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ABSTRACT

Test cases are crucial for ensuring the program’s correctness and evaluating per-
formance in programming. The high diversity of test cases within constraints
is necessary to distinguish between correct and incorrect answers. Automated
source code generation is currently a popular area due to the inefficiency of manu-
ally generating test cases. Recent attempts involve generating conditional cases
from problem descriptions using deep-learning models that learn from source
code. However, this task requires a combination of complex skills such as ex-
tracting syntactic and logical constraints for a given test case from a problem,
and generating test cases that satisfy the constraints. In this work, we intro-
duce a modified context-free grammar that explicitly represents the syntactical
and logical constraints embedded within programming problems. Our innova-
tive framework for automated test case generation separates restriction extrac-
tion from test case generation, simplifying the task for the model. Our exper-
imental results show that, compared to current methods, our framework pro-
duces test cases that are more precise and effective. All the codes in this pa-
per are available in https://anonymous.4open.science/r/neural_
translation_for_test_case_generation.

1 INTRODUCTION

Automated Test Case Generation (ATCG) is a growing area of interest within the field of software
engineering, driven by the rapid progress of deep learning. These developments have led to the cre-
ation of numerous tools that enhance productivity in programming by offering source code sugges-
tions through deep-learning models. While the ATCG plays a pivotal role in ensuring the accuracy
of machine-generated codes, it is important to note that passing certain test cases does not guarantee
the program’s correctness. Recently, Liu et al. (2023) reported that there exist incorrect codes in the
current program synthesis benchmarks that are not sufficiently verified due to the lack of test cases.
To generate more test cases, they employed the famous large language model ChatGPT by OpenAI
to produce the initial test cases by providing several prompts such as ‘generate difficult inputs’ or
‘generate corner-case inputs’ and applying type-aware mutations to the generated test cases.

We concentrate on the competitive programming field, which presents substantial demands for
ATCG technologies for scoring solutions. In response to these demands, we introduce a neural trans-
lation task that converts natural language specifications into formal grammars. This approach allows
the model to represent the meaning of the understood specifications without the need for further test
case generation, enabling the model to focus on natural language understanding during the learning
process. For the remaining aspects of test case generation, we rely on the formal grammar-based
sampling algorithms. Our contribution extends to the introduction of context-free grammars with
counters (CCFGs), meticulously designed to represent the syntactical and logical constraints that
arise in competitive programming problem descriptions. We propose the use of a pre-trained CodeT5
model as a neural translation model to facilitate the neural translation task. Finally, we assess the
utility of these approaches through experiments conducted on DeepMind’s CodeContests dataset (Li
et al., 2022), thereby validating the effectiveness of our CCFGs. Figure 1 describes our approach on
the test case generation problem from specifications.
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Programing Problem
Description/Specification Grammar Translation Model

⟨S⟩ → [t] \n ⟨Tt⟩ . . .

⟨Ti⟩ → ⟨Ti−1⟩\n . . .

⟨T1⟩ → [n1] x1\n . . .

⟨Li⟩ → ⟨Li−1⟩ \n u v

1 ≤ t ≤ 1000, 1 ≤ . . .

Test Case Generation

Input:
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4 3
3 4 . . .

1363 C
Ayush and Ashih play a
game on n unrooted
tree consisting of n
nodes numbered . . .

Input: The first line of
the input contains a
single integer t (1 ≤ t
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of testcases. The . . .

Input: The first line of the
input contains a single
integer t (1 ≤ t ≤
1000)—the number of
testcases. The description
of the test cases follow.
The first line of each
testcase contains two
integers n and x (1 ≤ n ≤
1000, 1 ≤ x ≤ n)—. . .

Figure 1: Overview of the proposed framework for generating test cases for competitive program-
ming problems: The deep learning model translates specification into CCFGs while preserving their
meaning. Subsequently, the CCFGs are utilized to generate test cases for the problem.

2 RELATED WORK

2.1 AUTOMATIC TEST CASE GENERATION

A review of the existing work done has indicated that the use of ATCG has shown significant im-
provement in the generation of Grammar-based Test Case Generation. Reports shows that the tools
for automatically generating the test cases are becoming one of the common practices in large soft-
ware organisations. The use of ATCG can enhance the efficiency and the ad-hoc in the software
engineering field (Brunetto et al., 2021). But one of the key challenges is the navigation of the
large input space and all the existing works struggle, or find difficulty in generating the high quality
and well-structured test case (Olsthoorn, 2022). Typically, a deep learning approach takes an input
specification as input and trains the model to get an accurate test case by using a neural network.
Previously, A3Test uses the existing knowledge from an assertion generation task to the test case
generation task (Alagarsamy et al., 2023). Similarly, Wang et al. (2022) uses the specifications from
the natural language to generate the test cases by extracting the constraints and thus reduces the
manual errors for generating the test cases.

2.2 NATURAL LANGUAGE TO FORMAL GRAMMAR

Many approaches have been made to convert the Natural Language to the Grammar. For exam-
ple, Kate et al. (2005) implemented a method for inducing transformation rules that map natural-
language sentences into a formal query or command language. Recently, research of Chen et al.
(2023) shows that semantic regexes can better support complex data extraction tasks than standard
regular expressions and the use of the regular expressions or had significantly outperformed the
existing tools, including the state-of-the-art neural networks and program synthesis tools.Though,
previous works also mentioned the drawback of using the regular expression as study shows that the
conversion of the Natural Language to the regex fails to generate complex regexes. Ye et al. (2020)
solved these issue by introducing the semantic parser that can be trained purely from the weak su-
pervision based on the correctness of the synthesized regex. Similarly, Hahn et al. (2022) mentioned
that the language models have the capability to translate the Natural Language to the formal speci-
fications while maintaining the important keywords as well as outperforming the state of the art of
using the regular expressions, without a particular need for domain-specific reasoning.

2.3 LARGE LANGUAGE MODELS FOR PROGRAM UNDERSTANDING AND GENERATION

There have been numerous studies on pre-training methods for understanding programming lan-
guages. Feng et al. (2020) proposed CodeBERT, which is a RoBERTa-based model pre-trained on
multiple programming languages with masked language modeling. Guo et al. (2021) introduced
GraphCodeBERT which is strengthened from CodeBERT by incorporating data flow information
in the pre-training stage. Jiang et al. (2021) introduced TreeBERT, a tree-based pre-trained model
that focuses on utilizing the extracted tree structure by encoding an abstract syntax tree as a set of
composition paths. TreeBERT is trained by two novel objectives called tree-masked language mod-
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eling and node order prediction. Rozière et al. (2021) investigated another programming-language-
oriented pre-training objective based on the de-obfuscation of identifier names in source code.

