the corresponding block (one of the N
MHA or N FFN blocks). An action mask invalidates pruned blocks and can optionally disable
actions predicted to break correctness constraints. The episode terminates when either: (i) STOP is
taken, or (ii) the peak memory fits the budget.

Transition. Given (st, at), the environment deterministically updates the pruned architectureMt 7→
Mt+1 by excising the selected block if at>0, then re-evaluates the GSI scores on the contracted
model to produce st+1. Runtime memory availability Sys

(t+1)
avail can be treated as exogenous.

Discount. We set γ = 0.99.

A.2 MEMORY MODEL (PEAK GPU FOOTPRINT)

Consistent with the main text, the peak inference memory comprises static parameters and dynamic
KV cache. Let bprec be bytes per scalar (e.g., 2 for bfloat16). For a model stateM (after some blocks
are removed) and a request tuple (Rbs, Rsql), we estimate

Memparam(M) = bprec

∑
B∈B(M)

#params(B), (3)

MemKV(M, Rbs, Rsql) = bprec · 2
∑

ℓ∈L(M)

nheads,ℓ dhead,ℓ Rbs Rsql, (4)

where B(M) and L(M) denote remaining blocks and layers, respectively; the factor 2 stores keys
and values. The peak is

Mempeak(M, Rbs, Rsql) = Memparam(M) +MemKV(M, Rbs, Rsql).

This matches the linear KV-cache scaling with batch and sequence length emphasized in the main
paper.
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A.3 DQN-BASED POLICY LEARNING WITH ACTION MASKING

Let Qθ(s, a) be the action-value function and Qθ̄ its target copy. We adopt masked ε-greedy:

π(a|s) =
{

uniform over valid actions with prob. ε,
argmaxa∈Avalid(s) Qθ(s, a) with prob. 1− ε,

whereAvalid(s) removes already-pruned blocks and can optionally include feasibility heuristics. With
transitions (st, at, rt, st+1, done) stored in replay buffer D, we minimize

L(θ) = E(s,a,r,s′,d)∼D

[(
Qθ(s, a)− y

)2]
, y = r + γ(1− d) max

a′∈Avalid(s′)
Qθ̄(s

′, a′).

We soft-update the target network periodically: θ̄ ← τθ + (1− τ)θ̄.

A.4 PSEUDOCODE: DQN TRAINING AND ONLINE EXECUTION

Algorithm 2 RAP Controller Training via Masked DQN

Require: Dense modelMdense; proxy corpus C; distribution over requests (Rbs, Rsql) and budgets
B; replay buffer D; discount γ; schedule εt

1: Initialize Qθ, target Qθ̄ ← Qθ; initialize optimizer; set α=1.0, β=0.3, η=1, ζ=0.1
2: for episode = 1, . . . , E do
3: Sample request (Rbs, Rsql) and budget B; setM0 ←Mdense; t← 0
4: Run GSI to obtain initial importance scores for s0; build action mask Avalid(s0)
5: while t < H do
6: Select at by masked ε-greedy from Qθ(st, ·)
7: if at = 0 then ▷ STOP
8: Compute rt by Eq. equation 2 (withMt+1=Mt), set done← True
9: else

10: Mt+1 ←Mt \Bat ; recompute GSI scores; update mask
11: Compute rt by Eq. equation 2 and done←

[
Mempeak(Mt+1) ≤ B

]
12: end if
13: Store (st, at, rt, st+1, done) in D
14: Sample a minibatch from D; update θ by minimizing L(θ); periodically update Qθ̄
15: if done then break
16: elset← t+ 1
17: end if
18: end while
19: end for

Algorithm 3 RAP Online Execution at Inference Time

Require: Trained Qθ; incoming request (Rbs, Rsql); measured B = Sysavail
1: M0 ←Mdense; run GSI to get initial s0; t← 0
2: while Mempeak(Mt) > B and t < H do
3: Build Avalid(st); choose at = argmaxa∈Avalid(st) Qθ(st, a)
4: if at = 0 then break
5: end if
6: Mt+1 ←Mt \Bat ; recompute GSI; t← t+ 1
7: end while
8: return prunedMt; run inference

B DATASETS AND BASELINES

B.1 COMMONSENE REASONING

The details of the benchmarks are as follows:
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• BoolQ (Clark et al., 2019): yes/no questions which are naturally occurring and generated in
unprompted and unconstrained settings. There are 3270 questions in the test set.

