
Published as a conference paper at MathAI 2025

PHYSICS-INFORMED RADIAL BASIS FUNC-
TION NETWORKS AND KOLMOGOROV-
ARNOLD NETWORKS

D.A. Stenkin
Penza State University
Russia, Penza, Krasnaya Street, 40
stynukin@mail.ru

V.I. Gorbachenko
Penza State University
Russia, Penza, Krasnaya Street, 40
gorvi@mail.ru

ABSTRACT

Physics-informed neural networks are trained by minimizing the loss function,
which is the sum of the squares of the residuals of the equation or system of
equations being solved. Such networks do not require grid construction, which is
especially important when solving inverse boundary value problems and problems
with a complex solution domain. We use radial basis function networks with a
Gaussian function. Physics-informed radial basis function networks are easier
to train than fully connected networks. They allow one to analytically obtain
formulas for the gradient of the loss function. A special feature of our approach
to training networks based on radial basis functions is the adjustment of not only
the weights, but also the parameters of the radial basis functions, which does not
require the selection of parameters of the radial basis functions and accelerates
the training process. Algorithms for solving direct and inverse boundary value
problems, an algorithm for solving a system of differential equations for modeling
the Kovasznay flow have been developed. Programs have been developed that use
various algorithms for training physics-informed radial basis function networks.

1 INTRODUCTION

Neural networks are applicable for solving boundary value problems described by partial differential
equations (1; 2). This possibility is based, first of all, on the fact that neural networks are universal
function approximators. Cybenko’s theorem states that an artificial neural network with one hidden
layer can approximate any continuous function of many variables with any accuracy (3). Hornik
(4) proved that a multilayer perceptron with an arbitrary number of hidden layers and an arbitrary
number of neurons in each layer can approximate any continuous function with any accuracy on a
compact set. It was also proved that such approximation is possible for arbitrary activation func-
tions if they are bounded, continuous, non-polynomial and non-constant. A variational approach
is also used to solve partial differential equations on neural networks: the solution to the problem
is found by minimizing the error functional of the neural network. The residuals of the approx-
imate solution obtained by the network at a certain set of trial points inside, on the boundary of
the solution domain and, possibly, at points with additional conditions are used as the error func-
tional. Estimating the norm of this residual gives a better interpretable estimate of the accuracy of
the problem solution than estimates of the accuracy of the solution of grid methods, for which only
the order of accuracy of the approximation and the remainder of the solution of the system of grid
equations are known. Trial points are usually located randomly in the solution domain. Currently, a
specific class of neural networks has been formed for solving partial differential equations on neural
networks - physics-informed neural networks. Physics-informed neural networks (5; 6; 7) include
in the network structure a mathematical model of some physical phenomenon, for example, partial
differential equations. When solving direct problems, PINN do not require examples with known
values for training. Such networks solve the problem of low data availability in many scientific
and engineering problems where traditional machine learning methods are ineffective. Additional
conditions can also be used, for example, when solving inverse problems, experimental information
about the solution at individual points of the region is used. In physics-informed neural networks,

1

Published as a conference paper at MathAI 2025

the mathematical model is a regulating factor that improves the quality of the solution. Radial basis
function networks are successfully used to solve partial differential equations. Radial basis function
networks (8; 2; 9) are simpler than fully connected networks, since they contain only two layers -
a layer of radial basis functions (10) and a linear layer. The simplicity of the network architecture
simplifies the training of radial basis function networks, for example, it allows analytical calcu-
lation of the gradients of the error functional. The authors have developed second-order gradient
learning algorithms for radial basis function networks, in which not only the network weights are
configured, but also the parameters of the radial basis functions. The efficiency of the developed
algorithms has been demonstrated by solving direct (11; 12) and inverse (13; 14) boundary value
problems. Physics-informed radial basis function networks (15; 14; 16; 17) are an effective tool
for solving partial differential equations. Radial basis function networks have some similarities with
Kolmogorov-Arnold networks. Kolmogorov-Arnold networks are based on the Kolmogorov-Arnold
theorem (18), which states that any continuous multivariate function f(x1, x2, ..., xd) defined on a
bounded domain can be represented as a finite composition of continuous one-dimensional functions
and addition operations. Mathematically, this is expressed as:

f(x1, x2, ..., xd) =

2d+1∑
q=1

Φq

(
d∑

p=1

ψq,p(xp)