Recently, Ahmad et al. (2021) proposed PLBART—Program and Language BART—which learns
the interaction between program codes and natural language descriptions by leveraging the idea of
denoising auto-encoder that uses a bidirectional encoder and an auto-regressive decoder. Yue Wang
& Hoi (2021) introduced CodeT5, which leverages the code-specific characteristics in the pre-
training stage by employing the new objectives such as masked random token prediction, masked
identifier prediction, and identifier prediction objectives. Ma et al. (2021) proposed a pre-trained
multilingual encoder-decoder model that regards the decoder as the task layer of off-the-shelf pre-
trained encoders in order to take the advantage of both the large-scale monolingual data and bilingual
data. Guo et al. (2022) demonstrated a unified cross-modal pre-trained model for programming lan-
guage. This utilizes mask attention matrices with prefix adapters to control the behavior of the model
and leverages cross-modal contents like an abstract syntax tree, and enhances the code representation
by retaining all the structural information from the tree.

3 METHODOLOGY

In this section, we present a formal definition of context-free grammars with counters, specialized
formal grammars designed to accurately represent the semantics of input specifications in the con-
text of competitive programming. For symbols occur in each input specification, (1) variables are
symbols used to represent values that vary depending on the test case, and (2) terminals are the
symbols that are not variables, such as white spaces or newline symbols.

We often denote a set XI and one of its elements xi, using a subscript I and i. Then, we write the
set XI × A as XA and its element (xi, a) ∈ XI × A as xa ∈ XA for simplicity. For example, if
XI = {xi, yi} then X{0,1} = {x0, x1, y0, y1} and x0 = (xi, 0).

V and T represents a sets of variables and terminals, respectively. We assume that we can divide
V into two disjoint sets: a set V◦ of non-indexable variables, and a set VI of indexable variables.
For a problem input specification, we formalize its logical constraints as a set A of allowed vari-
able assignments α : V◦ ∪ VN0

→ Z⊥, where Z⊥ := Z ∪ {⊥}. Also, we formalize its syntactical
constraints as a function L maps an assignment α to a language L(α) ∈ Γ∗ on a scheme alpha-
bet Γ := T ∪ V◦ ∪ VN0

.

We introduce the context-free grammar with counters to represent A and L.

Definition 3.1. Let the scheme alphabet Γ := T ∪ V◦ ∪ VN0 . A context-free grammar with counters
is a tuple G = (V,C,N, T, P, S, C), where (1) C ∈ V◦ is a set of counter variables; (2) a finite set of
nonterminals N is the disjoint union of a set N◦ of indexable nonterminals ⟨X⟩ and a set NI of non-
indexable nonterminals ⟨Yi⟩; (3) P is a set of productions where Γ′ := Γ ∪N◦ ∪N(N0∪C) ∪ {[c] |
c ∈ C}, and each production is an element of the following sets:

1. {(x → γ) | x ∈ N◦ ∪NN0 ∪ C, γ ∈ (Γ′)∗}, or

2. {(⟨Xi⟩ → γ) | ⟨Xi⟩ ∈ NI , γ ∈ (Γ′)∗}

where Γ′ := V{i,i−1} ∪ N{i,i−1} ∪ Γ′; (4) S ∈ N is a start nonterminal; and (5) C is a set of
constraints, where each constraint is one of following forms:

1. (x ≤ K) or (K ̸= x) for x ∈ V◦ ∪ VI ∪ V{N0∪C} and K ∈ Z;

2. (x ≤ K) or (K ̸= x) for x ∈ V◦ ∪ VI ∪ V{N0∪C} and K ∈ Z.

Let idxingk(γ) for each k ∈ N0 be a string obtained by replacing subscript i’s and i − 1’s with k
and k − 1, respectively. Then we define a derivation ⊢∗ of G as the following.

Definition 3.2. For a CCFG G, a derivation relation ⊢∗
G with respect to G be the reflexive-transitive

closure of ⊢G, where ⊢G is a relation on (Γ′)∗ × {β | β : C → Z⊥} defined as follows.

For u, v, γ ∈ (Γ′)∗, x ∈ Γ′ and β, β′ : C → Z⊥ the relation (uxv, β) ⊢G (uγv, β′) holds if and
only if they satisfies the following three conditions.
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• β(c) ̸= ⊥ implies β′(c) for every c ∈ C,

• α′(c′) ̸= ⊥ for every counter variable c′ occurs in γ, and

• one of the followings holds:

1. x = ⟨X⟩ ∈ N◦, (⟨X⟩ → γ) ∈ P ;

2. x = ⟨Xk⟩ ∈ NN0 , (⟨Xi⟩ → γ′) ∈ P , where γ′ ∈ (Γ′)∗ with idxingk(γ
′) = γ and

(⟨Xk⟩ → γ′′) ̸∈ P for any γ′′ ∈ (Γ′)∗;
3. x = ⟨Xk⟩ ∈ NN0

, (⟨Xk⟩ → γ) ∈ P ;
4. x = ⟨Xc⟩ ∈ NC for some c ∈ C, γ = ⟨Xα(c)⟩; or

5. x = [c] for some c ∈ C, ([c] → γ′) ∈ P with γ = cγ′.

Finally, G represents logical constraints A and syntactical constraints L, where

• L(α) = {x ∈ Γ∗ | (S, α0) ⊢∗
G (x, α)}, for every α : C → Z; and

• A := {α | α : V◦ ∪ VN0 → Z⊥ satisfies all constraints in C}.

When labeling the dataset, we simplify the representation of G with the following rules: (1) We
present P as a list Productions of productions p ∈ P . (2) We present C as a list Constraints
of constraints and combination constraints such as “a <= b < c”, which is a combination of
“a ≤ b, b ≤ c and b ̸= c”. (3) We do not present variables V , counter variables C, nontermi-
nals N , and terminals T explicitly. Instead, one can constructs them by analyzing Productions
and Constraints. (4) We omit the representation of a start nonterminal S, by forcing the first
production in Productions be the production of S.

3.1 STRING SAMPLING AND PARSING OF CCFGS

Remaining of this section, we assume that CCFGs and context-free grammars (CFGs) have no
empty-productions that derive the empty string from nonterminals. Given an CFG G, one can sam-
ple a random string from L(G) in linear time with respect to the length of the sampled string by
simulating its derivation procedure probabilistically. If there are no constraints (a ≤ b) or (a ̸= b)—
that is, if every variables are independent—we can directly apply the sampling algorithm for CFGs
to CCFGs, utilizing random assignment on variables during the derivation.

Otherwise, CCFGs have no polynomial time sampling algorithms due to the constraints; this is an
immediate corollary of the co-NP-hardness of the emptiness problem.

Theorem 3.1. For a given CCFG G = (V,C,N, T, P, S, C), the emptiness problem of G—
determining whether L(G) = ∅ or not—is co-NP-Hard.

Proof. We use a reduction from the graph coloring problem (Karp, 1972). Let (G, k) with G =
(V,E) be an instance of the graph coloring problem. Suppose that V = {v1, v2, . . . , vn}. Then we
construct a CCFG G := (V, ∅, {⟨S⟩}, ∅, P, ⟨S⟩, C) where P and C are defined as follows: (1) P =
{⟨S⟩ → v1 · v2 · · · · · vn} and (2) C = {(0 ≤ v ≤ k) | v ∈ V } ∪ {(u ̸= v) | (u, v) ∈ E}. Then G
has k-coloring if and only if L(G) is not empty.

