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Abstract

Generating simulations to train intelligent agents in game-playing and robotics
from natural language input, from user input or task documentation, remains an
open-ended challenge. Existing approaches focus on parts of this challenge, such
as generating reward functions or task hyperparameters. Unlike previous work,
we introduce FACTORSIM that generates full simulations in code from language
input that can be used to train agents. Exploiting the structural modularity specific
to coded simulations, we propose to use a factored partially observable Markov
decision process representation that allows us to reduce context dependence during
each step of the generation. For evaluation, we introduce a generative simulation
benchmark that assesses the generated simulation code’s accuracy and effectiveness
in facilitating zero-shot transfers in reinforcement learning settings. We show that
FACTORSIM outperforms existing methods in generating simulations regarding
prompt alignment (i.e., accuracy), zero-shot transfer abilities, and human evaluation.
We also demonstrate its effectiveness in generating robotic tasks.

1 Introduction

Simulations hold significant potential for training agents to perform real-world tasks where data
collection is costly, dangerous, or infringes on individual privacy. A major bottleneck in harnessing
the potential of simulations at scale for agent training is the cost of designing and developing
them, especially when we need a distribution of simulations that meet detailed design specifications
to train more generalized policies. In this paper, we aim to generate coded simulations given text
specifications. Code provides a natural interface for users to inspect, modify, and debug the simulation.
It also allows us to craft diverse environments for Reinforcement Learning (RL) purposes.

Generating full simulations in code to train agents from a text prompt is an under-explored challenge.
Previous works focus on parts of this challenge, including reward function design [22], hyperparame-
ter tuning [24], and task configuration while relying on an existing simulator [35]. These methods
use large language models (LLMs) to generate the components of simulations specified as code.
However, when faced with large and detailed contexts, LLMs often generate simulations that ignore
or fail to adhere to parts of the input prompt [21]. This issue is not solely due to the limitations of

1Work done while Harini S I was an intern at Stanford.
2Correspondence to sunfanyun@cs.stanford.edu
3Project website: https://cs.stanford.edu/ sunfanyun/factorsim/

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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Figure 1: Overview of FACTORSIM. FACTORSIM takes language documentation as input, uses Chain-
of-Thought to derive a series of steps to be implemented, adopts a Factored POMDP representation
to facilitate efficient context selection during each generation step, trains agents on the generated
simulations, and tests the resulting policy on previously unseen RL environments.

existing LLMs but also suggests that some form of decomposition is always critical as we scale up
the number of components in simulations. We ask the question: can we exploit the inherent structure
(e.g., having a game loop that handles agent actions, updates internal game states accordingly, and
displays the game states to the users through a rendering process) of coded simulations to generate
them better?

We propose FACTORSIM, a framework that takes an arbitrary language specification as input and
outputs a full simulation that can be used to train RL agents. The key idea of FACTORSIM is to
decompose the input prompt into a series of steps and then use a factored Partially Observable
Markov Decision Process (POMDP) representation to reduce the context needed for each generation
step. To realize FACTORSIM, we use the model-view-controller software design pattern to structure
the generation process. Consider generating a coded simulation of WaterWorld; see Figure 1. The
game consists of an agent (blue circle) traveling in a 2d world, capturing food (green circle) while
avoiding enemies (red circle). Our method first decomposes the game description into multiple
steps to be implemented. For example, a step instruction could be “Introduce red dot enemies that
can be controlled with arrow keys. Give the player a -1 reward when the agent collides with an
enemy”. We first select the context needed for this functionality to be implemented, e.g., positions of
existing agents. Subsequently, FACTORSIM generates (at most) three functions: one to handle player
input (i.e., handle_key_press, the controller component), one to implement the collision logic (i.e.,
collision_logic, the model component), and one to update the rendering function (i.e., render_red_dot,
the view component). Limiting the context during each step of the simulation generation process
allows FACTORSIM to focus on the task at hand while avoiding hallucinating non-existent functions
or modifying code not meant to be changed.

To evaluate the task of full simulation generation, we propose a new Generative Simulation4 bench-
mark with accompanying success metrics. One set of success metrics is the pass rate in automated
system tests. Commonly used in game development, these system tests programmatically assess
whether the behavior of the generated simulation adheres to the specifications given in the input
prompt. The second success metric assesses the value of the generated simulations for transfer learn-
ing in an RL setting. This evaluates how well agents trained on a set of generated simulations can
generalize to held-out environments that satisfy the design specifications provided in prompts. Gen-
eralization to unseen environments is crucial for many applications, including transferring robotics

4We adopt this term from [39] to refer to automated simulation generation to train agents within.
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policies learned in simulation to the real world. This benchmark consists of 8 RL environments with
varying levels of difficulty. In addition to evaluating our method on the benchmark we introduced,
we further assess FACTORSIM’s ability to generate robotic tasks on the dataset published by Gen-
Sim [35]. We demonstrate the value of our method, FACTORSIM, on both the benchmark task suite
and GenSim’s dataset, showing performance superior to baseline alternatives.

In summary, our contributions are three-fold. First, we propose FACTORSIM, a framework for
generating coded simulation with a factor graph of a POMDP as a principled way to reduce context
dependence. Second, we introduce a new generative simulation benchmark by adapting an existing
RL benchmark [33], and demonstrate FACTORSIM’s superior results against baselines in terms of
code correctness (i.e., prompt alignment), ability to facilitate zero-shot generalization and human
evaluation of the simulations. Third, we demonstrate that FACTORSIM can be applied to generating
simulation tasks for robotics, outperforming existing approaches.

2 Related Work

We aim to generate simulations for training agents to generalize to previously unseen environments.
Recent work has investigated this in the context of learned neural world models and LLM-generated
code for simulations.

World models simulate the dynamics of a given environment and use this as a proxy environment
for agent training, rather than interacting with a ground truth simulator [8]. Several approaches have
demonstrated the value of learning world models as part of general algorithms that can learn to play
a variety of games (AlphaZero [30], Muesli [13], and DreamerV3 [9]). Other efforts use a large
set of offline data to learn a world model that is subsequently used for agent training, including for
autonomous vehicle driving (GAIA-1 [14]), robotic manipulation (UniSim [40]), and 2D platformer
games (Genie [5]). We generate world models as code as they are more interpretable, modular, and
easily modified or extended by humans—key advantages we believe are important for their use in
authoring large-scale or complex simulations.

LLMs have generated many parts of simulations for game playing and robotics. In (RL) games, LLMs
have been used to generate game levels [34, 31], to choose parameters for an existing simulator [44],
and to assist humans in creating full games [3]. In robotics, LLMs have been used to generate
reward functions, task specifications, and specific components like scene configurations within
robotics tasks. Many works such as RoboGen [37], Holodeck [41], and Gen2Sim [16] build on top
of existing simulators and use a series of prompts to generate interactable 3D environments to train
agents. GenSim [35] starts from a human task library and iteratively generates and tests new tasks
to generate robotic manipulation tasks. Other efforts have focused on generating reward functions
for tasks [22, 19, 23]. Eureka [22] uses feedback from agent training to refine reward function
specification. Our approach is able to generate both the simulator dynamics and reward functions and
can be applied to both robotics and games.

As noted above, LLMs can struggle to handle complex tasks: this has prompted research into
different ways to structure LLM reasoning. Chain-of-Thought (CoT) prompting demonstrated
LLM performance can be substantially boosted by prompting the LLM to break a single task
into multiple steps with either few-shot examples [38] or zero-shot [18]. Subsequent work has
developed a variety of techniques to improve LLM reasoning through multi-step reasoning prompts:
checking for consistency among multiple reasoning paths [36], interleaving reasoning and tool use
(ReACT [43]), using tree data structures to guide the LLM reasoning process (Tree-of-Thought [42]),
or formulating reasoning as a tree search process [12, 46]. Approaches for general code generation
include decomposing the task into functions to subsequently generate (Parsel [45]), generating code
to reach a series of intermediate execution states (ExeDec [28]), and using a multi-agent framework
to generate, test, and refine code (AgentCoder [15]). Other efforts optimize the prompts for given
tasks, using evolutionary search (EvoPrompt [7]) or defining generalized declarative programming
frameworks with modular optimization algorithms [17]. Our approach generates code by leveraging
a factorized representation specific to simulations to reduce the input context needed for different
reasoning steps; it can be used in conjunction with approaches for general code generation, such as
generating tests as a form of self verification.
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3 FACTORSIM: Generating Simulations via Factorized Representation

A simulation is a structured system of modules connected by events and responses. Our framework,
FACTORSIM, generates code using LLMs by exploiting this structure to construct a simulation
progressively. Our key insight is that, by generating a simulation step-by-step while only selecting the
relevant context information needed for each step, we can effectively reduce the reasoning capacity
needed for each step, leading to simulations that adhere more closely to the input requirements.

In this section, we describe our method for generating Turing-computable simulations. First, we de-
scribe simulations that can be modeled as a Partially Observable Markov Decision Process (POMDP).
Second, we use Chain-of-Thought (CoT) to decompose an input prompt describing the desired full
simulation into a series of prompts describing different components to be implemented. Third, we
introduce a factorized POMDP representation that exploits the inherent modularity of coded simu-
lations. Refer to Algorithm 1 and Figure for an overview of FACTORSIM alongside an illustrative
example.