)
,

where: Φq and ψq,p are continuous one-dimensional functions. In (19), R. Hecht-Nielsen proposed
a neural network that directly reflects the Kolmogorov-Arnold representation, where the hidden d

layer computes the internal sums
d∑

p=1
ψq,p(xp) and the output layer computes the external sums

2d+1∑
q=1

Φq(.). But R. Hecht-Nielsen did not propose methods for finding the specific functions Φq and

ψq,p, which makes his network difficult to implement directly. Therefore, such networks have not
been developed.

Kolmogorov-Arnold networks (20) are also based on the Kolmogorov-Arnold theorem and in-
troduce significant innovations in architecture and training. Unlike the Hecht-Nielsen approach,
Kolmogorov-Arnold networks replace fixed activation functions with trainable cubic basis splines
(B-splines) in which the basis function weights are adjustable. Other basis functions can also be
used.

Radial basis function networks are similar to Kolmogorov-Arnold networks in that in both types of
networks, the inputs of the first layer are nonlinearly transformed using basis functions and added
together. In physics-informed radial basis function networks implementing the regression problem,
the second nonlinear layer is absent. In the one-dimensional case, as shown in (21), a complete
analogy between Kolmogorov-Arnold networks and radial basis function networks can be traced.
In the multidimensional case, there is no analogy, since the basis functions are functions of many
variables, which violates the conditions of the Kolmogorov-Arnold theorem. There are no data com-
paring radial basis function networks and Kolmogorov-Arnold networks. Solving partial differential
equations on physics-informed neural networks is a neural network approximation of the problem
solution. It is easier to approximate a multidimensional result function with multidimensional func-
tions than with one-dimensional ones, so it can be assumed that with an increase in the problem
dimension and in the case of inhomogeneous media, radial basis function networks will outperform
Kolmogorov-Arnold networks. To enhance the positive qualities of radial basis function networks,
it is necessary to adapt radial basis functions to the specific features of the problem being solved,
which requires adjusting not only the network weights, but also the parameters of the radial basis
functions. Such adjustment is implemented in the radial basis function network training algorithms
we propose.

The aim of this work is to develop algorithms for solving various boundary value problems on
networks of radial basis functions trained by gradient algorithms with the adjustment of not only the
network weights, but also the parameters of the radial basis functions.

2

Published as a conference paper at MathAI 2025

2 DEVELOPMENT OF ALGORITHMS FOR LEARNING
PHYSICS-INFORMED RADIAL BASIS FUNCTION NETWORKS

The output of the radial basis function network is described by the expression

v(x, y) =

nRBF∑
k=1

ωkφk(x, y),

where nRBF — number of radial basis functions (or number of neurons), ωk — weight of the k th
neuron, φk(x, y) — value of the k th radial basis function at point x.

To solve the problems in this article, Gauss functions were used as radial basis functions, which
have the form

φk(x, y) = e
− (x−ck1)2+(y−ck2)2

2a2
k

where ck1 and ck2 — centers of functions, ak — width of functions.

Consider a model direct problem in operator form having the form

Lu(x) = f(x), x ∈ Ω,

Bu(x) = p(x), x ∈ ∂Ω,

where u — desired solution; L — differential operator; operator B sets the boundary conditions; Ω
— solution area; ∂Ω — regional boundary; f and p — known functions.

