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Abstract
Machine learning on graphs, especially using
graph neural networks (GNNs), has seen a surge in
interest due to the wide availability of graph data
across a broad spectrum of disciplines, from life
to social and engineering sciences. Despite their
practical success, our theoretical understanding
of the properties of GNNs remains highly incom-
plete. Recent theoretical advancements primarily
focus on elucidating the coarse-grained expres-
sive power of GNNs, predominantly employing
combinatorial techniques. However, these studies
do not perfectly align with practice, particularly
in understanding the generalization behavior of
GNNs when trained with stochastic first-order op-
timization techniques. In this position paper, we
argue that the graph machine learning commu-
nity needs to shift its attention to developing a
balanced theory of graph machine learning, fo-
cusing on a more thorough understanding of the
interplay of expressive power, generalization, and
optimization.

1. Introduction
Graphs serve as powerful mathematical representations,
adept at capturing intricate interactions among entities across
a spectrum of disciplines, spanning from life (Wong et al.,
2023) to social sciences (Easley & Kleinberg, 2010) and
optimization (Cappart et al., 2021). This diversity under-
scores the critical demand for specialized machine-learning
methods that extract valuable patterns from complex graph
data.

Hence, in recent years, neural networks capable of han-
dling graph-structured data received a lot of attention in the
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machine learning community, especially messsage-passing
graph neural networks (MPNNs) (Gilmer et al., 2017;
Scarselli et al., 2009).1 Nowadays, MPNNs, or, more gen-
erally, GNNs, are among the most prominent topics at top-
tier machine learning conferences,2 and have showcased
promising outcomes across diverse domains, including break-
throughs in discovering new antibiotics (Stokes et al., 2020;
Wong et al., 2023).

While GNNs are successful in practice and are making real-
world impact, their theoretical properties are understood to
a lesser extent. That is, only GNNs’ expressive power, i.e.,
their ability to separate graphs and express functions over
graphs is understood to some extent (Azizian & Lelarge,
2021; Geerts & Reutter, 2022; Morris et al., 2019; 2021;
Xu et al., 2019). However, most current analyses heavily
rely on combinatorial techniques, such as the 1-dimensional
Weisfeiler–Leman algorithm (1-WL), a well-studied heuristic
for the graph isomorphism problem (Grohe, 2017; Weisfeiler
& Leman, 1968; Weisfeiler, 1976). While the graph isomor-
phism perspective has helped the community understand
GNNs’ ultimate limitations in capturing graph structure, it
is inherently binary. For example, it does not give insights
into the degree of similarity between two given graphs, pro-
hibiting a more fine-grained analysis. While some recent
works (Böker et al., 2023; Chen et al., 2022) aim at a more
fine-grained analysis, they still have strong limitations, such
as not considering continuous node and edge features. A sec-
ond limitation of current GNN expressivity results is that they
are fairly specific. They are tailored to particular classes of
GNNs, overlooking practically relevant architectural choices.

While understanding MPNNs’ and related architectures, e.g.,
graph transformers (Müller et al., 2023), expressive power
is vital, understanding when such architectures generalize
to unseen graphs and how to find parameter assignments
that allow so is equally important. However, in MPNNs and
GNNs, the essential aspects of generalization and optimiza-
tion are severely understudied. The few existing works that
study MPNNs’ generalization properties, e.g., Garg et al.

1We use the term MPNNs to refer to graph-machine learning
architectures that fit into the framework of Gilmer et al. (2017)
and use the term GNNs in a broader sense, i.e., all neural network
architectures capable of handling graph-structured inputs.

2http://tinyurl.com/mpn89vju
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Figure 1. Interactions of the four challenges within graph machine learning: Fine-grained expressivity, generalization, optimization,
applications, and their interactions. The green boxes architectural choices (hyperparameter and other design choices like normalization
layers), model parameters, and graph classes (different types of graphs) represent aspects of all four challenges.

(2020); Liao et al. (2021); Maskey et al. (2022); Scarselli
et al. (2018), study MPNNs’ generalization properties via
VC (Vapnik-Chervonenkis) dimension theory or related for-
malisms and derive generalization bounds that depend on
high-level graph parameters such as the maximum degree or
number of nodes. In addition, all current works are based
on variants of classical uniform generalization bounds. This
entails large constants in the bound and a description of
a classical bias-variance curve that does not describe the
typical reality of deep learning on graphs, in which higher
complexity and more expressive models often generalize
better.

While some initial works make progress towards studying
GNNs’ optimization aspects, i.e., the dynamics of stochastic
gradient descent (SGD) to adapt their parameters, they still
make strong assumptions, such as the use of linear activation
functions (Xu et al., 2021a), unrealistic learning scenar-
ios (Du et al., 2019), or neglecting the influence of the graph
structure (Tang & Liu, 2023); see also (Bechler-Speicher
et al., 2023).

Overall, we argue that the following challenges persist in
graph machine learning.

Expressivity The vast majority of existing results on GNNs’
expressive power are coarse-grained and focus on spe-
cific architectures. Additionally, guidelines for choosing
between highly-expressive GNNs are needed.