Algorithm 1: FACTORSIM

Input: Qtext, a natural language description of the simulation, and an LLM
Output: a turing-computable simulation represented as a POMDPM′ = ⟨S,A,O, T,Ω, R⟩

Initialize a Factored POMDPM1 ← ⟨S1, A, ∅, T1, ∅, R1⟩ where
- S1 := {sscore}
- A is the set of all keyboard inputs
- T1 is an identity function, i.e., T1(s

′ | s, a) = 1[s′ = s]
- R1(s, a, s

′) := s′score − sscore

// Chain of Thought
Derive a step-by-step plan (q1, . . . , qk) ∼ p(q1, . . . , qk | Qtext) Eq. (1)

for each step, or module qk do
State space update & context selection p(Sk+1, S [Zk] |Sk, qk) Eq. (9),(10)

// Controller component update
Action-dependent state transition model update: p(T (a)

k+1|S [Zk] , A, qk)

// Model component update
Action-independent state transition model update: p(T (s)

k+1|T [Zk], S [Zk] , qk)

// View component update
Observation model update: p(Ωk+1|S [Zk] , qk) Eq. (13)

Mk+1 = ⟨Sk+1, A,Ok+1, Tk+1,Ωk+1, R1⟩ where Ok+1 is the new observation space defined by
Sk+1 and Ωk+1, and Tk+1(s

′ | s, a) = T
(s)
k+1(s

′ | s) · T (a)
k+1(s | s, a).

end
Return the final simulationM′ ←Mk+1

3.1 Modeling Simulation as POMDP

A Partially Observable Markov Decision Process (POMDP) is used to represent a coded simulation.
Formally a POMDP is represented as a tuple M = ⟨S,A,O, T,Ω, R⟩ where S is a set of states, A is
a set of actions, O is a set of observations, T : S ×A → ∆(S) is a transition probability distribution,
Ω : S → ∆(O) is an observation function, and R : S ×A× S′ → R is the reward model 5.

We aim to generate a simulation from a prompt Qtext. In this paper, we are particularly interested in
the case where Qtext comprises detailed design specifications such that the resulting simulation could
be used to train agents, though our method applies to any prompt for defining a simulation. In our
experiments, Qtext is a paragraph of text around 10 sentences specifying this simulation.

5We omit the discount factor γ and the initial state distribution π in the formulation for brevity. In our
experiments, π is generated alongside the states S.
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Figure 2: An illustrative example of how the five main prompts in FactorSim correspond to our
formulation in Algorithm 1. Note that the function red_puck_respawn is retrieved as part of the
context to Prompt 3, 4, and 5 because it modifies the state variable red_puck_position, a state variable
LLM identified as relevant in prompt 2.

3.2 Chain of Thought

We first decompose the prompt Qtext into a series of steps using Chain of Thought [38], each
describing a module of the simulation to be implemented. Following similar formulation as in [26],
this can be thought of as marginalizing over a step-by-step plan variable (q1, . . . , qk) using N Monte
Carlo samples:

p̂(M′|Qtext) =
1

N

N∑
i=1

p(M′|q(i)1 , . . . , q
(i)
K ), where (q

(i)
1 , . . . , q

(i)
K ) ∼ p(q1, . . . , qK |Qtext), (1)

p is a probability estimation model (i.e., an LLM in our experiments), and M′ is the resulting code
that fully specifies a simulation. In practice, we only produce a single plan N = 1.

Intuitively, this process breaks the prompt into sub-tasks. After we sample such a plan of K steps,
we generate the simulation progressively. Given an existing POMDP M and a natural language
specification q, we update the POMDP to reflect the changes specified.

p(MK+1|q1, . . . , qK) ≈
K∏

k=1

p(Mk+1|Mk, qk) (2)

where Mk+1 is the POMDP (simulation as code) after the k-th step is implemented, and MK+1 is
the final simulation. While Chain-of-Thought prompting allows LLMs to avoid having to generate
code for all simulation logic at once, the complexity of each step still grows with k due to the
expanding codebase. This task remains challenging because LLMs must comprehend the code and
accurately identify where modifications are needed. Acknowledging the limited reasoning ability of
LLMs, we ask: can we further decompose the p(Mk+1|Mk, qk) into simpler distributions to reduce
the complexity of each prompt?

3.3 Decomposition by Factorized Representation

Naively, we could further decompose a step of the generation into several steps, each focused on
generating a different component of the POMDP:

p(Mk+1|Mk, qk) =p(Sk+1|Mk, qk)· (3)
p(Tk+1|Sk+1,Mk, qk)· (4)
p(Rk+1|Sk+1, Tk+1,Mk, qk)· (5)
p(Ωk+1|Sk+1, Tk+1, Rk+1,Mk, qk) (6)

5



However, this still requires the LLMs to take the entire simulation (Mk) as context, which could
be over hundreds of lines of code in our experiments. Empirically, we observe that many failed
generations can be attributed to LLMs attending to or modifying parts of the input context unrelated
to the prompt.

To reduce the input context needed for each generation step, we propose to use a factored POMDP
representation to remove the dependence on the full previous POMDP as context. For instance, given
an existing simulation Mk of red, green, and blue agents, to implement the kth-step instruction qk:
respawn the red agent when it collides with the blue agent, we only need context
regarding the respawn logic of the red agent and the positions of the red and blue agents. Code
regarding the green agent or the rendering logic would be unnecessary context.

To formalize our approach, we first introduce notation common to the literature [25, 32]. Suppose
we have a POMDP with a state space factored into n state variables S = S[1]× . . . S[n] and Z is a
subset of indices Z ⊆ {1, 2, . . . , n}, we define the scope set S[Z] :=

⊗
i∈Z S[i] as the state space

spanned by the subset of state variables. For example, if Z = 1, 3, 4, then S[Z] defines a state space
defined by S[1]× S[3]× S[4]. We denote a state in the scoped state space S[Z] as s[Z]. Below, let
us formally define a factored POMDP.
Definition 3.1. A factored POMDP is a POMDP with both factored transition distribution and
factored reward function. A transition probability distribution T of a POMDP with discrete action
space is factored over its state space S = S1× . . . Sn with scopes Z1, . . . , Zm if, for all s ∈ S, a ∈ A
there exist some {Ti}mi=1 in the space of all possible transition distributions on the state space S and
action space A, such that,

T (s|s, a) =
m∏
i=1

Ti (s[i] | s [Zi] , a) . (7)

A reward function R of a POMDP is factored over S = S1 × . . . Sn with scopes Z1, . . . , Zl if, for
all s ∈ S, a ∈ A there exist some {Ri}li=1 in the space of all possible reward functions on the state
space S and action space A, such that,

R(s, a) =

l∑
i=1

Ri (s [Zi] , a) . (8)

A factored POMDP can be represented as a factor graph 6 with two types of nodes: state variables
(i.e., Si) and factors (i.e., Ti or Ri), functions of (state) variables. Our idea is to reduce context
dependence by structuring the code using a factored POMDP representation and treat each
generation step as expanding a factored POMDP with new state variables and new factors. During
every step qk, we first select a set of relevant state variable indices Zk. Then, we select existing
factors that have overlapping scope with the selected set of state variables as context, which we
denote as T [Zk] and R[Zk]. That is, we can reduce the dependence on the previous simulation Mk

and rewrite Equation 3-6 to the following:

p(Mk+1|Mk, qk) ≈p(Sk+1|Sk, qk)· update state space (9)
p(S [Zk] |Sk+1, qk)· identify relevant state variables (10)
p(Tk+1|T [Zk], S [Zk] , A, qk)· update state transition function (11)
p(Rk+1|R[Zk], S [Zk] , A, qk)· update reward function (12)
p(Ωk+1|S [Zk] , qk). update partial observation function (13)

Note that Zk can only consist of state variable indices in the state space Sk+1. In practice, we achieve
this by encouraging the LLM to select a minimal set of relevant states Zk in the prompt.