Let us consider the effectiveness of the Levenberg-Marquardt diagonal method for solving the Pois-
son equation

∂2u

∂x2
+
∂2u

∂y2
= f(x, y), (x, y) ∈ Ω,

u(x, y) = p(x, y), (x, y) ∈ ∂Ω,

where Ω — estimated area; ∂Ω — the boundary of the computational domain; f = sin(πx) ·
sin(πy), p = 0.

The error function can be written as

1

2

N∑
i=1

(
∂2ui
∂x2

+
∂2ui
∂y2

− fi)
2 +

λ

2

K∑
j=1

(uj − pj)
2

whereN – number of internal test points,K – number of boundary test points, λ – penalty multiplier.

The network was trained to solve the Poisson equation using various methods: gradient descent,
Nesterov, Levenberg-Marquardt, and diagonal approximation of the Hessian. The gradient method
converges at a linear rate. And Newton’s method has a quadratic convergence rate. But to implement
Newton’s method, it is necessary to find the Hessian, the inverse Hessian matrix, and solve the
system. These are quite labor-intensive tasks. Especially finding the inverse matrix. Therefore,
some modification can be considered. We will consider the Hessian to be a diagonal matrix. We
equate all mixed partial derivatives to zero. Thanks to this, we can easily find the inverse matrix.
We can also adjust the convergence rate of the algorithm. This will help to circumvent the problem
of linear minimization of the error functional when the second derivatives become close to zero.

Due to the convenient structure of neural networks, the formulas of the second derivatives for the
Poisson equation were obtained analytically. The values of the elements located on the main diago-
nal of the Hessian for this problem can be obtained based on the following formula

∂2I

∂ω2
k

=

N∑
i=1

(e
− (xi−ck1)2+(yi−ck2)2

2a2
k (

(xi − ck1)
2 + (yi − ck2)

2 − 2a2k
a4k

))2+

λ

K∑
j=1

(e
− (xi−ck1)2+(yi−ck2)2

2a2
k)2

3

Published as a conference paper at MathAI 2025

where ck1 and ck2 — centers of functions, ak — width of functions.

The vector of weight coefficients in the Hessian diagonal approximation method is calculated using
the formula

ωk+1
i = ωk

i − η(
∂2Ik

∂ωk2
i

+ µ)−1 ∂I
k

∂ωk
i

where ∂Ik

∂ωk
i

— gradient vector components, η and µ — selected coefficients.

The Hessian diagonal approximation method achieved an accuracy of 10−3 in an average of 250
iterations. The gradient descent method did not achieve an accuracy of 10−3. The Nesterov method
achieved an accuracy of 10−3 in an average of 500 iterations.

Let us consider the efficiency of the modified Levenberg-Marquardt method with the adjustment of
the parameters of radial basis functions for solving new model problems describing processes in a
piecewise homogeneous medium.

The model problem describing processes in a piecewise homogeneous medium is presented in the
form of the following equation

∂

∂x
(σi(x, y)

∂u

∂x
) +

∂

∂y
(σi(x, y)

∂u

∂y
) = f(x, y),

(x, y) ∈ Ω, i = 1, 2,

u(x, y) = p(x, y), (x, y) ∈ ∂Ω,

where Ω — estimated area; ∂Ω — the boundary of the computational domain; f = sin(2πx) ·
sin(πy), p = 0, σi — a function describing the properties of the environment. The solution area is
a square with unit side length, divided at x = 0, 5 by a vertical line into two subareas with different
values of σi, i− 1, 2. x ∈ [0; 1], y ∈ [0; 1].

The problem is decomposed into two problems for regions 1 and 2 taking into account the conjuga-
tion conditions.

For area 1:
∂

∂x
(σ1(x, y)

∂u1
∂x

) +
∂

∂y
(σ1(x, y)

∂u1
∂y

) = f1(x, y),

(x, y) ∈ Ω, i = 1, 2,

u1(x, y) = p1(x, y), (x, y) ∈ ∂Ω1,

where Ω1 — design area 1; ∂Ω1 — design area boundary 1.

