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Abstract

In remote healthcare monitoring, time series representation
learning reveals critical patient behavior patterns from high-
frequency data. This study analyzes home activity data from
individuals living with dementia by proposing a two-stage,
self-supervised learning approach tailored to uncover low-
rank structures. The first stage converts time-series activi-
ties into text sequences encoded by a pre-trained language
model, providing a rich, high-dimensional representation.
In the second stage, these vectors are transformed into a
low-dimensional latent state space using a PageRank-based
method. This PageRank vector captures latent state transi-
tions, effectively compressing complex behavior data into a
succinct form that enhances model interpretability. This low-
rank representation not only enhances interpretability but also
facilitates clustering and transition analysis, revealing key
behavioral patterns correlated with clinical metrics such as
MMSE and ADAS-Cog scores. Our findings demonstrate the
framework’s potential in supporting cognitive status predic-
tion, personalized care interventions, and large-scale health
monitoring.

Introduction
In remote healthcare monitoring applications, the use of
wearables and Internet of Things (IoT) devices to contin-
uously collect time-series data, as is shown in Figure 1, of-
ten with second-level accuracy or finer, has become increas-
ingly common. However, the sheer scale of such data makes
it difficult for human experts to analyze or use directly, ne-
cessitating the use of time-series deep learning techniques
for effective analysis and diagnosis.

Training on large volumes of unlabeled time-series data
poses a significant challenge. Semi-supervised and unsuper-
vised methods are typically employed to encode and ex-
tract data features for downstream tasks like classification
or regression, demonstrating their ability to capture deep
features. Semi-supervised methods, such as nearest neigh-
bor contrastive learning and temporal relation prediction,
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Figure 1: Example Home layout with IOT sensors for mon-
itoring behavioral patterns of People Living with Dementia

efficiently utilize both labeled and unlabeled data, improv-
ing the quality of representations for downstream tasks like
classification (Kim et al. 2024; Fan et al. 2021). Unsuper-
vised methods focus on learning robust representations with-
out relying on labels, often leveraging contrastive learning
techniques and innovative data augmentations to capture
key temporal patterns (Franceschi, Dieuleveut, and Jaggi
2019; Lee, Kim, and Son 2024). Attention mechanisms
and domain-adaptive techniques further enhance the inter-
pretability of encoded features, aligning them more closely
with human intuition and domain-specific insights (Lyu et al.
2018). However, this strategy faces two challenges: first,
labeling criteria for time-series data is often vague, which
can significantly impact model performance; second, the en-
coded data remain vast, unintuitive, and difficult to interpret
(Ye and Ma 2023; Hill et al. 2022).

In this work, we focus on time-series data characterized
by irregular discrete values. Extending the methods intro-
duced in (Capstick et al. 2024), we present preliminary re-
sults of a second-order representation learning method de-
signed to aid in clustering, identifying similar clinical cases,
and uncover patients’ interpretable behavioral patterns. This
is achieved through a large language model encoding com-
bined with a two-dimensional vectors representation and
transfer pattern analysis.



Our Contribution
We propose an integrated approach for discovering latent
states of activity. This method comprises several key steps:

1. Temporal Data Preprocessing: The raw temporal data
is first preprocessed to remove noise and standardize the
data for consistency.

2. Language Model Encoding: A language model is
trained on our dataset to encode the preprocessed tem-
poral data into high-dimensional vector representations.
To enhance the model’s learning capability, we perform
pseudo labeling using one-hot similarity. This allows the
model to better capture temporal dependencies and pat-
terns in the data.

3. Dimensionality Reduction and Clustering: To visual-
ize the high-dimensional embeddings, we apply dimen-
sionality reduction techniques such as t-SNE to project
the data into a 2D space. Clustering algorithms are then
used to identify distinct latent states within the data.

4. Transition Pattern Analysis with PageRank: By defin-
ing a transition matrix between these low-rank latent
states, we use the PageRank algorithm to analyze transi-
tion patterns. This approach compresses complex tempo-
ral data into interpretable, low-rank state vectors, allow-
ing us to determine the influence and significance of each
state within the transition graph and provide insights into
patient behavior dynamics.

This analytical framework will aid in the clinical diagno-
sis of patients and support the development of personalized
care programs. The availability of dataset and code for this
work is discussed in appendix.

Related Work
Time-series forecasting is primarily to predict future val-
ues based on previously observed data points. Traditional
statistical methods, most notably the Autoregressive Inte-
grated Moving Average (ARIMA) model, have long been
utilized due to their mathematical simplicity and flexibil-
ity in application (Rizvi 2024; Kontopoulou et al. 2023).
While ARIMA remains a staple for scenarios where data ex-
hibits linear patterns, recent developments in machine learn-
ing have introduced sophisticated models capable of cap-
turing non-linear dependencies, thus offering potential im-
provements in forecasting accuracy and robustness (Masini,
Medeiros, and Mendes 2023; Rhanoui et al. 2019).

The advent of the Generative Pre-trained Transformer
(GPT) by OpenAI marked a significant milestone in the field
of natural language processing (Brown et al. 2020), catalyz-
ing a wave of innovations in large language models (LLMs).
Large Language Models (LLMs) have profoundly trans-
formed natural language processing and are increasingly be-
ing considered for diverse applications beyond text, such as
time series data analysis. The study by (Bian et al. 2024)
presents a framework that adapts LLMs for time-series rep-
resentation learning by conceiving time-series forecasting
as a multi-patch prediction task, introducing a patch-wise
decoding layer that enhances temporal sequence learning.

Similarly, (Liu et al. 2024) propose a model which lever-
ages the autoregressive capabilities of LLMs for time series
forecasting. In Capstick et al. (2024), the authors apply a
GPT-based text encoder to string representations of in-home
activity data to enable vector searching and clustering. Us-
ing a secondary modelling stage, we extend these ideas to
enable further analysis and interpretability.

PageRank, originally developed to rank web pages, is
an algorithm designed to assess the importance of nodes
within a directed graph by analyzing the structure of links
within networks (Page et al. 1999). While it was initially
created for search engines, its application has since ex-
panded across various disciplines. For instance, in biolog-
ical networks, (Iván and Grolmusz 2011) employed person-
alized PageRank to analyze protein interaction networks,
providing scalable and robust techniques for interpreting
complex biological data. Similarly, (Bánky, Iván, and Grol-
musz 2013) introduced an innovative adaptation of PageR-
ank for metabolic graphs. This cross-disciplinary applica-
tion of PageRank highlights its potential for analyzing com-
plex systems beyond its original domain.

Methods
Mathematical Foundations of the Model
Given a discrete data sample X = {x1, x2, . . . , xn}, the fol-
lowing steps describe the transformation process:

1. Sampling and Text Conversion: Each sample xi is
converted into a text representation T (xi).

2. Language Model Encoding: A pre-trained language
model fLM is applied to obtain high-dimensional vector em-
beddings for the text data:

hi = fLM(T (xi)), hi ∈ Rd.

3. Dimensionality Reduction: The high-dimensional
embeddings are projected into a 2D space using a dimen-
sionality reduction method Φ, such as t-SNE:

zi = Φ(hi), zi ∈ R2.

4. PageRank and Deep State Vector Extraction: A tran-
sition matrix P between points in 2D space is constructed,
and the PageRank algorithm is applied to further reduce the
dimensionality:

vi = PageRank(P), vi ∈ Rk, k ≪ d.

The final low-dimensional vectors vi capture deep seman-
tic relationships from the original data.