Generalization Besides expressivity, it is vital to choose
models based on a training dataset so that it generalizes
to unseen data. Current works studying GNNs’ gen-
eralization properties often rely on many simplifying
assumptions, e.g., not considering graph structure or
optimization.

Optimization We must ensure that GNNs trained with SGD
converge to assignments leading to expressive models
that generalize well and understand the role of the
architecture and graph structure.

Applications Current theoretical results are often loosely
aligned with practical assumptions and needs of ap-
plication domains. Hence, developing graph machine
learning theory aligned with practical requirements is
crucial.

We argue that graph machine learning needs a nuanced
theory to develop an in-depth understanding of the various
architectural choices that govern GNNs’ expressive power
(challenge 1), generalization properties (challenge 2), and
optimization dynamics (challenge 3), as well as the interplay
of these aspects. Moreover, theoretical research within the
graph machine learning communities must be aligned with
domain experts’ practical needs (challenge 4). Thereto, we
propose concrete challenges to address these requirements;
see Figure 1 for a high-level overview of the interactions of
the four challenges in this position paper.

2. Expressive Power of GNNs
Most of the expressiveness studies examine the ability of
GNNs to assign distinct values to non-isomorphic graphs,
or in other words, the ability of GNNs to separate different
graphs. Moreover, the ability to separate graphs is directly
connected to MPNNs’ ability to approximate (continuous,
permutation-invariant) functions over graphs (Chen et al.,
2019). The seminal works of Morris et al. (2019); Xu et al.
(2019) showed that MPNNs’ ability to separate graphs is
equivalent to the limited separation power of the 1-WL al-
gorithm for the graph isomorphism problem (Weisfeiler &
Leman, 1968). These works inspired the study of expressive
GNNs, whose expressive power surpasses that of the 1-WL
test, typically at the cost of more computational resources.
For example, Morris et al. (2019); Maron et al. (2019) derived
architectures equivalent to the more powerful k-dimensional
Weisfeiler–Leman algorithm (k-WL). Many other types of
expressive GNNs were proposed in the literature, e.g., by
utilizing random features (Abboud et al., 2021), subgraph
counts (Bouritsas et al., 2020), or by employing sets of sub-
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graphs (Bevilacqua et al., 2022; Cotta et al., 2021; Qian et al.,
2022; Frasca et al., 2022). See the following surveys for a
more thorough review: (Jegelka, 2022; Li & Leskovec, 2022;
Morris et al., 2021; Sato, 2020; Zhang et al., 2023a). Several
recent works developed tools to analyze the expressive power
of GNN architectures or construct hierarchies thereof (Geerts
& Reutter, 2022; Zhang et al., 2023b). Alternative expressive
power measures have been proposed in the past several years,
for example, measuring the degree of invariant or equivariant
polynomials an architecture can represent (Puny et al., 2023),
or measures based on the ability to compute the count of
substructures (Chen et al., 2020) or other graph properties
(Zhang et al., 2023c) and to mix information from different
nodes (Di Giovanni et al., 2023b).

2.1. Challenges

Based on the above, we identify the following challenges.

Challenge II.1: From combinatorial to geometric expres-
siveness results. The common results on the expressive
power of GNNs are coarse-grained. Since these tools are
rooted in graph isomorphism testing formalism, and the
graph isomorphism problem inherently involves binary out-
comes, they fall short of offering insights into the degree of
similarity between graphs. This omission potentially limits
the scope of a nuanced analysis of GNNs. For example,
Maron et al. (2019); Morris et al. (2019); Xu et al. (2019)
have independently devised 1-WL-expressive GNNs, distin-
guishing the same set of graphs. However, their empirical
performance in practical situations is not identical, and which
one is better varies across tasks.

To guide practitioners in selecting these maximally expres-
sive MPNNs, we need to consider the geometry of the space
of graphs induced by the geometry of the feature space pro-
duced by the MPNNs. Note that an MPNN is a function
that maps graphs to features in some Euclidean space, and
the Euclidean metric in the feature space can be pulled-back
to a (pseudo) metric of graphs. The choice of architecture
determines this graph metric and which graphs can be sep-
arated by the architecture and how easily. Understanding
this fine-grained expressivity could lead to a more system-
atic approach to designing GNN architectures. In addition,
using such a “continuous” notion of graph similarity will
also lead to results akin to geometric stability in geometric
deep learning (Bruna & Mallat, 2013), potentially related to
generalization; see Section 3.

While Böker et al. (2023) took a first step towards a non-
binary class expressivity and identified several well-known
metrics in the graph space, which are topologically equiva-
lent to the Euclidean metric in the feature space; the results
only consider graphs without continuous node or edge fea-
tures, use specific aggregation functions, and do not offer

an explicit way to bound graph distances by feature dis-
tances and vice-versa. As an initial step, (Chuang & Jegelka,
2022) derived a pseudometric on graphs with continuous
attributes based on the computation trees of MPNNs. Addi-
tional related works are on transferability and convergence
of GNNs, which only give one side of a topological equiva-
lency, namely, convergence of graphs lead to convergence of
features (Levie et al., 2021; Keriven et al., 2020; Ruiz et al.,
2020).