For area 2:
∂

∂x
(σ2(x, y)

∂u2
∂x

) +
∂

∂y
(σ2(x, y)

∂u2
∂y

) = f2(x, y),

(x, y) ∈ Ω, i = 1, 2,

u2(x, y) = p2(x, y), (x, y) ∈ ∂Ω2,

where Ω2 — design domain 2; ∂Ω2 — design area boundary 2.

At the interface between the media, the interface conditions must be fulfilled.

u1 |S= u2 |S , σ1
∂u1
∂x

|S= σ2
∂u2
∂x

|S

where S - regional boundary.

The radial basis functions were Gaussian functions. As a result of training, not only the vector of
weights, but also the parameters of radial basis functions were tuned, since it is important to tune all
parameters of the radial basis function network. The Levenberg-Marquardt algorithm is used to train
the radial basis function network (22). The Levenberg-Marquardt method is equivalent to the fast
confidence region method (23), but does not require solving the conditional optimization problem

4

Published as a conference paper at MathAI 2025

at each training iteration. The single vector of weights and parameters of the radial basis function
network at iteration k is found by the formula θk+1 = θk+△θk+1, in which the vector of correction
parameters θk is found from the solution of the system of linear algebraic equations

(JTk−1Jk−1 + µkE)△θk = −gk−1,

where Jk−1 and Jk — Jacobi matrices calculated in k − 1 and k iterations, E — unit matrix, µk

— regularization parameter changing at each training step, g = JT r — is the gradient vector of the
loss function along the parameter vector θ, r —vector of unconstraints in internal and boundary trial
points.

Two radial basis function networks are used for the solution, since each of the networks describes
its own area. During network initialization, the centers of radial basis functions were located on a
uniform grid. The vectors of weights and widths were initialized with random values close to zero.
Currently, there are no theoretical estimates of the optimal number of neurons and test points. The
authors’ experimental studies have shown that there is an optimal number of neurons and test points
for each task. With a small number of neurons and test points, low decision accuracy is obtained
or the learning process does not converge. With a large number of neurons and test points, high
accuracy of the solution is ensured, but the network operation time to obtain a solution increases
significantly. The number of neurons, test points and initial values of the parameters of the radial
basis functions were selected experimentally. As a result of the experiments, the following values
were obtained. The number of neurons used to solve a direct boundary value problem for each of
the two regions is 64. The initial values of the components of the width vector are 0.2. The number
of internal test points for two regions is N=80. The number of boundary test points for two regions
is K=80. The number of test points on the median line is 20. The coordinates of the collocation
points were generated as random numbers evenly distributed in the solution area.

Iterations were performed until the average square error was reached, equal to 10−10. The radial
basis function network was trained by the Levenberg-Marquardt method. The solution is achieved
in an average of 570 iterations. Due to the random initialization of the network, the number of
iterations varies in different experiments.

The inverse boundary value problem is described by a partial differential equation

∂

∂x
(k(x)

∂u

∂x
) +

∂

∂y
(k(x)

∂u

∂y
) = f(x), x ∈ Ω,

where k(x) — continuous unknown function describing the environment, x — the coordinate vector,
Ω- solution area. Without knowing the position of the interface boundary, it is impossible to model
a piecewise homogeneous function of the medium. Therefore, when solving the inverse problem,
the piecewise homogeneous function describing the medium was approximately replaced by a con-
tinuous function. The boundary conditions have the form

Bu(x) = p(x), x ∈ ∂Ω,

where ∂Ω — the border of the region. It is necessary to find the solution u and the k(x) function by
the solution known in some set of points

u(z) = ψ(z), z ∈ Z, Z ⊂ Ω

moreover, ψ(z) in real problems is the result of measurement with some error. The solution is made
on radial basis function networks. To obtain the values of additional conditions, a direct problem
has been solved previously on a radial basis function network. The direct boundary value problem
was a differential equation for a piecewise homogeneous medium with coefficients equal to 2 and
5.5. We use parametric optimization (24). To do this, we approximate the unknown k(x) function
with a radial basis function network

kRBF (x) =
Mk∑
m=1

ωk
mφ

k
m(x;pk

m),

where Mk the number of radial basis functions (or the number of neurons), pu
m — weights and

vectors of parameters of radial basis functions φu
m.