The Dataset
We obtained a dataset collected from 134 people diag-
nosed with dementia, capturing their home location move-
ment data between July 1, 2021, and January 30, 2024. The
dataset records the time entering different rooms and sleep-
ing mats, alongside clinical metrics such as MMSE (Kur-
lowicz and Wallace 1999), ADAS-Cog (Kueper, Speechley,
and Montero-Odasso) scores from regular tests. It also in-
cludes details on various factors such as demographic data,
comorbidities, and other medical information. The dataset



contains a total of 66,096 recording days. A more detailed
description of the dataset is provided in Appendix. After ex-
cluding patients with missing data, the final dataset used for
further analysis contained 50 participants with complete in-
formation.

Our Framework
Our framework consists of several key stages: data prepro-
cessing and encoding, latent state discovery, and transition
pattern analysis.

First, we preprocess the raw temporal data to remove
noise and ensure consistency. This process is illustrated in
Figure 2. We then utilize the all-MiniLM-L12-v2 model
(Muennighoff et al. 2023) as the language model encoder.
This model excels at capturing similarities in textual infor-
mation, making it suitable for analyzing similarities between
recorded dates and uncovering potential relationships. We
fine-tune the model using its pretrained weights to adapt to
the specific characteristics of our dataset. The preprocessed
temporal data is then encoded into 384-dimensional vector
representations, capturing the inherent temporal dependen-
cies and patterns within the data.

Given the unlabeled nature of our temporal data, we adopt
a cluster-based contrast sample selection method and triplet
loss for training and evaluation. Further details on the lan-
guage model training process are described in Appendix.
To visualize and interpret the high-dimensional embeddings,
we apply the t-SNE dimensionality reduction technique
(van der Maaten and Hinton 2008) to project the data into
a 2D space. K-means clustering is then employed to iden-
tify distinct latent states within the data. As the data points
are temporally ordered, this 2D map allows us to visualize
each participant’s latent activity map as their movement pat-
tern projected onto a specific dimension. Finally, we define
a transition matrix between the different latent states and ap-
ply the PageRank algorithm (Page et al. 1999) to analyze the
transition patterns, as is shown in Figure 3, details of this al-
gorithm are available in Appendix. In this study, we present
a scalable approach to analyze vast amounts of temporal data
in patient movement behavior. Consider a single participant
with continuous, complete data collected over a three-month
period. Given that the passive infrared (PIR) sensors record
data in seconds, the approximate dataset size would be 3 ×
30 × 86,400 = 7,776,000 sparse records for a single individ-
ual. Such a data volume is infeasible for direct analysis by
human experts and would require extensive computational
resources to process with most machine learning models.
Our method addresses this challenge by transforming this
high-dimensional dataset into a low-dimensional, semanti-
cally interpretable representation. Specifically, through our
two-stage encoding and PageRank-based dimensionality re-
duction, we compress the data into a latent state vector of
length five. Each element in this vector is not only compu-
tationally efficient but also carries interpretable semantic in-
formation, facilitating transparent and personalized insights
into patient behavior dynamics. This approach exemplifies
the application of low-rank structures to manage and inter-
pret complex temporal datasets in healthcare AI, supporting
personalized intervention strategies.

Experiments
After clustering the text vectors of the test set using K-
means, we identified the optimal clustering result at 5
clusters, suggesting five latent states across all single-day,
single-participant behavioral patterns. Figure 4 shows the
clustering results after the dimension reduction of the em-
beddings using t-SNE. By examining the transformation of
individual vectors in two dimensions, we can visualize the
behavioral trajectories of different participants within the
embedding space (see appendix for more participant visu-
alizations). Collaborating with clinical experts, we can ex-
plore the semantics represented by these clusters and their
relationship to patient medical characteristics.

More significantly, by applying the random walk model
and the PageRank algorithm to these two-dimensional plots,
in combination with clinical expert opinions and diagnos-
tic results, we can quantitatively assess the deeper semantics
represented by the vector clusters, or latent states. Figure 5
presents a multi-period heatmap analysis, segmented across
five time intervals to visualize patient behavior dynamics.
The top row of heatmaps illustrates the PageRank values in
different latent states (1-5) for each participant over time,
with each interval representing a period of three months. The
intensity of color in each cell reflects the PageRank value for
a particular state and participant, highlighting shifts in domi-
nant latent states and revealing periodic patterns in behavior.
This aggregation reduces the high-dimensional behavioral
data to a low-rank, interpretable representation. The bottom
row of the heatmaps shows the cosine similarity matrices
between the participants for each respective time interval.
These matrices indicate how similar participants’ behaviors
are to each other within each period, with higher similarity
values shown in darker shades. The block patterns visible in
some intervals suggest clustering tendencies among partici-
pants with similar behavioral patterns. The heatmap analysis
reveals distinct behavioral patterns among participants, with
certain individuals demonstrating notable stability and peri-
odicity in their daily activity states. For example, several par-
ticipants consistently show high PageRank values for spe-
cific latent states (such as state 2 or 3) across multiple time
intervals. This stability may indicate regular lifestyle pat-
terns or consistent routines, which can be critical for predict-
ing daily behavior and planning personalized interventions.
In contrast, some participants exhibit significant shifts in
their PageRank values between periods, particularly around
seasonal transitions or specific time frames (e.g., August-
October 2022 and May-July 2023). These variations may re-
flect seasonal effects or environmental changes influencing
patient behavior, underscoring the need to account for time-
related factors when designing personalized monitoring and
intervention strategies. The cosine similarity heatmaps re-
veal clusters of participants who display high similarity in
behavior during certain intervals (e.g., May–July 2023 and
August 2023–January 2024), forming identifiable groups.
This similarity may suggest shared behavioral characteris-
tics or similar health conditions between these participants,
possibly due to common lifestyle factors, environmental in-
fluences, or comparable stages in disease progression. These
group-level patterns provide information on cohort-based



Figure 2: Flowchart of data preprocessing. The figure illustrates the monitoring data for a single participant over the course of
one day. The left graph displays the raw, unprocessed measurements. In the middle graph, the data is rectified into 20-minute
intervals, where periods of inactivity are labeled as ”nowhere.” Within each window, the most frequent location, excluding
”nowhere,” is identified and recorded. The right graph presents the corresponding text strings, which are formatted for interpre-
tation by the language model.

Figure 3: Flowchart of the representation algorithm.

Figure 4: T-SNE for embedded daily movement strings in
the test set

Figure 5: Multi-period participant deep state vector and sim-
ilarity

behavioral dynamics, supporting the development of indi-
vidualized and group-based healthcare management strate-
gies.

Based on the clustering and SHAP analyses of PageRank-
derived states and cognitive metrics, as is shown in ap-
pendix, distinct behavioral and cognitive profiles emerge
across the clusters. Each PageRank state, as visualized
through correlation and SHAP values, highlights unique re-
lationships with cognitive scores (MMSE, ADAS-Cog), age,
and mood-related metrics (HADS Depression and Anxiety).
In the appendix, by reducing the complex vector matrix to a
simplified (1,5) vector, we can explore semantic characteris-
tics to each of the states.

Looking forward, once a unique deep vector is gener-
ated for each participant, we can use these states to predict
MMSE, ADAS-Cog scores, and their rate of change. De-
tailed methodologies and implementation specifics are pro-
vided in the appendix for further reference.

Cognitive Status Prediction Performance
To evaluate the impact of generated state features on predic-
tive performance, we consider several feature combinations,
including:
• Baseline: Original location count-based features (mean

and variance).
• State Features: Representation of patient states

(state1 to state5).
• Characteristics: Patient-specific characteristics such as

age, gender, and dementia diagnosis.
• Combined Features: Various combinations of the

above, including all features.



Based on the performance metrics presented in the Table
1, we evaluated the effectiveness of different feature sets in
predicting current ADAS-Cog and MMSE scores. Details of
the specific model parameters, training configurations, and
feature set explanation can be found in the appendix.