We propose developing fine-grained expressivity results,
namely metric equivalencies between explicit graph metrics
and feature metrics for GNNs on graphs with features. An
ideal result would derive a bi-Lipschitz correspondence be-
tween such metrics. Note that Levie (2023) gave one side
of the Lipschitz inequality for graphs with features, namely,
the Euclidean feature distance is bounded by the graph cut-
distance for any MPNN. Lastly, fine-grained expressivity can
lead to optimal universal approximation theorems. Universal
approximation results based on the Stone–Weierstrass the-
orem require a better understanding of the topology of the
space of graphs. The finer the topology we consider on the
input space, the more points are “far apart” in this space, and
therefore, the harder it is to separate far-apart points using
functions. Hence, optimal universal approximation theorems
should find the finest topology in which MPNNs separate
points.

Challenge II.2: Towards understanding expressiveness
for all practical architectures. A second limitation of
current GNN expressivity results is that they are very specific.
They are tailored to specific classes of GNNs, overlooking
practical and relevant architectural choices. More specifically,
the equivalence of MPNNs and the 1-WL is obtained for par-
ticular choices of MPNN architectures (Morris et al., 2019;
Xu et al., 2019). Therefore, there is a need to understand
the effect of various architectural decisions made in practice,
such as different activations, aggregation, normalization, and
pooling, on the expressive power of MPNN architectures.
Examples of results in this vein are the expressive advantage
of sum pooling over mean and max pooling (Xu et al., 2019)
and the expressive advantage of analytic activations over
piecewise linear activations (Amir et al., 2023).

Apart from MPNNs, a comprehensive understanding of ex-
pressivity is especially lacking for graph transformers (GTs).
The effectiveness of GTs heavily relies on incorporating
structural and positional encodings (Müller et al., 2023).
These encodings introduce information about the underlying
graph structure into the transformer architecture, which is
inherently designed without an awareness of graph struc-
tures. However, it is still largely unclear how these encodings
influence an architecture’s ability to capture graph struc-
ture; see some preliminary results in Lim et al. (2023b;a);
Zhu et al. (2023); Zhang et al. (2023c), and also Cai et al.
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(2023); Rosenbluth et al. (2024) for some connections be-
tween MPNNs and GTs. However, it remains unclear how to
abstract the various architectural choices and engineering
tricks via a mathematical model, allowing for a detailed math-
ematical analysis of GT’s potential benefits over MPNNs.

Challenge II.3: Towards uniform expressiveness results.
Most GNN expressive power results in the literature either do
not quantify or only give loose bounds on the size of the GNN
required (in terms of number of parameters, width, or depth)
to compute different functions on graphs, e.g., Aamand et al.
(2022); Amir et al. (2023); Morris et al. (2019). Moreover,
most expressivity results are non-uniform, i.e., they depend
on the graph size. Further study on this could have several
benefits. First, the size of a GNN required for different tasks
is related to its generalization ability. Secondly, the size of
GNNs required for expressing certain functions could help
compare different GNN architectures that have similar or
the same expressive power; for instance, for two MPNN
architectures that are 1-WL equivalent, one may prefer the
one that requires fewer parameters for distinguishing 1-
WL-distinguishable graphs. Moreover, deriving uniform
expressivity results could shed light on GNNs’ ability to
generalize to larger graphs, as seen during training. Barceló
et al. (2020) achieves a result that is uniform, i.e., one model
parametrization can express the target function on all graphs;
see also Grohe (2021) for discussions. However, the result
hinges on the use of logical classifiers. In addition, Grohe
(2023) proves that all functions computable by MPNNs
are expressible in the logic FO2 + C, leading to an exact
characterization of the functions that are computable by
MPNNs of polynomial size and bounded depth in terms of
logic and also standard computational complexity classes.

Challenge II.4: Towards expressiveness on relevant
classes of graphs. Most expressive GNNs have been de-
signed to attain high separation power on the general family
of all possible graphs. However, practical applications typ-
ically target specific classes of graphs for which tailored
expressiveness results may be obtained or are otherwise
known. For example, most molecules are in the family
of planar graphs (Simmons & Maggio, 1981), on which
the graph isomorphism problem can be solved more effi-
ciently by specialized algorithms (Hopcroft & Wong, 1974).
Because of this, we advocate addressing the challenge of de-
veloping the study of expressive GNN architectures targeting
relevant graph classes of interest, following pioneering works
by Dimitrov et al. (2023) on planar graphs, and by Bause et al.
(2023) on outer-planar graphs. Besides atomistic systems,
other examples include bipartite or tripartite graphs stem-
ming from optimization problems (Cappart et al., 2021; Qian
et al., 2024a) or recommender systems (Wu et al., 2023).

We suggest identifying a taxonomy of families of graphs

that hold particular importance in practical applications to re-
evaluate the expressive power of known architectures about
these and to derive optimal lower-bound intricacy figures
for maximally expressive approaches on these classes; see
Challenge II.5. These analyses would support the design of
architectures, which, on specific graph families, can attain
better complexity-expressivity tradeoffs than more general
GNNs.