We deal with the hardness of the sampling from CCFGs with straightforward Las Vegas approach—
we sample variables until they satisfy the constraints.

One can utilize CCFGs as parser for test case validation according to their specifications. For pars-
ing, we search derivations in depth-first way, and backtracks if the constraint or test case scheme
violates the input string. Most of the grammars have linear parsing time with respect to the test-
case length in real world, despite of the worst-case time complexity of the parsing algorithm being
exponential. This is because most of the problem specifications are unambiguous, and so we can de-
termine which derivation to choose for each step with 1-lookahead (Rosenkrantz & Stearns, 1969).
Figure 2 describes a test case generation and validation using CCFGs.
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"productions": [

"<S>->[t] <n> <T_t>",

"<T_i>-><T_i-1> <n>..

"<T_1>->[n] <s> x n..

],

"constraints": [

"1 <= t <= 1000", ...

]

5
⟨T5⟩

, {t 7→ 5}

5
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, {t 7→ 5}

"grammar": {

}
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.
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.

Test Case Generation
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Figure 2: Test case generation and validation process using sampling and parsing algorithms of
CCFGs.

4 EXPERIMENTS

We evaluate the practical usefulness of CCFGs by experiments. You can find all the implementa-
tions and codes used in experiments on Anonymous GitHub at https://anonymous.4open.
science/r/neural_translation_for_test_case_generation.

4.1 IMPLEMENTATION DETAILS

Specification extraction We heuristically extract the specification from the entire description, by
finding the sections starts with “Inputs: ” and “Constraints: ”. If a description does not
contain any of the two sections, we use the entire description as the specification.

Context-free grammars with counters The CCFG described above aims to provide a proper
formalization of the data used in the experiment. However, a discrepancy remains with our dataset.
For instance, the production ‘<S> -> N <s> [a-z]{N}’ contains a regex-like expression that
generates length N upper-case alphabet string following the number N .

4.2 DATASET

We use CodeContests dataset, which consists with 3.76k train data, 97 valid data and 165 test data.
We filter the data containing solutions written with Python3, since we use the Python3 solutions for
evaluation. We exclude solutions that use sys.setrecursionlimit, since running such solu-
tions by experimental code causes segmentation faults for edge case inputs and it makes operation
system forcefully stops the experiments.

We manually labeled CCFGs for 700 and 136 problems from the training data in CodeContests, and
use them for the model training and testing the syntactic equivalence of the grammar, respectively.
On the other hand, during the model training, we use remaining unlabeled training data for pseudo
labeling, and original 97 valid data for evaluation during development.

4.3 CCFGT5 MODEL ARCHITECTURE

We propose a translation model CCFGT5 that receives a problem input specification and produces a
CCFG that has the same semantics. Our model utilizes two fine-tuned CodeT5 modules for generat-
ing CCFG components, namely one module for Productions and another for Constraints.
For training, CCFG tokenizer translate each component as semicolon-separated list. The tokenizer
add indicator words for each nonterminal and variable of productions, for example, it translates
“<X i>” to “nonterminal X subscript i” and “a i” to “variable a subscript
i”. Then, the semicolon-separated list is converted into an integer array using RoBERTa tokenizer.
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4.4 BASELINES

CodeContests dataset and fine-tuned model The CodeContests dataset provides a set of test
cases for each problem in the dataset. Each test case falls into one of the categories: public, private
and generated. We use the public dataset to fine-tune a pre-trained CodeT5-base model, which takes
an algorithm code as input and produce a test case for the code. We use test cases in CodeContests
dataset and test cases generated with the fine-tuned deep learning model for the comparison with
grammar-based test cases.

Mutation-based fuzzing In algorithm programming problems, test cases often come with a spe-
cific input format provided at the end of the problem description. A typical example is where the
first line specifies the number of upcoming inputs, and the second line contains integers equal to the
number given in the first line, or a string of length equivalent to the integer provided in the first line.
Hence, it is often convenient to keep spaces, string lengths, and newline characters the same while
only changing the values of integers or characters constituting the strings to satisfy the input speci-
fication. By splitting the public test cases of CodeContests based on spaces and newline characters
and then randomly sampling 30% of the tokens, and performing mutations based on the type of each
token (e.g., integer, float, or string), one can achieve fuzzing while still satisfying the original input
specification.

Large language models We use two famous large language models (LLMs), OpenAI’s ChatGPT
(in version 4.0) and Google’s Bard. We uses the LLMs as either (1) baseline neural transition model
from problem specifications to CCFGs, and (2) test case generation model for competitive program-
ming. We test the performance of test case grammars generated by the LLMs by providing different
numbers of examples 1 and 5. Full prompts for the each translation tasks are placed in Appendix A.

4.5 EVALUATION METRICS

To evaluate the model-translated CCFGs, we establish three distinct metrics: (1) syntactic equiva-
lence, compare the model-translated CCFGs with human-labeled ones, (2) soundness and complete-
ness compare the semantics of CCFGs with specifications, and (3) effectiveness measure the ability
to distinguish correct and incorrect source codes.

Syntactic equivalence First, we compare the CCFGs translated by model with the ones labeled
by humans. It should be note that CFGs are CCFGs without variables and constraints. Deciding the
semantic equivalence of the CCFGs is undecidable as well as the equivalence of the CFGs (Hopcroft
et al., 2007). Hence, we measure syntactic equivalence between models, which is a sufficient condi-
tion for semantic equivalence.

Although the names of nonterminals are unrelated to the semantics of the CCFGs, a naive compari-
son of productions would lead to evaluating CCFGs that differ only in the name of the nonterminals.
Therefore, we normalize the presentation prior to comparing for equivalency by renaming nontermi-
nals according to the order of their first occurrences in Productions in order to prevent unneces-
sary differentiation. Finally, we generate top-k lists of productions and generations for each problem
with our model. Then, we evaluate that exact match with human-label after the normalization.

Soundness and completeness The grammar must satisfy two properties for use in the test case
generation: (1) the test case generated by the grammar has to be a valid input, and (2) the grammar
should be able to generating every valid test case. We refer to these properties as ‘soundness’ and
‘completeness’ of the grammar, respectively.

We generate ten test cases and sample 10 correct solution codes from the dataset to evaluate the
soundness. Due to mislabeled correct solutions in the dataset, sampled solutions may produce dif-
ferent outputs even if there exists a unique accurate solution. Consequently, we do not require every
solution code to produce identical output for a test case. Instead, we define a test case to be valid if
at least 80% of the solutions yield the same output. If all cases are valid, we consider the grammar
to be sound. We ensure the completeness of a grammar by verifying that the grammar can parse
10 sampled public tests cases of the dataset.

6



Under review as a conference paper at ICLR 2024

4.5.1 EFFECTIVENESS

The primary purpose of test cases in competitive programming is to discern between correct and
incorrect program codes. We evaluate the effectiveness of the generated test cases by assessing their
ability to fulfill this objective.

For given sets P and N of correct and incorrect solution programs, we define the effectiveness E(x)
of a test case x as

E(x) := |{n ∈ N | n(x) ̸= y∗}|/|N |, where y∗ := argmax
y∈{p(x)|p∈P}

|{p ∈ P | p(x) = y}|.