First, the baseline model, which only used the mean and
variance of participants’ daily activity data as features, pro-
vided some predictive capability, but with relatively large
margins of error. In the Random Forest model, the base-
line features achieved an MAEADASCOG of 11.41 and an
MAEMMSE of 4.64, while in the Ridge regression model,
these values were 12.77 and 5.15, respectively, indicating
substantial prediction errors under this feature set.

When combining baseline features with patient clinical
characteristics (such as HADS scores and age), the model’s
performance improved modestly. However, further analysis
revealed that using the deep state features alone resulted in
significant performance improvements. In the Ridge regres-
sion model, the state features achieved an MAEADASCOG of
9.73 and an MAEMMSE of 3.81, which were the best results
across all feature combinations. The corresponding RMSE
values were also low, at 9.83 and 3.81, respectively. Com-
pared to the baseline features or combined feature sets, the
state features demonstrated higher predictive accuracy and
narrower 95

The Random Forest model also showed relatively
strong performance when using state features, with an
MAEADASCOG of 10.46 and an MAEMMSE of 4.07. Although
slightly less accurate than the Ridge model, it still showed
improvement over the baseline model.

Analysis of the combined feature sets further underscores
the strong capacity of the deep state features in capturing
patient behavior patterns and cognitive states. Notably, the
Ridge regression model achieved the best performance when
using only the state features, suggesting that these compact
deep vectors effectively capture patient cognitive patterns.
Compared to conventional baseline features and patient de-
mographic information, the state features provide a more
powerful representation, offering a promising avenue for fu-
ture clinical applications.

Now that we have established a process for encoding deep
vectors, we could explore transforming this approach into a
generative model. Such a model could be used to generate
sensitive and hard-to-obtain medical datasets for purposes
like data augmentation or alignment, a strategy proven effec-
tive in the training of large language models(Li et al. 2023).

Conclusion
In conclusion, our initial results demonstrate that by ap-
plying our framework, we show that our latent states vec-
tor based on patient daily activity patterns can be useful
for exploring behavior dynamics. While these findings of-
fer a promising approach to exploring the relationship be-
tween behavior and clinical characteristics, further research
is needed to refine the model and validate its broader appli-
cations, including potential use in medical data augmenta-
tion.
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Appendix
Model Pipeline
As is shown in Figure 6, the workflow for analyzing the dy-
namics of the patient’s daily movement behavior dynam-
ics involves five primary stages. First, raw temporal data
is preprocessed to remove noise and segment multiple-day
records into single-day datasets. In the Contrastive Sample
Selection phase, one-hot encoding and K-means clustering
are applied to create clusters, facilitating the selection of
similar and dissimilar samples for contrastive learning. Next,
Language Model Encoding utilizes a language model to gen-
erate high-dimensional vector representations, with pseudo-
labeling enhancing temporal dependency capture. The Di-
mensionality Reduction and Clustering stage uses t-SNE to
project embeddings into a 2D space, allowing clustering al-
gorithms to identify distinct latent states. Finally, Transi-
tion Pattern Analysis defines a transition matrix across latent
states and applies the PageRank algorithm to evaluate state
importance, yielding a compressed representation of patient
behavior patterns that enhances interpretability and supports
personalized intervention strategies.

Availability of Datasets and Code
The IPython notebooks used to build this framework will
be released after review. The dataset and IPython notebooks
used to plot the data will not be made public due to their
sensitivity. The experiments were conducted using Python
3.11.5, Torch 2.4.0 (Ansel et al. 2024), Transformers 4.44.2
(Wolf et al. 2020), Sentence-Transformers 2.7.0 (Pedregosa
et al. 2011), Scikit-Learn 1.3.2 (Pedregosa et al. 2011),
NumPy 1.26.4 (Harris et al. 2020), SciPy 1.13.1 and Pan-
das 2.1.4 (McKinney and others 2010).

Detailed Description of The Dataset
The dataset used for in-home activity monitoring was col-
lected via passive infrared sensors installed at multiple loca-
tions in the homes of individuals with dementia, along with
sleep pads placed under their mattresses, as is shown in Fig-
ure 7, from Minder website. These infrared sensors detect
motion within a range of up to nine meters, at a maximum
angle of forty-five degrees diagonally upward. Sensors were
placed in lounges, kitchens, hallways, bedrooms, and bath-
rooms, allowing for detailed tracking of participants’ move-
ments within and between these areas.

We analyzed data recorded between July 1, 2021, and Jan-
uary 30, 2024, amounting to 66,096 participant-days for 134
individuals. Figure 8 illustrates the distribution of logged
days per participant. Each data point includes the partici-
pant ID, a timestamp (accurate to the second), the location
of detected activity, or sleep pad data indicating whether the
participant entered or left their bed. The dataset contains a
total of 24,467,307 individual records, as depicted in Fig-
ure 9. Figure 10 shows the top 50 patients with the longest
recorded lengths of time-span.

In addition to activity data, we had access to diagnos-
tic information for the 134 participants, including birthdate,
gender, living situation (whether they lived alone), ethnicity,
and dementia diagnosis. Cognitive assessment scores, such
as MMSE and ADAS-Cog, along with their yearly changes,
were also available, as is shown in Figure 11. To mitigate
the risk of time series data contamination, the period from
July 1, 2021, to July 1, 2023, was used for fine-tuning, while
data from July 31, 2023, to January 30, 2024, was reserved
for testing. The test set data was used to directly extract cod-
ing vectors from the fine-tuned language model and analyze
behavioral transfer patterns. However, participants with in-
complete records, particularly those with gaps in data after
July 2023, were excluded from the test set. The final test
set comprised the fifty participants with the most complete
data post-July 2023, resulting in 869 comprehensive clini-
cal records. The cognitive test results of participants in the
test set, from August 2023 through the cut-off date of Jan-
uary 30, 2024, were used for our analyses. Additionally, we
incorporated their cognitive test results from one year ear-
lier to assess changes in MMSE and ADAS-Cog scores over
time.

Detailed Training Process
Since the sensor data are recorded with second-level preci-
sion, each participant generates 86,400 data points per day,
far exceeding the input token limit of the language model we
are using (which allows a maximum of 256 tokens). To ad-
dress this, the raw data were downsampled by extracting dis-
crete values at 20-minute intervals, reducing the data points
per day to 72. After converting these data points to strings,
the token count is 72, which falls within the model’s token
limit.

Given the unlabeled nature of our temporal data, we em-
ploy a cluster-based contrastive sample selection approach
for model training. This method leverages the inherent struc-
ture within the data to create meaningful positive and nega-
tive sample pairs. The detailed steps are as follows:
1. One-hot Encoding: Convert all daily string representa-

tions into one-hot encoded vectors.
2. Clustering: Apply K-means clustering to the one-hot en-

coded vectors to group similar daily patterns into clus-
ters.

3. Target Day Selection: Choose a specific day as the tar-
get for comparison.

4. Similar Sample Selection: For the target day, select a
similar sample that meets all the following criteria:
• From the same participant
• Within a 30-day window of the target day
• Belongs to the same cluster as the target day

5. Dissimilar Sample Selection: Randomly select any
other sample that does not meet the criteria for similar
sample selection.

We selected a 30-day interval for positive sample selec-
tion for two key reasons: first, k-means clustering of the en-
coded vectors yielded the best results with a 30-day win-
dow, as is shown in 2; second, many patients undergo regular



Figure 6: Model pipeline



Figure 7: Minder sensors

Figure 8: Daily histogram

Figure 9: Location histogram

Figure 10: Top 50 timeseries distribution

Figure 11: Timeseries of cognitive test of the test set partic-
ipants



physical checkups, such as urine tests, on a monthly basis,
aligning well with this time frame.