Challenge II.5: Towards a formal trade-off between ex-
pressive power and computational cost. Another chal-
lenge concerning expressivity is exploring the realm of ex-
pressive GNNs. While there are many works proposing
GNNs whose expressivity surpasses the 1-WL test, the GNN
community needs principled methods of navigating this vast
collection of architectures by providing guidelines for how
expressive a GNN architecture needs to be to address a given
task (Di Giovanni et al., 2023b). In addition, in practice, we
observe a trade-off between computational complexity and
expressive power, where more expressive architectures typi-
cally come with a higher computational complexity. There
is a need to quantify this trade-off formally. For example,
there is a lack of theoretical knowledge to address questions
such as: given specific expressive power requirements (e.g.,
1-WL, or k-WL, counting specific substructures), what are
the lower bounds of the time and space complexity for a
GNN model with the requisite representational capacity?
Tahmasebi et al. (2023) recently obtained preliminary results
in this direction. The answer to this question could guarantee
that the GNN architectures we currently have are optimal
in terms of complexity or, conversely, point towards pos-
sible improvements that can lead to GNNs with identical
expressivity properties and improved complexity.

Challenge II.6: Towards linking architecture, task, and
graph structure. In GNNs, the graph is part of the input
and the computational device. At times, the input graph
might not be ideally suited for message passing, leading to
phenomena such as over-squashing (Alon & Yahav, 2021).
Characterizing the graph properties that lead to such phe-
nomena, e.g., through curvature (Topping et al., 2022) or
diffusion distances (Di Giovanni et al., 2023a), can lead to
more principled approaches for decoupling the computa-
tional and input graphs in MPNNs through rewiring (Barbero
et al., 2024; Qian et al., 2024b), or more efficient sparse GTs.
A better characterization of the tasks that a specific MPNN
architecture can implement on a particular graph, such as in
the recent work of (Di Giovanni et al., 2023b), can also lead
to a novel type of expressiveness results.

3. Generalization Properties of GNNs
The few existing works that study MPNNs’ generalization
properties, e.g., Garg et al. (2020); Liao et al. (2021); Maskey
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et al. (2022); Scarselli et al. (2018), study their generalization
properties via VC dimension theory or related formalisms.
However, the bounds derived in such works usually depend
only on relatively generic graph parameters, such as the
maximum degree or number of nodes, ignoring more expres-
sive graph parameters. While Morris et al. (2023) recently
established a tight connection between the expressivity of the
1-WL and MPNNs’ VC dimension, the analysis is restricted
to a particular MPNN architecture using sum aggregation;
see also Section 2. Hence, it does not allow for fine-grained
analysis, e.g., considering different architectural choices and
more quantitative analysis in terms of numbers of parameters
or depth. An additional important factor is that the above
works assume that the train and test sets are sampled from the
same distribution. Hence, they reveal little about MPNNs’
ability to generalize out-of-distribution, e.g., generalizing to
larger graphs than found in the training set. Furthermore, no
theoretical understanding exists of the generalization abili-
ties of more expressive GNN architectures and how they are
influenced by graph structure.

3.1. Challenges

To advance the study of GNNs’ generalization ability, we
suggest to address the following challenges.

Challenge III.1: Understanding the influence of expres-
siveness and architectural choices on generalization. Al-
though classical learning theory (Morris et al., 2023) would
suggest worse generalization results for higher expressive-
ness, more expressive GNN architectures often achieve bet-
ter generalization performance. While the underlying rea-
sons for these improvements are not fully clear, this phe-
nomenon hints at the important role played by particular
inductive biases and their interplay with the data distribution
at hand (Bouritsas et al., 2020). We thus propose to establish
precise conditions under which increased expressive power,
jointly with architectural choices, leads to enhanced gener-
alization. Franks et al. (2024) made recent progress in that
direction, focusing on linearly separable data.

We propose to analyze how expressivity transforms the fea-
ture space to facilitate better generalization, for example, by
deriving conditions on the underlying data distribution such
that more expressive power leads to better predictive perfor-
mance. At the same time, it is pivotal to unravel the influence
of different design choices on GNNs’ generalization abilities,
including, e.g., aggregation functions, skip connections, or
normalization layers. For example, an essential aspect would
be understanding if certain aggregation functions exhibit
superior generalization and offer advantages in making pre-
dictions on larger graphs beyond the training set and for
which tasks. A first step in this direction was taken by Xu
et al. (2020; 2021b). Related to this, we deem it essential to
investigate architectural paradigms beyond message-passing,

such as graph transformers (Müller et al., 2023). In this
sense, a relevant endeavor would be to decipher how the
attention mechanism contributes to improved generalization
compared to MPNNs, the influence of various structural and
positional encodings on this aspect, and how they influence
generalization bounds. Building on advancements in un-
derstanding the expressive power of structural encodings,
see Section 2, we propose to understand if certain encod-
ings offer better generalization properties and how different
encodings influence the sample complexity.

