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Abstract

In model-based optimisation (MBO) we are interested in using machine learning to design
candidates that maximise some measure of reward with respect to a black box function
called the (ground truth) oracle, which is expensive to compute since it involves executing
a real world process. In offline MBO we wish to do so without assuming access to such
an oracle during training or validation, with makes evaluation non-straightforward. While
an approximation to the ground oracle can be trained and used in place of it during
model validation to measure the mean reward over generated candidates, the evaluation
is approximate and vulnerable to adversarial examples. Measuring the mean reward of
generated candidates over this approximation is one such ‘validation metric’, whereas we
are interested in a more fundamental question which is finding which validation metrics
correlate the most with the ground truth. This involves proposing validation metrics and
quantifying them over many datasets for which the ground truth is known, for instance
simulated environments. This is encapsulated under our proposed evaluation framework
which is also designed to measure extrapolation, which is the ultimate goal behind leveraging
generative models for MBO. While our evaluation framework is model agnostic we specifically
evaluate denoising diffusion models due to their state-of-the-art performance, as well as
derive interesting insights such as ranking the most effective validation metrics as well as
discussing important hyperparameters.

1 Introduction

In model-based optimisation (MBO), we wish to learn a model of some unknown objective function f : X → Y
where f is the ground truth ‘oracle’, x ∈ X is some characterisation of an input and y ∈ R+ is the reward.
The larger the reward is, the more desirable x is. In practice, such a function (a real world process) is often
prohibitively expensive to compute because it involves executing a real-world process. For instance if x ∈ X
is a specification of a protein and the reward function is its potency regarding a particular target in a cell,
then synthesising and testing the protein amounts to laborious work in a wet lab. In other cases, synthesising
and testing a candidate may also be dangerous, for instance components for vehicles or aircraft. In MBO,
we want to learn models that can extrapolate – that is, generate inputs whose rewards are beyond that of
what we have seen in our dataset. However, we also need ot be rigorous in how we evaluate our models since
generating the wrong designs can come at a time, safety, or financial cost.

† Work done while author was interning at ServiceNow Research.
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Model evaluation in MBO is not straightforward. Firstly, it does not adhere to a typical train/valid/test
pipeline that one would expect in other problems. Secondly, it involves evaluating samples that are not from
the same distribution as the training set (after all, we want to extrapolate beyond the training set). To
understand these difficulties more precisely, we give a quick refresher on a typical training and evaluation
pipeline for generative models. If we assume the setting of empirical risk minimisation (Vapnik, 1991) then
the goal is to find parameters θ∗ which minimise some training loss ` on the training set Dtrain:

θ∗ = arg min
θ

L(Dtrain; θ) = Ex,y∼Dtrain`(x, y; θ), (1)

for any model of interest that is parameterised by θ, e.g. a generative model pθ(x). Since we do not wish to
overfit the training set, model selection is performed on a validation set Dvalid and we can write a variant of
Equation 1 where the actual model we wish to retain is the following:

θ∗ = arg min
θ∈Θ

M(Dvalid; θ) = Ex,y∼Dvalidm(x, y; θ), (2)

whereM is a validation metric and Θ = {θ∗j }mj=1 comprises a collection of models θj , i.e. each of them is
the result of optimising Equation 1 under a different hyperparameter configuration or seed. Whatever the
best model is according to Equation 2 is finally evaluated on the test set Dtest as an unbiased measure of
performance. Since Dtest already comes with labels from the ground truth, it simply suffices to just evaluate
Equation 2 and report the result. However, in MBO we wish to generate new examples (in particular ones
with high reward), which is akin to generating our own ‘synthetic’ test set. However, we don’t know the
true values of y (the reward) of its examples unless we evaluate the ground truth oracle f on each generated
example, which is very expensive. Secondly, the synthetic test set that we have generated is not intended
to be from the same distribution as the training set, since the goal of MBO is to extrapolate and generate
examples conditioned on larger rewards than what was observed in the original dataset. This means that
the validation set in Equation 2 should not be assumed to be the same distribution as the training set, and
evaluation should reflect this nuance.

To address the first issue, the most reliable thing to do is to simply evaluate the ground truth on our synthetic
test set, but this is extremely expensive since each ‘evaluation’ of the ground truth f means executing a real
world process (i.e. synthesising a protein). Furthermore, since we focus on offline MBO we cannot assume an
active learning setting during training like Bayesian optimisation where we can construct a feedback loop
between the oracle and the training algorithm. Alternatively, we could simply substitute the ground truth
with an approximate oracle f̃(x), but it isn’t clear how reliable this is due to the issue of adversarial examples
(see Paragraph 2, Section 1). For instance, f̃ could overscore examples in our generated test set and lead us
to believe our generated exmples are much better than what they actually are.

Although this is an unavoidable issue in offline MBO, we can still try to alleviate it by finding validation
metrics (i.e. M in Equation 2) which correlate well with the ground truth over a range of datasets where it
is known and cheap to evaluate, for instance simulated environments. If we can do this over such datasets
then we can those empirical findings to help determine what validation metric we should use for a real world
offline problem, where the ground truth is not easily accessible (see Figure 1). To address the second issue,
we intentionally construct our train/valid/test pipeline such that the validation set is designed to contain
examples with larger reward than the training set, and this sets our work apart from existing literature
examining generative models in MBO.

We note that this is very similar to empirical research in reinforcement learning, where agents are evaluated
under simulated environments for which the reward function is known and can be computed in silico. However,
these environments are ultimately there to inform a much grander goal, which is to have those agents operate
safely and reliably in the real world under real world reward functions.
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Figure 1: We want to produce designs x that have high reward according to the ground truth oracle y = f(x),
but this is usually prohibitively expensive to compute since it involves executing a real-world process. If we
instead considered datasets where the ground truth oracle is cheap to compute (for instance simulations), we
can search for cheap-to-compute validation metrics that correlate well with the ground truth. In principle,
this can facilitate faster and more economical generation of novel designs for real-world tasks where the
ground truth oracle is expensive to compute.

1.1 Contributions

Based on these issues we propose a training and evaluation framework which is amenable to finding good
validation metrics that correlate well with the ground truth. In addition, we also assume that the training
and validation sets are not from the same ground truth distribution. We lay out our contributions as follows:1

• We propose a conceptual evaluation framework for generative models in offline MBO, where we would like
to find validation metrics that correlate well with the ground truth oracle. We assume these validation
metrics are cheap to compute. While computing said correlations requires the use of datasets where the
ground truth oracle can be evaluated cheaply (i.e. simulations), they can still be useful to inform more real
world MBO tasks where the ground truth is expensive to evaluate. In that case, finding good validation
metrics can potentially provide large economic savings.

• While our proposed evaluation framework is agnostic to the class of generative model, we specifically
demonstrate it using the recently-proposed class of denoising diffusion probabilistic models (DDPMs) (Ho
et al., 2020). For this class of model, we examine two conditional variants: classifier-based (Dhariwal &
Nichol, 2021) and classifier-free (Ho & Salimans, 2022) guidance. Since DDPMs appear to be relatively
unexplored in MBO, we consider our empirical results on these class of models to be an orthogonal
contribution of our work.

• We explore five validation metrics in our work against four datasets in the Design Bench (Trabucco et al.,
2022) framework, motivating their use as well as describing their advantages and disadvantages. We run a
large scale study over different hyperparameters and rank these validation metrics by their correlation
with the ground truth.

• Lastly, we derive some additional insights such as which hyperparameters are most important to tune. For
instance, we found that the classifier guidance term is extremely important, which appears to underscore
the trade-off between sample quality and sample diversity, which is a commonly discussed dilemma in
generative modelling. We also contribute some thoughts on how diffusion models in offline MBO can be
bridged with online MBO.

1Corresponding code can be found here: https://github.com/christopher-beckham/validation-metrics-offline-mbo
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2 Motivation and proposed framework

We specifically consider the subfield of MBO that is data-driven (leverages machine learning) and is offline.
Unlike online, the offline case doesn’t assume an active learning loop where the ground truth can periodically
be queried for more labels. Since we only deal with this particular instantiation of MBO, for the remainder
of this paper we will simply say MBO instead of offline data-driven MBO. In MBO, very simple approach to
generation is to approximate the ground truth oracle f by training an approximate oracle fθ(x) – a regression
model – from some dataset D, and exploiting it through gradient ascent to generate a high reward candidates:

x∗ = arg max
x

f(x) ≈ arg max
x

fθ(x), (3)

which can be approximated by iteratively running gradient ascent on the learned regression model for
t ∈ {1, . . . , T}:

xt+1 ← xt + η∇xfθ(x), (4)

and x0 is sampled from some prior distribution. The issue here however is that for most problems, this
will produce an input that is either invalid (e.g. not possible to synthesise) or is poor yet receives a large
reward from the approximate oracle (overestimation). This is the case when the space of valid inputs lies on
a low-dimensional manifold in a much higher dimension space (Kumar & Levine, 2020). How these problems
are mitigated depends on whether one approaches MBO from a discriminative modelling point of view (Fu &
Levine, 2021; Trabucco et al., 2021; Chen et al., 2022a), or a generative modelling one (Brookes et al., 2019;
Fannjiang & Listgarten, 2020; Kumar & Levine, 2020). For instance, Equation 3 implies a discriminative
approach where fθ(x) is a regression model. However, in Equation 4 it is reinterpreted as an energy model
Welling & Teh (2011). While this complicates the distinction between discriminative and generative, we refer
to the generative approach as one where it is clear that a joint distribution pθ(x, y) is being learned. For
instance, if we assume that pθ(x, y) = pθ(y|x)pθ(x), then the former is a probabilistic form of the regression
model and the latter models the likelihood, and modelling some notion of it will almost certainly mitigate
the adversarial example issue since it is modelling the prior probability of observing such an input. Because
of this, we argue that a generative view of MBO is more appropriate and we will use its associated statistical
language for the remainder of this paper.

Let us assume we have trained a conditional generative model of the form pθ(x|y) on our training set Dtrain.
If ptrain(y) denotes the empirical distribution over the y’s in the training set, then this can be used to write
the joint distribution as pθ(x, y) = pθ(x|y)ptrain(y). We do not wish to sample from this joint distribution
however, because we ultimately want to generate x’s whose y’s are as large as possible. To do this we could
switch out the prior ptrain(y) for one that reflects the range of values we wish to sample from. However, it
wouldn’t be clear if the model has generalised in this regime of y’s; for instance the sampled x’s may be
invalid. What we want to do is be able to measure and select for models (i.e. pθ(x|y) for some good θ)
that are able to extrapolate; in other words, models which assign small loss to examples that have larger y’s
than those observed in the training set. As an example, one such appropriate loss could be the negative log
likelihood.