That is, E(x) is the ratio of the distinguished incorrect solutions to the incorrect solutions when y∗ is
the most probable correct output for x. We measure the ratio of the distinguished incorrect solutions,
using 20 correct solutions and 20 incorrect solutions in the dataset. We generates 10 test cases using
the grammar to assess this.

4.6 ANALYSIS OF EXPERIMENTAL RESULTS

In this section, when we refer to ’average,’ it represents the overall average calculated from the
individual averages for each problem. This approach ensures that our analysis remains unbiased by
the varying number of test cases in each problem.

4.6.1 SYNTACTIC EQUIVALENCE

Table 1: Experimental results on syntactic equivalence. The values in parentheses represent
measurements where cases were ignored. For CCFG, we generate 10 set of productions and
10 sets of constraints with with beam size 10. The accuracy for grammar was evaluated by probing
k2 grammars, which is constitutes combinations of k productions and k constraints.

Exact Match Accuracy (%)
Model Method Productions Constraints Grammar

1-shot 9.56 55.15 9.56
Bard 5-shot 7.35 63.24 5.88

1-shot 7.35 59.56 5.88
ChatGPT 5-shot 27.94 41.91 17.65

Top-1 72.79 57.35 47.79
CCFGT5 Top-5 80.88 69.85 62.50

Top-10 81.62 72.79 65.44

The experimental results in Table 1 clearly demonstrate that the CCFGT5 model outperforms LLMs
in the task of translating specifications into grammars. This trend persists when only looking at the
productions. Such results were expected as CCFGT5 has more opportunities to learn about CCFG
owing to its reliance on 700 training data. Conversely, LLMs depend on 1-shot or 5-shot learning.
As a result, fine-tuning is imperative for extracting syntax of valid problem inputs.

On the contrary, the results of the constraint analysis are unexpected. Large language models out-
perform fine-tuned models even in the 5-shot scenario. It is suggested that this may be attributed to
the explicit mention of constraints in parentheses in the specifications. LLM detects this effortlessly
with just five examples and uses the strings enclosed in the parentheses as constraints. Based on this
analysis, it is anticipated that utilizing rule-based symbolic matching is a more effective method of
extracting constraints compared to relying on deep learning-based approaches.

4.6.2 SEMANTIC EVALUATION

The evaluation results on Table 2 indicate that the CCFGT5 model, when used with a beam size
of 10, generates the most semantically correct grammars. The difference in semantic between the
model with a beam size of 100 and that with a beam size of 10 is not statistically significant. Note the
relationship between beam size and the number of previous tokens considered during the generation.
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Table 2: Overall comparison of evaluation metrics for semantics accuracy in generated grammars.
Each column for semantic evaluation denotes the ratio of (1) Sound, (2) Complete, and (3) both
Sound and Complete grammars to generated grammars.

Semantic Evaluation (%)
Model Method Soundness Completeness Sound. & Comple.

1-shot 12.50 15.44 11.76
Bard 5-shot 19.85 22.79 19.12

1-shot 13.24 12.50 11.03
ChatGPT 5-shot 48.53 52.94 39.71

Greed 12.50 14.71 11.03
CCFGT5 Beam(10) 63.97 79.41 58.82

Beam(100) 63.97 78.68 58.82

This observation suggests that tokens in the generated grammar heavily depend on those within a
small range, approximately 10 tokens.

To delve deeper into this phenomenon, we conducted a statistical analysis of human-labeled train-
grammar data. Our findings reveal that, on average, a single production consists of 15.53 tokens,
while a constraint comprises 10.30 tokens. It supports that he number of tokens significantly af-
fecting a single token does not exceed the length of a production or constraint. This insight implies
that when generating a set of productions and constraints—for any model utilizing the tokenizer of
CCFGT5—we expect that beam search sizes greater than 20 do not have a significant impact.

4.6.3 STATISTICS FOR GENERATED TEST CASES

Table 3 shows the statistics for test cases, generated by either baseline algorithms or CCFGs. The
CCFGT5-generated test cases effectively identify invalid solutions. This is due to their greater length
compared to the others. CCFGT5 for beam-size 10 (shortly, CCFGT510) have an average length of
4410.80, whereas those in the public, private, and generated test cases in CodeContests are only
19.10, 55.24, and 35.78.

As discussed in Section 3, if the variables are independent, CCFGs can generate each test case in
linear time. This time-efficiency highlights the advantage for generating lengthy tests. Competitive
programming scenarios often require longer test cases to effectively distinguish incorrect solutions,
dealing with issues related to execution time. Consequently, CCFGs is especially valuable for use in
competitive programming.

CCFGT510 demonstrates a high validity across entire generated test cases, compared to the fine-
tuning, mutation and direct test case generation with Bard approaches. This observation suggests
that machine-translated CCFGs lean towards not generating test cases when faced with uncertain-
ties, rather than producing invalid ones. In situations where validating generated test cases becomes
challenging, such when no correct solutions are available, using CCFGs is a fail-safe approach.

4.7 LIMITATIONS

While this study has deeply inspected the context-free grammars with counters and has analyzed
various ways to use the grammar in automated test case generation, it is essential to clarify the
limitations on our experiments.

As mentioned in Section 4.1, we use variants of CCFGs for human-labeling. Unless our implemen-
tation for generating and parsing on CCFG purposes full supports of the human-labeled grammars,
there are some features that our implementation cannot support. Model generated grammars may
contains those unsuppoted features, and it results in the underestimation of the soundness of com-
pleteness in Section 4.6.2. Also, there are problems with complicated constraints which is hard to
represent with CCFGs. We summarize examples of such problems in Appendix B.
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Table 3: Statistics of test cases for each problem are as follows: (1) Coverage, which denote the
ratio of problems with at least one test case. (2) Validity, representing the average ratio of valid test
cases to total test cases. (3) Ineffectiveness, indicating the average (1 − effectiveness) of cases.
The right two columns represent statistics when invalid test cases are removed. The seven columns
below represent statistics for grammar-generated test cases. Standard deviation is indicated in small
font.

Entire Test Case (%) Valid Test Case (%)
Category Method Coverage Valid. Ineffective. Coverage Ineffective.

Public 100.0 85.42 0.09 ±.48 88.97 0.06 ±.20
Contests Private 52.21 79.09 0.05 ±.28 46.32 0.03 ±.27

Generated 100.0 85.43 0.03 ±.23 97.06 0.03 ±.24

CodeT5 Fine-tuning 100.0 54.19 0.18 ±.72 89.71 0.07 ±.51
Fuzzing Mutation 100.0 70.77 0.15 ±.66 91.18 0.03 ±.20
Bard Zero-shot 100.0 62.81 0.11 ±.54 82.35 0.09 ±.50
ChatGPT Zero-shot 100.0 85.68 0.12 ±.59 94.12 0.05 ±.33

1-shot 22.06 57.33 0.68 ±2.13 13.97 0.82 ±2.43
Bard 5-shot 53.68 36.85 0.08 ±.58 20.59 0.00 ±.00

1-shot 31.62 43.49 0.28 ±1.53 16.18 0.55 ±2.10
ChatGPT 5-shot 71.32 70.62 0.18 ±.84 54.41 0.07 ±.58

Greed 30.15 42.93 0.01 ±.08 13.24 0.00 ±.00
CCFGT5 Beam(10) 88.24 75.75 0.05 ±.46 72.79 0.00 ±.00

Beam(100) 88.24 75.58 0.05 ±.46 72.06 0.00 ±.00

We assume that each problem has a unique value for a test case when measure the validness of the
test case. In real, a few number of problem allows multiple outputs. It results in the under-estimation
of the number of valid test cases during the experiments.