Challenge III.2: Understanding the impact of graph
structure on generalization and its interplay geometry.
This challenge asks how graph structure influences an archi-
tecture’s generalization properties and how this is linked to
an architecture’s expressive power and the feature space’s
geometry. For example, it is essential to understand if graph
properties such as sparsity influence generalization and how
to integrate them into generalization bounds. Moreover,
considering practical, relevant graph classes such as planar
or bipartite graphs, it is important to precisely understand
whether GNNs operating on certain graph classes offer bet-
ter generalization than others. Further, leveraging results
on the fine-grained geometry of the feature space outlined
in Section 2 possibly allows to derive tighter generalization
bounds. While Levie (2023) took a first step in this direction,
they did not consider the coarsest topology in the space of
graphs equivalent to the geometry of the feature space, and
hence their results are suboptimal.

Challenge III.3: Develop a theory of data augmentation.
Given the cost and scarcity of labeled training data in many
practical graph machine learning scenarios, several recent
works (e.g., as surveyed in Ding et al. (2022)) suggested
leveraging data augmentation techniques (i.e., enhancing
the training dataset with additional labeled data samples) to
increase the training data size effectively. Importantly, there
is little theoretical understanding, existing work, e.g., uses
graphons (Han et al., 2022), and relatively little practical
evidence regarding which data augmentation schemes are
helpful for specific graph distributions and learning tasks.
Recently, graph data augmentation strategies have seen ap-
plication in mitigating covariate distribution shifts (Sui et al.,
2023) and in rationalizing GNN predictions (Liu et al., 2024;
Wu et al., 2022). Unfortunately, however, compared to the
widespread beneficial effect data augmentation has on learn-
ing with other popular data modalities—such as images—
the effectiveness of data augmentation in graph machine
learning still lags behind. Hence, a critical challenge is the
development of a general theory of data augmentation for
graph-structured data. Hence, we suggest deriving a better
understanding of how much we can perturb graph data with-
out distorting the underlying data-generating distribution,
e.g., leveraging recent advancements in principled graph
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similarity (Gervens & Grohe, 2022).

Challenge III.4: Understanding and improving extrap-
olation, especially to larger graphs. Extrapolation to
graphs sampled from a different distribution than the training
distribution is crucial in many applications. For instance,
extrapolation to larger graphs is especially important in tasks
where labels are much more expensive for larger graphs, such
as combinatorial optimization applications, where solvers
are slow on large instances (Cappart et al., 2021). It has
been shown both theoretically and empirically that GNNs
can fail on graphs that are larger than, or in general have
a different structure than, the graphs that they are trained
on (Yehudai et al., 2021; Veličković et al., 2022; Xu et al.,
2021b; Zhou et al., 2022). Hence, we need to better under-
stand under which conditions on data distributions, models,
and optimization out-of-distribution generalization is pos-
sible. From the perspective of model and optimization, Xu
et al. (2021b) take a first step in showing how restrictions on
the architecture can enable extrapolation to different graph
structures. In addition, initial results (Adam-Day et al., 2023)
within the Erdős–Rényi model, leveraging results from fi-
nite model theory, show that MPNNs eventually become
independent of their inputs as the graph grows. Another
perspective is to characterize theoretical conditions on the
structure of the graphs in training and test sets. In trans-
ferability and convergence analysis, MPNNs are shown to
be transferable between different graphs that are sampled
from the same random graph model (Keriven et al., 2020;
Le & Jegelka, 2023; Levie et al., 2021; Ruiz et al., 2020),
but we still need to better understand the scope of practical
situations in which these conditions hold. More generally,
we still need to analyze the entire landscape of conditions
for extrapolation in practical situations, taking into account
data, task, architecture, and other inductive biases, e.g. from
optimization, for a more general and actionable picture of
when GNNs and graph transformers extrapolate to different
kinds of data distributions, and develop new methods for
improving GNN extrapolation ability. A related question is
to estimate the reliability of a model on new distributions in a
way consistent with empirical behavior. This question relates
to understanding the geometry of graph representations (see
also Challenges II.1 and III.2) and relevant divergences of
distributions that reflect GNN stability. A first work in this
direction is Chuang & Jegelka (2022). Answering these ques-
tions would also be a basis to build a better understanding of
transfer learning for graphs.

4. Optimization Dynamics of GNNs
Only some works directly focus on the theoretical under-
standing of gradient descent-based learning for GNNs. These
works typically make substantial simplifying assumptions.
For example, Xu et al. (2021a) showed global convergence

of GNNs with linear activations. In contrast, Du et al. (2019)
showed global convergence for the neural tangent kernel
obtained as the infinite width limit of GNNs, simplifying
practical scenarios. In addition, the analysis in Tang & Liu
(2023) does not consider graph structure.

In contrast, experimental and theoretical evidence suggests
that the GNN optimization procedure may only be optimal in
some settings. In several papers (Böker et al., 2023; Huang
et al., 2022), GNNs with random parameters or graph kernels
with handcrafted features outperform trained GNNs. Fur-
thermore, GNNs’ performance often deteriorates as depth
increases, a problem frequently attributed to phenomena
such as over-smoothing, over-squashing, and graph bottle-
necks. While many normalization techniques have been
suggested to avoid these issues successfully, they often are
not accompanied by a substantial performance gain (Rusch
et al., 2023). Additional evidence of the limitation of the
GNN optimization procedure is the recent work of Bechler-
Speicher et al. (2023), which shows that GNNs perform
suboptimally on learning tasks that can be solved only using
node features, despite the theoretical ability of GNNs to
exploit these features only and disregard the graph structure.

