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Abstract

We propose a unified optimization framework for
designing continuous and discrete noise distri-
butions that ensure differential privacy (DP) by
minimizing Rényi DP, a variant of DP, under a
cost constraint. Rényi DP has the advantage that
by considering different values of the Rényi pa-
rameter o, we can tailor our optimization for any
number of compositions. To solve the optimiza-
tion problem, we reduce it to a finite-dimensional
convex formulation and perform preconditioned
gradient descent. The resulting noise distributions
are then compared to their Gaussian and Laplace
counterparts. Numerical results demonstrate that
our optimized distributions are consistently bet-
ter, with significant improvements in (g, §)-DP
guarantees in the moderate composition regimes,
compared to Gaussian and Laplace distributions
with the same variance.

1. Introduction

Differential privacy (DP) (Dwork et al., 2006a;b) provides
strong privacy protections by ensuring that information re-
leased from queries on sensitive data does not reveal whether
any individual is included in the dataset. This is achieved
through privacy mechanisms that add noise to query re-
sponses, effectively masking any private information.

In practice, privacy mechanisms are rarely applied only
once to sensitive data. Instead, they are often used sequen-
tially, with the frequency depending on the specific use case.
In what we call the moderate composition regime, privacy
mechanisms are applied a limited number of times to re-
lease aggregated data. For example, the U.S. Census Bureau
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(Abowd et al., 2022) publishes demographic statistics such
as population density or employment rates for each state, re-
quiring repeated applications of privacy-preserving methods.
On the other hand, the large composition regime involves
thousands of sequential applications of privacy mechanisms,
such as during the training of a machine learning model.

The most widely used noise distributions incorporated into
privacy mechanisms for achieving DP are Laplace noise
(Dwork et al., 2006b), typically employed when pure DP is
desired, and Gaussian noise (Abadi et al., 2016), often used
for approximate DP (i.e., (¢, §)-DP). However, these distri-
butions may not necessarily be optimal across all settings
in which they are applied. For example, while the Gaussian
distribution is commonly used to ensure approximate DP
in the large composition regime, the parametrized Cactus
distribution has been shown to be optimal in this regime for
a fixed sensitivity s > 0 (Alghamdi et al., 2022). Moreover,
the Schrodinger distribution has been demonstrated to be
optimal for vanishing sensitivity (s — 0%), and it only re-
covers the Gaussian distribution as a special case under a
quadratic cost function (Alghamdi et al., 2023). Addition-
ally, in (Geng et al., 2015), it was shown that the Staircase
distribution is optimal for e-DP in the single composition
regime. In this paper, we focus on designing optimal noise
distributions tailored to a fixed number of compositions
and sensitivity. We demonstrate that the resulting optimal
Rényi DP noise distribution significantly outperforms both
Laplace and Gaussian distributions in the moderate compo-
sition regime.

Discrete noise distributions also hold significant value for
DP. This is because finite precision implementations that
generate continuous random variables can result in naive
floating-point approximations which have been shown to
compromise their de facto privacy guarantees (Mironov,
2012). Restricting noise distributions to integer support
offers resilience against floating-point attacks and better
suits applications involving integer-valued queries, such as
population counts in the US Census. To address these chal-
lenges, the discrete Gaussian distribution (Canonne et al.,
2020) and the discrete Laplace distribution (Ghosh et al.,
2012; Balcer & Vadhan, 2017) have been proposed. These
distributions, supported on integer values, serve as natural
discrete analogues to the continuous Gaussian and Laplace
distributions.
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In this paper, we apply exactly the same approach as for
continuous distributions to optimize discrete noise distribu-
tions. The comparison between the discrete Rényi DP noise
distribution and the discrete Gaussian and Laplace distribu-
tions mirrors that of their continuous counterparts, with the
discrete Rényi DP noise distribution also outperforming the
discrete Gaussian and Laplace distributions in the moderate
composition regime.

Whether in the continuous or discrete case, optimizing with
respect to (g, 6)-DP in the context of compositions is chal-
lenging due to the problem’s non-convex nature. To over-
come this, we leverage the properties of Rényi differential
privacy (RDP) (Mironov, 2017), a variant of DP defined in
terms of the Rényi divergence of order o, where « € (1, 00).
RDP has garnered significant attention (Abadi et al., 2016;
Chen et al., 2019; Feldman et al., 2021; Lécuyer et al., 2021;
Feldman et al., 2022). One of its key advantages is that,
for composition, the total RDP is the sum of the individual
RDPs. Therefore, our approach is to optimize each RDP
term individually, which is sufficient to optimize the overall
privacy guarantee. In addition, RDP can be converted into
(€,06)-DP, as in the moments accountant in (Abadi et al.,
2016; Mironov, 2017; Bun & Steinke, 2016; Balle et al.,
2020; Asoodeh et al., 2021). This conversion involves min-
imizing over the Rényi order a. Thus, the optimal « is
closely tied to the number of compositions, and is generally
decreasing with the number of compositions: it tends toward
1 in the large composition regime, and towards infinity in
the single-composition regime. For moderate compositions,
o generally lies within an intermediate range, avoiding the
extremes of 1 and infinity.

Because our framework allows us to optimize the noise for
any «, our approach encompasses optimal noise distribu-
tions in both the large and small composition regimes. In the
large composition regime, the Cactus distribution is shown
to be optimal in (Alghamdi et al., 2022); this distribution
is found by minimizing the Kullback-Leibler divergence,
which corresponds to RDP as o« — 1. Since we incorporate
the moments accountant into our optimization framework,
for large numbers of compositions, we will automatically
seek a near 1, thus recovering the Cactus distribution. In the
single-composition regime for pure DP, the optimal « tends
to infinity, and our noise distribution recovers the Staircase
distribution, consistent with RDP converging to pure DP as
o — 00.