Our CCFG parsing algorithm exhibits a worst-case complexity that is exponential with respect to
the length of the input string. In comparison, the CYK-algorithm, published by Sakai (1961), offers
a polynomial-time solution for CFG parsing. It still remains an open problem, that there is their any
polynomial-time CCFG parsing algorithm.

One notable limitation of our study pertains to the size of the training dataset, which may hinder the
model’s ability to generalize effectively. The design and implementation of grammar-based pseudo-
labeling techniques for model generalization represent a promising avenue for our future research
endeavors.

5 CONCLUSIONS

In this study, we present an effective approach for automated generation from descriptions com-
monly found in competitive programming tasks. Our methodology leverages formal grammar, in-
troducing a context-free grammar with counters designed to accurately represent the meaning of
input specifications. The grammar enables rapid test case generation, encompassing all valid cases,
and allows for linear-time test case verification through parsing, for most CCFGs of competitive
programming problems.

Our experiments demonstrate that our proposed CCFGT5 model outperforms few-shot generation
approaches using large language models. The time-efficiency of the CCFGs sampling algorithm con-
tributes to the effectiveness of the generated test cases in distinguishing incorrect solutions. Impor-
tantly, our use of CCFGs as a test case generation method proves to be a fail-safe option, especially
in situations where validating inputs becomes challenging

In our future work, we plan to implement a robust pseudo-labeling framework for CCFGT5 model,
with the aim of enhancing the semantic accuracy of the resulting CCFGs. Additionally, we intend
to refine the current string sampling algorithm by incorporating weighted production rules from
weighted CFGs (Salomaa, 1969). This enhancement will enable us to generate even more effective
test cases from the grammar.
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A PROMPTS FOR GRAMMAR GENERATION OF LARGE LANGUAGE MODELS

For the prompt of a few-shot grammar generation task with large language models, we choose a
grammar with the moderate level to cover from simple specifications to complicated ones. Here we
attach entire prompts for the few-shot generation. The string ‘{{specification}}’ within the
prompts is replaced with each specification of the problem.

A.1 PROMPT FOR TRANSLATION INTO GRAMMAR: 1-SHOT

<Specification> "Input\n\nThe first line contains integer n (1 ≤ n ≤

5·10ˆ5), showing how many numbers are in the array. The second line
contains n integers a[1], a[2], ..., a[n] (|a[i]| ≤ 10ˆ9) | the
elements of array a".</Specification>

↪→
↪→
↪→
<Grammar> "<S> -> [N] <n> <T_N>", "<T_i> -> <T_i-1> <s> a_i", "<T_1> ->

a_1" </Grammar>↪→
<Constraint> "1<=n<=5*10ˆ5" , "1<=a_i<=10ˆ9" </Constraint>
<Specification> {{specification}} </Specification>
<Grammar>
<Constraint>
Generate the Grammar and the Constraint for the last specification

similar to the examples provided↪→
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A.2 PROMPT FOR TRANSLATION INTO GRAMMAR: 5-SHOT

<Specification> "Input\n\nThe first line contains integer n (1 ≤ n ≤

5·10ˆ5), showing how many numbers are in the array. The second line
contains n integers a[1], a[2], ..., a[n] (|a[i]| ≤ 10ˆ9) | the
elements of array a".</Specification>

↪→
↪→
↪→
<Grammar> "<S> -> [N] <n> <T_N>", "<T_i> -> <T_i-1> <s> a_i", "<T_1> ->

a_1" </Grammar>↪→
<Constraint> "1<=n<=5*10ˆ5" , "1<=a_i<=10ˆ9" </Constraint>
<Specification> "Constraints\n\n* 4 ≤ |S| ≤ 10 (|S| is the length of the

string S.)\n* Each character of S is uppercase or lowercase English
letter.\n\nInput\n\nInput is given from Standard Input in the
following format:\n\n\nS" </Specification>

↪→
↪→
↪→
<Grammar> "<S>->[a-zA-Z]{4,10}" </Grammar>
<Constraint> "" </Constraint>
<Specification> "Input\n\nThe first line contains one integer t\\ (1 ≤

t≤ 100): the number of queries.\n\nEach query contains two lines.
The first line contains one integer n\\ (1≤ n≤ 100 000): the number
of models in the shop, and the second line contains n integers
s_1,...,s_n\\ (1≤ s_i≤ 10ˆ9): the sizes of models.\n\nIt is
guaranteed that the total sum of n is at most 100 000."
</Specification>

↪→
↪→
↪→
↪→
↪→
↪→
<Grammar> "<S>->[t] <n> <T_t>", "<T_i>-><T_i-1> <n> [n] <n> <L_n>",

"<T_1>->[n] <n> <L_n>", "<L_i>-><L_i-1> <s> s_i", "<L_1>->s_1"
</Grammar>

↪→
↪→
<Constraint> "1<=t<=100", "1<=n<=100000", "1<=s_i<=10ˆ9" </Constraint>
<Specification> "Input\n\nThe only line of the input contains four

integers a, b, c, d (1 ≤ a, b, c, d ≤ 10ˆ9). It is possible that any
two (or all three) ropewalkers are in the same position at the
beginning of the performance." </Specification>

↪→
↪→
↪→
<Grammar> "<S>->a <s> b <s> c <s> d" </Grammar>
<Constraint> "1<=a<=10ˆ9", "1<=b<=10ˆ9", "1<=c<=10ˆ9", "1<=d<=10ˆ9"

</Constraint>↪→
<Specification> "Constraints\n\n* 1 ≤ N ≤ 10ˆ5\n* 1 ≤ a_i ≤ 10ˆ{9}\n*

a_i are integers.\n\nInput\n\nInput is given from Standard Input in
the following format:\n\n\nN\na_1 a_2 ... a_{3N}" </Specification>

↪→
↪→
<Grammar> "<S>->[N] <n> <T_3N>", "<T_i>-><T_i-1> <s> a_i", "<T_1>->a_1"

</Grammar>↪→
<Constraint> "1<=N<=10ˆ5", "1<=a_i<=10ˆ9" </Constraint>
<Specification> {{specification}} </Specification>
<Grammar>
<Constraint>
Generate the Grammar and the Constraint for the last specification

similar to the examples provided↪→

A.3 PROMPT FOR TEST CASE GENERATION

Generate 10 valid test cases for the following specification:
{{specification}}
Each test cases should be in one line using "\n"

B A LIST OF DIFFICULT PROBLEMS TO WRITE GRAMMARS

Problem ID 977 A codeforces Wrong Subtraction
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Description Little girl Tanya is learning how to decrease a number by one, but she does it wrong
with a number consisting of two or more digits. Tanya subtracts one from a number
by the following algorithm:

• if the last digit of the number is non-zero, she decreases the number by
one;

• if the last digit of the number is zero, she divides the number by 10 (i.e.
removes the last digit).