We find that the term 11 is most prone to error, likely because the most complicated functions of a
simulation are state transitions. Motivated by this observation, we propose to adopt the model-view-
controller design pattern for structuring these prompts. Instead of prompting LLMs to update the
state transition function first and then update the reward function, we prompt the LLMs to update the
action-dependent part of the state transition function (i.e. the Controller component) and then the

6More precisely, a factor graph of a Dynamic Bayesian Network (DBN) [11, 4].
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Table 1: Percentage of system tests passed by different methods of generating 2D RL games.
% of system tests passed. Flappy Bird Catcher Snake Pixelcopter Pong Puckworld Waterworld Monster Kong

Mistral-7B-Instruct 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Llama-3 0.15 0.33 0.19 0.14 0.01 0.43 0.25 0.29
Llama-3 w/ self debug 0.15 0.41 0.28 0.19 0.03 0.44 0.22 0.31
Llama-3 CoT w/ self debug 0.20 0.39 0.25 0.21 0.16 0.50 0.42 0.35
GPT-3.5 0.19 0.39 0.37 0.38 0.22 0.33 0.34 0.19
GPT-4 0.35 0.35 0.42 0.44 0.25 0.34 0.46 0.21
GPT-4 w/ self debug 0.33 0.53 0.43 0.51 0.75 0.41 0.45 0.31
GPT-4 w/ AgentCoder 0.18 0.45 0.27 0.43 0.43 0.33 0.20 0.23
GPT-4 CoT w/ self debug 0.30 0.51 0.39 0.53 0.64 0.47 0.50 0.34

Llama-3 w/ FACTORSIM (ours) 0.55 0.54 0.50 0.41 0.38 0.58 0.27 0.35
GPT-4 w/ FACTORSIM (ours) 0.78 0.66 0.44 0.78 0.61 0.81 0.62 0.44

action-independent part (i.e., Model). We treat the reward model as part of the state transition function
that updates a score state variable. That is, T (s′|s, a) = T (s)(s′|s)T (a)(s|s, a) where T (a)(s|s, a)
denotes the part of the state transition function that handles how actions affect the states and T (s)(s′|s)
denotes the part of the state transition function that how states are updated every step. This gives us
our final algorithm as illustrated in Algorithm 1.

In Algorithm 1, colors indicate the corresponding components of the model-view-controller pattern.
Red highlights the controller, corresponding to parts of the state transition dependent on user-input
actions.Green shows the model, corresponding to parts of the state transition function that are not
dependent on user-input actions. Blue shows the view component, updating the observation function
that acts as the “renderer” of the state space.

4 Experiments

In this paper, we consider two types of simulations: 2D Reinforcement Learning (RL) games and
robotics tasks in a physics engine. We also introduce a new benchmark to evaluate generative
simulation methods. Our experiments are designed to test three hypotheses. First, FACTORSIM
generates simulations with better prompt alignment, which we evaluate through system tests and
human evaluations. Second, FACTORSIM enables better zero-shot transfer by training RL agents in
the simulated generated environments. Third, FACTORSIM’s strengths in generating robotic tasks.

4.1 RL Game Generation

To answer our first two hypotheses, we propose a new benchmark that includes all 2D games from the
PyGame Learning Environment 7 [33]: Flappy Bird, Catcher, Puckworld, Pixelcopter, Pong, Snake,
Waterworld, and Monster Kong. For each RL game, the input prompt consists of the game’s online
documentation. Since most game documentation is incomplete, we manually supplement them with
additional details (see Appendix). This ensures that our method and the baselines do not hallucinate
any missing game information, allowing for a fair evaluation across all methods.

Following common practices in game development, we design system tests to verify that the generated
simulations follow the specified logic programmatically. These tests simulate actions like key presses
and mouse clicks and check if the game states are updated correctly. Refer to the Appendix for more
details.

Baselines For baselines, we compare to three methods using a closed-source (GPT-4 [1]) and an
open-source LLM (Llama-3 [2]). The first approach prompts the LLM with all contexts at once,
which we denote as the vanilla method. The second approach uses self-debugging [6], where the
model retries generating the code when provided error messages from running the code (up to 10
times in our experiments). A third approach combines Chain-of-Thought [38] (CoT) reasoning with
self-debugging, where the LLM generates code incrementally, processing one instruction at a time.
Additionally, we incorporate AgentCoder [15] as a baseline. CoT with self-debugging is an ablation
study of our method that acts without the factored POMDP representation.

7We exclude the sole 3D game Raycast Maze and leave 3D game generation to future work.
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Figure 3: Performance and token usage analysis of GPT-4-based
methods. Ellipses correspond to 90% confidence intervals for
each algorithm, aggregated over all RL games.

Code Generation Evaluation
Table 1 shows the results for the
baselines and our method. FAC-
TORSIM outperforms all baselines
in 7 out of 8 games. Addition-
ally, we compare performance
and LLM token usage across
various methods using GPT-4
(Figure 3). While the vanilla
baseline uses the fewest tokens,
it only achieves moderate accu-
racy. Additionally, combining
Chain-of-Thought (CoT) reason-
ing with self-debugging results in
the highest token usage but only
marginally improves accuracy over iterative self-debugging. FACTORSIM achieves the highest ac-
curacy with modest token usage, indicating that the decomposition of tasks reduces the need for
extensive iterative debugging.

Empirically, we find that certain prompts, when tested on baselines without the decomposition
mechanism in FACTORSIM, are prone to syntax or runtime errors that the LLMs cannot self-debug.
This is particularly evident with Llama-3 (vanilla) and Llama-3 self-debug, which perform poorly as
they generate highly similar incorrect implementations, ignoring the logic specified in the prompts
even when the temperature is set to 1. We hypothesize that this behavior is due to the model having a
strong prior for how certain games, like Pong and Flappy Bird, should be implemented, ignoring the
prompt specifications. This “mode collapse” issue of LLMs could be caused by over-fitting in the
instruction tuning stage [10].

While AgentCoder iteratively refines code, it performs poorly because it relies on a test designer
agent and a test executor agent to write quality test cases. However, due to the complexity of the
tasks in our benchmark, the test designer agent tends to write incorrect or infeasible tests, leading to
negative feedback. This points to FactorSim being an improvement over the standard "role-based"
Chain of Thought decompositions, and that it is non-trivial to generate simulations from complex
textual specifications.

Zero-shot Transfer Results Additionally, we test FACTORSIM by training a PPO [27] agent on 10
generated environments for 10 million steps and zero-shot test it on the “ground-truth” environment
implemented in the original RL benchmark (Figure 4). The rewards are linearly scaled such that
0 corresponds to the performance of a random policy and 1 corresponds to the performance of a
PPO agent trained for 10 million steps on the "ground-truth" environment. FACTORSIM achieves
notably better zero-shot transfer results as a result of generating code that adheres more closely to
the prompt specification. We also observe that the errors FACTORSIM made tend to be more spread
out across different components of the simulation. In contrast, many baselines suffer from failure
modes concentrated in a specific aspect of the generation (e.g., incorrectly implementing the collision
logic) that significantly hampers the ability of a set of generations to facilitate zero-shot transfer.

Human Study Evaluation Automated systems tests cannot holistically capture some aspects of
game playability such as rendering a usable user interface. To address this limitation we conducted a
human study where users were asked to play the generated games and evaluate their playability. Over
320 human evaluations (40 per game) we find FACTORSIM generates more functional and playable
games, compared to the strongest baseline GPT-4 CoT with iterative self-debugging (Figure 5). More
details can be found in the Appendix.

4.2 Robotics Task Generation

We evaluate on GenSim’s [35] 50-task benchmark of robotics tasks in the CLIPort framework [29].
Refer to Figure 6 for an overview of our experimental setting. We compare FACTORSIM with the
best-performing methods in generating code that specifies tasks (object states and reward structure)
that can be used to train robots. Analogous to the game generation experiment, we use FACTORSIM

8



Figure 4: Zero-shot transfer results on previously unseen environments (i.e., environments in the
original RL benchmark [33]).

Check for Syntax Correctedness

Task completion Check
(whether the task can be completed

by an expert oracle agent)

Can you generate the following task
"Stack Boxes Column"?

Human Verification (whether the
demonstrate aligns with the prompt)

State Variables

FactorSim 

                  Generated Task

A subtask function

Runtime Verification 
(whether the task can be

instantiated in the physics engine)

Expert demonstration obtained  from
the language specification of the

target task)

Figure 6: Left: an overview of our robotics task generation experimental setting. Right: Tasks
successfully generated using FactorSim, which all other baselines fail on.

to modularize the code generation process into subtasks and have LLMs generate each subtask using
only a set of necessary states as context. More details can be found in the Appendix.

FactorSimCoT w/ self-debug

Figure 5: Human evaluation results on the gener-
ated simulations of FACTORSIM and the strongest
baseline (i.e., GPT-4 CoT w/ self-debug), aggre-
gated over all 8 RL games.

Baselines & Metrics We compare our method
with the multiple GenSim baselines: vanilla
(one-shot), Chain-of-Thought (topdown), and
Chain-of-Thought (bottom-up). Adopting the
same set of metrics, we evaluate all methods
on a sequence of pass rates on “syntax correct-
ness”, “runtime-verified”, and “task completed”.
A generated task is considered “completed” if
a coded oracle agent could collect 99% of the
total reward half of the time.

We empirically found that the "task completion
rate" is an imperfect metric for evaluating the
success of a generated task. A task deemed
"complete" by the oracle agent may fail to ad-
here to the prompt. For example, when asked to
generate a task "build a wheel," a method might
produce a task specification that involves rearranging blocks into a structure that does not resemble a
wheel. To address this, we introduced a metric of the “human pass rate”. This involved manually
inspecting runtime-verified tasks to determine if the task specifications aligned with the prompt
descriptions (see Appendix).
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Figure 7: Performance of FACTORSIM and GenSim [35] baselines in generating robotic tasks.

Figure 8: This figure illustrates two input task prompts and the corresponding sequence of subtasks
decomposed by FACTORSIM.