4.1. Challenges

Based on the above, we identify the following challenges.

Challenge IV.1: Towards guarantees for convergence
quality and rate. One important step towards better under-
standing the learning of graph representation models is to
improve existing analysis of convergence by considerably
weakening the strong linearity assumptions used in existing
work (Du et al., 2019; Tang & Liu, 2023; Xu et al., 2021a).
The convergence guarantees we are concerned with are both
guarantees on the rate of convergence and guarantees on
the quality of convergence, as well as a characterization of
what the dynamics converge to, e.g., a global or low-loss
local minimum or basin of attraction and other properties,
including relations to generalization, see Section 3, e.g., via
certain biases for simplicity. We may also ask whether GNN
training exhibits phenomena that have been observed in other
neural networks, such as the edge of stability or convergence
not to a point but an invariant measure (Cohen et al., 2021;
Chandramoorthy et al., 2022; Lobacheva et al., 2021; Zhang
et al., 2022).

Challenge IV.2: Towards understanding the influence
of architectural choice on GNNs’ optimization. Here,
the primary objective is to unravel the impact of various
architectural choices, such as aggregation functions or nor-
malization layers, on the properties of GNNs trained with
SGD. The goal is to discern how these architectural choices
shape the convergence properties of GNNs, explicitly inves-
tigating whether SGD can lead to parameter assignments
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that possess favorable attributes for generalization. This can
be accomplished by adapting recent advancements in un-
derstanding the convergence properties of SGD on standard
feed-forward neural networks , e.g., Du & Lee (2018); Arora
et al. (2019); Xu & Du (2023) and applying these insights to
MPNNs. This adaptation may involve interpreting MPNN
computation through the recursive unrolling of neighborhood
structures and comprehending how graph structure can be in-
corporated into these results. This exploration should include
GTs; insights from MPNNs can potentially be transferred,
with modifications, to GTs. We need to investigate whether
GTs exhibit distinct properties when trained with SGD. For
instance, we must explore the potential significant influence
of attention mechanisms within GTs.

Challenge IV.3: Towards understanding the influence of
the graph structure on GNNs’ optimization. In other
realms of deep learning, neural networks typically adhere
to a consistent structure, resulting in the limited impact
of their structure on the convergence properties of SGD.
However, for GNNs, the neural networks’ architecture is
directly shaped by the underlying data distribution, i.e.,
dictated by the graphs’ connectivity. Consequently, this
challenge focuses on unraveling the intricacies of how graph
structure, encompassing factors such as sparsity or specific
graph classes, affects the convergence properties of SGD. In
addition, we seek to understand how parameters controlling
graph structures, e.g., the number of symmetries, can be
incorporated into convergence guarantees. Given that GTs
integrate graph structure through structural and positional
encodings, it is also interesting to understand the interplay
between these encodings and the convergence behavior of
SGD, as well as the impact of choosing different encodings
on the convergence dynamics.

Challenge IV.4: Towards harnessing the power of depth.
For convolutional neural networks, successful training of
deeper neural networks via normalization techniques, such as
batch normalization or skip connections, have led to signifi-
cant performance improvements (He et al., 2016). Several
works, e.g., Zhao & Akoglu (2020), have developed analo-
gous normalizations for GNNs, and in some cases, complex
combinations of these techniques do lead to improved perfor-
mance (Li et al., 2021). Nevertheless, these solutions have
not consistently demonstrated gains significant enough to
persuade the community of their fundamental architectural
role, as is arguably the case for their counterparts in other
modalities. We suggest approaching this challenge by devel-
oping toy models of graph machine-learning problems that
can only be solved by deep GNNs and identifying training
mechanisms that will be guaranteed to lead to successful
learning. As a second step, the obtained training techniques
can be applied to real-world tasks, emphasizing tasks where
deeper GNNs are expected to be beneficial, such as the

“long-range graph benchmark” (Dwivedi et al., 2022).

Challenge IV.5: Defeating randomness. The existence
of instances where graph features produced by GNNs with
random weights perform on par with trained GNNs (Böker
et al., 2023; Huang et al., 2022) suggests that optimization of
GNNs sometimes does not lead to significant improvement
over the initial solution. This finding is coherent with that
MPNNs of moderate size, with random weights, attain their
maximal separation power (Amir et al., 2023; Aamand et al.,
2022). Nonetheless, it seems plausible that optimizing the
GNNs’ weights should lead to better graph features and
more successful learning by SGD. This challenge aims to
find mathematically precise explanations and models where
the optimal GNN parameters are significantly better for
learning than the average GNN parameters and suggest ways
to successfully learn these optimal GNN parameters; see also
Challenge IV.1.

5. Connecting Theory with Practice
While addressing the above-outlined challenges regarding
the GNNs’ expressive power, generalization abilities, and
optimization dynamics is essential to push GNN theory
forward, we also want to stress the need to align such theory
with practical needs.