This ablation study is conducted to address potential con-
cerns with our initial assumptions and to select the most suit-
able parameters that maximize the separation of different
vector embeddings. By examining the k-means clustering
results under various settings, we aim to identify the opti-
mal configuration that yields the greatest distinction among
the vector representations, mitigating potential issues arising
from our assumptions.

In each epoch, we randomly selected 50,000 triplets from
the dataset, using a batch size of 256. Sentence embeddings
were evaluated using a triplet loss, where the Manhattan
distance was calculated and optimized between the coding
vectors of anchor samples and their corresponding positive
and negative samples. Manhattan distance’s suitability for
sparse data, computational efficiency, and applicability in
discrete systems make it a preferred choice for measuring
similarity in our work. The loss function was optimized us-
ing the AdamW algorithm (Loshchilov and Hutter 2019)
with a learning rate of 2× 10−5 and a weight decay of 0.01.
A linear warm-up learning rate scheduler was applied with
10,000 warm-up steps. The training of large language model
was carried out using NVIDIA A100 GPU, with each train-
ing epoch taking approximately 444.19 seconds.

Location time series and distribution visualization
for each cluster
Following the extraction of location embeddings, we iden-
tified five clusters based on the highest silhouette score,
achieved through k-means clustering. The resulting distribu-
tion presents the temporal clustering of each location for an
individual participant, as is shown in Figure 12, 13, 14, 15,
16, along with the cumulative distribution of each location
across all participants in Figure 17, 19 and 18.

Figure 12: Location timeseries for articipants in cluster 1

T-SNE plots for individual participants in test set
Figure 20 and Figure 21 illustrate individual movement in
embedded space, with their location and timespan. Every
datapoint is collected after 2023-07-31 to 2024-01-31.

Figure 13: Location timeseries for participants in cluster 2

Figure 14: Location timeseries for participants in cluster 3

Figure 15: Location timeseries for participants in cluster 4



Table 2: Silhouette scores under different models and parameter settings

Model Parameters Silhouette scores

4 5 6 7

MiniLM- 7days 0.459 0.451 0.431 0.413
L12-v2 30days 0.554 0.554 0.554 0.542

180days 0.437 0.429 0.370 0.407

BAAI/bge- 30days 0.459 0.425 0.473 0.473
small-v1.5(Xiao et al. 2023) no tune 0.173 0.165 0.181 0.170

Figure 16: Location timeseries for participants in cluster 5

Figure 17: Mean of location count in five clusters

Figure 18: Variance of location count in five clusters

Figure 19: Mean of wake count in five clusters



Figure 20: T-SNE for individuals in test set

Figure 21: T-SNE for individuals in test set



PageRank Iteration for a Single Patient
Model Definition We aim to compute the PageRank
model fit and entropy value for a single patient based on their
embeddings and cluster labels. The process involves defin-
ing a transition matrix based on distances between clusters,
computing the PageRank scores.

Transition Matrix Construction Given:

• X: Patient embeddings (shape: (n samples, 2)).
• y: Patient cluster labels (shape: (n samples, )).
• num clusters: Number of clusters.
• threshold: Distance threshold for defining transitions.

The transition matrix T is computed as follows:

Tij =

∑
k∈Ci

∑
l∈Cj

⊮{d(k,l)≤threshold}∑
l∈Ci

∑
m∈Cj

⊮{d(l,m)≤threshold}
(1)

where:

• Ci and Cj are the sets of samples in clusters i and j,
respectively.

• d(k, l) denotes the distance between samples k and l.
• ⊮{·} is an indicator function that equals 1 if the condition

is true and 0 otherwise.

PageRank Computation The PageRank vector p is com-
puted iteratively using:

p(t+1) =
1− α

num clusters
+ αT⊤p(t) (2)

where α is the damping factor (typically 0.85), and T⊤ is
the transpose of the transition matrix. The process continues
until convergence:

∥p(t+1) − p(t)∥1 < tol (3)

where tol is a predefined tolerance for convergence.

Algorithm Summary Algorithm 1 explains the specific
implementation steps of the PageRank we use.

Algorithm Visualization Figure 22 is a sample PageRank
state generation process.

Figure 22: Visualization of the generation of Pagerank value,
left graph is single participant 2D t-SNE visualization, right
graph is PageRank nodes value visualization

Algorithm 1: PageRank for a Single Patient

Input: X , y, num clusters, threshold, α, max iter, tol
Output: T, p
Initialize transition matrix T with zeros
for each cluster i do

for each cluster j do
Compute distances between samples in clusters i and
j
Update Tij based on the distance threshold

end for
end for
Normalize transition matrix T
Initialize PageRank vector p uniformly
for iteration t = 1 to max iter do

Compute new PageRank vector p(t+1)

if convergence condition met then
Break

end if
end for
Compute PageRank matrix Prank

Figure 23: Feature values across clusters based on PageRank
vector clustering



Description of Feature Values Across Clusters
Based on PageRank Vector Clustering
Figure 23 illustrates the mean values and distributions of
various clinical and demographic metrics in five groups de-
rived from the PageRank vector clustering process. It is a re-
clustering process after the first clustering of language em-
bedding and calculating PageRank vector for each patient.
Right now each patient only have one vector with five ele-
ments in a certain time period, in this case 6 months. Each
cluster is represented along the x-axis, with the correspond-
ing mean values of different metrics displayed along the y-
axis, accompanied by error bars to indicate variability.

The metrics included in this analysis are as follows:
• Mean Total Score MMSE: This metric reflects cognitive

function across clusters. Notably, Cluster 1 and Cluster 3
show higher MMSE scores, suggesting preserved or en-
hanced cognitive function relative to other clusters.

• Mean Total Score ADAS-Cog: The ADAS-Cog scores
vary significantly across clusters. Clusters 2 and 5 have
higher ADAS-Cog scores, indicating greater cognitive
difficulties, while Clusters 3 and 4 demonstrate lower
scores, possibly suggesting less impairment.

• Mean HADS Depression Score: Marked in magenta,
this score captures levels of depression across clusters.
Depression levels are relatively low in all clusters, with
minimal variation, although clusters 3 and 4 show slight
elevations.

• Mean HADS Anxiety Score: Represented in cyan, the
anxiety levels are also uniformly low across clusters,
with no notable inter-cluster variability except Cluster 3.

• Mean Age: The highest mean age appears in Cluster 3,
followed closely by Cluster 5, indicating a possible asso-
ciation between age and specific behavioral patterns cap-
tured in these clusters.

• Mean MMSE Score Difference: This metric indicates
changes in cognitive scores. Clusters 1 and 3 display
higher positive differences, suggesting cognitive im-
provement, whereas Clusters 2, 4and 5 exhibit negligible
or slightly negative values.

• Mean ADAS-Cog Score Difference: Shown in green,
ADAS-Cog score changes vary across clusters, with
Clusters 1 showing steadiness, whereas other clusters
show slightly positive changes.

This clustering analysis demonstrates distinct patterns in
clinical and demographic characteristics across the clusters,
suggesting that the PageRank vector-based clustering ap-
proach effectively captures unique behavioral and cognitive
profiles. These findings could facilitate more personalized
assessments of cognitive health, with specific clusters po-
tentially indicating varying degrees of cognitive resilience,
vulnerability, and age-related changes.

Figure 25, 24 illustrate the progression of cogni-
tive scores—MMSE (Mini-Mental State Examination)
and ADAS-Cog (Alzheimer’s Disease Assessment Scale-
Cognitive Subscale)—over time across different clusters,
each representing a subset of participants grouped based on
similar cognitive trajectory patterns.