Results & Discussion FACTORSIM outperforms baselines in generating tasks with a higher runtime
pass rate and better human evaluation scores, indicating improved prompt alignment (Figure 7).
Task completion rates are generally low for all methods due to the limitation of the oracle agent.
For example, tasks like "Build Ball Pit" (fill a container with balls to create a ball pit) often fail
because the balls roll out of the visible area of the oracle agent, not because the generated task is
invalid. FACTORSIM performs particularly well on tasks that specify spatial relationships (e.g., "on
top of," "left of," "outside of") between objects, such as the "build House" example in Figure 8. This
improvement is likely due to the decomposition process, where for each step, instead of addressing
a combination of multiple spatial relations all at once, FACTORSIM attends to a smaller context,
allowing each spatial relation to be addressed separately.

5 Conclusion & Future Work

We have proposed FACTORSIM as an approach to generate full simulations as code that can train
agents while adhering to detailed design requirements specified as a text prompt. We also introduce a
benchmark suite of eight RL environments to evaluate generative simulation methods.

Generating complex simulations in code is challenging, and we anticipate numerous opportunities
to extend the simulation generation process. There is substantial room to address larger-scale,
more complex games, and robotics environments that require code bases beyond what can be used
effectively in the context window of existing LLMs. We also see great potential to accelerate RL
agent training by generating code that can be accelerated on GPU devices. Our robotic simulation
results will benefit from further investigations to demonstrate transfer to real-world environments.
We have only addressed single-agent simulations, leaving the extension of our method to multi-agent
settings to future work. In the future, we also plan to incorporate information from the agent training
process to automatically modify the generated simulation environment for enhanced agent learning
and generalization. Taken together, we believe the generation of full simulations as code will be an
important step toward enhancing the capabilities of LLMs to support the development of generalized
RL agent policies.
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A Societal Impact

This work can be applied broadly to many types of simulations, including robotics, autonomous
vehicles, and other autonomous systems. Such systems have the potential for both positive and
negative societal impact (e.g., harmful dual use). As researchers, we must critically evaluate such
applications and promote beneficial ones. In this work we have focused on simulations with potential
positive social impact, particularly in supporting the development of robots able to operate in human
environments like households or manufacturing facilities.

The methods we present generate simulations that can be used to train agents to perform tasks.
One risk with generated simulations is for training agents in an unintended manner. By generating
simulations specified as code we mitigate this concern by making the behavior of the simulation
explicit and inspectable by humans. Further, our approach is better able to guide LLMs to generate
code that matches input design specifications compared to baseline methods, reducing the risk of
LLMs inadvertently producing undesirable functionality. We believe this can help enhance the
reliability of generated simulations while offering strong editing and control capabilities to humans.

The potential negative environmental impact of the compute for using our technique is small. We
have shown our technique consumes less tokens than comparable methods to yield equally good
results. Thus our method can be seen as a way to reduce computational needs when using LLMs for
tasks like creating simulations. Compared to systems that use a neural world model our approach
benefits from the relatively lower computational costs of running simulations in code compared to
running large neural models for simulation.

B Additional details of our experiments

All experiments are done on a workstation with 8 Nvidia A40 GPUs and 1008G of RAM. For our
code generation experiments, one generation (i.e., generation of one training environment) takes
around 30 seconds to 5 minutes. For our Reinforcement Learning experiments, one trial of training
(i.e. training on a set of environments for 10M steps in total) takes around 3-5 hours to complete. In
all of our experiments, GPT-4 refers to the OpenAI’s “gpt-4-1106-preview” model, GPT-3.5 refers to
OpenAI’s “gpt-3.5-turbo” model, and Llama-3 refers to the open-sourced “meta-llama-3-70b-instruct”
model that can be found on huggingface.

For the zero-shot transfer RL experiment, we supply all methods with the reference "controller" (i.e.,
the same key press/mouse click leads to the same thing). We do this because language descriptions of
such can be very ambiguous (e.g., a description “a key press leads the bird to flap its wings” can imply
a change in position, velocity, or acceleration). In our experiments, we generate 10 environments and
filter out those that cannot be properly executed with a random policy.

All the RL experiments are implemented in RLLib [20] 8. The PPO agent is trained with a batch
size of 10,000, and an SGD minibatch size of 2048. Our agent used a fully connected network with
hidden layers of sizes (4, 4) and post-FCNet hidden layers of size 16, all employing ReLU activation
functions. The policy network uses an LSTM with a cell size of 64 to incorporate previous actions
but not previous rewards. Over the course of the 10 million training steps, 20 checkpoints were saved,
with the best zero-shot performance on the testing environment reported.

C Additional details of FACTORSIM

We provide code in the supplementary material. Here we provide the prompts used in FACTORSIM.

Listing 1: The first decompositional prompt used in FACTORSIM.
Given an unstructured game description , decompose the game ’s specification into a set of

steps or modules. Each step or module should contain at most one input event
handling , one state transitional logic , and one rendering logic.

If we model the game as a Markov Decision Process (MDP), the steps , or modules of the
game , should share as little state variables as possible.

Please provide the response in the following format:
‘‘‘json

8https://docs.ray.io/en/latest/rllib/index.html
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{{
"steps": [

"Step 1: Describe the first module/step",
"Step 2: Describe the second module/step",
"Step 3: Describe the third module/step",
...

],
"explanations ": "To make sure the decomposition don ’t miss any important game

mechanics , explain where each module/step fits in the game ’s logic ."
}}
‘‘‘

For example:
‘‘‘json
{{

"steps": [
"Step 1: Introduce a balloon asset rendered as a blue rectangle. Implement

gravity so that the balloon is by default always falling down. Allow users
to move the balloon with arrow keys.",

"Step 2: Implement a scoring system that rewards the human player for returning
the ball back (i.e. making contact with the ball). Display the current score
at the top of the screen. Display a ’Game Over!’ message when one player

reaches a score of 5 and provide an option for the player to restart the
game after the ’Game Over ’ screen is displayed ."

...
"Step 5: Implement a ’Game Over ’ screen that is displayed when the player reaches

a score of 5. Allow the player to restart the game from this screen ."
],
"explanations ": "The balloon asset is the main character of the game. Its rendering

and movement are handled in the first module. The scoring system is implemented
in the second module to keep track of the player ’s progress. The ’Game Over ’
logic is implemented in the last module to provide a clear end to the game."

}}

The unstructured specification of the game is:
\{ game_specification \}

Please provide the structured steps in the format of the JSON above.
- Ensure that each step is a separable part of the game that can be implemented as

independently as possible.
- You most likely don ’t need to decompose the game into more than 5 steps. However , the

most important thing is to ensure that all the steps accurately describe the game ’s
implementation.

- The most important thing is to make sure that the decomposition does not miss any logic
step (e.g., the balloon should not be able to go off the screen).

- Note that the order of the steps is the order that these modules will be called in the
game loop. Ensure that the game described can be implemented sequentially. For
example , the reset position logic should be implemented after the collision
detection logic.

Listing 2: The state context selection prompt used in FACTORSIM.
The game designer is building a single -player game in Pygame by modeling this game as a

Markov Decision Process (MDP).
Your task is to identify and compile a list of relevant state variables to implement a

specific feature requested by the game designer.
The game already has the following state space implementation:
‘‘‘python
import pygame
import sys
import random

{state_manager_code}

# new variables will be added here:
# variable_description
self .{{ variable_name }} = {{ variable_type }}({{ value }})

‘‘‘

Please provide the state variables in the following format within a JSON object:
‘‘‘json
{{

"relevant_state_variables ": [
{{

"variable_name ": "Name of the variable",
}},
...

],
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"new_state_variables ": [
{{

"variable_description ": "Description of the variable",
"variable_name ": "Name of the variable",
"variable_type ": "Type of the variable , one of {{int , float , str , bool , tuple

, list}}",
"variable_value ": "Value of the variable , e.g. 100, 0.5, ’balloon ’, tuple

((255, 0, 255)), True , [10, 50], [{{’x’: 100, ’y’: 200}}]" ,
}},
...

]
}}
‘‘‘

‘‘‘

The game designer ’s request is: {query}.

Here are the dos and don ’ts for this request:
- The list "relevant_state_variables" should contain the names of the existing state

variables that are relevant to the game designer ’s request.
- Please return a single list of state variables that contains both existing variables

that you think are relevant and new state variables.
- A software engineer will later implement this request by implementing a function that

takes these variables as input , so ensure all the variables needed to implement the
request are included.

- It is okay to include variables that don ’t end up being used in the implementation
because redundant state variables will be filtered out later.

- Please provide all rendering variables (e.g., size , color) if there are components to
be rendered. Color should never be white since the background is white.

- Don ’t provide Sprite , Surface , or Rect variables. We will handle these variables later.
- Don ’t introduce variables using existing variables (e.g., self.bird_size = self.

pipe_size /2), all state variables should be independent of each other.
- Always provide a default value even if a state variable should be chosen randomly. The

randomness will be implemented later.
- "variable_value" should never to empty like []. Always provide a non -empty default

value so the software engineer can infer how the variable can be accessed.
- Do not hallucinate external image files (e.g., .png , .jpg) or sound effects(e.g., mp3).
- Prioritize reusing the existing state variables as much as possible. For example , if we

have "position_x" and "position_y" of a character , do not give me another variable
"positions" in a list format.