For example, currently, proposed expressive architectures,
such as higher-order GNNs aligned with the k-WL (Morris
et al., 2021), are rarely employed by domain experts, e.g.,
in molecular property prediction (Duval et al., 2023). In
addition, theoretical results that have been derived so far often
make unrealistic assumptions, ignoring practical needs such
as continuous node and edge features. Moreover, results
investigating the generalization properties of GNNs based
on VC dimension theory and related concepts, e.g., Garg
et al. (2020); Morris et al. (2023), result in large sample
complexities, providing no practical guidelines.

Hence, it is essential to adapt new theoretical results to
domains where GNNs are frequently used, e.g., the molecu-
lar domain (Duval et al., 2023) or combinatorial optimiza-
tion (Cappart et al., 2021). Moreover, in practice, using
certain engineering tricks or folklore knowledge is common,
e.g., using a specific normalization layer in an application
domain. Therefore, it is essential to incorporate these choices
into theory, understanding why they work in practice and
how to improve them potentially.

Moreover, to quickly disseminate state-of-the-art, theoret-
ically principled GNN architectures to real-world applica-
tions, providing efficient, easy-to-use implementations of
such architectures is essential. Wang & Zhang (2023a)
took a first step in this direction by providing open-source
implementations of recently proposed expressive GNN archi-
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Figure 2. Proposal for a better alignment of theoretical and practical research within the graph machine learning community. We propose
the tight interaction and iterative refinement of mathematical models and architectural choices via rigorous experimental evaluations,
supported by state-of-the-art baseline implementations, benchmarks, evaluation pipelines, and visual exploration tools.

tectures. Hence, it is crucial to push such initiative further
by establishing a library used by the community, possibly
extending PYTORCH GEOMETRIC (Fey & Lenssen, 2019) or
DGL (Wang et al., 2019), making such architectures readily
available and easily benchmarked for practitioners.

Similarly, theoretical papers often need more thorough ex-
perimental evaluations. They are mostly evaluated on small,
out-of-date benchmark datasets, and often, their hyperpa-
rameters are not tuned sufficiently. Therefore, it is often
unclear if they perform better than tuned state-of-the-art
GNNs. Hence, it is essential to establish proper experimen-
tal pipelines and evaluation protocols for newly proposed
theoretically-principled architectures. Alongside establish-
ing solid evaluation protocols, it is important to establish
(synthetic) benchmark datasets to investigate the effect of
expressivity and its connection to generalization and opti-
mization in detail. A first step in this direction was recently
made by introducing the BREC dataset (Wang & Zhang,
2023b), which still lacks diversity in graph structure.

In addition, with the emergence of large-language models
(LLMs), several recent works tried using them for tasks such
as node/graph classification or graph generation (Chen et al.,
2024; Fatemi et al., 2023). However, their application re-
mains mostly ad-hoc, and it is unclear when they outperform
GNNs or help GNNs make better predictions.

5.1. Challenges

We derive the following challenges from the above to better
align theory with practical needs.

Challenge V.1: Unifying practical studies of theoreti-
cally principled GNN architectures. We have argued that
expressiveness, generalization, and optimization are inter-
related aspects necessitating a more holistic treatment. We
believe this should also be the case when studying these as-
pects from a practical, experimental perspective and suggest
establishing a “Theo-practical Dojo” inspired by the work
of (Joshi et al., 2023) on geometric graphs. The primary
objective is to guarantee a unified and standardized experi-
mental comparison of GNN architectures designed to guide
theoretically grounded considerations and foster controlled,

comparative studies. Accordingly, the dojo would consist
of pivotal benchmarks extending beyond graph discrimina-
tion and encompassing tasks, including predicting relevant
graph properties. Other than exposing standard protocols for
training and evaluation in the spirit of (Hu et al., 2020), to
jointly elicit aspects related to expressiveness, generalization,
and optimization, proposed tasks would cover families of
graphs with diverse structural characteristics, various types
of training-test distribution shifts and training datasets of
different scales. The dojo should allow controlling for and
contrasting the complexity of methods in comparison, regard-
ing the number of learnable parameters and their empirical
running time.

Finally, the dojo could be extended with a tool to visually
and interactively explore the hidden representation space of
models in comparison. We envision the tool would enhance
comprehension of the relationship between separation power
and generalization. Overall, from the analyses supported
by the dojo, researchers would obtain insights on their ap-
proaches, such as architectural “blind spots,” performance
gaps, and scaling difficulties, in a way to informatively
guide follow-up research refining their mathematical models,
see Figure 2.

Challenge V.2: A library of state-of-the-art, theoretically-
guided GNN implementations. To support the develop-
ment of the above-outlined dojo, it is crucial to have an
ideally large set of well-maintained and documented imple-
mentations of state-of-the-art theoretically-guided GNN ar-
chitectures available, possibly building on existing GNN im-
plementation libraries such as PYTORCH GEOMETRIC (Fey
& Lenssen, 2019) or DGL (Wang et al., 2019). Moreover,
the dojo’s evaluation pipeline and available datasets should
be integrated into such a library. In addition, we propose to
provide one-click reproducible baseline results to compare
newly proposed architectures to existing ones easily and
ensure fair comparisons.