5

Published as a conference paper at MathAI 2025

The solution of the u direct problem, in which the k(x) function is approximated by the network, is
found by the second network of radial basis functions

uRBF (x) =
Mu∑
m=1

ωu
mφ

u
m(x;pu

m),

where Mu the number of radial basis functions (or the number of neurons), pu
m — weights and

vectors of parameters of radial basis functions φu
m.

Two networks were used to solve the inverse problem. The network kRBF for approximating the
desired function of the medium. And the network uRBF to approximate the solution. The error
functional was the sum of the squares of the residuals of the approximate solution at the test points
inside, at the boundary of the solution domain and at the points of additional conditions.

For an incorrect inverse problem, regularization was required. The method of iterative regularization
was the Morozov condition (25). The network has been trained so far

S∑
m=1

[u(xm)− ψ(xm)]2 > Sδ2,

where δ — the absolute error of measuring the solution at the points of additional conditions.

Gaussian functions were used as radial basis functions. The number of neurons, test points and
hyperparameters of learning were selected experimentally. For both problems, the number of radial
basis functions is 64. For both networks, 80 test points were used inside the solution area. For
the uRBF network, there are 80 test points on the boundary and 40 additional condition points.
The initial values of the components of the width vector for the two regions are 0.3. All penalty
coefficients of the error functional are 100. To check the efficiency of the algorithm, a problem was
considered that has an absolute error of measuring the solution at the points of additional conditions
equal to 0.0001. To solve this problem, the Morozov condition was used. The error functional value
of 10−5 is achieved in an average of 290 iterations.

In Fig. 1 the desired function of the medium is presented, obtained as a result of solving the inverse
boundary value problem, which models processes in a piecewise homogeneous medium.

Figure 1: The environment function obtained as a result of solving the inverse boundary value
problem

Judging by the graph, the neural network has successfully restored an unknown function of the
medium in the process of solving the inverse boundary value problem.

The solution of the problems is implemented in the MATLAB system, which provides ease of pro-
gramming and experimentation with the program and powerful graphical means of presenting the
results of the solution. A feature of the implementation is the analytical calculation of the gradients
of the loss function according to the parameters of the network and the Jacobi matrix, which is not
difficult to implement due to the simplicity of the network structure.

6

Published as a conference paper at MathAI 2025

3 MODELING A HYDRODYNAMIC PROBLEM ON
PHYSICS-INFORMED RADIAL BASIS FUNCTION NETWORKS

We will demonstrate the effectiveness of physics-informed radial basis function networks for solving
a model problem of hydrodynamics. For clarity, we can consider the Kovasznay current (26), since
it has an analytical solution.

u(x, y) = −e(−λx) cos(2πy),

v(x, y) = − λ

2π
e(−λx) sin(2πy),

p(x, y) = −1

2
e(−2λx),

where parameter λ is defined by the following expression

λ =

√
Re2

4
+ 4π2 − Re

2
,

where Re – Reynolds number.

The Kovasznay flow is a two-dimensional stationary flow. This problem is described by the Navier-
Stokes system of equations. Two–dimensional stationary Navier-Stokes equations for an incom-
pressible medium have the form:

∂u

∂x
+
∂v

∂y
= 0, (x, y) ∈ Ω,

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
, (x, y) ∈ Ω,

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
, (x, y) ∈ Ω,

where Ω — is the calculated area, u – first velocity component, v – second velocity component, p –
pressure. Dirichlet conditions are set at the boundary of the region.