You are given an integer number n. Tanya will subtract one from it k times. Your
task is to print the result after all k subtractions.
It is guaranteed that the result will be a positive integer number.
Input
The first line of the input contains two integer numbers n and k (2 ≤ n ≤ 109, 1 ≤
k ≤ 50) — the number from which Tanya will subtract and the number of subtrac-
tions correspondingly.

Note It is difficult to specify the condition that the result after k subtractions in the input
should be positive.

Problem ID p03471 AtCoder Beginner Contest 085 - Otoshidama
Description The commonly used bills in Japan are 10000-yen, 5000-yen and 1000-yen bills.

Below, the word ”bill” refers to only these.
According to Aohashi, he received an otoshidama (New Year money gift) envelope
from his grandfather that contained N bills for a total of Y yen, but he may be lying.
Determine whether such a situation is possible, and if it is, find a possible set of
bills contained in the envelope. Assume that his grandfather is rich enough, and the
envelope was large enough.
Constraints

• 1 ≤ N ≤ 2000

• 1000 ≤ Y ≤ 2× 107

• N is an integer.

• Y is a multiple of 1000.

Input
Input is given from Standard Input in the following format:
N Y

Note Y is multiple 1000
Problem ID p03244 AtCoder Beginner Contest 111 - /\/\/\/
Description A sequence a1, a2, . . . , an is said to be / when the following conditions are satis-

fied:

• For each i = 1, 2, ..., n− 2, ai = ai+2.

• Exactly two different numbers appear in the sequence.

You are given a sequence v1, v2, . . . , vn whose length is even. We would like to
make this sequence / by replacing some of its elements. Find the minimum number
of elements that need to be replaced.
Constraints

• 2 ≤ n ≤ 105

• n is even.

• 1 ≤ vi ≤ 105

• vi is an integer.

Input
Input is given from Standard Input in the following format:
n
v1 v2 . . . vn

Note n is even
Problem ID p02682 AtCoder Beginner Contest 167 - Easy Linear Programming
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Description We have A cards, each of which has an integer 1 written on it. Similarly, we also
have B cards with 0s and C cards with -1s.
We will pick up K among these cards. What is the maximum possible sum of the
numbers written on the cards chosen?
Constraints

• All values in input are integers.

• 0 ≤ A,B,C

• 1 ≤ K ≤ A+B + C ≤ 2× 109

Input
Input is given from Standard Input in the following format:
A B C K

Note 0 ≤ A,B,C, 1 ≤ K ≤ A+B + C ≤ 2× 109

The range of A, B and C is not clearly specified
Problem ID p02730 AtCoder Beginner Contest 159 - String Palindrome
Description A string S of an odd length is said to be a strong palindrome if and only if all of the

following conditions are satisfied:

• S is a palindrome.

• Let N be the length of S. The string formed by the 1-st through ((N −
1)/2)-th characters of S is a palindrome.

• The string consisting of the (N + 3)/2-st through N -th characters of S
is a palindrome.

Determine whether S is a strong palindrome.
Constraints

• S consists of lowercase English letters.

• The length of S is an odd number between 3 and 99 (inclusive).

Input
Input is given from Standard Input in the following format:
S

Note The length of S is an odd number
Problem ID 25 A codeforces IQ test
Description Bob is preparing to pass IQ test. The most frequent task in this test is to find out

which one of the given n numbers differs from the others. Bob observed that one
number usually differs from the others in evenness. Help Bob — to check his an-
swers, he needs a program that among the given n numbers finds one that is different
in evenness.
Input
The first line contains integer n(3 ≤ n ≤ 100) — the amount of numbers in the
task. The second line contains n space-separated natural numbers, not exceeding
100. It is guaranteed, that exactly one of these numbers differs from the others in
evenness.

Note Exactly one of these numbers differs from the others in evenness
Problem ID p02707 AtCoder Beginner Contest 163 - management

14



Under review as a conference paper at ICLR 2024

Description A company has N members, who are assigned ID numbers 1, ..., N.
Every member, except the member numbered 1, has exactly one immediate boss
with a smaller ID number.
When a person X is the immediate boss of a person Y, the person Y is said to be an
immediate subordinate of the person X.
You are given the information that the immediate boss of the member numbered i
is the member numbered Ai. For each member, find how many immediate subordi-
nates it has.
Constraints

• 2 ≤ N ≤ 2× 105

• 1 ≤ Ai < i

Input
Input is given from Standard Input in the following format:
N
A2 . . . AN

Note Ai < i

Problem ID p03017 AtCoder Grand Contest 034 - Kenken Race
Description There are N squares arranged in a row, numbered 1, 2, ..., N from left to right. You

are given a string S of length N consisting of ‘.‘ and ‘#‘. If the i-th character of S is
‘#‘, Square i contains a rock; if the i-th character of S is ‘.‘, Square i is empty.
In the beginning, Snuke stands on Square A, and Fnuke stands on Square B.
You can repeat the following operation any number of times:
* Choose Snuke or Fnuke, and make him jump one or two squares to the right. The
destination must be one of the squares, and it must not contain a rock or the other
person.
You want to repeat this operation so that Snuke will stand on Square C and Fnuke
will stand on Square D.
Determine whether this is possible.
Constraints

• 4 ≤ N ≤ 200 000

• S is a string of length N consisting of ‘.‘ and ‘#‘.

• 1 ≤ A,B,C,D ≤ N

• Square A,B,C and D do not contain a rock.

• A,B,C and D are all different.

• A < B

• A < C

• B < D

Input
Input is given from Standard Input in the following format:
N A B C D
S

Note PA, PB , PC , PD ̸= ‘#’
Problem ID p02682 AtCoder Beginner Contest 167 - Easy Linear Programming
Description We have A cards, each of which has an integer 1 written on it. Similarly, we also

have B cards with 0s and C cards with -1s.
We will pick up K among these cards. What is the maximum possible sum of the
numbers written on the cards chosen?
Constraints

• All values in input are integers.

• 0 ≤ A,B,C

• 1 ≤ K ≤ A+B + C ≤ 2× 109

Input
Input is given from Standard Input in the following format:
A B C K

Note K ≤ A+B + C
Maximum values of A, B, and C are undefined
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Problem ID p03282 AtCoder Beginner Contest 106 - To Infinity
Description Mr. Infinity has a string S consisting of digits from ‘1‘ to ‘9‘. Each time the date

changes, this string changes as follows:

• Each occurrence of ‘2‘ in S is replaced with ‘22‘. Similarly, each ‘3‘
becomes ‘333‘, ‘4‘ becomes ‘4444‘, ‘5‘ becomes ‘55555‘, ‘6‘ becomes
‘666666‘, ‘7‘ becomes ‘7777777‘, ‘8‘ becomes ‘88888888‘ and ‘9‘ be-
comes ‘999999999‘. ‘1‘ remains as ‘1‘.