We can measure this through careful construction of our training and validation sets without having to leave
the offline setting. Assume the full dataset D = {(xi, yi}ni=1 and (x, y) ∼ p(x, y), the ground truth joint
distribution. Given some threshold γ, we can imagine dealing with two truncated forms of the ground truth
p0,γ(x, y) and pγ(x, y), where:

p0,γ(x, y) = {(x, y) ∼ p(x, y)|y ∈ [0, γ]}
pγ(x, y) = {(x, y) ∼ p(x, y)|y ∈ (γ,∞]}, (5)

where pγ is the distribution of samples which are not seen during training but nonetheless we would like our
generative model to explain well. Therefore, if we split D based on γ then we can think of the left split Dtrain
as a finite collection of samples from pγ(x, y) and the right split Dvalid from p0,γ(x, y). We would like to train
models on Dtrain and maximise some measure of desirability on Dvalid (via hyperparameter tuning) to find
the best model.
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Figure 2: A visualisation of our evaluation framework. Here, we assume joint generative models of the form
pθ(x, y). Models are trained on Dtrain as per Section 2.1, and in this paper we assume the use of conditional
denoising diffusion probabilistic models (DDPMs). For this class of model the joint distribution pθ(x, y)
decomposes into pθ(x|y)p(y), and the way we condition the model on y is described in Section 2.1.1. In order
to generate samples conditioned on rewards y larger than what was observed in the training set, we must
switch the prior distribution of the model, which corresponds to ‘extrapolating’ it and is described in Section
2.2. Validation is done periodically during training and the best weights are saved for each validation metric
considered. The precise details of this are described in Algorithm 1. When the best models have been found
we perform a final evaluation on the real ground truth oracle, and this process is described in Algorithm 2.

2.1 Training and generation

While our proposed evaluation framework is agnostic to the class of generative model used, in this paper we
specifically focus on denoising diffusion probabilistic models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al.,
2020). DDPMs are currently state-of-the-art in many generative tasks and do not suffer from issues exhibited
from other classes of model. They can be seen as multi-latent generalisations of variational autoencoders,
and just like VAEs they optimise a variational bound on the negative log likelihood of the data2. First, let us
consider an unconditional generative model pθ(x), whose variational bound is:

−Ex0∼p(x0) log pθ(x0) ≤ Ep(x0,...,xT )

[
log p(x1, . . . ,xT |x0)

pθ(x0, . . . ,xT )

]
(6)

= Ep(x0,...,xT )

[
log p(xT )

p(xT |x0)︸ ︷︷ ︸
LT

+
∑
t>1

log pθ(xt−1|xt)
p(xt−1|xt,x0)︸ ︷︷ ︸

Lt

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]
, (7)

Here, x0 ∼ p(x0) is the real data (we use x0 instead of x to be consistent with DDPM notation, but they are
the same), and p(xt|xt−1) for t ∈ {1, . . . , T} is a predefined Gaussian distribution which samples a noisy xt
which contains more noise than xt−1, i.e. as t gets larger the original data x0 progressively becomes more
noised. These conditional distributions collectively define the forward process. The full joint distribution of
this forward process is3:

p(x0, . . . ,xT ) = p(x0)
T∏
t=1

p(xt|xt−1), (8)

2Typical DDPM literature uses q to define the real distribution, but here we use p to be consistent with earlier notation,
though it is not to be confused with pθ, the learned distribution.

3Note we have still used orange to denote that p(x0) is the ground truth data distribution, but we have omitted it for
p(xt|xt−1) to make it clear that these are predefined noise distributions.
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and each conditional noising distribution has the form:

p(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (9)

where βt follows a predefined noise schedule. Since the product of Gaussians are also Gaussian, one can also
define the t-step noising distribution p(xt|x0) which is more computationally efficient:

p(xt|x0) = N (xt;
√
ᾱtx0 + (1− ᾱt)I) (10)

=⇒ xt =
√
ᾱtx0 +

√
(1− ᾱt)ε, ε ∼ N (0, I) (11)

where αt = 1− βt and ᾱt =
∏t
s=1 αs. Generally speaking, we wish to learn a neural network pθ(xt−1|xt) to

undo noise in the forward process, and these learned conditionals comprise a joint distribution for the reverse
process:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t);βt−1I), (12)

where pθ is expressed via a neural network µθ which learns to predict the mean of the conditional distribution
for xt−1 given xt, and we wish to find parameters θ to minimise the expected value of Equation 6 over the
entire dataset. In practice however, if the conditionals for pθ and p are assumed to be Gaussian, one can
dramatically simplify Equation 6 and re-write Lt (for any t) as a noise prediction task. where instead we
parameterise a neural network εθ(xt, t) to predict the noise from xt ∼ p(xt|x0), as shown in Equation 11 via
the reparamterisation trick. Note that εθ(xt, t) and µθ(xt, t) differ by a closed form expression (and likewise
with pθ(xt−1|x)), but for brevity’s sake we defer those details to Ho et al. (2020) and simply state the final
loss function to be:

Ex0∼p(x0),t∼U(1,T ),ε∼N (0,I)
[
‖ε− εθ(

√
ᾱtx0 +

√
1− ᾱtε, t)‖2

]
, (13)

where
√
ᾱtx0 +

√
1− ᾱtεt is simply just writing out xt ∼ p(xt|x0) via the reparamterisation trick (Equation

11), and {αt}Tt=1 defines a noising schedule. Since we have defined our training set Dtrain to be samples from
p0,γ(x, y), our training loss is simply:

min
θ
LDSM(θ) = min

θ
Ex0∼Dtrain,εt∼N (0,I)

[
‖εt − εθ(

√
ᾱtx0 +

√
1− ᾱtεt, t)‖2

]
. (14)

In order to generate samples, stochastic Langevin dynamics (SGLD) is used in conjunction with the noise
predictor εθ to construct a Markov chain that by initialising xT ∼ p(xT ) = N (0, I) and running the following
equation for t ∈ {T − 1, . . . , 0}:

xt−1 = 1
√
αt

(
xt −

1− αt√
1− ᾱt

εθ(xt, t)
)

+ βtz, z ∼ N (0, I). (15)

Note that while the actual neural network that is trained is a noise predictor εθ(xt, t) which in turn has a
mathematical relationship with the reverse conditional pθ(xt−1|xt) we will generally refer to the diffusion
model as simply pθ(x) throughout the paper, since the use of Equation 15 implies a sample from the
distribution pθ(x0), and we have already defined x = x0.

2.1.1 Conditioning

Classifier-based guidance Note that Equation 14 defines an unconditional model pθ(x). In order to
be able to condition on the reward y, we can consider two options.4 The first is classifier-based guidance
(Dhariwal & Nichol, 2021). Here, we train an unconditional diffusion model pθ(x), but during generation we
define a conditional noise predictor which leverages pre-trained classifier pθ(y|xt) which predicts the reward
from xt:

εθ(xt, t, y) = εθ(xt, t)−
√

1− ᾱtw∇xt log pθ(y|xt; t)︸ ︷︷ ︸
classifier-based guidance

(16)

4While it is possible to derive a conditional ELBO from which a DDPM can be derived from, the most popular method for
conditioning in DDPMs appears to be via guiding an unconditional model instead.
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where pθ(y|x) is also trained on Dtrain and w ∈ R+ is a hyperparameter which balances sample diversity and
sample quality. Equation 16 is then plugged into the SGLD algorithm (Equation 15) to produce a sample
from the conditional distribution pθ(x|y). Note that since pθ(y|xt; t) is meant to condition on xt for any t, it
ideally requires a similar training setup to that of the diffusion model, i.e. sample different xt’s via Equation
10 train the network to predict y.

Classifier-free guidance In classifier-free guidance (Ho & Salimans, 2022), the noise predictor is re-
parameterised to support conditioning on label y, but it is stochastically ‘dropped’ during training with some
probability τ , in which case y is replaced with a null token:

LC-DSM(θ; τ) =E(x0,y)∼Dtrain,t∼U(1,T ),λ∼U(0,1)
[
‖ε− εθ(

√
ᾱtx0 +

√
1− ᾱtε,1λ<τ (y), t)‖2

]
. (17)

where 1λ<τ (y) is the indicator function and returns a null token if λ < τ otherwise y is returned. The
additional significance of this is that at generation time, one can choose various tradeoffs of (conditional)
sample quality and diversity by using the following noise predictor, for some hyperparameter w:

ε̄θ(xt, t, y) = (w + 1)εθ(xt, t, y)− wεθ(x, t)︸ ︷︷ ︸
classifier-free guidance

(18)

2.2 Extrapolation

Given one of the two conditioning variants in Section 2.1.1, we can denote our generative model as pθ(x|y),
which has been trained on (x, y) pairs from Dtrain. If we denote the distribution over y’s in the training
set as p0,γ(y) then through Bayes’ rule we can write the joint likelihood as: pθ(x, y) = pθ(x|y)p0,γ(y). This
equation essentially says: to generate a sample (x, y) from the joint distribution defined by the model, we
first sample y ∼ p0,γ(y), then we sample x ∼ pθ(x|y) via SGLD (Equation 15). Samples from p0,γ(y) can
be approximated by sampling from the empirical distribution of y’s over the training set. Decomposing the
joint distribution into a likelihood and a prior over y means that we can change the latter at any time. For
instance, if we wanted to construct an ‘extrapolated’ version of this model, we can simply replace the prior in
this equation with pγ(y), which is the prior distribution over y for the validation set. We define this as the
extrapolated model (Figure 2, extrapolate caption):5

pθ,γ(x, y) = pθ(x|y)pγ(y) (19)

and samples pγ(y) can be approximated by sampling from the empirical distribution over y from the validation
set. Of course, it is not clear to what extent the extrapolated model would be able to generate high quality
inputs from y’s much larger than what it has observed during training. This is why we need to perform
model selection via the use of some validation metric that characterises the model’s ability to extrapolate.