- Additionally , you may add new state variables to the list "new_state_variables" if
necessary. Please only create new state variables if necessary.

"""

Listing 3: The prompt for the Controller component (as defined in the Model-View-Controller)
utilized in the FACTORSIM.
The game designer is building a single -player game in Pygame by modeling this game as a

Markov Decision Process (MDP). Your task is to detect key/mouse input and update the
state variables accordingly according to a feature requested by the game designer.

The game has the following implementation already:
‘‘‘python
import pygame
import sys
import random

{state_manager_code}

# existing input event handling functions
{existing_implementation}
# the new logic function will be here
# if the function is already implemented , it will be replaced with the new implementation

def main():
state_manager = StateManager ()
running = True
while running:

event = pygame.event.poll()
if event.type == pygame.QUIT:

running = False
# {{ function_description }}
{{ function_name }}( state_manager , event)

pygame.quit()

if __name__ == "__main__ ":
pygame.init()
main()

‘‘‘
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To ensure the implementation is correct , please also implmeent an unit test for the
function. Please implement the following request from the game designer and return
your answer in the following format:

‘‘‘json
{{

"function_name ": "{ function_name }",
"function_description ": "{ function_description }",
"function_implementation ": "the pygame implementation of the function , including the

first line of the function definition",
"unit_test ": "the unit test code for the function"

}}
‘‘‘

Here are the dos and don ’ts for this request:
- Note that the implementation of the function shuold only have two arguments (i.e.

state_manager and event).
- The function implementation should involve checking user input with event (i.e. event.

type and event.key).
- Minimize the number of functions added while meeting the game designer ’s requirements.

However , make sure to always give the full implementation of the function.
- Include only the essential details requested by the game designer. Do not add things

that are not requested.
- Please use the state variables defined in the state manager. Do not introduce new state

variables.
- Only KEYDOWN events will be detected. Do not rely on KEYUP events.
- Check for index out of bounds errors with any lists or arrays being used.
- Check for divide -by-zero errors.
- Do not leave any code incomplete. Do not leave placeholder values. Do not provide

demonstration code implementation. Be sure all code is fully implemented.

Listing 4: The prompt for the Model component (as defined in the Model-View-Controller) utilized
in the FACTORSIM.
The game designer is building a single -player game in Pygame by modeling this game as a

Markov Decision Process (MDP). Your task is to define and code new state transition
functions according to the feature requested by the game designer.

The game has the following implementation already:
‘‘‘python
import pygame
import sys
import random

{state_manager_code}

# existing state transition functions
{existing_implementation}
# the new function will be here
# if the function is already implemented , it will be replaced with the new implementation

def main():
state_manager = StateManager ()
running = True
while running:

event = pygame.event.poll()
if event.type == pygame.QUIT:

running = False
# {{ function_description }}
{{ function_name }}( state_manager)

pygame.quit()

if __name__ == "__main__ ":
pygame.init()
main()

‘‘‘

To ensure the implementation is correct , please also implmeent an unit test for the
function. Please implement the following request from the game designer and return
your answer in the following format:

‘‘‘json
{{

"function_name ": "{ function_name }",
"function_description ": "{ function_description }",
"function_implementation ": "the pygame implementation of the function , including the

first line of the function definition",
"unit_test ": "the unit test code for the function"

}}
‘‘‘
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Here are the dos and don ’ts for this request:
- Only implement things that pertain to updating the state variables. Other aspects of

the game like input event handling and UI components will be handled separately.
- Include only the essential details requested by the game designer. Do not add things

that are not requested.
- These state transition functions will be called in every iteration of the main game

loop. If you want to add a conditional logic to the function , please implement it in
the function itself.

- Note that this new function will be added to the end of the list of state transition
functions.

- Please use the state variables defined in the state manager. Do not introduce new state
variables.

- Check for index out of bounds errors with any lists or arrays being used.
- Check for divide -by-zero errors.
- Do not leave any code incomplete. Do not leave placeholder values. Do not provide

demonstration code implementation. Be sure all code is fully implemented.

Listing 5: The prompt for the View component (as defined in the Model-View-Controller) utilized in
the FACTORSIM.
The game designer is building a single -player game in Pygame by modeling this game as a

Markov Decision Process (MDP). Your task is to add rendering functions that decide
how state variables are rendered as UI components on the screen , according to the
feature requested by the game designer.

The game has the following implementation already:
‘‘‘python
import pygame
import sys
import random

{state_manager_code}

# existing rendering functions
{render_code}
# the new function will be here
# if the function is already implemented , it will be replaced with the new implementation

def main():
state_manager = StateManager ()
clock = pygame.time.Clock ()
running = True
while running:

action = pygame.event.poll()
if action.type == pygame.QUIT:

running = False

# all the code for state transitional logics
# omitted for brevity

# Fill the screen with white
state_manager.screen.fill ((255, 255, 255))
# all the code for rendering states as UI components
# {{ function_description }}
{{ function_name }}( state_manager)
pygame.display.flip()
state_manager.clock.tick(state_manager.fps)

pygame.quit()

if __name__ == "__main__ ":
pygame.init()
pygame.display.set_caption ("")
main()

‘‘‘

To ensure the implementation is correct , please also implmeent an unit test for the
function. Please implement the following request from the game designer and return
your answer in the following format:

‘‘‘json
{{

"function_name ": "{ function_name }",
"function_description ": "{ function_description }",
"function_implementation ": "the pygame implementation of the function , including the

first line of the function definition",
"unit_test ": "the unit test code for the function"

}}
‘‘‘
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FactorSim GenSim - vanilla GenSim Chain of Thought (topdown) GenSim Chain of Thought (bottomup)Target Tasks Syntax Runtime Task Human Syntax Runtime Task Human Syntax Runtime Task Human Syntax Runtime Task Human
BuildDogHouse yes no no no no no no no yes yes no no yes yes no no
BuildLampPost yes yes yes yes yes no no no yes no no no yes no no no
BuildNewsstand yes yes no no yes no no no yes no no no yes no no no

BuildBench yes no no no yes no no no yes no no no yes no no no
BuildPicnicTable yes yes yes yes no no no no yes yes no no yes yes no no
BuildBicycleRack yes no no no yes no no no yes no no no yes no no no
BuildPicnicBasket yes no no no yes no no no yes yes no no yes yes no no

BuildCylinderStructure yes yes yes yes no no no no yes no no no yes no no no
BuildBridge yes yes yes no yes no no no yes no no no yes no no no

BuildCar yes yes no no yes yes no no yes yes yes no yes yes yes no
BuildTwoCircles yes yes no no yes no no no no no no no no no no no

BuildWheel no no no no yes no no no yes yes no no yes yes no no
Aggregated Pass Rate 92% 58% 33% 25% 75% 8% 0% 0% 92% 42% 8% 0% 92% 42% 8% 0%

Table 2: Additional Experimental Results: FactorSim outperforms other Chain of Thought baselines
by a large margin on assembly tasks. Syntax indicates the task passes the syntax check. Runtime
indicates that the task can run in the physics simulator. Task indicates whether the task can be
completed by the oracle agent. Human indicates whether the completed task matches the input
prompt specification.

Here are the dos and don ’ts for this request:
- Only implement things that pertain to how state variables are rendered as UI components

on the screen. Other aspects like input event handling and state transition will be
handled separately.

- Please make sure that all of the state variables remain unchanged in the rendering
functions.

- Include only the essential details requested by the game designer. Do not add things
that are not requested.

- These rendering functions will be called in every iteration of the main game loop. If
you want to add a conditional logic to the function , please implement it in the
function itself.

- Note that the background color of the screen is white so white UI components will not
be visible. Do not fill the screen with white again in the rendering functions.

- Note that the new function will be added to the end of the list of rendering functions.
- Please use the state variables defined in the state manager. Do not introduce new state

variables.
- Check for index out of bounds errors with any lists or arrays being used.
- Check for divide -by-zero errors.
- Do not call pygame.display.set_mode in UI functions. Only call it once outside of any

UI function that is called multiple times.
- Do not leave any code incomplete. Do not leave placeholder values. Do not provide

demonstration code implementation. Be sure all code is fully implemented.

D Additional details and results for the robotics task generation experiment

In this section, we provide the prompts we used for FACTORSIM in the robotics task generation
experiment. The prompts for the baselines can be found in the GenSim paper9 [35].

To conduct human evaluation, we begin by observing the oracle agent attempting to solve the task.
If the oracle agent successfully completes the task, we then assess whether the resulting goal states
align with the input task prompt. If the oracle agent fails to solve the task, we investigate the reason
for the failure. Often, the cause is apparent, such as the target container being too small or not having
the right color of objects for the task. These are marked as failures. For cases where it is clear that the
limitation lies in the oracle agent’s ability, or when the reason for failure is not immediately apparent,
we manually inspect the code for the task specification and base our decision on both the code and
our observation of the oracle agent’s attempt at solving the task.