The Kovasznay flow is the movement of the flow through the lattice. Kovasznay flow does not have
an initial condition. If the flow is stationary, then the streamlines coincide with the trajectories of
the particles. Since the current does not depend on time, the current lines remain unchanged. It also
makes it easier to visualize the process. If the flow is unsteady, then the trajectories of the particles
and the streamlines are different.

If the liquid is incompressible, then
ρ = const,

where ρ — the density of the liquid.

If the movement is stationary (27), then
∂V

∂t
= 0.

For this model problem, the solution area is a square with dimensions x ∈ [0; 1], y ∈ [0; 1].

The structure of neural networks allows us to calculate analytically the gradient of the error func-
tional. This problem was solved in two ways: with analytical calculation of the gradient of the error
functional and with the use of automatic differentiation. Analytical calculation allowed to speed up
the work of the program. This article presents the results of the solution obtained using the analyt-
ical calculation of the gradient of the error functional. Each variable had its own network of radial
basis functions based on physics. All three networks are connected by a common root-mean-square

7

Published as a conference paper at MathAI 2025

error functional. The functional consists of the sum of the squares of the residuals. To simplify the
expression, the multiplier 1

2 has been added for the gradient of the functional. The network was
trained to the value of the total error functional equal to 10−4. The error functional can be written
as

I =
1

2

N∑
i=1

(
ui
∂ui
∂x

+ vi
∂ui
∂y

+
∂pi
∂x

− 1

Re

(
∂2ui
∂x2

+
∂2ui
∂y2

))2

+

1

2

N∑
i=1

(
ui
∂vi
∂x

+ vi
∂vi
∂y

+
∂pi
∂y

− 1

Re

(
∂2vi
∂x2

+
∂2vi
∂y2

))2

+

1

2

N∑
i=1

(
∂ui
∂x

+
∂vi
∂y

)2

+
λ

2

K∑
j=1

(uj − uAj)
2

+
λ

2

K∑
j=1

(vj − vAj)
2 +

λ

2

K∑
j=1

(pj − pAj)
2

where Re – Reynolds number, N – number of internal test points, K – number of boundary test
points, λ – penalty multiplier, uAj , v

A
j , p

A
j – analytical value of the jth test point at the boundary of

the region.

The model is implemented in the MATLAB environment. The centers of the radial basis functions
of each network were located on a uniform grid. The weight and width vectors were initialized with
zero values. Experiments were conducted for each network to select the optimal number of neurons
and trial points. The number of neurons for each physics-informed radial basis function networks is
64. The number of interior trial points for each network is 100. The number of boundary trial points
for each network is 40. The coordinates of collocation points were generated as random numbers
that were uniformly distributed in the solution domain. The network was trained using Nesterov’s
method. Only the weights were customizable. The location of the test points is shown in Figure 2.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Test points

Let us analyze the effectiveness of the Nesterov method using the example of a model problem
simulating the Kovasznay flow. The Nesterov method uses the history of parameter changes and the
idea of the pulse accumulation method (28; 22). The formula for calculating the parameters in this
case takes the form

△Θ(k+1) = α△Θ(k) − γgradI(Θ(k) − α△Θ(k)).

where Θ — the vector of one of the network parameters (we can consider the vector of all param-
eters), γ — the selected numerical coefficient (learning rate), α — the moment coefficient, which
takes values in the interval [−0.5; 1.5].

8

Published as a conference paper at MathAI 2025

Figure 3 shows the behavior of the error functional.

10
0

10
1

10
2

10
-4

10
-3

10
-2

10
-1

10
0

10
1

I1

I2

I3

I4

I5

I6

RMSE

MSE

Figure 3: Error functional

I1, I2, I3 are the error values for the three Navier-Stokes equations, respectively. I4, I5, I6 are the
error values for the three boundary conditions, respectively. The graph also shows the mean square
error functional values (MSE) and the root mean square error functional values (RMSE). The root
mean square error functional value of 10−2 is achieved in on average of 150 iterations. This problem
was solved on a fully connected network (29). Physics-informed radial basis function networks are
as accurate as fully connected networks, but they are easier and faster to train. Physics-informed
radial basis function networks allowed us to achieve a root mean square error functional value of
10−2 on average in 15 minutes.