Challenge V.3: Adapting theoretically-guided GNN archi-
tectures to domain knowledge. The challenges outlined
in Sections 2 to 4 mainly deal with the derivation of a gen-
eral theory of graph machine learning. However, to quickly
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disseminate the theory to practice and leverage it by domain
experts, it needs to be adapted to the specific needs of spe-
cific domains. Hence, we propose to identify key application
domains for graph machine learning, e.g., molecular property
prediction or combinatorial optimization, and, together with
domain experts, work out their specific requirements. For
example, it is essential to understand which kind of graph
structures arise in particular domains or what engineering
tricks, such as normalization layers, are currently leveraged.
Building on such a requirements list, we propose to adapt
and refine the mathematical theory and theoretical results.
In addition, we also suggest investigating the potential of
Neural Architecture Search (White et al., 2023; Elsken et al.,
2019) for GNNs to automatically adapt existing architectures
to meet specific requirements. It would also be interesting to
comparatively study architectural solutions found by NAS
and those emerging by the theoretical studies proposed in
this paper.

Challenge V.4: Improving graph machine learning in
different learning paradigms. Most of the graph machine
learning works we have cited here study supervised graph
machine learning, theoretically and empirically. Nonetheless,
many other learning paradigms impact graph machine learn-
ing and other areas, e.g., self-supervised learning, generative
modeling, transfer learning, foundation models, few-shot
learning, meta-learning, reinforcement learning, and plan-
ning. Advances in graph machine learning within these
different learning paradigms have found substantial empir-
ical impact in several cases. Graph learning research has,
for instance, fostered interesting advances in the area of
AI agents and planning (Ståhlberg et al., 2021; Deac et al.,
2020) or has, otherwise, achieved noteworthy results when
in combination with the aforementioned learning approaches,
see, e.g., chip design using GNNs and reinforcement learn-
ing (Mirhoseini et al., 2021), self-supervised learning for
3D molecular property prediction (Godwin et al., 2022),
and transfer learning from supervised pre-trained molec-
ular models (Ying et al., 2021). However, the success of
some of these different learning paradigms in graph machine
learning has lagged significantly behind their success in
other areas, such as natural language processing, computer
vision, and audio processing. For instance, self-supervised
learning on pure graph data (without, e.g., the task-specific
molecular 3D information as in Godwin et al. (2022)) has
had much less empirical impact than in NLP and CV. Also,
generative models for graphs are much weaker than those of
other domains; sequence models that generate molecules via
string representations are easier to use and often outperform
graph generative models (Flam-Shepherd et al., 2022), so
sequence models are frequently used in practice for drug-
design applications. Outside of graph machine learning,
each learning paradigm has rich theory and specific methods
that enable their success. Further theoretical and empirical

studies into connecting graph machine learning with these
different learning paradigms could be very impactful.

Challenge V.5: The principled application of LLMs for
GNNs. Nowadays, there is a large set of work on mixing
text and molecule/protein/crystals modalities, e.g., perform-
ing protein retrieval based on their text descriptions (Xu
et al., 2023), editing molecular structures with text instruc-
tions (Liu et al., 2022), or generating geometric properties
of crystal structures solely from fine-tuned LLMs (Gruver
et al., 2024). Pioneering works also propose using LLMs for
general interactive reasoning and mining on graphs (Fatemi
et al., 2023; Zhao et al., 2023a). Hence, a future challenge
regarding the foundations of graph learning would be to
understand these model capabilities precisely, with a specific
focus on their limitations and failure cases. Another pressing
challenge is applying LLM/GPT-style training on graphs in a
principled manner, e.g., for autoregressive graph generation.
Here, we need to traverse the graph canonically to represent
the graph as a sequence of tokens. However, theoretically,
this is challenging as it entails determining the orbit of each
node (the structural role of each node in the graph). Hence,
a challenge here is to devise “approximate” node traversal
strategies (Zhao et al., 2023b) that work well with LLMs-like
training objectives or devise exact ones for practical, relevant
graph classes, e.g., molecular graphs.

6. Conclusion
Here, we stressed the importance of a broader theory of
graph machine learning. Concretely, we highlighted the
importance of developing a more fine-grained theory of ex-
pressivity, relying less on the simple perspective of graph
isomorphism testing and considering more practically rele-
vant architectural parameters such as normalization layers
and skip connections. In addition, we underlined the need for
more work investigating the generalization and optimization
aspects of graph machine learning, focusing on more realistic
assumptions. Of course, the aspects of expressivity, optimiza-
tion and generalization are closely linked, and this interplay
warrants further understanding. Finally, we stressed the
importance of aligning this more balanced theory of graph
machine learning with practical needs, e.g., by considering
expert knowledge. By investigating the challenges we have
introduced, we believe that our research community will be
able to rethink the pillars of expressiveness, generalization,
and optimization in a more holistic and cohesive manner that
is more directly informed by practical and domain considera-
tions. We hope that this paper presents a valuable handbook
of directions for developing a more realistic and balanced
theory of graph machine learning and that its insights will
help spur novel research results and avenues in the future.
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Impact Statement
This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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