Figure 24: ADAS-Cog score progression by cluster (Mean,
STD, and CI)

Figure 25: MMSE score progression by cluster (Mean, STD,
and CI)



Notably, for MMSE the scores generally decline over
time, indicating a gradual cognitive decline. Clusters ap-
pear to vary in baseline MMSE scores and rate of decline,
with some clusters demonstrating more stability and oth-
ers a sharper reduction. For ADAS-Cog, clusters differ in
terms of their baseline ADAS-Cog scores and the rate of
increase over time. Some clusters show a relatively sta-
ble progression, while others exhibit a more rapid increase
in scores, suggesting accelerated cognitive impairment. To-
gether, these graphs highlight different cognitive trajectories
between groups, showing PageRank vectors represents cer-
tain patterns of cognitive decline in different subgroups of
participants.

Analysis of PageRank-Derived Cognitive States
Our analysis of five PageRank-derived states, representing
distinct behavioral patterns, reveals:

1. Feature Importance Variation: The significance of
cognitive and functional measures varies considerably
across states in Figure 26 and 27, indicating distinct be-
havioral characteristics.

2. ADAS-Cog Score Change:
• State 1,3 and 4 shows positive impact, suggesting cog-

nitive decline.
• State 5 and 2 exhibits strong negative correlation (-

0.17 and -0.12), potentially indicating cognitive sta-
bility or improvement.

3. MMSE Score Change:
• Highest variability in State 2, implying significant

changes in global cognitive function.
• Strong positive correlation (0.33) in State 5, further

supporting cognitive improvement hypothesis.

4. Age Effects:
• Positive impact in State 2, suggesting prevalence in

older participants.
• Negative correlations in States 1 and 3 (-0.25 and

-0.25), indicating patterns more characteristic of
younger participants.

5. Total Cognitive Scores:
• Complex relationship between Total ADAS-Cog

Score and State 2.
• Strong positive correlation (0.29) of Total MMSE

Score in State 5, supporting better cognitive function.

6. Looking back to location counts:
• Shown in Figure 17 and 18, analysis of the mean and

variance plots for location counts reveals distinct pat-
terns across cognitive states. In State 1, the frequency
of kitchen visits is markedly elevated, significantly ex-
ceeding the mean observed in other states. This high
kitchen usage may suggests possible cognitive decline
and disruption in daily routines, a hypothesis further
supported by changes in MMSE scores. For State 2,
the frequency of each location remains relatively bal-
anced, indicating a stable cognitive state, consistent

with our assessments. In State 3, the lounge shows
a high usage frequency with large variance, imply-
ing that the participant maintains considerable mo-
bility and regularly relaxes in the living room, align-
ing with the relatively younger age of this individual
based on our calculations. State 4 is characterized by
an unusually high frequency of hallway usage, which
may indicate cognitive impairment, as corroborated by
the MMSE score trajectory. This elevated hallway fre-
quency suggests the participant may have difficulty
recalling the room layout, resulting in aimless move-
ment within the home. Finally, in State 5, location fre-
quencies are low and approach zero, potentially due
to equipment malfunction or the participant’s absence
from the home. This pattern may also indicate that the
participant is frequently outside for more than one day,
reflecting a relatively healthy and independent cogni-
tive state if they can engage in extended outdoor activ-
ities.

State-Specific Observations

• State 1: ”Transition Period”

– Possibly represents an early stage of mild cognitive de-
cline.

– Younger population with subtle cognitive changes, po-
tentially a mix of normal aging and early pathological
changes.

• State 2: ”Stable Elderly Period”

– Likely represents a healthy elderly population or pa-
tients with stable chronic conditions.

– Older age but relatively stable cognitive function;
ADAS-Cog score changes closely related to state.

• State 3: ”High-Risk Youth Period”

– May represent a high-risk group for early-onset cogni-
tive disorders.

– Cognitive fluctuations in younger population, espe-
cially in MMSE score changes.

• State 4: ”Rapid Progression Period”

– Possibly a stage of dramatic cognitive decline.
– Elderly group with significant changes in cognitive test

scores; unstable state.

• State 5: ”Stable Youth Period”

– Cognitive stability or improvement, particularly in
younger participants.

These findings highlight the heterogeneity of cognitive
decline patterns and may inform more personalized ap-
proaches to cognitive assessment and intervention in clinical
practice.

This analysis highlights the potential of PageRank-
derived states as markers of underlying cognitive behav-
ior patterns, paving the way for individualized intervention
strategies based on behavioral state identification.



Figure 26: Correlation plot for PageRank states

Clinical Significance of Deep Vector States
Through detailed analysis of the clinical relevance of deep
vector states, their clustering, and patient behavior similar-
ity, we have discovered that these deep but compact vectors
encapsulate substantial information about patient behavior
patterns. Each state represents a distinct cognitive or behav-
ioral profile, with the intensity of each state reflecting spe-
cific cognitive patterns. Our objective now is to explore the
potential clinical applications of these states by using them
as features in machine learning models to predict MMSE
and ADAS-Cog. These models will be trained by combining
the vector states with baseline models and additional patient
characteristics to assess their predictive performance.

The features included in the analysis are categorized as
follows:

• Characteristics: Clinical Assessment Features: This
includes traditional clinical scores such as the HADS -
Depression Score, HADS - Anxiety Score, clinical cogni-
tive scores such as MMSE Score, ADAS-Cog Score(while
predicting changes of these scores) and Age.

• Characteristics: Demographic and Diagnostic Fea-
tures: Non-numeric features like Gender, Living Status
(Alone or with others), and Clinical Diagnosis(dementia
type).

• Latent State Features: The five latent states derived
from deep vector representations (state1, state2, state3,
state4, state5) which capture essential cognitive and be-
havioral dynamics.

• Baseline Features: Aggregated time-series features, in-
cluding daily mean and variance of movement across var-
ious household locations such as Wake Count, Lounge
Count, Kitchen Count, Bedroom Count, Bathroom Count,
Hallway Count, and Sleep Count. Each location con-
tributes two variables: the mean and variance of visit
counts.

• Frequency-Based Baseline: This approach calculates
the occurrence frequency of various activity locations
for each participant, normalizing the count data each
day to represent the percentage of time spent in differ-
ent locations. For each location (e.g., Bedroom, Kitchen,
Lounge), statistical features such as mean and variance

are computed for these normalized frequencies. These
features serve as inputs to predictive models.

• Random Word Baseline: In this method, each location
or activity state is mapped to a random numeric value.
These random numeric embeddings replace meaningful
semantic information and are used as features for model
training. This baseline provides a reference point to eval-
uate the significance of structured embeddings or seman-
tic features derived from location sequences.

• Outcome Features: The target variables for prediction,
which are changes in clinical cognitive scores such as
MMSE Score, ∆MMSE, ADAS-Cog Score and ∆ADAS-
Cog.

The baseline model was constructed to align closely with
the dimensionality of the latent state features, otherwise, the
scale of movement data baseline features for a single partic-
ipant would be excessively large (7,776,000) and impossible
to use. This baseline feature set aggregates time-series data
by taking the mean and variance of daily activity at different
locations within the home during the testing period. When
predicting cognitive changes over time, the model could al-
lows the inclusion of current values to enhance the predic-
tion.Note that the length of the time-series input is six month
in this case.

Model Parameters To analyze the performance of the
models, we employed three algorithms: XGBoost, Light-
GBM, and Support Vector Machine (SVM). The specific
configurations of each model are as follows:

• XGBoost: Key parameters include:
– n estimators: 100, specifying the number of boosting

rounds.
– learning rate: 0.1, controlling the step size shrinkage

to prevent overfitting.
– max depth: 6, setting the maximum depth of each tree.
– random state: 0, ensuring reproducibility.

• LightGBM: Configured with the following parameters:
– n estimators: 100, specifying the number of boosting

iterations.
– learning rate: 0.1, controlling the contribution of each

tree.
– max depth: -1, allowing the model to grow trees with-

out a maximum depth constraint.
– random state: 0, ensuring consistent results.