Plots of analytical solutions for velocity and pressure components are presented in Figures 4, 6, 8.
The graphs obtained as a result of the network operation are shown in Figures 5, 7, 9. They have
a visual similarity to the analytical solution. The value of the root mean square error functional for
the first velocity component is on average 10−6. The value of the root mean square error functional
for the second velocity component is on average 10−6. The value of the root mean square error
functional for pressure averages 10−4. This is a testament to the effectiveness of the program.

Figure 4: Analytical solution for the first velocity component

9

Published as a conference paper at MathAI 2025

Figure 5: The first component of speed resulting from network operation

Figure 6: Analytical solution for the second velocity component

Figure 7: The second component of speed obtained as a result of network operation

10

Published as a conference paper at MathAI 2025

Figure 8: Analytical solution for pressure

Figure 9: Pressure obtained as a result of network operation

Error graphs compared with the analytical solution for the two components of velocity and pressure
are shown in Figures 10, 11, 12.

Figure 10: Error compared to the analytical solution for the first speed component

11

Published as a conference paper at MathAI 2025

Figure 11: Error compared to the analytical solution for the second speed component

Figure 12: Error compared to the analytical solution for pressure

4 CONCLUSION

Algorithms and programs for solving direct and inverse boundary value problems on physically in-
formed networks of radial basis functions have been developed. An algorithm and programs for
solving a system of differential equations for solving two-dimensional stationary Navier-Stokes
equations using networks of radial basis functions have been developed. The gradient descent
method, Nesterov’s method, Levenberg-Marquardt method, and Hessian diagonal approximation
method have been adapted to solve the problems. Further development of the work involves devel-
oping an extension for one of the neural network implementation libraries in order to implement
physically informed networks of radial basis functions using automatic differentiation. This will ex-
pand the possibilities of using physically informed networks of radial basis functions and will allow
objectively comparing physically informed neural networks of different architectures.

REFERENCES

[1] D.I.Fotiadis I.E.Lagaris, A.Likas. Artificial neural networks for solving ordinary and partial
differential equations. IEEE Transactions on Neural Networks, 9:987–1000, 1998.

[2] M. Kumar N. Yadav, A. Yadav. An introduction to neural network methods for differential
equations. Dordrecht, page 115, 2015.

12

Published as a conference paper at MathAI 2025

[3] G. Cybenko. Approximation by superposition of a sigmoidal function. mathematics of control.
Signals and Systems, 2:303–314, 1989.

[4] K. Hornik. Approximation capabilities of multilayer feedforward networks. NeuralNetworks,
4(2):251–257, 1999.

[5] G.E. Karniadakis M. Raissi, P. Perdikaris. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019.

[6] Z. Mao G.E. Karniadakis L. Lu, X. Meng. Deepxde: A deep learning library for solving
differential equations. SIAM Review, 63(1):208–228, 2021.

[7] F. Giampaolo G. Rozza M. Raissi F. Francesco Piccialli S. Cuomo, V.S. Di Cola. Scientific
machine learning through physics–informed neural networks: Where we are and what’s next.
Journal of Scientific Computing, 92:88, 2022.

[8] P. Ramachandran A.A. Ramabathiran. Spinn: Sparse, physics-based, and partially interpretable
neural networks for pdes. Journal of Computational Physics, page 445, 2021.

[9] A. Wong A. Hryniowski. Deeplabnet: End-to-end learning of deep radial basis networks with
fully learnable basis functions.

[10] M.D. Buhmann. Radial basis functions: Theory and implementations. Cambridge, Cambridge
University Pres, page 259, 2004.