• PIQA (Bisk et al., 2020): questions with two solutions requiring physical commonsense.
There are 1830 questions in the test set.

• HellaSwag (Zellers et al., 2019): commonsense NLI questions including a context and
several endings which complete the context. There are 10042 questions in the test set.

• WinoGrande (Sakaguchi et al., 2019): fill-in-a-blank task with binary options to choose the
right option for a given sentence which requires commonsense reasoning. There are 1267
questions in the test set.

• ARC-easy (Clark et al., 2018) & ARC-challenge (Clark et al., 2018): the Challenge Set
and Easy Set of ARC dataset of genuine grade-school level, containing 2376/1172 multiple-
choice science questions in the test set, respectively.

• OpenbookQA (Mihaylov et al., 2018): uestions requiring multi-step reasoning, use of
additional commonsense knowledge, and rich text comprehension. There are 500 questions
in the test set.

B.2 BASELINES

• LLMPruner (Ma et al., 2023a), which adopts structural pruning that selectively removes non-
critical coupled structures based on weights and gradient information, maximally preserving
the majority of the LLM’s functionality. LLMPruner applies post training to the pruned
model, but for fair comparison, we do not apply post training to it. However, LLMPuner
requires extra overhead for pruning its gradient-base pruning policy.

• SliceGPT (Ashkboos et al., 2024), which is a post-training sparsification scheme that
replaces each weight matrix with a smaller matrix, reducing the embedding dimension of the
network. Specifically, they applied PCA to the hidden representation from shallow to deep
layers, and incorporated the dimension reduction matrix into existing network parameters.

• DISP-LLM (Gao et al., 2024), which introduces a dimension-independent structural pruning
scheme that breaks inter-layer width coupling. This post-training method uses gradient-
based optimization via a learned hyper-network to determine which neurons to remove in
each layer, enabling flexible layer-specific width reduction without additional fine-tuning.

• ShortGPT (Men et al., 2024) reveals significant redundancy among LLMs by proposing a
layer-pruning method that removes redundant layers with minimal performance degradation

• MHA-Drop (He et al., 2024), which prunes entire multi-head self-attention layers of Trans-
former blocks to accelerate inference. By removing a fraction of the attention layers based
on cosine similarity-based importance, this approach achieves notable speedups with minor
impact on the model performance.

• FFN-Skip (Jaiswal et al., 2024), which applys inference-time skipping strategy that omits
selected feed-forward network layers to reduce computation. It leverages an input-adaptive
criterion to dynamically skip FFN blocks during decoding, yielding faster generation with
negligible degradation in output quality.

C MORE RESULTS

Table 3 shows additional results on Qwen-1.5-7B and Qwen-2.5-7B, which confirms the proposed
RAP is architecture-agnostic: it preserves competitive perplexity and downstream accuracy across
two distinct generations of the Qwen series, implying that the same pruning strategy can be ported to
other modern transformer backbones with minimal modification.

D LIMITATION

Despite its promising results, RAP still faces several important limitations. First, the Greedy Se-
quential Importance procedure relies on repeated perplexity measurements over an external corpus
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Parameters Inference Peak Memory(GB) Inference Time(s)

Llama2-7B RL Agent

Figure 11: Overhead analysis comparing the RL agent and Llama2-7B in terms of parameter, peak
memory usage, and inference latency, illustrating the negligible cost of deploying the RL controller.

Table 3: Zero-shot performance of pruned versus dense model under different memory budgets. 1

100% memory budget indicates exceeding peak inference memory usage (parameters + KV cache).

Budget Schemes Perplexity ↓ Commonsense Task (%) ↑
WikiText2 PTB BoolQ PIQA WinoG. HellaS. ARC-e ARC-c OBQA Avg.