For example, if S is ‘1324‘, it becomes ‘1333224444‘ the next day, and it be-
comes ‘133333333322224444444444444444‘ the day after next. You are interested
in what the string looks like after 5∗1015 days. What is the K-th character from the
left in the string after 5 ∗ 1015 days?
Constraints

• S is a string of length between 1 and 100 (inclusive).

• K is an integer between 1 and 1018 (inclusive).

• The length of the string after 5 ∗ 1015 days is at least K.

Input
Input is given from Standard Input in the following format:
S
K

Note Constraints of K are associated with output
Problem ID 1154 A codeforces Restoring Three Numbers
Description Polycarp has guessed three positive integers a, b and c. He keeps these numbers

in secret, but he writes down four numbers on a board in arbitrary order — their
pairwise sums (three numbers) and sum of all three numbers (one number). So,
there are four numbers on a board in random order: a+b, a+c, b+c and a+b+c.
You have to guess three numbers a, b and c using given numbers. Print three guessed
integers in any order.
Pay attention that some given numbers a, b and c can be equal (it is also possible
that a = b = c).
Input
The only line of the input contains four positive integers x1, x2, x3, x4(2 ≤ xi ≤
109) — numbers written on a board in random order. It is guaranteed that the answer
exists for the given number x1, x2, x3, x4.
Output
Print such positive integers a, b and c that four numbers written on a board are values
a+b, a+c, b+c and a+b+c written in some order. Print a, b and c in any order. If there
are several answers, you can print any. It is guaranteed that the answer exists.

Note Constraints are associated with output
Problem ID p03014 AtCoder Beginner Contest 129 - Lamp
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Description There is a grid with H horizontal rows and W vertical columns, and there are obsta-
cles on some of the squares.
Snuke is going to choose one of the squares not occupied by an obstacle and place
a lamp on it. The lamp placed on the square will emit straight beams of light in
four cardinal directions: up, down, left, and right. In each direction, the beam will
continue traveling until it hits a square occupied by an obstacle or it hits the border
of the grid. It will light all the squares on the way, including the square on which
the lamp is placed, but not the square occupied by an obstacle.
Snuke wants to maximize the number of squares lighted by the lamp.
You are given H strings Si (1 ≤ i ≤ H), each of length W. If the j-th character
(1 ≤ j ≤ W ) of Si is ‘#‘, there is an obstacle on the square at the i-th row from the
top and the j-th column from the left; if that character is ‘.‘, there is no obstacle on
that square.
Find the maximum possible number of squares lighted by the lamp.
Constraints

• 1 ≤ H ≤ 2, 000

• 1 ≤ W ≤ 2, 000

• Si is a string of length W consisting of ‘#’ and ‘.’.

• ‘.’ occurs at least once in one of the strings Si(1 ≤ i ≤ H).

Input
Input is given from Standard Input in the following format:
H W
S1

...
SH

Note ‘.’ occurs at least once in one of the strings
Problem ID 1343 A codeforces Candies
Description Recently Vova found n candy wrappers. He remembers that he bought x candies

during the first day, 2x candies during the second day, 4x candies during the third
day, . . . , 2k−1x candies during the k-th day. But there is an issue: Vova remembers
neither x nor k but he is sure that x and k are positive integers and k > 1.
Vova will be satisfied if you tell him any positive integer x so there is an integer
k > 1 that x + 2x + 4x + ... + 2k−1x = n. It is guaranteed that at least one
solution exists. Note that k > 1.
You have to answer t independent test cases.
Input
The first line of the input contains one integer t(1 ≤ t ≤ 104) — the number of
test cases. Then t test cases follow.
The only line of the test case contains one integer n(3 ≤ n ≤ 109) — the number
of candy wrappers Vova found. It is guaranteed that there is some positive integer x
and integer k > 1 that x+ 2x+ 4x+ . . .+ 2k−1x = n.

Note Must generate n with n = x + 2x + 4x + ... + 2k−1x(k > 1) for some positive
int x

Problem ID 1385 B codeforces Restore the Permutation by Merger.
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Description A permutation of length n is a sequence of integers from 1 to n of length n con-
taining each number exactly once. For example, [1], [4, 3, 5, 1, 2], [3, 2, 1] are per-
mutations, and [1, 1], [0, 1], [2, 2, 1, 4] are not.
There was a permutation p[1...n]. It was merged with itself. In other words, let’s
take two instances of p and insert elements of the second p into the first maintaining
relative order of elements. The result is a sequence of the length 2n.
For example, if p = [3, 1, 2] some possible results are:
[3, 1, 2, 3, 1, 2], [3, 3, 1, 1, 2, 2], [3, 1, 3, 1, 2, 2]. The following sequences are
not possible results of a merging: [1, 3, 2, 1, 2, 3], [3, 1, 2, 3, 2, 1], [3, 3, 1, 2, 2, 1].
For example, if p = [2, 1] the possible results are: [2, 2, 1, 1], [2, 1, 2, 1].
The following sequences are not possible results of a merging:
[1, 1, 2, 2], [2, 1, 1, 2], [1, 2, 2, 1].
Your task is to restore the permutation p by the given resulting sequence a. It is
guaranteed that the answer exists and is unique.
You have to answer t independent test cases.
Input
The first line of the input contains one integer t(1 ≤ t ≤ 400)—the number of test
cases. Then t test cases follow.
The first line of the test case contains one integer n(1 ≤ n ≤ 50)—the
length of permutation. The second line of the test case contains 2n integers
a1, a2, ..., a2n(1 ≤ ai ≤ n), where ai is the i-th element of a. It is guaranteed
that the array a represents the result of merging of some permutation p with the
same permutation p.

Note It is guaranteed that the array a represents the result of merging of some permutation
p with the same permutation p.

Problem ID p03033 AtCoder Beginner Contest 128 - Roadwork
Description There is an infinitely long street that runs west to east, which we consider as a

number line.
There are N roadworks scheduled on this street. The i-th roadwork blocks the point
at coordinate Xi from time Si - 0.5 to time Ti − 0.5.
Q people are standing at coordinate 0. The i-th person will start the coordinate 0 at
time Di, continue to walk with speed 1 in the positive direction and stop walking
when reaching a blocked point.
Find the distance each of the Q people will walk.
Constraints

• All values in input are integers.

• 1 ≤ N,Q ≤ 2× 105

• 0 ≤ Si < Ti ≤ 109

• 1 ≤ Xi ≤ 109

• 0 ≤ D1 < D2 < ... < DQ ≤ 109

• If i ̸= j and Xi = Xj , the intervals [Si, Ti) and [Sj , Tj) do not overlap.