[11] G.E. Karniadakisa M. Raissi, P. Perdikaris. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019.

[12] D.A. Stenkin V.I. Gorbachenko. Solving equations describing processes in a piecewise ho-
mogeneous medium on radial basis functions networks. Neuroinformatics 2020. Studies in
Computational Intelligence, 1008:412–419, 2021.

[13] D.A. Stenkin V.I. Gorbachenko. Deep radial basis function networks. 7th International Con-
ference on Contemporary Information Technology and Mathematics, page 267–273, 2021.

[14] D.A. Stenkin V.I. Gorbachenko. Physics-informed radial basis function networks: Solving
inverse problems for partial differential equations. Cyber-Physical Systems and Control II.
CPSC 2021. Lecture Notes in Networks and Systems, 460:3–12, 2023.

[15] D.A. Stenkin V.I. Gorbachenko. Solving of inverse coefficient problems on networks of radial
basis functions. Advances in Neural Computation, Machine Learning, and Cognitive Research
V. Neuroinformatics 2021, 1008:230–237, 2022.

[16] D.A. Stenkin V.I. Gorbachenko. Physics-informed radial basis-function networks. Technical
Physics, 68:151–157, 2023.

[17] D.A. Stenkin V.I. Gorbachenko. Mathematical modeling on a physics-informed radial basis
function network. Mathematics, 12(2):241, 2024.

[18] A.N. Kolmogorov. On the representation of continuous functions of many variables by super-
position of continuous functions of one variable and addition. Russian Academy of Sciences,
114(5):953–956, 1957.

[19] Hecht-Nielsen R. Kolmogorov’s mapping neural network existence theorem. IEEE First An-
nual Int. Conf. on Neural Networks, 3(2):11–13, 1987.

[20] Z. Liu Y. Wang S. Vaidya F. Ruehle J. Halverson M. Soljačić T.Y. Hou, M. Tegmark. Kan:
Kolmogorov-arnold networks. https://arxiv.org/abs/2404.19756.

[21] Z. Li. Kolmogorov-arnold networks are radial basis function networks. https://arxiv.
org/abs/2405.06721.

[22] S. Wright J. Nocedal. Numerical optimization. Springer, 378:2006, 2006.

13

https://arxiv.org/abs/2404.19756
https://arxiv.org/abs/2405.06721
https://arxiv.org/abs/2405.06721

Published as a conference paper at MathAI 2025

[23] D.W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal
of the Society for Industrial and Applied Mathematics, 11:431–441, 1963.

[24] P.N. Vabishchevich A.A. Samarskii. Numerical methods for solving inverse problems of math-
ematical physics. Berlin: Walter de Gruyter, 52:454, 2007.

[25] V.A. Morozov. Methods for solving incorrectly posed problems. New York: Springer, page
280, 1984.

[26] L.S.G. Kovasznay. Laminar flow behind a two-dimensional grid. Mathematical Proceedings
of the Cambridge, 44(1):58–62, 1948.

[27] N. A. Slezkin. Dynamics of viscous incompressible fluid. state publishing house of technical
and theoretical literature, 1955.

[28] Y. E. Nesterov. Introduction to convex optimization. Moscow Center for Continuous Mathe-
matical Education, page 280, 2010.

[29] S.V.Strizhak K.B.Koshelev. The use of a physically based neural network on the example
of modeling hydrodynamic processes that allow an analytical solution. Proceedings of the
Institute of System Programming of the Russian Academy of Sciences, 5:245–258, 2023.

14

	Introduction
	DEVELOPMENT OF ALGORITHMS FOR LEARNING PHYSICS-INFORMED RADIAL BASIS FUNCTION NETWORKS
	MODELING A HYDRODYNAMIC PROBLEM ON PHYSICS-INFORMED RADIAL BASIS FUNCTION NETWORKS
	CONCLUSION