2.3 Model selection

Suppose we trained multiple diffusion models, each model differing by their set of hyperparameters. If we
denote the j’th model’s weights as θj , then model selection amounts to selecting a θ∗ ∈ Θ = {θj}mj=1 which
minimises some ‘goodness of fit’ measure on the validation set. We call this a validation metric, which is
computed the held-out validation set Dvalid. One such metric that is fit for a generative model would be the
expected log likelihood over samples in the validation set, assuming it is tractable:

θ∗ = arg max
θ∈Θ

1
|Dvalid|

∑
(x,y)∈Dvalid

log pθ,γ(x, y) (20)

where pθ,γ(x, y) = pθ(x|y)pγ(y) is the extrapolated model as originally described in Equation 19. Since we
have already established that the validation set comprises candidates that are higher scoring than the training
set, this can be thought of as selecting for models which are able to explain (i.e. assign high conditional

5There are other ways to infer an extrapolated model from a ‘base’ model, and we describe some of these approaches in
Section 3.
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likelihood) to those samples. However, we cannot compute the conditional likelihood since it isn’t tractable,
and nor can we use its evidence lower bound (ELBO). This is because both conditional diffusion variants
(Section 2.1.1) assume a model derived from the unconditional ELBO which is a bound on pθ(x), rather than
the conditional ELBO is correspondingly a bound on pθ(x|y). Despite this, if we are training the classifier-free
diffusion variant, we can simply use Equation 17 as a proxy for it but computed over the validation set:

MC-DSM(Dvalid; θ) = 1
Dvalid

∑
(x0,y)∼Dvalid

‖εt − εθ(xt, y, t)‖2 , (21)

where xt ∼ p(xt|x0). Equation 21 can be thought of as selecting for models which are able to perform a
good job of conditionally denoising examples from the validation set. While Equation 21 seems reasonable,
arguably it is not directly measuring what we truly want, which is a model that can generate candidates that
are high rewarding as possible. Therefore, we should also devise a validation metric which favours models
that, when ‘extrapolated’ during generation time (i.e. we sample x|y where y’s are drawn from pγ(y)), are
likely under an approximation of the ground truth oracle. This approximate oracle is called the validation
oracle fφ, and is trained on both Dtrain ∪ Dvalid (see Figure 2):

θ∗ = arg max
θ∈Θ

Ex̃,y∼pθ,γ(x,y)fφ(x̃) = arg max
θ∈Θ

Ex̃∼pθ(x|y),y∼pγ(y)fφ(x̃). (22)

We consider a biased variant of Equation 22 where the expectation is computed over the best 128 samples
generated by the model, to be consistent with Trabucco et al. (2022). This can be written as the following
equation:

Mreward(S; θ, φ) = 1
K

K∑
i=1

fφ
(
sorted(S; fφ)i

)
, Si ∼ pθ,γ(x, y) (23)

where sorted(S, fφ) sorts S = {x̃i}i in descending order via the magnitude of prediction, and |S| � K.

Lastly, there are two additional validation metrics we propose, and these have been commonly used for
adversarial-based generative models (which do not permit likelihood evaluation). For the sake of space we
defer the reader to Section A.1 and simply summarise them below:

• Fréchet distance (Heusel et al., 2017) (Equation S28): given samples from the validation set and samples
from the extrapolated model, fit multivariate Gaussians to both their embeddings (a hidden layer in fφ is
used for this) and measure the distance between them. This can be thought of as a likelihood-free way to
measure the distance between two distributions. We denote this asMFD.

• Density and coverage (Equation S32): Naeem et al. (2020) proposed ‘density’ and ‘coverage’ as improved
versions of precision and recall, respectively (O’Donoghue et al., 2020; Kynkäänniemi et al., 2019). In the
generative modelling literature, precision and recall measure both sample quality and mode coverage, i.e.
the extent to which the generative model can explain samples from the data distribution. We denote this
asMDC, which is a simple sum over the density and coverage metric.

We summarise all validation metrics – as well as detail their pros and cons – in Table 1. We also summarise
all preceding subsections in Algorithm 1, which constitutes our evaluation framework.

2.3.1 Final evaluation

We may now finally address the core question presented in this paper: what validation metrics are best
correlated with the ground truth? Since we have already defined various validation metrics in Section 2.3,
the only thing left is to define an additional metric – a test metric – which is a function of the ground truth
oracle. We simply define this to be an unbiased estimate of Equation 23 which uses the ground truth oracle
f to rank the top 128 candidates:

Mtest-reward(S; θ, φ) = 1
K

K∑
i=1

f
(
sorted(S; fφ)i

)
, Si ∼ pθ,γ(x, y) (24)

8
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Algorithm 1 Training algorithm, with early implicit early stopping. For m predefined validation metrics,
the best weights for each along with their values and stored and returned. (For consistency of notation, each
validation metric is of the formMj(X, X̃, θ, φ), though the true arguments that are taken may be a subset
of these. See Table 1.)
Require:

Threshold γ, s.t. Dtrain ∼ p0,γ(x, y),Dvalid ∼ pγ(x, y) . Eqns. 5
Number of training epochs nepochs, validation rate neval
Validation metrics (functions): {Mj}mj=1,Mj has argumentsMj(D, D̃, θ, φ)
h ∈ H hyperparameters used to initialise θ
Validation oracle fφ(x) . pre-trained on train + val Dtrain ∪ Dvalid set

1: Xtrain,Ytrain ← Dtrain,Xvalid,Yvalid ← Dvalid
2: θ ← initialise(h)
3: best_weights← {θ}mj=1 . store best weights so far for each validation metric
4: best_metrics← {∞}mj=1 . store best (smallest) values seen per metric
5: for epoch in {1, . . . , nepochs} do
6: sample (x, y) ∼ Dtrain
7: θ ← θ − η∇θLθ(x, y) . L: eqn. 14, with either eqn. 16 or eqn. 18
8: if epoch % neval = 0 then
9: . Model selection (Sec. 2.3)

10: D̃ ← {(x̃i, yi)}|Dvalid|
i=1 , where x̃i ∼ pθ(x|yi) and yi = (Yvalid)i . sample using eqn. 15

11: . Evaluate validation metrics (Table 1)
12: for j in {1, . . . ,m} do
13: mj ←Mj(Dvalid, D̃, θ, φ)
14: if mj < best_metricsj then
15: best_metricsj ← mj . found new best metric value for metric j
16: best_weightsj ← θ . save new weights for metric j
17: end if
18: end for
19: end if
20: end for
21: return best_weights,best_metrics

Algorithm 2 Final evaluation algorithm. As per Algorithm 1, each validation metricMj is associated with
the best weights θj found through hyperparameter tuning and early stopping. For each θj we generate a
candidate set Si of examples, retain the K best candidates as per the predicted reward from validation oracle,
and then compute the real reward on the ground truth oracle.
Require:

best_weights = {θj} . assumed to be the best weights found for each validation metricMj

1: test_rewards← {}mj=1
2: for j in {1, . . . ,m} do
3: θ ← best_weightsj . Load in best weights for metric j
4: S ← {x̃i}Ni=1, where x̃i ∼ pθ and yi ∼ Yvalid
5: valid_rewards = {fφ(Si)}Ni=1 . predict reward for each generated candidate
6: π = argsort(valid_scores)1,...,K . get top K examples wrt to fφ predictions
7: test_rewardsj ← {f(Sπ(i))}Ki=1 . get unbiased estimate of test rewards
8: end for
9: return test_rewards

This is the test metric which is used to determine how well correlated our validation metrics are with the
ground truth. For instance, suppose we have trained many different generative models via Algorithm 1 –
each model corresponding to a different set of hyperparameters – if we run Algorithm 2 on each of these
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models then we can compute quantitative metrics such as correlation between best_metrics (Alg. 1) and
test_rewards (Alg. 2), and indeed this is what we will be demonstrating in Section 4.

While it seems reasonable to assume that Equation 24 would be most correlated with its validation set
equivalent (Equation 23), this would only be the case in the limit of a sufficient number of examples to be
used to train the validation oracle fφ. Otherwise, the less data that is used the more it will be prone to
overscoring ‘adversarial’ examples produced by the generative model. Therefore, it may be wise to consider
validation metrics which put less emphasis on the magnitude of predictions produced by the oracle, e.g.
measuring the distance between distributions.

Table 1: The column ‘distance?’ asks whether the validation metric is measuring some form of distance
between the extrapolated distribution pγ(x, y) and the extrapolated model pθ,γ(x, y). †: RKL = reverse
KL divergence, see Sec. A.2.2 for proof it is an approximation of this divergence; ‡: FKL = forward KL
divergence, since diffusion models optimise an evidence lower bound (Eqn. 6); ∗ = distances here are measured
not in data space, but in the semantic space defined by one of the hidden layers inside fφ.

eqn. require fφ model agnostic? distance?
MC-DSM(Dvalid; θ) 21 7 7 (approx. FKL)‡ 3
−Mreward(S; θ, φ) 23 3 3 7

MAgr(Dvalid; θ;φ) 26 3 3 (approx. RKL)† 3

MFD(Xvalid, X̃;φ) S28 3 3 Fréchet∗ 3

−MDC(Xvalid, X̃;φ) S32 3 3 ∗3

3 Related work

Design Bench Design Bench is an evaluation framework by Trabucco et al. (2022) that facilitates the
training and evaluation of MBO algorithms. Design Bench, as of time of writing, provides four discrete and
four continuous datasets. These datasets can be further categorised based on two attributes: whether a
ground truth oracle exists or not, and whether the input distribution is fully observed (i.e. the combined
train and test splits contain all possible input combinations). In terms of evaluation, Design Bench does
not prescribe a validation set (only a training set and test oracle), which we argue is important in order to
address the core question of our work, which is finding validation metrics that correlate well with the ground
truth oracle. While Trabucco et al. (2022) does allude to validation sets in the appendix, these do not convey
the same semantic meaning as our validation set since theirs is assumed to be a subsample of the training
set, and therefore come from the training distibution. Lastly, while the same appendix provides examples
for different validation metrics per baseline, the overall paper itself is concerned with establishing reliable
benchmarks for comparison, rather than comparing validation metrics directly.