Listing 6: The chain of thought prompt.
The game designer is building a single -player game in Pygame by modeling this game as a

Markov Decision Process (MDP). Your task is to detect key/mouse input and update the
state variables accordingly according to a feature requested by the game designer.

The game has the following implementation already:
‘‘‘python
import pygame
import sys
import random

{state_manager_code}

9https://github.com/liruiw/GenSim
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# existing input event handling functions
{existing_implementation}
# the new logic function will be here
# if the function is already implemented , it will be replaced with the new implementation

def main():
state_manager = StateManager ()
running = True
while running:

event = pygame.event.poll()
if event.type == pygame.QUIT:

running = False
# {{ function_description }}
{{ function_name }}( state_manager , event)

pygame.quit()

if __name__ == "__main__ ":
pygame.init()
main()

‘‘‘

To ensure the implementation is correct , please also implmeent an unit test for the
function. Please implement the following request from the game designer and return
your answer in the following format:

‘‘‘json
{{

"function_name ": "{ function_name }",
"function_description ": "{ function_description }",
"function_implementation ": "the pygame implementation of the function , including the

first line of the function definition",
"unit_test ": "the unit test code for the function"

}}
‘‘‘

Here are the dos and don ’ts for this request:
- Note that the implementation of the function shuold only have two arguments (i.e.

state_manager and event).
- The function implementation should involve checking user input with event (i.e. event.

type and event.key).
- Minimize the number of functions added while meeting the game designer ’s requirements.

However , make sure to always give the full implementation of the function.
- Include only the essential details requested by the game designer. Do not add things

that are not requested.
- Please use the state variables defined in the state manager. Do not introduce new state

variables.
- Only KEYDOWN events will be detected. Do not rely on KEYUP events.
- Check for index out of bounds errors with any lists or arrays being used.
- Check for divide -by-zero errors.
- Do not leave any code incomplete. Do not leave placeholder values. Do not provide

demonstration code implementation. Be sure all code is fully implemented.

Listing 7: The state change prompt.
** Objective :** Create a Python program that generates state variables for a robot

simulation task. The state variables should be able to depict the final target
environment for this task.

**Task Details :**
- Task: ‘TARGET_TASK_NAME ‘
- Goal: ‘TARGET_TASK_DESCRIPTION ‘
- URDFs: ‘TASK_ASSET_PROMPT ‘

** Requirements :**
- Return a python function called ‘get_state_variables ‘ which returns a list of ‘

StateVariableData ‘ objects. We should be able to take the result of this function
and plug them into a robotics environment , and it should display what the final
target environment will look like for the given task.

- The ‘StateVariableData ‘ dataclass is defined as follows:
‘‘‘
@dataclass
class StateVariableData:

variable_description: str
variable_name: str
variable_urdf: str
variable_size: Tuple[float , float , float]
variable_color: str
variable_target_pose: List[Tuple[Tuple[float , float , float], Tuple[float , float ,

float ]]]
variable_amount: str
static: bool
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‘‘‘

** Important Notes**
- Item sizes and positions must reflect a realistic setting. Ensure logical spatial

relationships; items should neither overlap nor float unnaturally. Account for the
items ’ dimensions and sizes when determining their placement.

- "variable_name" is a unique name for every state variable.
- "variable_size" should be a list of 3 floats , representing the size of the object along

the three dimension [x, y, z].
- "variable_target_pose" should be a list of poses , where each pose is a 2-element list

containining the 3-element position vector , and 4-element quaternion rotation. The
position vectors should be within the following boundaries: [0.25, 0.75] for the x-
axis , [-0.5, 0.5] for the y-axis , and [0.01, 0.3] for the z-axis. For a single
object , the target pose should only contain one element , like [[[0.52 , 0.02, 0.001] ,
[0, 0, 0, 1]]]. For multiple objects , the target pose can contain multiple items ,

like [[[0.52 , 0.02, 0.001] , [0, 0, 0, 1]], [[0.48 , 0.02, 0.001] , [0, 0, 0, 1]]].
- "static" describes if an object is something part of the environment and is not

something the robotic agent should be moving. For example , if the task is to put a
ball into the container , the container should be static.

** Example Input and Expected Output: **
- Task: ‘build_a_car ‘
- Goal: "Construct a simple car structure using blocks and cylinders ."
- URDFs: ["box/box -template.urdf", "cylinder/cylinder -template.urdf"]
- Expected output
‘‘‘python
def get_state_variables () -> List[StateVariableData ]:

car_pose = ((0.5, 0.0, 0.0), (0,0,0,1)) # fixed pose
base_length = 0.04

base_target_pose = [(utils.apply(car_pose , (base_length / 2, base_length / 2, 0.001)
), car_pose [1]),

(utils.apply(car_pose , (-base_length / 2, base_length / 2, 0.001)),
car_pose [1])]

wheel_length = 0.12
wheel_target_poses = [(utils.apply(car_pose , ( wheel_length / 2, wheel_length / 2,

0.001)), car_pose [1]),
(utils.apply(car_pose , (-wheel_length / 2, wheel_length / 2,

0.001)), car_pose [1]),
(utils.apply(car_pose , ( wheel_length / 2, -wheel_length / 2,

0.001)), car_pose [1]),
(utils.apply(car_pose , (-wheel_length / 2, -wheel_length / 2,

0.001)), car_pose [1])]

return [
StateVariableData(

variable_description =" blocks used to build the base",
variable_name ="base",
variable_size =[0.02 , 0.04, 0.02],
variable_urdf ="box/box -template.urdf",
variable_color ="red",
variable_target_pose=base_target_pose ,
variable_amount =2,
stationary=False ,

),
StateVariableData(

variable_description ="wheel to put on the base",
variable_name =" wheel",
variable_size =[0.02 , 0.02, 0.02],
variable_urdf =" cylinder/cylinder -template.urdf",
variable_color ="black",
variable_target_pose=wheel_target_poses ,
variable_amount =4
stationary=False ,

),
StateVariableData(

variable_description ="body of the car",
variable_name ="body",
variable_size =[0.04 , 0.02, 0.02],
variable_urdf ="box/box -template.urdf",
variable_color ="blue",
variable_target_pose ":[ car_pose],
variable_amount =1
stationary=False ,

)
]

‘‘‘

** Example Input and Expected Output: **
- Task: ‘build_a_circle ‘
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- Goal: "Construct a circle using 6 red blocks"
- URDFs: [" block/block.urdf"]
- Expected output
‘‘‘python
def get_state_variables () -> List[StateVariableData ]:

block_size = (0.04 , 0.04, 0.04)

red_circle_poses = []
circle_radius = 0.1
circle_center = (0, 0, block_size [2] / 2)
angles = np.linspace(0, 2 * np.pi, 6, endpoint=False)
circle_pose = ((0.4, 0.3, 0.0), (0, 0, 0, 1)) # fixed pose

# Define initial and target poses for the red and blue circles.
for angle in angles:

pos = (circle_center [0] + circle_radius * np.cos(angle),
circle_center [1] + circle_radius * np.sin(angle),
circle_center [2])

block_pose = (utils.apply(circle_pose , pos), circle_pose [1])
red_circle_poses.append(block_pose)

return [
StateVariableData(

variable_description =" blocks used to build the base",
variable_name ="base",
variable_size=block_size ,
variable_urdf =" block/block.urdf",
variable_color ="red",
variable_target_pose=red_circle_poses ,
variable_amount =10,
stationary=False ,

),
]

‘‘‘

Listing 8: The subtask code generation prompt .
** Objective :** You are designing a training plan for a robotic arm in a simulation

environment to complete a task ‘TARGET_TASK_NAME ‘. This task will be completed in
multiple subtasks from the subtask list. Each subtask manages the robotic arm to
move the composition of assets from one state to another , ultimately achieving the
ideal state that completes the task.

For this step , you are asked to generate the subtask function for ‘SUBTASK_NAME ‘. It
involves ‘SUBTASK_DESCRIPTION ‘. Refer to the existing template and use the existing
variables to inform your subtask creation. You will generate Python code for {
state_variable_for_SUBTASK_NAME} and {subtask_code_for_SUBTASK_NAME}, and return the
code with the given JSON format.

**Task Overview :**
- Task Name: ‘TARGET_TASK_NAME ‘
- Task Description: ‘TARGET_TASK_DESCRIPTION ‘
- All Subtask Descriptions: ‘TARGET_SUBTASK_LIST ‘
- Current Subtask Name: ‘SUBTASK_NAME ‘
- Current Subtask Description: ‘SUBTASK_DESCRIPTION ‘

** Existing template **
SUBTASK_CODE_TEMPLATE

** Subtask Requirements :**
- Generate Python code addressing the specified subtask based on the provided description

and initial variables.
- Adhere to guidelines: use specified APIs you just reviewed , avoid unknown libraries ,

and comment on the code for clarity.
- Ensure all state manager variables used in the subtask code are already defined.