• Support Vector Machine (SVM): Configured as fol-
lows:
– kernel: ’rbf’, employing a radial basis function kernel

for nonlinear decision boundaries.
– C: 1.0, setting the regularization parameter.
– epsilon: 0.1, defining the tolerance for error in the pre-

diction.

The machine learning models were trained using data col-
lected from 50 participants. A variety of feature sets were
explored, including baseline activity features, clinical char-
acteristics, and derived latent states, as well as combinations



Figure 27: SHAP summary plots for PageRank states 1 to 5

thereof. For preprocessing, numerical features were stan-
dardized, while categorical features were processed with the
most frequent strategy for imputation followed by one-hot
encoding.

The modeling approach included XGBoost, LightGBM,
and SVM, selected for their ability to capture both linear and
nonlinear relationships. Leave-One-Out Cross-Validation
(LOOCV) was employed to assess the models’ performance
due to the small sample size, ensuring robustness and gen-
eralizability of the results. During each fold, the data was
split into a single test sample and the remaining samples for
training. Model evaluation focused on two primary metrics:
Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE), calculated separately for MMSE and ADAS-Cog
score predictions.

LSTM Model for Multivariate Time Series
Prediction
Input: The input to the LSTM model consists of weekly
aggregated time series features derived from patient activity
data. Each feature represents the count of occurrences for
various activity locations (e.g., Bedroom, Kitchen, Lounge)
within a week. These time series data are standardized using
StandardScaler to normalize the feature values across
different scales.

Model Architecture:
• LSTM Layer: A single LSTM layer with 64 units is used

to capture temporal dependencies in the input data. This
layer outputs a fixed-length feature vector summarizing
the temporal patterns.

• Dropout Layer: A dropout layer with a rate of 0.2 is
added to prevent overfitting by randomly setting a frac-
tion of input units to zero during training.

• Dense Layers: Two fully connected dense layers are
used:

– A hidden dense layer with 64 units and ReLU activa-
tion.

– An output dense layer with a size matching the number
of target variables (e.g., MMSE, ADAS-COG scores
and their differences).

Training Strategy:

• Loss Function: Mean Squared Error (MSE) is used as
the loss function for training.

• Optimizer: The Adam optimizer is employed for effi-
cient gradient descent.

• Validation: 10-fold cross-validation is applied to evalu-
ate the model’s performance. In each fold, the data is split
into training and testing sets.

• Hyperparameters: The model is trained for 50 epochs
with a batch size of 32 in each fold.

The performance metrics in Table 3 summarize the pre-
dictive accuracy of various models for forecasting annual
changes in ADAS-Cog and MMSE scores (∆ADASCOG
and ∆MMSE, respectively).

For the LightGBM model, the lowest prediction errors
for ADAS-Cog were achieved using the feature set of Ran-
dom Word + Characteristics, with an MAE∆ADASCOG of
4.95 (95% CI: 3.58, 6.42). For MMSE, the lowest prediction
errors were observed with the State + Characteristics fea-
ture set, resulting in an MAE∆MMSE of 2.24 (95% CI: 1.67,
2.89). These findings suggest that focusing on well-selected
clinical features and random word embeddings or combin-
ing state and clinical characteristics can improve predictive
accuracy for both metrics.

For the SVM model, the performance was generally
less favorable compared to LightGBM and XGBoost.
The best-performing feature set was All Features, with
an MAE∆ADASCOG of 6.29 (95% CI: 4.77, 8.09) and an
MAE∆MMSE of 3.60 (95% CI: 2.98, 4.29). Despite the inclu-
sion of all feature types, SVM exhibited higher error mar-
gins, particularly for MMSE predictions.

For the XGBoost model, the combination of State + Ran-
dom Word + Characteristics yielded the most accurate pre-
dictions for MMSE, achieving an MAE∆MMSE of 2.02 (95%
CI: 1.44, 2.76). Similarly, the feature set of Characteris-
tics resulted in the best performance for ADAS-Cog, with
an MAE∆ADASCOG of 5.41 (95% CI: 4.07, 7.11). These re-
sults highlight the effectiveness of leveraging state and clini-
cal features alongside embeddings for accurate prediction of
cognitive changes.



Table 3: Performance metrics for predicting changes of ADAS-Cog and MMSE with 95% confidence intervals (CI). The values
in parentheses represent the lower and upper bounds of the 95% CI. The metrics represent the predicted annual change (∆) for
MMSE and ADAS-Cog.

Metric MAE∆ADASCOG MAE∆MMSE RMSE∆ADASCOG RMSE∆MMSE
Model Feature Set

LightGBM All Features 5.60 (4.24, 7.14) 2.37 (1.78, 3.04) 5.64 (4.20, 7.05) 2.34 (1.73, 2.97)
Baseline 6.67 (4.84, 8.70) 2.57 (1.83, 3.37) 6.76 (5.05, 8.72) 2.57 (1.83, 3.37)
Characteristics 4.96 (3.59, 6.50) 2.26 (1.72, 2.90) 4.99 (3.67, 6.58) 2.24 (1.67, 2.89)
Proportion Baseline 6.12 (4.61, 7.89) 2.65 (2.04, 3.38) 6.14 (4.57, 7.87) 2.64 (2.04, 3.31)
Random Word 5.69 (4.27, 7.47) 2.75 (2.10, 3.47) 5.69 (4.26, 7.36) 2.74 (2.13, 3.46)
State 6.00 (4.41, 7.75) 2.70 (2.04, 3.37) 6.06 (4.56, 7.83) 2.69 (2.06, 3.42)

SVM All Features 6.29 (4.77, 8.09) 3.60 (2.98, 4.29) 6.27 (4.76, 8.21) 3.59 (2.92, 4.35)
Baseline 6.26 (4.68, 8.03) 3.58 (2.97, 4.26) 6.27 (4.75, 8.04) 3.62 (2.99, 4.37)
Characteristics 6.19 (4.62, 7.96) 3.59 (2.96, 4.29) 6.28 (4.77, 8.12) 3.61 (3.04, 4.30)
Proportion Baseline 6.26 (4.77, 8.05) 3.61 (2.96, 4.33) 6.28 (4.74, 8.02) 3.60 (2.98, 4.34)
Random Word 6.26 (4.71, 7.76) 3.58 (3.01, 4.31) 6.25 (4.64, 7.96) 3.60 (2.96, 4.33)
State 6.23 (4.67, 8.01) 3.60 (2.98, 4.32) 6.25 (4.63, 7.94) 3.61 (2.97, 4.34)

XGBoost All Features 6.22 (4.85, 7.91) 2.18 (1.54, 2.92) 6.24 (4.67, 7.88) 2.16 (1.60, 2.87)
Baseline 6.13 (4.43, 8.02) 2.91 (2.10, 3.79) 6.11 (4.37, 7.82) 2.92 (2.07, 3.78)
Characteristics 5.60 (3.97, 7.49) 2.05 (1.42, 2.77) 5.61 (4.08, 7.36) 2.08 (1.44, 2.82)
Proportion Baseline 6.98 (5.38, 8.77) 3.44 (2.72, 4.26) 7.02 (5.25, 8.79) 3.47 (2.71, 4.26)
Random Word 7.16 (5.41, 9.21) 2.82 (1.97, 3.69) 7.18 (5.46, 9.29) 2.84 (1.97, 3.72)
State 7.30 (5.60, 9.22) 3.33 (2.57, 4.14) 7.31 (5.55, 9.35) 3.33 (2.58, 4.13)

As seen in Table 3, the combination of clinical charac-
teristics and specific feature augmentations, such as random
words or state embeddings, consistently improved predictive
accuracy, particularly for MMSE. However, baseline models
and standalone state features generally led to higher error
margins, indicating that integrated feature representations
are critical for accurate forecasts.