Validation metrics To be best of our knowledge, a rigorous exploration of validation metrics has not
yet been explored in MBO. The choice of validation metric is indeed partly influenced by the generative
model, since one can simply assign the validation metric to be the same as the training loss but evaluated
on the validation set. For example, if we choose likelihood-based generative models (essentially almost all
generative models apart from GANs), then we can simply evaluate the likelihood on the validation set and
use that as the validation metric (Equation 20). However, it has been well established that likelihood is a
relatively poor measure of sample quality and is more biased towards sample coverage (Huszár, 2015; Theis
et al., 2015; Dosovitskiy & Brox, 2016). While GANs have made it difficult to evaluate likelihoods – they are
non-likelihood-based generative models – it has fortunately given rise to an extensive literature proposing
‘likelihood-free’ evaluation metrics (Borji, 2022), and these are extremely useful to explore for this study for
two reasons. Firstly, likelihood-free metrics are agnostic to the class of generative model used, and secondly
they are able to probe various aspects of generative models that are hard to capture with just likelihood.
As an example, the Fréchet Distance (FID) (Heusel et al., 2017) is commonly used to evaluate the realism
of generated samples with respect to a reference distribution, and correlates well with human judgement of
sample quality. Furthermore, metrics based on precision and recall can be used to quantify sample quality
and sample coverage, respectively (Sajjadi et al., 2018; Kynkäänniemi et al., 2019).
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train

test (full dataset)

(a) Design Bench

train
validation

(b) Ours (case 1)

train
test (50%) and valid (50%)

(c) Ours (case 2)

Figure 3: 3a: Design Bench only prescribes a training split which is determined by a threshold γ to only filter
examples whose y’s are less than or equal to this threshold. The full dataset, while technically accessible, is
not meant to be accessed for model selection as per the intended use of the framework. While the training set
could be subsampled to give an ‘inner‘ training set and validation set, the validation set would still come from
the same distribution as training, which means we cannot effectively measure how well a generative model
extrapolates. To address this, we retain the training set but denote everything else (examples whose rewards
are > γ) to be the validation set (3b), and the validation oracle fφ is trained on Dtrain ∪ Dvalid. No test set
needs to be created since the ground truth oracle f is the ‘test set’. However, if the ground truth oracle does
not exist because the MBO dataset is not exact, we need to also prescribe a test set (3c). Since there is no
ground truth oracle f , we must train a ‘test oracle’ f̃ on Dtrain ∪ Dvalid ∪ Dtest (i.e. the full dataset). Note
that this remains compatible with the test oracles prescribed by Design Bench, since they are also trained on
the full data. Furthermore, our training sets remain identical to theirs.

Use of validation set Compared to other works, the use of a validation set varies and sometimes details
surrounding how the data is split is opaque. For example, in Kumar & Levine (2020) there is no mention of a
training or validation set; rather, we assume that only Dtrain and Dtest exists, with the generative model being
trained on the former and test oracle on the latter (note that if the test oracle is approximate there is no need
for a Dtest). This also appears to be the case for Fannjiang & Listgarten (2020). While Design Bench was
proposed to standardise evaluation, its API does not prescribe a validation set6. While the training set could
in principle be subsetted into a smaller training set and a validation set (such as in Qi et al. (2022)), the latter
would no longer carry the same semantic meaning as our notion of a validation set, which is intentionally
designed to not be from the same distribution as the training set. Instead, our evaluation framework code
accesses the full dataset via an internal method call to Design Bench, and we construct our own validation
set from it. We illustrate these differences in Figure 3.

Bayesian optimisation Bayesian optimisation (‘BayesOpt’) algorithms are typically used in online MBO,
where the online setting permits access to the ground truth during training, as a way to generate and
label new candidates. These algorithms can be seen as sequential decision making processes in which a
Bayesian probabilistic model fθ(x) is used to approximate the ground truth oracle f (e.g. a Gaussian process).
Bayesian optimisation alternates between an acquisition function choosing which candidate x to sample next
and updating fθ to reflect the knowledge gained by having labelled x with ground truth f . However, these
algorithms require the specification of a prior over the data which can be cumbersome, and therefore recent
works have explored the pre-training of such priors on offline data Wang et al. (2021); Hakhamaneshi et al.
(2021); Wistuba & Grabocka (2021).

Learned black box optimisers Black box optimisation comprises a wide range of algorithms, for instance
simulated annealing, genetic algorithms, and Bayesian optimisation (Paragraph 3). Typically these algorithms
assume a fixed dimensionality for the input space, making it difficult for them to adapt to different input
dimensionalities (for instance among different tasks). Because of this there is interest in learning black box
optimisers, with one such instance being ‘OptFormer’ Chen et al. (2022b) (a transformer-based model).
OptFormer is trained on a large corpus of precollected hyperparameter optimisation trajectories for various

6However, in Trabucco et al. (2022) (their Appendix F) some examples are given as to what validation metrics could be used.
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black box algorithms and tasks (i.e. different policies). In principle this can also be utilised for MBO but it
would require precollected trajectories from existing policies.

While our focus is on offline MBO, in a real world setting MBO is never fully offline; this is because one
needs to eventually verify that the candidates generated are actually useful and this can only be done with
the ground truth. In other words, offline MBO is a way to ‘bootstrap’ an online MBO pipeline, by leveraging
past oracle evaluations to learn a model which can inform future evaluations. One way we can combine
both styles is to consider factorised generative models. For instance, in the case of diffusion models (Section
2.1.1) one can factorise a joint density pθ(x, y) into a prior over the data pθ(x) and a classifier pθ(y|x). If
we assume that classifiers are easier to update in online fashion, then we can train pθ(y|x) as a Bayesian
probabilistic model. At generation time, we can hold the diffusion model fixed and finetune the classifier by
performing Bayesian optimisation.

In the more general case however, for generative models that admit latent space encodings of the data, a very
straightforward way to leverage knowledge of the former is to train BayesOpt algorithms on those encodings
(Maus et al., 2022). This can be especially useful if the latent space is of a much smaller dimension than the
data, or if the data space is discrete.

3.1 Modelling approaches

Model inversion networks The use of generative models for MBO was proposed by Kumar & Levine
(2020), under the name model inversion networks (MINs). The name is in reference to the fact that one
can learn the inverse of the oracle fθ−1 : Y → X , which is a generative model. In their work, GANs are
chosen for the generative model, whose model we will denote as Gθ(z, y) – that is to say: x ∼ pθ(x|y) implies
we sample from the prior z ∼ p(z), then produce a sample x = Gθ(z, y). At generation time the authors
propose the learning of the following prior distribution as a way to extrapolate the generative model7:

pζ(z, y)∗ := arg max
pζ(z,y)

Ez,y∼pζ(z,y)y + E(z,y)∼pζ

[
ε1 log pθ(y|Gθ(z, y)) + ε2 log p(z)

]
, (25)

where ε1 and ε2 are hyperparameters that weight the agreement and the prior probability of the candidate z.
The agreement is measuring the log likelihood of x̃ = Gθ(z, y) being classified as y under the training oracle
fθ (expressed probabilistically as pθ(y|x)), and can be thought of measuring to what extent the classifier and
generative model ‘agree’ that x̃ has a score of y. The log density p(z) can be thought of as a regulariser to
ensure that the generated candidate z is likely under the latent distribution of the GAN.

We note that agreement can be easily turned into a validation metric by simply substituting pθ(y|x) for the
validation oracle pφ(y|x). Note that if we assume that pφ(y|x) is a Gaussian, then the log density of some
input y turns into the mean squared error up to some constant terms, so we we can simply write agreement
out as Ey∼pγ(y)‖fφ(Gθ(z, y))− y‖2. This leads us to our second validation metric, which we formally define
as:

MAgr(Dvalid; θ) = 1
|Dvalid|

∑
(x,y)∼Dvalid

‖fφ(x̃i)− y‖2, where x̃i ∼ pθ(x|y) (26)

We remark that Equation 26 has a mathematical connection to the reverse KL divergence, one of many
divergences used to measure the discrepency between a generative and ground truth distribution. For inclined
readers, we provide a derivation expressing this relationship in the appendix, Section A.2.2.

Discriminative approaches In the introduction we noted that MBO methods can be seen as approaching
the problem from either a discriminative or a generative point of view (though some overlap can also certainly
exist between the two). In the former case, regularising the approximate oracle fθ(x) is key, and it is also the
model that is sampled from (e.g. as per gradient ascent in Equation 3). The key idea is that the approximate

7In Kumar & Levine (2020) this optimisation is expressed for a single (z, y) pair, but here we formalise it as learning a joint
distribution over these two variables. If this optimisation is expressed for a minibatch of (z, y)’s, then it can be seen as learning
an empirical distribution over those variables.
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oracle should act conservatively or pessimistically in out-of-distribution regions. Some examples include
mining for and penalising adversarial examples (Trabucco et al., 2021), encouraging model smoothness Yu
et al. (2021), conservative statistical estimators such as normalised maximum likelihood (Fu & Levine, 2021),
learning bidirectional mappings (Chen et al., 2022a), and mitigating domain shift (Qi et al., 2022).

Generative approaches Brookes et al. (2019) propose the use of variational inference to learn a sampling
distribution pθ(x|S) given a probabilistic form of the oracle pθ(S|x) as well as a pre-trained prior distribution
over the data pθ(x). Here, S is some desirable range of y’s, and therefore pθ(x|S) can be thought of as the
‘extrapolated’ generative model. In Section A.2.1 we discuss how such a model can be viewed within our
evaluation framework. Lastly, Fannjiang & Listgarten (2020) proposes MBO training within the context of a
min-max game between the generative model and approximate oracle. Given some target range y ∈ S an
iterative min-max game is performed where the generative model pθ(x) updates its parameters to maximise
the expected conditional probability over samples generated from that range, and the approximate oracle fθ(x)
updates its parameters to minimise the error between the generated predictions and that of the ground truth.
Since the latter isn’t accessible, an approximation of the error is used instead. In relation to our evaluation
framework, the extrapolated model would essentially be the final set of weights θ(t) for pθ(x|S)|θ=θ(t) when
the min-max game has reached equilibrium.

For both approaches, there is a notion of leveraging an initial generative model pθ(x) and fine-tuning it with
the oracle so that it generates higher-scoring samples in regions that it was not initially trained on. Both
the min-max and variational inference techniques can be thought of as creating the ‘extrapolated’ model
within the context of our evaluation framework (Figure 2). Therefore, while our evaluation framework does
not preclude these more sophisticated techniques, we have chosen to use the simplest extrapolation technique
possible – which is simply switching out the prior distribution – as explained in Section 2.1.