** Subtask function important Notes :**
- Only one ‘self.add_goal ‘ should be used , and it should not be used on state variables

marked with static=True.
- The ‘matches ‘ argument in the method called ‘self.add_goal ‘ should always be a numpy

array.
- Do not use libraries , functions , and assets that you don ’t know.
- Do not create additional functions inside the subtask function , only return one

function.
- Do not add state variables marked as "static = True" to the environment using ‘env.

add_object ‘.
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- When passing in color using ‘env.add_object ‘, remember to pass it using utils.COLORS[
item_color ]. Good example is: ‘env.add_object(base_block_urdf , base_block_pose ,
color=utils.COLORS[’red ’]) ‘. Bad example is: ‘env.add_object(base_block_urdf ,
base_block_pose , ’red ’)‘

- In the subtask code , you need to create both the initial pose and the target pose. The
Initial pose should NOT be very close to or be the same as the target pose. Initial
pose determines where the object will be placed before the training starts. Target
pose determines the ideal pose where the robot arm will receive reward if placed
right in the simulation. You should prioritize using the target_pose from the state
manager variables.

- Only use get_random_pose for initial pose(position and rotation). ‘get_random_pose(env ,
obj_size)‘ gets random collision -free object pose within workspace bounds. param

obj_size: (3, ) contains the object size in x,y,z dimensions. return: translation
(3, ), rotation (4, ). You should pass the obj_size directly to the get_random_pose
function , instead of its single element. Good example is: self.get_random_pose(env ,
block_size). Bad example is: self.get_random_pose(env , block_size [0]) or env.
get_random_pose(block_size).

- If you are generating a pose from ‘get_random_pose ‘. It will be within bounds. You don ’
t need to check it using other helper function like ‘is_pose_within_bounds ‘. Do not
use ‘np.copy ‘ to copy it.

- If you need initial rotation , use ‘get_random_pose ‘ to get the ‘pose ‘ first. Then use ‘
pose[1]‘ as rotation. Do not initiate it in other ways , a bad example is ‘rotation =
np.float32(p.getMatrixFromQuaternion(pose [1])).reshape(3, 3) ‘.

- DO NOT USE ‘pose = p.getBasePositionAndOrientation(object_id) ‘. It’s for environment
simulation.

- DO NOT USE other unlisted way to create ‘pose ‘.
- In self.add_goal , make sure to set "step_max_reward =1./ SUBTASK_COUNT"
- Each ‘env.add_object ‘ call will create a new object id. If only one object is needed in

this subtask , then pass in ‘objs = [object_id]‘ in ‘self.add_goal ‘. If multiple
objects are needed , create a list that contains all the needed object ids then pass
in the list: ‘objs = object_id_list ‘.

- Make sure you include all the arguments to ‘self.add_goal ‘: ‘objs ‘, ‘matches ‘, ‘
targ_poses ‘, ‘replace ‘, ‘rotations ‘, ‘metric ‘, ‘params ‘, ‘step_max_reward ‘, ‘
language_goal ‘.

- For ‘self.add_goal ‘’s argument ‘matches ‘, it should be ‘matches=np.ones((n, n)) ‘. ‘n‘
represents the total amount of objects added to the ‘env ‘. E.g. ‘env.add_object ‘ was
called 4 times then it should be set as ‘matches=np.ones((4, 4))‘.

- You have been given all the task variables for creating the subtask. Do not assume any
unknown variables.

- Only three functions are available from ‘utils ‘: ‘utils.apply ‘, ‘utils.
quatXYZW_to_eulerXYZ ‘ and ‘utils.COLORS ‘. Do not make up any other functions from ‘
utils ‘.

- Do not include triple quotes (""") in your code , only use ‘#‘ for comments.
- If the asset of this subtask involves ‘zone ‘, make sure that pose of the zone should

not be moved , it ’s usually used for creating target position for other items. E.g:
‘zone_size = [0.12, 0.12, 0]
zone_urdf = ’zone/zone.urdf ’
zone_colors = [’yellow ’, ’blue ’, ’green ’]
zone_poses = []
for color in zone_colors:

zone_pose = self.get_random_pose(env , zone_size)
env.add_object(zone_urdf , zone_pose , ’fixed ’, color=utils.COLORS[color])
zone_poses.append(zone_pose)‘

- If the subtask involves updating the rotation , you may call ‘utils.quatXYZW_to_eulerXYZ
‘. Here ’s what this function do:

‘def quatXYZW_to_eulerXYZ(quaternion_xyzw): # pylint: disable=invalid -name
""" Abstraction for converting from quaternion to a 3-parameter rotation.

This will help us switch which rotation parameterization we use.
Quaternion should be in xyzw order for pybullet.

Args:
quaternion_xyzw: in xyzw order , tuple of 4 floats

Returns:
rotation: a 3-parameter rotation , in xyz order , tuple of 3 floats

"""
q = quaternion_xyzw
quaternion_wxyz = np.array([q[3], q[0], q[1], q[2]])
euler_zxy = euler.quat2euler(quaternion_wxyz , axes=’szxy ’)
euler_xyz = (euler_zxy [1], euler_zxy [2], euler_zxy [0])
return euler_xyz

‘

** Example Input and Expected Output :**
- Task Name: ‘build_a_car ‘
- Task Description: ‘Construct a simple car structure using blocks and cylinders.‘
- Subtask List: ‘[" build_car_base: Build the base of the car in the simulation

environment .", "build_car_body: Build the body of the car in the simulation
environment .", "build_car_wheels: Build the wheels of the car in the simulation
environment ."]‘
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- Subtask Name: ‘build_car_base ‘
- Subtask Description: ‘Build the base of the car in the simulation environment.‘
- Existing template:

import numpy as np
from cliport.tasks.task import Task
from cliport.utils import utils

class MyBuildCar(Task):
""" Construct a simple car structure using blocks and cylinders ."""

def __init__(self):
super().__init__ ()
# initialize the state_manager attributes that manage all the state variables in

this task
StateManager = type(’StateManager ’, (object ,), {})
self.state_manager = StateManager ()
self.state_manager.main_target_pose = [[0.5 , 0.0, 0.0], [0, 0, 0, 1]]
self.max_steps = 15
self.state_manager.base_size = (0.04 , 0.08, 0.02)
self.state_manager.base_color = "green"
self.state_manager.base_urdf = "box/box -template.urdf"
self.state_manager.base_amount = 2
self.state_manager.anchor_base_poses = [((0.52 , 0.02, 0.001) , (0, 0, 0, 1)),

((0.48 , 0.02, 0.001) , (0, 0, 0, 1))]
self.additional_reset ()

{placeholder_subtask_code}

def reset(self , env):
super().reset(env)
self.place_first_step(env)

- Expected output:
‘‘‘python
def build_car_base(self , env):

# Build the base of the car in the simulation environment. Let ’s solve this problem
step -by-step.

# Step 1. Retrieve the variables(the car ’s pose , the base length , and the base size)
to initialize the car base building.

base_size = self.state_manager.base_size
base_color = self.state_manager.base_color
base_amount = self.state_manager.base_amount
anchor_base_poses = self.state_manager.anchor_base_poses

# Step 2. Setting up the base block URDF.
base_urdf_path = self.state_manager.base_urdf
base_block_urdf = self.fill_template(base_block_urdf , {’DIM ’: base_size })

# Step 3: Adding base blocks to the scene
base_blocks = []
for idx in range (2):

base_block_pose = self.get_random_pose(env , base_size)
base_block_id = env.add_object(base_block_urdf , base_block_pose , color=utils.

COLORS[’red ’])
base_blocks.append(base_block_id)

# Step 4: Setting the goal to create the base of the car by positioning two red
blocks side by side.

self.add_goal(
objs=base_blocks ,
matches=np.ones(( base_amount , base_amount)),
targ_poses=anchor_base_poses ,
replace=False ,
rotations=True ,
metric=’pose ’,
params=None ,
step_max_reward =1./3,
language_goal ="Firstly , create the base of the car by positioning two red blocks

side by side."
)

‘‘‘

REFLECT_PROMPT

** Output Format :**
- Use ‘SUBTASK_NAME ‘ as the function name.
- IMPORTANT doublecheck your code is following everything in important notes.
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E Additional details for the proposed generative simulation benchmark

This section provides the prompts for all 8 RL games in the benchmark.

Listing 9: The prompt for the game Catcher.
Create a catcher character , represented as a rectangle , positioned at the bottom and the

middle of the screen.
Allow the player to control the catcher ’s horizontal movement using the left and right

arrow keys on the keyboard.
There should always be exactly one ball on the screen at all times. The ball should be

visually distinct and easily recognizable.
Make the ball move downwards at a steady pace towards the catcher. The speed can be

constant or increase gradually as the game progresses.
Detect collisions between the catcher and the ball. When the catcher catches a ball ,

increment the player ’s score , spawn a new ball , and display this score in the top -
left corner of the screen.

Give the player a 3 lives. Each time a ball is missed by the catcher and reaches the
bottom of the screen , decrease the player ’s life count by one.

End the game when the player ’s lives reach zero. Display a "Game Over!" message and
temporarily halt gameplay but dont terminate the game.