The table presents the performance metrics for predicting
annual changes in ADAS-Cog and MMSE (∆ADASCOG
and ∆MMSE) across various feature sets, with 95% con-
fidence intervals (CI). Notably, the clinical characteristics
feature set used in this analysis excludes current values of
MMSE and ADAS-Cog scores.

For the LightGBM model, the best predictive perfor-
mance was achieved when using the Characteristics fea-
ture set alone, yielding an MAE∆ADASCOG of 5.58 (95%
CI: 4.11, 7.29) and an MAE∆MMSE of 2.55 (95% CI: 1.83,
3.42). These results were the lowest across all LightGBM
feature combinations, suggesting that the clinical character-
istics features (excluding current MMSE and ADAS-Cog
values) effectively capture predictive signals for cognitive
decline.

In the XGBoost model, the Baseline + Characteristics
feature set demonstrated competitive performance, with
an MAE∆ADASCOG of 6.36 (95% CI: 4.76, 8.34) and an
MAE∆MMSE of 3.17 (95% CI: 2.31, 4.12). However, using
only the Characteristics feature set led to higher errors, with
MAE values of 7.87 for ADAS-Cog and 3.41 for MMSE,
highlighting the added value of baseline features in this con-
text.

For the LSTM model, which utilized sequential location
data, the performance was substantially lower compared
to other models. The MAE∆ADASCOG was 27.78 (95% CI:
13.98, 41.57), and the MAE∆MMSE was 27.23 (95% CI:
14.64, 39.82). This suggests that while LSTM is adept at
modeling sequential data, it may require more extensive fea-
ture engineering or larger datasets to achieve competitive
performance in predicting cognitive decline.

As summarized in Table 4, excluding the current values of
MMSE and ADAS-Cog slightly impacts predictive perfor-
mance, but specific combinations of features such as Char-
acteristics alone or Baseline + Characteristics still deliver
robust results. These findings underscore the critical role of
well-selected feature sets in improving the accuracy of cog-
nitive decline predictions.

Table 5 summarizes the performance of various mod-
els (LightGBM, SVM, XGBoost, and LSTM) in predicting
current ADAS-Cog and MMSE scores, evaluated through
mean absolute error (MAE) and root mean square error
(RMSE), with 95% confidence intervals (CIs) provided in
parentheses. The results highlight that feature sets signif-
icantly influence predictive performance. The LightGBM
model achieved its best results using the ”Characteristics”
feature set, with MAE and RMSE values for ADAS-Cog
of 10.60 (95% CI: 8.45, 12.70) and 10.64 (95% CI: 8.61,
12.83), and for MMSE of 4.27 (95% CI: 3.44, 5.14) and
4.28 (95% CI: 3.48, 5.20). Similarly, the XGBoost model
performed optimally with the ”State + Characteristics” fea-
ture set, achieving the lowest MAE for ADAS-Cog of 10.40
(95% CI: 8.12, 12.59) and for MMSE of 4.13 (95% CI:



Table 4: Performance metrics for predicting changes of ADAS-Cog and MMSE with 95% confidence intervals (CI). The values
in parentheses represent the lower and upper bounds of the 95% CI. The metrics represent the predicted annual change (∆) for
MMSE and ADASCOG. Note: This Characteristics feature set does not include the current values of MMSE and ADAS-Cog.

Metric MAE∆ADASCOG MAE∆MMSE RMSE∆ADASCOG RMSE∆MMSE
Model Feature Set

LightGBM All Features 6.21 (4.66, 7.84) 2.61 (1.98, 3.27) 6.20 (4.67, 7.97) 2.63 (2.01, 3.27)
Baseline 6.76 (4.96, 8.79) 2.58 (1.90, 3.40) 6.70 (5.07, 8.70) 2.56 (1.86, 3.29)
Characteristics 5.58 (4.11, 7.29) 2.55 (1.83, 3.42) 5.65 (4.13, 7.39) 2.55 (1.82, 3.38)
Proportion Baseline 6.08 (4.64, 7.71) 2.66 (2.01, 3.39) 6.13 (4.55, 7.82) 2.66 (2.01, 3.35)
Random Word 5.68 (4.28, 7.36) 2.75 (2.13, 3.43) 5.74 (4.26, 7.59) 2.76 (2.13, 3.43)
State 6.01 (4.49, 7.77) 2.68 (2.04, 3.40) 5.97 (4.37, 7.68) 2.69 (2.05, 3.49)

SVM All Features 6.32 (4.84, 8.11) 3.61 (3.05, 4.32) 6.25 (4.74, 7.99) 3.63 (3.02, 4.34)
Baseline 6.22 (4.80, 7.97) 3.61 (3.02, 4.35) 6.25 (4.54, 8.02) 3.62 (2.97, 4.32)
Characteristics 6.27 (4.72, 8.04) 3.60 (2.95, 4.29) 6.33 (4.69, 8.01) 3.60 (2.98, 4.35)
Proportion Baseline 6.24 (4.80, 7.93) 3.60 (2.96, 4.33) 6.27 (4.64, 7.87) 3.60 (3.01, 4.33)
Random Word 6.28 (4.64, 7.96) 3.61 (2.97, 4.33) 6.30 (4.65, 8.00) 3.61 (2.98, 4.35)
State 6.25 (4.82, 8.02) 3.61 (2.97, 4.32) 6.26 (4.60, 7.92) 3.62 (2.97, 4.34)

XGBoost All Features 6.77 (5.17, 8.47) 3.36 (2.51, 4.31) 6.78 (5.18, 8.52) 3.34 (2.49, 4.28)
Baseline 6.15 (4.35, 8.08) 2.91 (2.15, 3.75) 6.10 (4.43, 8.02) 2.92 (2.12, 3.78)
Characteristics 7.87 (6.05, 9.92) 3.41 (2.53, 4.42) 7.83 (5.99, 9.73) 3.41 (2.44, 4.41)
Proportion Baseline 6.93 (5.27, 8.74) 3.46 (2.67, 4.36) 6.91 (5.27, 8.80) 3.46 (2.66, 4.32)
Random Word 7.18 (5.27, 9.17) 2.83 (2.07, 3.66) 7.15 (5.35, 9.19) 2.83 (2.05, 3.72)
State 7.24 (5.55, 9.10) 3.31 (2.57, 4.07) 7.26 (5.64, 9.11) 3.31 (2.60, 4.08)

LSTM Location Sequences 27.78 (13.98, 41.57) 27.23 (14.64, 39.82) 35.95 (18.61, 47.31) 34.63 (19.31, 45.00)

Table 5: Performance metrics for predicting current ADAS-Cog and MMSE with 95% confidence intervals (CI). The values in
parentheses represent the lower and upper bounds of the 95% CI.