Diffusion models Recently, diffusion models (Ho et al., 2020) have attracted significant interest due
to their competitive performance and ease of training. They are also very closely related to score-based
generative models (Song & Ermon, 2019; 2020). In diffusion, the task is to learn a neural network that can
denoise any xt to xt−1, where q(x0, . . . ,xT ) defines a joint distribution over increasingly perturbed versions
of the real data q(x0). Assuming that q(xT ) ≈ p(xT ) for some prior distribution over xT , to generate a
sample Langevin MCMC is used to progressively denoise a prior sample xT into x0, and the result is a
sample from the distribution pθ(x0).8 To the best of our knowledge, we are not aware of any existing works
that evaluate diffusion or score-based generative models on MBO datasets provided by Design Bench, and
therefore we consider our exploration into diffusion models here as an orthogonal contribution.

4 Experiments and Discussion

Dataset Our codebase is built on top of the Design Bench (Trabucco et al., 2022) framework. We consider
all continuous datasets in Design Bench datasets: Ant Morphology, D’Kitty Morphology, Superconductor,
and Hopper. Continuous datasets are chosen since we are using Gaussian denoising diffusion models, though
discrete variants also exist and we leave this to future work.

Both morphology datasets are ones in which the morphology of a robot must be optimised in order to maximise
a reward function. For these datasets, the ground truth oracle is a morphology-conditioned controller. For
Superconductor, the ground truth oracle is not accessible and therefore it is approximate. For Hopper, the
goal is to sample a large (≈ 5000 dimensional) set of weights which are used to parameterise a controller.

Data splits While our framework is built on top of Design Bench, as mentioned in Section 3 the evaluation
differs slightly. In Design Bench, the user is only officially prescribed Dtrain, and any users intending to perform
validation or model selection should not use anything external to Dtrain. However, this is fundamentally
incompatible with our evaluation framework since we want our validation set to be out-of-distribution, and
subsampling a part of Dtrain to create Dvalid does not satisfy this. As illustrated in Figure 3, we break this

8The Langevin MCMC procedure is theoretically guaranteed to produce a sample from pθ(x) (Welling & Teh, 2011). As
opposed to Equation 3, where no noise is injected into the procedure and therefore samples are mode seeking.
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Table 2: Summary of datasets used in this work. †: thresholds shown are all defaults from Design Bench,
with the exception of Hopper 50% which is a subset of the original Hopper dataset (see Paragraph 4 for
justification); ‡: because no exact oracle exists, the way the dataset is split corresponds to that shown in
Figure 3c.

# features |Dtrain| / |D| γ† f exists?
Ant Morphology 60 10004 / 25009 165.33 3
Kitty Morphology 56 10004 / 25009 199.36 3

Superconductor 86 17014 / 21263 74.0 ‡7
Hopper 50% 5126 1600 / 3200 434.5 3

convention and define the validation split to be Dtrain \D, i.e. their set difference. Note that if a ground truth
oracle exists, there is no need to define a Dtest, and this is the case for all datasets except Superconductor
(Figure 3b). Otherwise, for Superconductor a random 50% subsample of (Dtrain \ D) is assigned to Dvalid
(Figure 3c) and we use the pre-trained test oracle RandomForest-v0 provided with the framework, which was
trained on the full dataset D.

One nuance with the Hopper dataset is that the full dataset D and the training set Dtrain are equivalent,
presumably because of the scarcity of examples. This means that a validation set cannot be extracted unless
the training set itself is redefined, and this means that the training set in our framework is no longer identical
to that originally proposed by Design Bench. To address this, we compute the median y with respect to
Dtrain, and take the lower half as Dtrain and the upper half as Dvalid. We call the final dataset ‘Hopper 50%’,
to distinguish it from the original dataset.

Oracle pre-training The validation oracle fφ is an MLP comprising of four hidden layers, trained on
Dtrain ∪ Dvalid with the mean squared error loss function. We do not apply any special regularisation
tricks to the model. Note that in the case of the Superconductor – the only dataset that doesn’t admit
a ground truth oracle f – it is not to be confused with the approximate test oracle, which is trained on
D = Dtrain ∪ Dvalid ∪ Dtest. The approximate test oracle we use for Superconductor is RandomForest-v0,
which is provided with the framework.

Architecture The architecture that we use is a U-Net derived from HuggingFace’s ‘annotated diffusion
model’ 9, whose convolutional operators have been replaced with fully connected layers for all datasets except
Hopper. For Hopper, we use 1D convolutions because MLPs performed poorly and significantly blew up the
number of learnable parameters. Furthermore, since we know that the Hopper dataset is a feature vector of
neural network weights it is useful to exploit locality.

For all experiments we train with the ADAM optimiser (Kingma & Ba, 2014), with a learning rate of 2×10−5,
β = (0.0, 0.9), and diffusion timesteps T = 200. Experiments are trained for 5000 epochs with single P-100
GPUs. Input data is normalised with the min and max values per feature, with the min and max values
computed over the training set Dtrain. The same is computed for the score variable y, i.e. all examples in the
training set have their scores normalised to be within [0, 1].

Experiments For each validation metric and dataset, we run many experiments where each experiment
is a particular instantiation of hyperparameters (see Section A.3.1 for more details), and the experiment
is run as per Algorithm 1. By running this algorithm for all experiments we can derive an m×N matrix
U of validation metric values, where Uij denotes the best validation metric value found for metric i and
experiment j. Then, if invoke Algorithm 2 on the same experiments this will give us a matrix V of m×N
of test rewards. By plotting Ui against Vi we obtain the scatterplots shown in Figure 5, and the Pearson
correlation can be defined simply as pearson(Ui,Vi) for the i’th validation metric.

9https://huggingface.co/blog/annotated-diffusion
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Figure 4: The Pearson correlation computed for each dataset / diffusion variant. sPearson correlations are
computed as per the description in Paragraph 4. Since each validation metric is desgned to be minimised,
the ideal metric should be highly negatively correlated with the test reward (Equation 24), which is to be
maximised. By counting the best metric per experiment, we obtain the following counts (the more ticks the
better): −Mreward: 3,MFD: 33,MAgr: 333,MC−DSM : 3

4.1 Results

Classifier-free guidance In Figure 4 we plot the Pearson correlations achieved for each dataset as well as
each diffusion variant, classifier-free guidance (‘cfg’) and classifier-based (‘cg’). Since all validation metrics
are intended to be minimised, we are interested in metrics that correlate the most negatively with the
final test reward, i.e. the smaller some validation metric is, the larger the average test reward as per
Equation 24. We first consider the first four columns of Figure 4, which correspond to just the classifier-free
guidance experiments over all the datasets. The two most promising metrics appear to beMAgr andMreward.
Interestingly,MC-DSM performs the best for Hopper50, but we also note that this was our worst performing
dataset and no we did not obtain favourable results for any validation metric considered. Since we had to
modify the dataset to permit a training split, it contains very few examples as well as an unusually large
feature to exmaple ratio (i.e. 5126 features for 1600 examples). SinceMC-DSM is the only validation metric
which is not a function of the validation oracle, it is possible the validation oracle is too poor for the other
metrics to perform well.

Interestingly,MDC does not perform well for any of the datasets. It is unclear why however, sinceMDC is
a sum of two terms measuring precision and recall which are both useful things to measure for generative
models (see Section A.1). It may require further exploration in the form of weighted sums instead, since
it currently is defined to give equal weighting to precision and recall. Since testing out various weighted
combinations of the two would have required significantly more compute, we did not explore it.

Classifier-based guidance The last three groups of barplots in Figure 4 constitute the classifier guidance
experiments. For this set of experiments the two most promising metrics appear to be MFD and MAgr.
Note that while we have also plottedMC-DSM it is not appropriate as a validation metric for classifier-based
guidance – this is because during those experiments τ is deterministically set to 1, which means the score
matching loss in Equation 14 is never conditioned on the y variable, and therefore εθ never sees y. (The
barplots also corroborate this, as the correlation is virtually zero for all experiments.)

Summarising both guidance variants If we count the best validation metric per subplot, then the top
three areMAgr (3 wins),MFD (2 wins), andMreward (1 win), respectively. This suggests that if we were
to perform a real world MBO then these metrics should be most considered with respect to their rankings.
However, since this paper only concerns itself with Gaussian DDPMs, we can not confidently extrapolate this
ranking to other classes of generative model or discrete datasets. We leave the testing of discrete diffusion
variants to future work.

Sample quality vs diversity We find that the guidance hyperparameter w makes a huge difference to
sample quality, and this is shown in Figure 5 for all datasets and across each validation metric. (For brevity’s
sake, we only show results for classifier-free guidance, and defer the reader to Section A.4 for the equivalent
set of plots for classifier guidance.) In each subplot individual points represent experiments and these are also
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(a) Ant Morphology. Mreward and MAgr are the most negatively correlated with the test reward.
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(b) Kitty Morphology (c.f.g.). Mreward and MFD are most negatively correlated with the test reward.
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(c) Superconductor (c.f.g.). Mreward and MAgr are most negatively correlated with the test reward.
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Figure 5: Correlation plots for each dataset using the classifier-free guidance (c.f.g.) diffusion variant. Each
point is colour-coded by w, which specifies the strength of the ‘implicit’ classifier that is derived (Equation
18). We can see that w makes a discernible difference with respect to most of the plots shown. For additional
plots for other datasets, please see Section A.4.

colour-coded with guidance hyperparameter w. We can see that the choice of w makes a huge difference with
respect to the test reward, and appears to highlight a well-established ‘dilemma’ in generative modelling,
which is the trade-off between sample quality and sample diversity (Ho & Salimans, 2022; Brock et al., 2018;
Burgess et al., 2018; Dhariwal & Nichol, 2021). For instance, if sample quality is too heavily weighted, then
sample diversity suffers and as a result the candidates we generate – which supposedly comprise high reward
– may actually truly be bad candidates when scored by the ground truth. Conversely, if sample diversity
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is too heavily weighted then we miss out on modes of the distribution which correspond to high-rewarded
candidates.