Qwen1.5-7B
100%1 Dense 7.95 11.93 82.45 79.05 66.14 76.90 62.25 42.83 41.60 64.46

80%

ShortGPT (Men et al., 2024) 16.88 24.88 43.98 72.69 58.41 59.11 54.50 33.70 32.20 50.66
MHA-Drop (He et al., 2024) 14.26 22.73 59.91 75.90 58.96 67.61 61.73 41.89 37.20 57.59

FFN-Skip (Jaiswal et al., 2024) 94.77 123.12 45.26 59.19 51.30 36.67 36.41 22.70 28.00 39.93
RAP 18.88 30.88 64.50 73.39 56.51 59.98 56.26 36.09 38.60 55.05

60%

ShortGPT 445.24 701.1 54.55 56.08 51.07 32.49 32.37 24.23 28.40 39.89
MHA-Drop 628.12 676.62 45.87 54.45 51.45 33.16 33.08 25.67 29.59 39.05
FFN-Skip 1889780.25 2455505.75 46.7 51.69 49.64 26.41 25.21 25.85 28.79 36.33

RAP 54.48 68.33 54.76 61.70 51.07 39.72 44.28 24.32 29.59 43.64

Qwen2.5-7B
100% Dense 6.85 11.36 84.61 79.71 73.00 78.95 77.40 51.01 47.40 70.30

80%

ShortGPT 523.53 2154.89 72.20 66.59 56.35 48.50 61.99 40.27 36.40 54.62
MHA-Drop 115.11 184.05 42.75 71.38 57.46 55.60 52.90 39.25 40.40 51.39
FFN-Skip 141.24 175.33 48.69 61.26 53.51 42.08 45.16 31.14 30.00 44.55

RAP 13.56 20.33 70.46 72.74 60.62 63.93 57.87 37.29 35.19 56.87

60%

ShortGPT 3460.52 4107.47 38.59 54.03 52.80 27.61 26.56 23.63 25.40 35.52
MHA-Drop 9099.49 16067.49 48.47 54.30 50.99 28.23 29.67 27.38 32.20 38.75
FFN-Skip 1628213.25 1434617.50 45.78 52.12 48.93 26.83 24.54 27.3 27.6 36.16

RAP 306.13 423.79 47.80 57.99 51.07 33.64 34.33 26.54 30.80 40.31

Schemes Llama2-7B 80% Llama2-7B 60% Llama3-8B 80% Llama3-8B 60%

LLMPruner 35% 45% 35% 45%
SliceGPT 40% 65% 40% 65%
ShortGPT ∼37% ∼75% ∼31% ∼75%

MHA-Drop ∼26% ∼32% ∼12% ∼15%
FFN-Skip ∼52% ∼64% ∼65% ∼81%

RAP ∼24% ∼30% ∼31% ∼42%

Table 4: The pruning ratio of model weight within the memory budget for different heuristics schemes.

(a) Sequence length:256. (b) Sequence length: 2048. (c) Sequence length:4096.

Figure 12: Block sensitivity analysis: removing specific MHA and FFN under diff. sequence length

(Alpaca), which may become computationally prohibitive for models with tens-of-billions of parame-
ters or for domains lacking a representative calibration set, thereby limiting scalability. Secondly,
while the online controller adds negligible inference latency, the offline reinforcement-learning stage
still demands several hundred seconds of GPU time and shows sensitivity to the reward coefficients
α, β, suggesting non-trivial tuning effort for new hardware or workload profiles. Thirdly, the current
state representation tracks only batch size, sequence length and instantaneous memory, omitting
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latency, energy and heterogeneous device characteristics; as a result, the learned policy may yield
sub-optimal trade-offs when such factors dominate deployment objectives. Finally, we note that
addressing the challenges of long-context inference, which leads to substantial growth in the KV
cache and is often infeasible on resource-constrained devices, is beyond the scope of this paper.
Nevertheless, we believe our method’s demonstrated efficiency in compressing the KV cache provides
a promising foundation for future community efforts in long-context inference compression.

E THE USE OF LARGE LANGUAGE MODELS

We used LLMs solely as a writing-assistance tool to polish our paper (grammar, wording, concision,
and minor LATEX formatting). The LLM did not contribute to research ideation, problem formulation,
method design, experiments, data analysis, results, or conclusions, and it was not used to generate
citations or technical content. All suggestions were reviewed and, when adopted, edited by the authors,
who take full responsibility for the paper’s content; no proprietary data beyond the manuscript text
was shared with the tool.
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