Metric MAEADASCOG MAEMMSE RMSEADASCOG RMSEMMSE
Model Feature Set

LightGBM All Features 12.96 (10.39, 15.48) 4.90 (3.98, 5.82) 12.99 (10.74, 15.49) 4.92 (4.04, 5.78)
Baseline 12.38 (10.33, 14.65) 4.73 (3.92, 5.61) 12.27 (10.05, 14.44) 4.75 (3.94, 5.58)
Characteristics 10.60 (8.45, 12.70) 4.27 (3.44, 5.14) 10.64 (8.61, 12.83) 4.28 (3.48, 5.20)
Proportion Baseline 11.57 (9.37, 13.82) 4.79 (3.96, 5.73) 11.60 (9.40, 13.97) 4.80 (3.99, 5.71)
Random Word 10.77 (9.01, 12.67) 4.40 (3.61, 5.23) 10.76 (8.92, 12.53) 4.35 (3.59, 5.17)
State 10.64 (8.67, 12.70) 4.24 (3.40, 5.14) 10.60 (8.60, 12.69) 4.24 (3.37, 5.10)

SVM All Features 10.85 (8.41, 13.28) 4.71 (3.79, 5.71) 10.77 (8.37, 13.22) 4.71 (3.84, 5.62)
Baseline 10.76 (8.38, 13.28) 4.51 (3.60, 5.45) 10.66 (8.10, 13.13) 4.48 (3.62, 5.36)
Characteristics 10.89 (8.59, 13.56) 4.44 (3.46, 5.42) 10.90 (8.72, 13.32) 4.46 (3.53, 5.45)
Proportion Baseline 10.72 (8.47, 13.15) 4.46 (3.63, 5.44) 10.69 (8.29, 13.34) 4.47 (3.61, 5.41)
Random Word 10.77 (8.52, 13.25) 4.40 (3.49, 5.41) 10.79 (8.51, 13.30) 4.39 (3.52, 5.32)
State 10.62 (8.19, 13.08) 4.42 (3.50, 5.38) 10.72 (8.26, 13.12) 4.39 (3.49, 5.33)

XGBoost All Features 11.84 (9.50, 14.12) 4.86 (3.95, 5.82) 11.82 (9.40, 14.32) 4.89 (3.96, 5.81)
Baseline 11.64 (9.00, 14.39) 5.66 (4.51, 6.75) 11.60 (8.89, 14.58) 5.65 (4.62, 6.71)
Characteristics 11.77 (8.70, 14.82) 5.03 (3.76, 6.28) 11.74 (9.07, 14.62) 5.02 (3.74, 6.38)
Proportion Baseline 11.57 (9.22, 14.09) 5.29 (4.26, 6.33) 11.63 (8.99, 14.26) 5.28 (4.31, 6.32)
Random Word 12.61 (9.81, 15.62) 4.79 (3.77, 6.00) 12.66 (9.97, 15.68) 4.81 (3.78, 5.96)
State 11.09 (8.53, 13.94) 4.67 (3.56, 5.89) 10.95 (8.38, 13.57) 4.65 (3.62, 5.69)

LSTM Location Sequences 11.35 (8.56, 14.13) 4.93 (3.94, 5.91) 14.51 (11.66, 16.89) 5.99 (4.76, 7.02)



3.21, 5.15), along with the lowest RMSE for ADAS-Cog of
10.44 (95% CI: 8.38, 12.65) and for MMSE of 4.13 (95%
CI: 3.19, 5.07). The SVM model showed competitive perfor-
mance with the ”State” feature set, achieving MAE values of
10.62 (95% CI: 8.19, 13.08) for ADAS-Cog and 4.42 (95%
CI: 3.50, 5.38) for MMSE, and RMSE values of 10.72 (95%
CI: 8.26, 13.12) for ADAS-Cog and 4.39 (95% CI: 3.49,
5.33) for MMSE. In contrast, the LSTM model, which used
location sequences as input, demonstrated relatively higher
RMSE values of 14.51 (95% CI: 11.66, 16.89) for ADAS-
Cog and 5.99 (95% CI: 4.76, 7.02) for MMSE, suggest-
ing the need for further optimization. Overall, models utiliz-
ing feature sets enriched with ”Characteristics” and ”State +
Characteristics” consistently outperformed those relying on
baseline or random word features, and the inclusion of con-
fidence intervals highlights the robustness of these results in
predicting cognitive metrics.

Ablation Study: Impact of Time-Series Length on Model
Performance To investigate how the length of the time-
series input affects the model’s predictive performance, we
conducted an ablation study by varying the time durations
provided to the ridge model. This analysis specifically fo-
cuses on assessing the impact of input data collected over
different periods: 7 days, 15 days, 30 days, 90 days, and 180
days. By analyzing these variations, we aim to understand
the optimal time frame and seasonal changes for aggregat-
ing daily activity data to predict cognitive scores effectively.

As shown in Figure 29, which visualizes the prediction
errors across varying time durations, we observed that the
model generally achieved lower prediction errors when us-
ing longer time-series inputs (30 to 180 days). Specifically,
for both MAE and RMSE metrics, the model’s performance
slightly degraded as the time duration less than 30 days. This
trend was consistent across all metrics, suggesting that more
participant movement data holds greater predictive value for
cognitive change.

When excluding the current ADAS-Cog and MMSE val-
ues from the feature set, as depicted in Figure 28, the er-
ror values showed a similar pattern. The absence of current
scores slightly increased the MAE and RMSE, reinforcing
the importance of longitudinal behavioral data for accurate
predictions.

Prediction of Absolute Cognitive Scores (ADASCOG and
MMSE) In contrast, Figure 30, which represents the per-
formance metrics for predicting absolute ADAS-Cog and
MMSE scores. When predicting current value of cogni-
tive scores, the MAE and RMSE remained relatively stable
across time durations, with only minor decreases in error as
the time frame extended to 180 days. This stability suggests
that longer time-series data can be valuable for its cognitive
status information.

State Feature Performance For this ablation study, we
observed that as the input time span increases, the per-
formance gap between the state model and the baseline
model widens. This finding further supports that the state
feature—derived from our deep analysis of patient mo-
bility patterns—captures significant information about pa-

tient behavioral patterns and cognitive abilities. Addition-
ally, with longer input time series, the state model demon-
strates greater robustness in predicting cognitive function
compared to the baseline, showcasing its capacity to cap-
ture long-term temporal information, particularly when the
time series is exceptionally extended.

Moreover, in nearly all experiments, the performance of
the state feature, which only depicts the movement of pa-
tients, is comparable to that of the characteristic feature. In
the case of extended time series, the state feature even out-
performs the characteristic feature in prediction accuracy.
This indicates that the state feature we generate, potentially
offering deep insight in clinical diagnostic results, may be a
effective predictor of cognitive status.

Clinical Challenges
From a clinical perspective, aligning the outputs of AI mod-
els with actionable insights for healthcare providers is a key
challenge. The proposed low-rank state representations must
correlate strongly with meaningful clinical metrics such as
MMSE and ADAS-Cog scores to support diagnosis and in-
tervention planning. However, the limited size and scope
of our dataset, which includes only 134 participants with
complete data from 50 patients, presents a significant lim-
itation. This small sample size may not fully capture the di-
versity of movement and behavioral patterns observed in the
wider population of individuals living with dementia. As a
result, the model’s generalizability to other settings or pop-
ulations could be compromised. Additionally, the variability
in patient behavior due to external factors, such as seasonal
changes or caregiver interactions, necessitates models that
can differentiate between pathological changes and normal
variations. Integrating AI-driven insights into existing clin-
ical workflows without increasing the burden on healthcare
providers remains a critical consideration to ensure the prac-
tical utility of these systems.

Addressing these challenges requires an interdisciplinary
approach, incorporating expertise from AI researchers, clin-
icians, ethicists, and regulatory bodies, to develop robust,
equitable, and clinically impactful healthcare monitoring so-
lutions. Expanding the dataset to include a more diverse and
representative sample of patients will also be essential for
enhancing the model’s reliability and applicability.



Figure 28: Prediction error for cognitive change (∆ADAS-Cog and ∆MMSE) without current cognitive score in feature set.
This figure illustrates the impact on prediction errors (MAE and RMSE) for cognitive change when excluding the current
cognitive score from the feature set across different time durations.

Figure 29: Prediction error for cognitive change (∆ADAS-Cog and ∆MMSE). This figure shows the MAE and RMSE for
cognitive change predictions using varying time-series lengths, including baseline, characteristics, and state feature sets.



Figure 30: Prediction error for current cognitive scores (ADAS-Cog and MMSE). This figure depicts the MAE and RMSE
for absolute cognitive score predictions, showing the performance stability across various time-series lengths with baseline,
characteristics, and state feature sets.