In Table 3 we present the 100th percentile test rewards for each combination of dataset and conditioning
variant. For each of these we simply choose the most promising validation metric as per Figure 4, find the
best experiment, and then compute its 100th percentile score as is consistent with evaluation in Design Bench:

M100p(S; θ, φ) = max
[
{f
(
sorted(S; fφ)i

)
}Ki=1

]
, Si ∼ pθ,γ(x, y) (27)

Note that Equation 27 differs from our test reward equation (Equation 24) in that a max is used as the
aggregator function instead of the mean. Lastly, we present 50th percentile results in Table S5, which
corresponds to a median instead of max.

Ant Morphology D’Kitty Morphology Superconductor Hopper50

Dtrain 0.565 0.884 0.400 0.272

Auto. CbAS 0.882 ± 0.045 0.906 ± 0.006 0.421 ± 0.045
CbAS 0.876 ± 0.031 0.892 ± 0.008 0.503 ± 0.069
BO-qEI 0.819 ± 0.000 0.896 ± 0.000 0.402 ± 0.034
CMA-ES 1.214 ± 0.732 0.724 ± 0.001 0.465 ± 0.024
Grad ascent 0.293 ± 0.023 0.874 ± 0.022 0.518 ± 0.024
Grad ascent (min) 0.479 ± 0.064 0.889 ± 0.011 0.506 ± 0.009
Grad ascent (ensemble) 0.445 ± 0.080 0.892 ± 0.011 0.499 ± 0.017
REINFORCE 0.266 ± 0.032 0.562 ± 0.196 0.481 ± 0.013
MINs 0.445 ± 0.080 0.892 ± 0.011 0.499 ± 0.017
COMs 0.944 ± 0.016 0.949 ± 0.015 0.439 ± 0.033

Cond. Diffusion (c.f.g.) 0.954 ± 0.025 0.972 ± 0.006 0.645 ± 0.115 0.143 ± 0.037
Cond. Diffusion (c.g.) 0.929 ± 0.013 0.952 ± 0.010 0.664 ± 0.007 –

Table 3: 100th percentile test rewards for methods from Design Bench (Trabucco et al., 2022) as well as our
diffusion results shown in the last two rows, with c.f.g standing for classifier-free guidance (Equation 18) and
c.g. standing for classifier-guidance (Equation 16). Each result is an average computed over six different runs
(seeds). test rewards are min-max normalised with respect to the smallest and largest oracle scores in the full
dataset, i.e. any scores greater than 1 are greater than any score observed in the full dataset. Design Bench
results are shown for illustrative purposes only – while our training sets are equivalent to theirs, we use a
held-out validation set to guide model selection, which makes a direct comparison to Design Bench difficult.

Which conditional variant should be used? From Table 3 both conditioning variants perform roughly
on par with each other, though it appears classifier-free guidance performs slightly better. However, they
are not necessarily equally convenient to use in a real-world MBO setting. A real-world MBO setting would
involve some sort of online learning component since the ground truth oracle needs to be eventually queried
(see Section 3, Paragraph 3). Because of this, we recommend the use of classifier-based guidance, where the
unconditional generative model pθ(x) can be independently trained offline while the classifier pφ(y|x) can be
a Bayesian probabilistic model which is able to be updated on per-example basis (i.e. after each query of the
ground truth).

5 Conclusion

In this work, we asked a fundamental question pertaining to evaluation in offline MBO for diffusion-based
generative models: which validation metrics correlate well with the ground truth oracle? The key idea is that
if we can run our presented study at scale for a both a difficult and diverse range of datasets for which the
ground truth is known, insights derived from those findings (such as what are robust validation metrics) can
be transferred to more real-world offline MBO tasks where the actual ground truth oracle is expensive to
evaluate. To approach this, our evaluation framework is designed to measure how well a generative model
extrapolates: the training and validation sets are seen as coming from different γ-truncated distributions,
where examples in the validation set comprise a range of y’s that are not covered by the training set and are
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larger than those in the training set. Therefore, from the point of view of the generative model, the validation
set is out-of-distribution. Because model selection involves measuring some notion of desirability on the
validation set (via a validation metric), we are effectively trying to select for models that can extrapolate.

While our proposed evaluation framework is model-agnostic, we presented it in the context of Gaussian
DDPMs on four continuous datasets prescribed by Design Bench, as well as across five different validation
metrics and two forms of label conditioning for diffusion models: classifier-free and classifier-based guidance.
The five validation metrics we chose were inspired by existing MBO works as well as the GAN literature.
After ranking the validation metrics based on their correlation with the test reward, we found that the
best three performing ones in descending order were agreement, Fréchet Distance, and the validation score,
respectively. While we ran a considerable number of experiments in this study, further exploration should be
done in testing on discrete datasets (which would require discrete or latent diffusion models) as well as a
deeper exploration into how these models perform under different sampling algorithms and design choices
(for instance see Karras et al. (2022)).

Lastly, we derived some interesting insights from our work. Regardless of which conditioning variant is used,
we found that the most important hyperparameter to tune is the classifier guidance value, which controls the
trade-off between sample quality and sample diversity. Furthermore, we posit that the classifier-based variant
of diffusion is likely more convenient in practice since it makes it easier to bridge the gap between offline and
online MBO.
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A Appendix

A.1 Validation metrics

Frechet Distance ‘Likelihood-free’ metrics are used almost exclusively in the GAN literature because
there is no straightforward way to compute likelihoods for this class of models, i.e. pθ(x|y) cannot be
evaluated. Furthermore, the search for good metrics is still an active topic of research (Borji, 2022). Common
likelihood-free metrics involve measuring some distance between distributions in some predefined feature
space. For instance, for GANs trained on natural image datasets the Fréchet Inception Distance (FID)
(Heusel et al., 2017) is used to fit Gaussians to both distributions with respect to the feature space of an
InceptionNet classifier trained on ImageNet. Since the acronym ‘FID’ specifically refers to a very specific
InceptionNet-based model, we will simply call it ‘FD’. If we assume that FD is computed in some latent space
characterised by an arbitrary feature extractor fh : X → H, then FD can be computed in closed form as
follows (Dowson & Landau, 1982):

MFD(X, X̃; fh) = |µ(fh(X))− µ(fh(X̃))| + Tr(Σ(fh(X)) + Σ(fh(X̃))− 2Σ(fh(X̃))Σ(fh(X̃)) 1
2 )

(S28a)

whereMFD ∈ R+ and lower FD is better. FD is also known as the 2-Wasserstein distance. Here, X ∈ RN×p
denotes N samples coming from a reference distribution (i.e. ground truth) and X̃ are samples coming from
the generative model. H = fh(X) denotes these inputs mapped to some feature space. Conveniently, we
can simply define the feature space to be with respect to some hidden layer of the validation oracle. One
caveat of FD is that it may have a stronger bias towards recall (mode coverage) than precision (sample
quality) (Kynkäänniemi et al., 2019) and that it reports a single number, which makes it difficult to tease
apart how well the model contributes to precision and recall. Furthermore, while there exists a canonical
network architecture and set of weights to use for evaluating generative models on natural image datasets (i.e.
a particular Inception-V3 network that gives rise to the Frechet Inception Distance), this is not the case for
other types of datasets. This means that, unless a particular feature extractor is agreed upon, comparing
results between papers is non-trivial.

Density and coverage We also consider ‘density and coverage’ (Naeem et al., 2020), which corresponds
to an improved version of the ‘precision and recall’ metric proposed in Kynkäänniemi et al. (2019). In essence,
these methods estimate the manifold of both the real and fake data distributions in latent space via the
aggregation of hyperspheres centered on each point, and these are used to define precision and recall: precision
is the proportion of fake data that can be explained by real data (in latent space), and recall is the proportion
of real data that can be explained by fake data (again, in latent space).

Similar to FD (Paragraph A.1), let us denote Hi as the example Xi embedded in latent space. Let us also
define B(Hi,NNDK(Hi) as the hypersphere centered on Hi whose radius is the k-nearest neighbour, and k
is a user-specified parameter. ‘Density’ (the improved precision metric) is defined as:

Mdensity(H, H̃; k) = 1
kN

M∑
j=1

N∑
i=1

1
{

H̃j ∈ B(Hi,NNDk(Hi))
}

︸ ︷︷ ︸
how many real neighbourhoods
does fake sample x̃j belong to?

, (S29)

where 1(·) is the indicator function, and large values corresponds to a better density. While coverage (improved
‘recall’) can be similarly defined by switching around the real and fake terms like so, the authors choose
to still leverage a manifold around real samples due to the concern of potentially too many outliers in the
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generated distribution H̃. As a result, their coverage is defined as:

Mcoverage(H, H̃; k) = 1
N

N∑
i=1

M⋃
j=1

1
{

H̃j ∈ B(Hi,NNDk(Hi))
}

(S30)

= 1
N

N∑
i=1

1
{
∃j s.t. H̃j ∈ B(Hi,NNDk(Hi))

}
︸ ︷︷ ︸

is there any fake sample belonging
to xi’s neighbourhood?

, (S31)

where, again, a larger value corresponds to a better coverage. This leads us to the addition of both metrics,
MDC, which is simply:

MDC(X, X̃; fh, k) =Mdensity(fh(X), fh(X̃); k) +Mcoverage(fh(X), fh(X̃); k) (S32a)

Similar to FD, we use the validation oracle fθ to project samples into the latent space. We do not tune k and
simply leave it to k = 3, which is a recommended default.

A.2 Related work

A.2.1 Conditioning by adaptive sampling

CbAS (Brookes et al., 2019), like our proposed method, approaches MBO from a generative modelling
perspective. Given some pre-trained ‘prior’ generative model on the input data pθ(x), the authors propose
the derivation of the conditional generative model pθ(x|y) via Bayes’ rule:

pθ(x|y) = p(y|x)pθ(x)
pθ(y) = p(y|x)pθ(x)∫

x
p(y|x)pθ(x)dx

, (S33)

where p(y|x) denotes the oracle in probabilistic form, and is not required to be differentiable. More generally,
the authors use S to denote some target range of y’s that would be desirable to condition on, for instance if
p(S|x) =

∫
y
p(y|x)1y∈Sdy then:

pθ(x|S) = p(S|x)pθ(x)
pθ(S) = p(S|x)pθ(x)∫

x
p(S|x)pθ(x)dx

, (S34)

Due to the intractability of the denominator term, the authors propose the use of variational inference to learn
a sampling network qζ(x) that is as close as possible to pθ(x|S) as measured by the forward KL divergence.
Here, let us use pθ(S|x) in place of p(S|x), and assume the oracle pθ(S|x) was trained on Dtrain:10:

ζ∗ = arg min
ζ

KL
[
pθ(x|S) ‖ qζ(x)

]
︸ ︷︷ ︸

forward KL

= arg min
ζ

∑
x

pθ(x|S) log
(
pθ(x|S)− qζ(x)

)
= arg min

ζ

∑
x

[
pθ(x|S) log pθ(x|S)− pθ(x|S) log qζ(x)

]
= arg max

ζ
H[pθ(x|S)] +

∑
x

[pθ(S|x)pθ(x)
pθ(S) log qζ(x)

]
= arg max

ζ
H[pθ(x|S)]︸ ︷︷ ︸

const.