Input
Input is given from Standard Input in the following format:
N Q
S1 T1 X1

...
SN TN XN

D1

...
DQ

Note * If i ̸= j and Xi = Xj , the intervals [Si, Ti) and [Sj , Tj) do not overlap.
Problem ID p02681 AtCoder Beginner Contest 167 - Registration
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Description Takahashi wants to be a member of some web service.
He tried to register himself with the ID S, which turned out to be already used by
another user.
Thus, he decides to register using a string obtained by appending one character at
the end of S as his ID.
He is now trying to register with the ID T . Determine whether this string satisfies
the property above.
Constraints

• S and T are strings consisting of lowercase English letters.

• 1 ≤ |S| ≤ 10

• |T | = |S|+ 1

Input
Input is given from Standard Input in the following format:
S T

Note T = S + 1

Problem ID 1374 C codeforce Move Brackets
Description You are given a bracket sequence s of length n, where n is even (divisible by two).

The string s consists of n/2 opening brackets ‘(’ and n/2 closing brackets ‘)’.
In one move, you can choose exactly one bracket and move it to the beginning of
the string or to the end of the string (i.e. you choose some index i, remove the i-th
character of s and insert it before or after all remaining characters of s).
Your task is to find the minimum number of moves required to obtain regular
bracket sequence from s. It can be proved that the answer always exists under the
given constraints.
Recall what the regular bracket sequence is:

• ”()” is regular bracket sequence;

• if s is regular bracket sequence then “(” + s + “)” is regular bracket se-
quence;

• if s and t are regular bracket sequences then s + t is regular bracket se-
quence.

For example, “()()”, “(())()”, “(())” and “()” are regular bracket sequences, but “)(”,
“()(” and “)))” are not.
You have to answer t independent test cases.
Input
The first line of the input contains one integer t (1 ≤ t ≤ 2000) — the number of
test cases. Then t test cases follow.
The first line of the test case contains one integer n (2 ≤ n ≤ 50) — the length
of s. It is guaranteed that n is even. The second line of the test case containing the
string s consisting of n/2 opening and n/2 closing brackets.

Note It is guaranteed that n/2 is open parentheses and n/2 is closed parentheses
Problem ID 1220 A codeforces Cards
Description When Serezha was three years old, he was given a set of cards with letters for his

birthday. They were arranged into words in the way which formed the boy’s mother
favorite number in binary notation. Serezha started playing with them immediately
and shuffled them because he wasn’t yet able to read. His father decided to rearrange
them. Help him restore the original number, on condition that it was the maximum
possible one.
Input
The first line contains a single integer n (1 ≤ n ≤ 105) — the length of the string.
The second line contains a string consisting of English lowercase letters: ‘z’, ‘e’,
‘r’, ‘o’ and ‘n’.
It is guaranteed that it is possible to rearrange the letters in such a way that they
form a sequence of words, each being either “zero” which corresponds to the digit
0 or “one” which corresponds to the digit 1.

Note It is guaranteed that it is possible to rearrange the letters in such a way that they
form a sequence of words, each being either “zero” or “one”

Problem ID p03290 AtCoder Beginner Contest 104 - All Green
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Description A programming competition site AtCode provides algorithmic problems. Each
problem is allocated a score based on its difficulty. Currently, for each integer i
between 1 and D (inclusive), there are pi problems with a score of 100i points.
These p1 + . . .+ pD problems are all of the problems available on AtCode.
A user of AtCode has a value called total score. The total score of a user is the sum
of the following two elements:
* Base score: the sum of the scores of all problems solved by the user. * Perfect
bonuses: when a user solves all problems with a score of 100i points, he/she earns
the perfect bonus of ci points, aside from the base score (1 ≤ i ≤ D).
Takahashi, who is the new user of AtCode, has not solved any problem. His objec-
tive is to have a total score of G or more points. At least how many problems does
he need to solve for this objective?
Constraints

• 1 ≤ D ≤ 10

• 1 ≤ pi ≤ 100

• 100 ≤ ci ≤ 106

• 100 ≤ G

• All values in input are integers.

• ci and G are all multiples of 100.

• It is possible to have a total score of G or more points.

Input
Input is given from Standard Input in the following format:
D G
p1 c1
...
pD cD

Note here are only two constructs for G: 100 ≤ G, G are all multiples of 100.
And the maximum value of G is not determined.

Problem ID p02697 AtCoder Beginner Contest 165 - Rotation Matching
Description You are going to hold a competition of one-to-one game called AtCoder Janken.

(Janken is the Japanese name for Rock-paper-scissors.) N players will participate in
this competition, and they are given distinct integers from 1 through N . The arena
has M playing fields for two players. You need to assign each playing field two
distinct integers between 1 and N (inclusive). You cannot assign the same integer
to multiple playing fields. The competition consists of N rounds, each of which
proceeds as follows:

• For each player, if there is a playing field that is assigned the player’s
integer, the player goes to that field and fight the other player who comes
there.

• Then, each player adds 1 to its integer. If it becomes N + 1, change it to
1.

You want to ensure that no player fights the same opponent more than once dur-
ing the N rounds. Print an assignment of integers to the playing fields satisfying
this condition. It can be proved that such an assignment always exists under the
constraints given.
Constraints

• 1 ≤ M

• M × 2 + 1 ≤ N ≤ 200000

Input
Input is given from Standard Input in the following format:
N M

Note 1 ≤ M , M × 2 + 1 ≤ N ≤ 200000
N comes before M , but M must be defined in order to produce N

Extra 977 A codeforces Wrong Subtraction
Problems p03244 AtCoder Beginner Contest 111 - /

p03471 AtCoder Beginner Contest 085 - Otoshidama
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p02682 AtCoder Beginner Contest 167 - Easy Linear Programming
p02730 AtCoder Beginner Contest 159 - String Palindrome
25 A codeforces IQ test
p02707 AtCoder Beginner Contest 163 - management
p03017 AtCoder Grand Contest 034 - Kenken Race
p02682 AtCoder Beginner Contest 167 - Easy Linear Programming
p03282 AtCoder Beginner Contest 106 - To Infinity
1154 A codeforces Restoring Three Numbers
p03014 AtCoder Beginner Contest 129 - Lamp
1343 A codeforces Candies
1385 B codeforces Restore the Permutation by Merger.
p03033 AtCoder Beginner Contest 128 - Roadwork
p02681 AtCoder Beginner Contest 167 - Registration
1374 C codeforce Move Brackets
1220 A codeforces Cards
p03290 AtCoder Beginner Contest 104 - All Green
p02697 AtCoder Beginner Contest 165 - Rotation Matching

21


	Introduction
	Related work
	Automatic test case generation
	Natural language to formal grammar
	 Large language models for program understanding and generation 

	Methodology
	String sampling and parsing of CCFGs

	Experiments
	Implementation details
	Dataset
	CcfgT5 model architecture
	Baselines
	Evaluation metrics
	Effectiveness

	Analysis of Experimental Results
	Syntactic Equivalence
	Semantic Evaluation
	Statistics for Generated Test Cases

	Limitations

	Conclusions
	Prompts for Grammar Generation of Large Language Models
	Prompt for translation into grammar: 1-shot
	Prompt for translation into grammar: 5-shot
	Prompt for test case generation

	A list of difficult problems to write grammars