Provide an option for the player to click the screen to restart the game after the "Game
Over" screen is displayed.

Continuously generate new balls after each catch or miss , ensuring endless gameplay.
Optionally , increase the game ’s difficulty gradually by speeding up the ball ’s fall
or reducing the size of the catcher as the player ’s score increases.

Listing 10: The prompt for the game Flappy Bird.
Create a bird character , visually represented as a simple rectangle within the game

window.
Introduce gravity , causing the bird to continuously fall slowly.
Allow the bird to ’jump ’ or accelerate upwards in response to a player ’s mouse click ,

temporarily overcoming gravity.
Periodically spawn pairs of vertical pipes moving from right to left across the screen.

Each pair should have a gap for the bird to pass through , and their heights should
vary randomly.

If the bird makes contact with the ground , pipes or goes above the top of the screen the
game is over.

Implement the following scoring system: for each pipe it passes through it gains a
positive reward of +1. Each time a terminal state is reached it receives a negative
reward of -1.

When the game ends , display a "Game Over!" messagea and stop all the motion of the game.
Show the current score in the top -left corner of the screen during gameplay.
Ensure the game has no predefined end and that new pipes continue to generate ,

maintaining consistent difficulty as the game progresses.

Listing 11: The prompt for the game Snake.
Create a snake character represented as a series of connected pixels or blocks. Initially

, the snake should be a single block (i.e. the head) that moves in a specific
direction within the game window.

Allow the player to control the snake ’s movement using arrow keys. The snake should be
able to turn left or right , but it should not be able to move directly backward. Eg.
if its moving downwards it cannot move up.

The movement of the snake should be continuous in the current direction until the player
provides new input. Ensure that the snake moves one grid unit at a time.

Implement a basic food system where one food item appears randomly on the screen.
When the snake consumes the food by moving over or colliding with it, the snake ’s length

increases , and the player earns points. It recieves a positive reward , +1, for each
food the head comes in contact with. While getting -1 for each terminal state it
reaches.

If the head of the snake comes in contact with any of the walls or its own body , the game
should end.

Incorporate a scoring system , displaying the current score on the screen during gameplay.
The score should increase each time the snake consumes food.

Ensure that the game has no predefined end , allowing the snake to continue growing and
the difficulty to increase over time. New food items should appear after the snake
consumes one.

Provide an option for the player to restart the game after it ends. Display a "Restart"
option on the game over screen to allow the player to play again.

Listing 12: The prompt for the game Pixelcopter.
Create a copter character represented as a large white square that remains fixed

horizontally but can ascend and descend vertically within the game window.
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Introduce gravity mechanics , causing the copter to continuously descend slowly. Enable
the player to ascend when the player clicks the mouse , allowing it to momentarily
counteract gravity and rise upwards.

Create obstacles in the shape of a cavern. Construct the cavern using a series of
vertically aligned rectangular barriers positioned at both the bottom and the top of
the screen. Ensure the adjacent obstacles are of similar length to maintain a

consistently smooth "tunnel" effect.
Implement collision detection to detect when the copter collides with obstacles or the

boundaries of the game window , triggering the end of the game upon collision.
Display a "Game Over!" message prominently when the game ends due to a collision , halting

all movement within the game and prompting the player to restart.
Create a scoring system that rewards the player based on how far the copter travels

through the maze without colliding with obstacles.
Show the current score in the top left area of the screen.
Ensure the game has no predefined end and that new obstacles continue to generate ,

maintaining consistent difficulty as the game progresses
Allow the player to start a new game after a collision.

Listing 13: The prompt for the game Pong.
Create a paddle character for the human player , represented as a rectangle , positioned on

the left side of the screen.
Allow the human player to control the paddle ’s vertical movement using the up and down

arrow keys. The paddle has a little velocity added to it to allow smooth movements.
Implement a paddle character for the CPU opponent , also represented as a rectangle ,

positioned on the opposite side of the screen.
Introduce a ball that moves across the screen with a speed. The ball should bounce off

the paddles and the top and bottom walls of the game window.
If the ball goes off the left or right side of the screen , reset its position to the

center and its direction.
The CPU to control its paddle ’s vertical movement to autonomously track the ball.
Detect collisions between the ball and the paddles. When the ball collides with a paddle ,

make it bounce off in the opposite direction.
Implement a scoring system that rewards the human player for returning the ball back (i.e

. making contact with the bal).
Display the current score at the top of the screen. Ensure the game has no predefined end

, allowing for continuous play.
Display a "Game Over!" message when one player reaches a score of 5 and provide an option

for the player to restart the game after the "Game Over" screen is displayed.

Listing 14: The prompt for the game Puckworld.
Create an agent character , visually represented as a blue circle , positioned on the

screen. The agent should be movable in any direction based on user input.
Implement a green dot that moves randomly around the screen , serving as the target for

the agent to navigate towards.
Introduce a red puck , a larger entity that slowly follows the agent ’s movements on the

screen.
Allow the player to control the agent ’s movement using arrow keys or another specified

input method.
Implement a scoring system that positively rewards the agent proportionally to the

closeness between the agent and the green dot , and penalizes the agent for proximity
to the red puck.

Display the current score in the top -left corner of the screen during gameplay.
Ensure the game has no predefined end , allowing for endless gameplay.
Upon reaching the green dot , relocate it to a new random position , maintaining the

challenge for the player.

Listing 15: The prompt for the game Waterworld.
Create a player character visually represented as a blue circle that can move freely

within the game window using arrow keys.
Introduce a dynamic environment with equal number of green and red circles. Make the

green and red circles move randomly around the screen.
Implement a scoring system , where the player earns points for each green circle captured

and deduct one for each red circle .
Display the current score in the top -left corner of the screen during gameplay.
When the player captures a circle , make it respawn in a random location on the screen as

either red or green.
Ensure the game continues until all green circles have been captured. Once all green

circles are captured , display a "Game Over!" message and stop all motion in the game
.

Provide an option for the player to restart the game after it ends , creating a loop for
continuous gameplay.

Listing 16: The prompt for the game Monster Kong.
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Write code for a 2d game viewed from the side where the character can walk and jump. Let
the character move left or right using the ’a’ and ’d’ keys. Let the character jump
using the ’w’ key.

Create a level by arranging 5 stationary platforms above the ground. Make sure the
character ’s jump can reach the platform height.

Let the character stand on the ground or platforms but fall otherwise. Start the player
on the ground.

Add a princess character that the character must rescue by reaching her position. Place
the princess on one of the platforms.

Implement fireballs that fall from random places from the top of the screen. Do not let
the fireballs move through the platforms. These fireballs serve as obstacles that
the player must avoid.

Touching a fireball should deduct 25 points from the player ’s score and cause them to
lose a life. The game ends if the player loses fifteen lives.

Scatter ten coins randomly around the game window that the player can collect for 5
points each.

Award the player 50 points for rescuing the princess. Move the princess to a random
platform when the player rescues her.

Display the current score and remaining lives in the game window.

F Additional details for the human study experiment

In this section, we first provide details for the experiment and then the instructions we gave to human
participants in our human study, along with the user interface. We also provide the detailed results of
this evaluation for all games in Figure 9.

Human participants were asked to play and evaluate the generated games given the prompt while
excluding factors such as aesthetics or difficulty. They rated the games on a scale of 1 to 4, where 4
indicates a fully playable game, 3 is a playable game with some bugs or flaws that hinder gameplay
experience, 2 is an unplayable game (i.e., no interactivity) with correctly rendered UI, and 1 is a
game that crashes or fails to launch.

Listing 17: The instructions we give to human participants to our human study.
Welcome to your user study! Your task is to evaluate AI-generated games.
Select the game you want to generate and click the button "Generate" to generate games.
You might have to wait for the game to load for 5-10 seconds.

Note that the game is intentionally slowed down , making it easier for you to evaluate
them!

Thus , when you click or press a key/button , the "character" might react slower than you
expected.

Please click "Random Generate" to generate a game.

- If the game doesn ’t load (black screen), select "1 - unplayable ."
- Please do not consider the difficulty of the game.
- Please don ’t take aesthetics into account.
- You want to assess whether the UI elements are rendered accurately for gameplay

purposes while excluding considerations related to aesthetics , overlapping , or
duplicated UI components.

Given the prompt as shown , please judge the playability of the game.
- 4: Fully Playable: the game is generally playable from start to finish without

significant bugs.
- 3: Playable but with some flaws: the game is somewhat playable (interactable), but

there are issues (inaccurate logic or glitches) that impair the gameplay.
- 2: Not playable: no interactivity but the UI seems to be rendered correctly.
- 1: Unplayable: the game cannot be started , or it crashes immediately upon launch.
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Figure 9: Human study results on all 8 games.

28



Figure 10: Human study interface screenshot.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer to the abstract and the introduction section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to the conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to the experiment section and our supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Please refer to the supplementary material and our code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to the supplementary material and our code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please refer to the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in our paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to the supplementary material.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all assets used in our experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Please refer to the supplementary material.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve sensitive data of study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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