+ 1
pθ(S)︸ ︷︷ ︸
const.

∑
x

[
pθ(S|x)pθ(x) log qζ(x)

]

= arg max
ζ

Ex∼pθ(x)

[
pθ(S|x)︸ ︷︷ ︸
oracle

log qζ(x)
]
. (S35)

10In their paper the symbol φ is used, but here we use ζ since the former is used to denote the validation oracle.
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The authors mention that in practice importance sampling must be used for Equation S35. This is because
the expectation is over samples in pθ(x), which in turn was trained on only examples with (relatively) small
y. i.e. those in Dtrain. Because of this, p(S|x) is likely to be small in magnitude for most samples. For more
details, we defer the reader to the original paper (Brookes et al., 2019).

To relate the training of CbAS to our evaluation framework, we can instead consider Equation S35 as part
of the validation part of our evaluation framework. In other words, if we define S := [γ,∞] and use the
validation oracle pφ in place of pθ(S|x), then we can optimise for the extrapolated model as the following:

ζ∗ = arg min
ζ

Ex∼pθ(x)

[
pφ(S|x)︸ ︷︷ ︸
oracle

log qζ(x)
]

(S36)

Generally speaking, validation metrics should not be optimised over directly since they are functions of the
validation set, and the purpose of a validation set in turn is to give a less biased measure of generalisation
than the same metric computed on the training set. However, this may not be too big of a deal here since we
are not taking gradients with respect to the oracle.

metric

extrapolate generation

model 
selection

train

approximate 
oracle

Figure S6: The training and evaluation of CbAS Brookes et al. (2019) in the context of our evaluation
framework. The extrapolation equation is described in Equation S35 and involves variational inference to
fine-tune pθ(x) into a search model qζ(x).

A.2.2 Model inversion networks and the reverse KL divergence

It turns out that there is an interesting connection between the agreement and the reverse KL divergence
between a specific kind of augmented model distribution and the truncated ground truth p0,γ(x, y). To see
this, let us re-consider the generation time optimisation performed in Kumar & Levine (2020) (which we
called MIN-Opt), which tries to find a good candidate x = Gθ(z, y) via the following optimisation:

y∗, z∗ = arg max
y,z

y + ε1 log pθ(y|Gθ(z, y))︸ ︷︷ ︸
agreement

+ε2 log p(z)︸ ︷︷ ︸
prior over z

(S37)

z and y can be generated by performing gradient ascent with respect to y and z. We can also express
MIN-Opt with respect to a batch of (y,z)’s, and this can be elegantly written if we express it as optimising
over a distribution pζ(z, y). Then we can find such a distribution that maximises the expected value of
Equation S37 over samples drawn from pζ(z, y):

pζ(z, y)∗ := arg max
pζ(z,y)

Ez,y∼pζ(z,y)

[
y + ε1

(
log pθ(y|Gθ(z, y)) + ε2 log p(z)

)]
, (S38)

where e.g. ζ parameterises the distribution, e.g. a mean and variance if we assume it is Gaussian. Although
MIN-Opt was intended to be used at generation time to optimise for good candidates, we can also treat it as
a validation metric, especially if we replace the training oracle pθ(y|x) with the validation oracle pφ(y|x).
For the sake of convenience, let us also replace ε1 and ε2 with one hyperparameter η. This hyperparameter
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can be seen as expressing a trade-off between selecting for large scores y versus ones with large agreement
and density under the prior distribution. This gives us the following:

pζ(z, y)∗ = arg max
pζ(z,y)

Ey,z∼pζ(z,y)

[
y + η

(
log pφ(y|Gθ(z, y)) + log p(z)

)]
= arg max

pζ(z,y)
Ey∼pζ(y)y + ηEy,z∼pζ(z,y)

[
log pφ(y|Gθ(z, y)) + log p(z)

]
(S39)

= arg max
pζ(z,y)

Ey∼pζ(y)y + ηEx,y,z∼pθ(x|y,z)pζ(z,y)

[
log pφ(y|x) + log p(z)

]
. (S40)

Note that in the last line we instead use the notation x ∼ pθ(x|y,z) (a delta distribution) in place of
x = Gθ(z, y) , which is a deterministic operation. We can show that Equation S39 has a very close
resemblence to minimising the reverse KL divergence between a specific kind of augmented model and the
γ-truncated ground truth, with respect to our distribution pζ(z, y). Suppose that instead of the typical
augmented model pθ,γ(x, y) = pθ(x|y)pγ(y) we consider one where z and y are drawn from a learnable
joint distribution pζ(z, y), and we simply denote pθ(x|y,z) to be a delta distribution (since x = Gθ(z, y) is
deterministic). We can write this new augmented model as the following:

pθ,ζ(x, y) =
∫

z

pθ(x|y,z)︸ ︷︷ ︸
GAN

pζ(z, y)dz. (S41)

Although this distribution is not tractable, we will only be using it to make the derivations more clear.

Let us work backwards here: if we take Equation S39 but substitute the inner square bracket terms for the
reverse KL divergence between the augmented model of Equation S41 and the ground truth pγ(x, y), we
obtain the following:

pζ(z, y)∗ := arg min
y∼pζ

−Epζ(y)y + ηKL
[
pθ,ζ(x, y) ‖ pγ(x, y)

]
︸ ︷︷ ︸

reverse KL

= arg min
pζ

−Ey∼pζ(y)y + η
[
Ex,y∼pθ,ζ(x,y) log pθ,ζ(x, y)− Ex,y∼pθ,ζ(x,y) log pγ(x, y)

]
= arg max

pζ

Ey∼pζ(y)y − η
[
Ex,y∼pθ,ζ(x,y) log pθ,ζ(x, y) + Ex,y∼pθ,ζ(x,y) log pγ(x, y)

]
= arg max

pζ

Ey∼pζ(y)y + η
[
H[pθ,ζ ] + Ex,y∼pθ,ζ(x,y) log pγ(x, y)

]
= arg max

pζ

Ey∼pζ(y)y + η
[
H[pθ,ζ ]︸ ︷︷ ︸
entropy

+Ex,y,z∼pθ(x|y,z)pζ(z,y)
[

log p(y|x)︸ ︷︷ ︸
agreement

+ log pγ(x)
]]

≈ arg max
pζ

Ey∼pζ(y)y + η
[
H[pθ,ζ ]︸ ︷︷ ︸
entropy

+Ex,y,z∼pθ(x|y,z)pζ(z,y)
[

log pφ(y|x)︸ ︷︷ ︸
agreement

+ log pγ(x)
]]
. (S42)

The entropy term is not tractable because we cannot evaluate its likelihood. For the remaining two terms
inside the expectation, the agreement can be approximated with the validation oracle pφ(y|x). Howeer, it
would not be practical to estimate log pγ(x) since that would require us to train a separate density pφ(x) to
approximate it.

For clarity, let us repeat Equation S39 here:

pζ(z, y)∗ = arg max
pζ(z,y)

Ey∼pζ(y)y + ηEx,y,z∼pθ(x|y,z)pζ(z,y)

[
log pφ(y|x) + log p(z)

]
. (S43)

The difference between the two is that (1) there is no entropy term; and (2) log pγ(x) term is replaced with
log p(z) for MIN-Opt, which is tractable since the know the prior distribution for the GAN. From these
observations, we can conclude that MIN-Opt (S39) comprises an approximation of the reverse KL divergence
where the entropy term is omitted and the log density of the data is replaced with the log density of the prior.
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A.2.3 Exponentially tilted densities

Once the best model has been found via an appropriate validation metric, one can train the same type of
model on the full dataset D using the same hyperparameters as before. Ultimately, we would like to be
able to generate candidates whose y’s exceed that of the entire dataset, and at the same time at plausible
according to our generative model. To control how much we trade-off high likelihood versus high rewarding
candidates, we can consider the exponentially tilted density (Asmussen & Glynn, 2007; O’Donoghue et al.,
2020; Piche et al., 2022):

pθ,γ(x, y) exp(η−1y − κ(η)), (S44)

where κ(η) is a normalisation constant, and smaller η puts larger emphasis on sampling from regions where y
is large. Taking the log of Equation S44, we arrive at:

x∗, y∗ = arg max
x,y

log pθ,γ(x, y) + 1
η
y, (S45)

In practice, it would not be clear what the best η should be, but a reasonable strategy is to consider a range
of η’s, where larger values encode a higher tolerance for ‘risk’ since these values favour higher rewarding
candidates at the cost of likelihood. Note that for VAEs and diffusion models, log pθ(x, y) will need to be
approximated with the ELBO. Interestingly, since diffusion models have an extremely close connection to
score-based models, one could ‘convert’ a diffusion model to a score-based model (Weng, 2021) and derive
∇x,y log pθ(x, y), and this would make sampling trivial.

One potential issue however relates to our empirical observation that predicted scores for generated candidates
exhibit very high variance, i.e. the agreement scores are very high (see Figures S7b and S9b). In other words,
when we sample some x, y ∼ pθ,γ(x, y) (i.e. from the augmented model) there is significant uncertainty as
to whether x really does have a score of y. One potential remedy is to take inspiration from the MIN-Opt
generation procedure (Section A.2.2) and add the agreement term to Equation S45:

x∗, y∗ = arg max
x,y

log pθ,γ(x, y) + 1
η
y + α log pφ(y|x). (S46)

Due to time constraints, we leave additional experimentation here to future work.

A.3 Additional training details

A.3.1 Hyperparameters

The architecture that we use is a convolutional U-Net from HuggingFace’s ‘annotated diffusion model’ 11,
whose convolutional operators have been replaced with fully connected layers (since Ant and Kitty morphology
inputs are flat vectors).

For all experiments we train with the ADAM optimiser (Kingma & Ba, 2014), with a learning rate of 2×10−5,
β = (0.0, 0.9), and diffusion timesteps T = 200. Experiments are trained for 5000 epochs with single P-100
GPUs. Input data is normalised with the min and max values per feature, with the min and max values
computed over the training set Dtrain. The same is computed for the score variable y, i.e. all examples in the
training set have their scores normalised to be within [0, 1].

Here we list hyperparameters that differ between experiments:

• diffusion_kwargs.tau: for classifier-free diffusion models, this is the probability of dropping the label
(score) y and replacing it with a null token. For classifier guidance models, this is fixed to τ = 1 since this
would correspond to training a completely unconditional model.

• gen_kwargs.dim: channel multiplier for U-Net architecture

• diffusion_kwargs.w_cg: for classifier-based guidance, this is the w that corresponds to the w in Equation
16.

11https://huggingface.co/blog/annotated-diffusion
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A.3.2 Hyperparameters explored for classifier-free guidance

{
’diffusion_kwargs.tau’: {0.05, 0.1, 0.2, 0.4, 0.5},
’gen_kwargs.dim’: {128, 256}

}

A.3.3 Hyperparameters explored for classifier guidance

{
’diffusion_kwargs.w_cg’: {1.0, 10.0, 100.0},
’epochs’: {5000, 10000},
’gen_kwargs.dim’: {128, 256}

}

A.3.4 Classifier guidance derivation

Let us denote xt as the random variable from the distribution q(xt), denoting noisy input x at timestep t.
Through Bayes’ rule we know that q(xt|y) = q(xt,y)

q(y) = q(y|xt)q(xt)
q(y) . Taking the score ∇xt log q(xt|y) (which

does not depend on q(y)), we get:

∇xt log q(xt|y) = ∇xt log q(y|xt) +∇xt log q(xt) (S47)

≈ −1√
1− ᾱt

(
εθ(xt, t, y)− εθ(xt, t)

)
, (S48)

where in the last line we make clear the connection between the score function and the noise predictor εθ
Weng (2021). Since we would like to derive the conditional score, we can simply re-arrange the equation to
obtain it:

εθ(xt, t, y) = εθ(xt, t)−
√

1− ᾱt∇xt log q(y|xt) (S49)
≈ εθ(xt, t)−

√
1− ᾱt∇xt log pθ(y|xt), (S50)

where we approximate the classifier q(y|xt) with our (approximate) training oracle pθ(y|xt). In practice, we
can also define the weighted version as follows, which allows us to balance between conditional sample quality
and sample diversity:

εθ(xt, t, y;w) = εθ(xt, t)−
√

1− ᾱtw∇xt log pθ(y|xt), (S51)

Therefore, in order to perform classifier-guided generation, we replace εθ(xt, t) in whatever generation
algorithm we use with εθ(xt, t, y;w) instead.

A.3.5 Classifier-free guidance

In classifier-free guidance a conditional score estimator εθ(xt, y, t) is estimated via the algorithm described in
Ho & Salimans (2022), where the y token is dropped during training according to some probability τ . If y is
dropped it is replaced with some unconditional token. In other words, the noise predictor (score estimator) is
trained both conditionally and unconditionally, which means we have both εθ(xt, t) as well as εθ(xt, y, t).

From Bayes’ rule, we know that: p(y|xt) = p(y,xt)
p(xt) = p(xt|y)p(y)

p(xt) , and that therefore the score ∇xt log p(y|xt)
is:

∇xt log p(y|xt) = ∇xt log p(xt|y)−∇xt log p(xt) (S52)
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We simply plug this into Equation 16 to remove the dependence on pθ(y|xt):

εθ(xt, t, y;w) = εθ(xt, t)−
√

1− ᾱtw∇xt log pθ(y|xt) (S53)

= εθ(xt, t)−
√

1− ᾱtw
[
∇xt log pθ(xt|y)−∇xt log pθ(xt)

]
(S54)

= εθ(xt, t)−
√

1− ᾱtw
[ −1√

1− ᾱt
εθ(xt, y, t)−

−1√
1− ᾱt

εθ(xt, t)
]

(S55)

= εθ(xt, t) + wεθ(xt, y, t)− wεθ(xt, t) (S56)

= εθ(xt, t) + w
(
εθ(xt, y, t)− εθ(xt, t)

)
(S57)
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A.4 Correlation and agreement plots

Agreement plots We plot the conditioning y ∈ linspace(ymin, ymax) against the validation/test oracle
predictions for candidates conditionally generated with that y. We call these ‘agreement plots’ since the
sum of squared residuals for each point would constitute the agreement (with a perfect agreement of zero
corresponding to a diagonal dotted line on each graph). Here we demonstrate this amongst the best three
models with respect to MAgr, since this is most correlated with the test oracle (see Figure S7a). The shaded
regions denote ±1 standard deviation from the mean, and the marker symbols denote the max/min score for
each y with respect to either oracle.

A.4.1 Ant Morphology
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Figure S7: Results on Ant Morphology dataset, using the classifier-free guidance variant (Equation 18).
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Figure S8: Results on Ant Morphology dataset, using the classifier guidance variant (Equation 16).
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A.4.2 D’Kitty Morphology

See Figures S9 and S10.
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Figure S9: Results on D’Kitty Morphology dataset, using the classifier-free guidance variant (Equation 18).
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Figure S10: Results on D’Kitty Morphology dataset, using the classifier guidance variant (Equation 16).

29



Published in Transations on Machine Learning Research (05/2024)

A.4.3 Superconductor

See Figure S11.
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Figure S11: Results on Superconductor dataset (Hamidieh, 2018), using the classifier-free guidance variant
(Equation 18).
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Figure S12: Results on Superconductor dataset (Hamidieh, 2018), using the classifier-free guidance variant
(Equation 18).
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50th pt. 100th pt.

Dtrain – 0.400

Auto. CbAS 0.131 ± 0.010 0.421 ± 0.045
CbAS 0.111 ± 0.017 0.503 ± 0.069
BO-qEI 0.300 ± 0.015 0.402 ± 0.034
CMA-ES 0.379 ± 0.003 0.465 ± 0.024
Grad. 0.476 ± 0.022 0.518 ± 0.024
Grad. Min 0.471 ± 0.016 0.506 ± 0.009
Grad. Mean 0.469 ± 0.022 0.499 ± 0.017
REINFORCE 0.463 ± 0.016 0.481 ± 0.013
MINs 0.336 ± 0.016 0.499 ± 0.017
COMs 0.386 ± 0.018 0.439 ± 0.033

Cond. Diffusion (c.f.g.) 0.518 ± 0.045 0.636 ± 0.034

Table S4: 100th and 50th percentile test rewards for the Superconductor dataset. Results above our conditional
diffusion results (bottom-most row) were extracted from Design Bench Trabucco et al. (2022). For our
experiments, each result is an average computed over three different runs (random seeds). test rewards are
min-max normalised with respect to the smallest and largest oracle scores in the full dataset, i.e. any scores
greater than 1 are greater than any score observed in the full dataset. Design Bench results are shown for
illustrative purposes only, and are not directly comparable to our results due to differences in evaluation
setup.
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A.4.4 Hopper (50%)

See Figure S13.
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Figure S13: Results on Hopper 50%, using the classifier-free guidance variant (Equation 18).
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A.5 Sensitivity to τ hyperparameter

In Figure S14 we present the same correlation plots as shown in Section A.4 but colour-coded with respect to
τ , which is the classifier-free guidance hyperparameter that controls the dropout probability for the label y.
For each dataset, for the validation metrics that perform the best (i.e. correlate most negatively with the test
reward), smaller values of τ result in better test rewards. Overall, the results indicate that τ is a sensitive
hyperparameter and should be carefully tuned.
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(a) Ant Morphology dataset. For each validation metric, we plot each experiment’s smallest-achieved metric versus
the test reward (Equation 24). The colourbar represents values of τ .
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(b) Kitty dataset. For each validation metric, we plot each experiment’s smallest-achieved metric versus the test
reward (Equation 24). The colourbar represents values of τ .
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(c) Superconductor dataset. For each validation metric, we plot each experiment’s smallest-achieved metric versus the
test reward (Equation 24). The colourbar represents values of τ .

Figure S14: Results on each dataset, using the classifier-free guidance variant (Equation 18). Coloured points
represent the hyperparameter τ , which represents the dropout probability for classifier-free guidance (cfg).
Across all datasets, smaller values of τ correspond to better scores. This suggests that experiments are quite
sensitive to the value of this hyperparameter.
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A.6 Additional results

Ant Morphology D’Kitty Morphology Superconductor

Auto. CbAS 0.364 ± 0.014 0.736 ± 0.025 0.131 ± 0.010
CbAS 0.384 ± 0.016 0.753 ± 0.008 0.017 ± 0.503
BO-qEI 0.567 ± 0.000 0.883 ± 0.000 0.300 ± 0.015
CMA-ES -0.045 ± 0.004 0.684 ± 0.016 0.379 ± 0.003
Gradient Ascent 0.134 ± 0.018 0.509 ± 0.200 0.476 ± 0.022
Grad. Min 0.185 ± 0.008 0.746 ± 0.034 0.471 ± 0.016
Grad. Mean 0.187 ± 0.009 0.748 ± 0.024 0.469 ± 0.022
MINs 0.618 ± 0.040 0.887 ± 0.004 0.336 ± 0.016
REINFORCE 0.138 ± 0.032 0.356 ± 0.131 0.463 ± 0.016
COMs 0.519 ± 0.026 0.885 ± 0.003 0.386 ± 0.018

Cond. Diffusion (c.f.g.) 0.831 ± 0.052 0.930 ± 0.004 0.492 ± 0.112
Cond. Diffusion (c.g.) 0.880 ± 0.012 0.935 ± 0.006 –

Table S5: 50th percentile test rewards for methods from Design Bench (Trabucco et al., 2022) as well as our
diffusion results shown in the last two rows, with c.f.g standing for classifier-free guidance (Equation 18) and
c.g. standing for classifier-guidance (Equation 16). Each result is an average computed over six different runs
(seeds). test rewards are min-max normalised with respect to the smallest and largest oracle scores in the
full dataset, i.e. any scores greater than 1 are greater than any score observed in the full dataset. Design
Bench results are shown for illustrative purposes only, and are not directly comparable to our results due to
differences in evaluation setup.
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