Our main contributions include:

1. We propose an algorithm for optimizing noise distri-
butions under (g, §)-DP, outlined in Algorithm 1 !. Our
procedure receives as input user-defined (i) target 4, (ii)
number of compositions, (iii) sensitivity, and (iv) average
distortion per query (i.e., a cost constraint) such as mean

!Our implementation is available on GitHub (git, 2025).

Algorithm 1 Optimal Noise Distribution for (e, §)-DP
input : Privacy parameter §, Number of compositions N,
Noise scale o, Query sensitivity s, type (Discrete or
Continuous), Hyperparameters 6
output : Optimal distribution P* minimizing ¢ for the
given § and N, satisfying E[Cost] < o2
1: Py < InitializeDistribution(type, 0, s, 6)
2: P* « OptimizationAlgorithm( Py, type, 0, 8,0, N, )
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Figure 1. This plot compares the privacy curve of our opti-
mized noise—designed for 10 compositions, s = 1, and § =
10’6—against other noise distributions, all with the same standard
deviation of 8. At the target 6 = 107°, our noise achieves an
€ of 1.62, compared to 1.76 for Laplace/Staircase and 1.74 for
Gaussian/Cactus. Replacing these mechanisms with our optimized
noise results in at least a 6.89% improvement in the € value

squared-error (MSE). The algorithm outputs an optimized
discrete or continuous additive noise distribution. Figure 1
illustrates the resulting (e, §) curve for an optimized noise
distribution considering 10 compositions, noise standard
deviation constraint of 8, and target § = 10~%. Relative to
other noise mechanisms, our optimized mechanisms achieve
a lower ¢ for the same distortion at the target d.

2. We formulate a finite-dimensional convex optimization
problem for producing optimized noise distributions and
solve it using preconditioned gradient descent, denoted as
OptimizationAlgorithm in Algorithm 1. This convex prob-
lem leverages RDP of order « as an intermediate optimiza-
tion objective. The RDP hyperparameter « is automatically
selected based on the the user-defined input parameters.

3. Our algorithm recovers as special cases noise distribu-
tions that are known to be optimal in different regimes, such
as the the Staircase and Cactus mechanisms. In the mod-
erate composition regime (roughly 10-40 compositions),
both discrete and continuous distributions derived from our
framework achieve superior (g, 0)-DP guarantees compared
to their Gaussian and Laplace counterparts for a target cost,
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number of compositions, and §. We validate the favor-
able performance of our optimized noise distributions using
Connect-the-Dots (Doroshenko et al., 2022) accounting.

2. Preliminaries

Notation. Vectors are represented by bold lowercase letters,
e.g., X, and matrices by bold capital letters, e.g., A. The
symbol B* denotes the Moore-Penrose right inverse of B
(Wikipedia, a). The notation diag(x) denotes a diagonal ma-
trix with the elements of x. The symbol [N] denotes the set
of integers from 0 to N, i.e., [N] = {0,1,2,...,N}. The
symbol ® represents the cumulative distribution function of
the standard normal distribution.

We review some basic definitions and results from the DP
literature. Given an alphabet X, let P(X) be the set of
distributions supported on X. For P, Q € P(X), the Rényi
divergence of order «, for o € (0,1) U (1, 00), is

a—1
DuPIQ = LrioeEe (g))

Let D be a set of possible datasets, and ~ be a “neighboring’
relation among elements of D. That is, for d,d’ € D we
write d ~ d' to mean that d and d’ are neighbors, which
typically means that they differ in one entry. A mechanism
is a function M : D — P(X), which, for each d € D,
selects a distribution My € P(X). This can be interpreted
as a conditional distribution for a random variable supported
in X given a dataset from D.

Definition 2.1. (Dwork et al., 2006a;b) A mechanism M :
D — P(X)issaid tobe (¢,)-DPif forall A C X,

i

My(A) <efMg(A)+dforalld,d € D, d~d. (2)

For a mechanism M, we also define the best € for a given ¢§
as epm(0) = inf{e : M is (e, d)-DP}.

Definition 2.2. (Mironov, 2017) A mechanism M : D —
P(X) is said to be (c,y)-RDP if

Do(Mg|My) <yforalld,d € D, d~d. (3)
For a mechanism M, also define the best ~y for a given « as

Ym(a) = inf{y : M is (o, v)-RDP}. “4)

For two mechanisms M), M®)| each outputting a vari-
able in X, their composition M : D — P(X x X) is

Ma(zy,29) = MP (@) MP (). )

Proposition 2.3. (Mironov, 2017) For any mechanisms
MWD M) and their composition M,

Im(a) < v (@) + v e (o). (6)

The above is non-adaptive composition, in that each mecha-
nism works independently of the other’s output. In contrast,
in an adaptive composition, the second mechanism may
depend on the output of the first. A similar composition
result holds for the adaptive setting (Mironov, 2017), but
for brevity we omit the details. A particular consequence
of Proposition 2.3 is that, if the same (or equivalent) mech-
anisms are composed N, times, then the RDP is simply
multiplied by N..

The moments accountant (Abadi et al., 2016) provides a
method to derive (g, §) guarantees from («, ) guarantees.
The most basic form of the moments accountant follows.

Proposition 2.4. (Abadi et al., 2016) For a mechanism M,

log(1/6
em(6) < inf ala) + % %

While improvements to the moments accountant have been
made in (Balle et al., 2020; Asoodeh et al., 2021), we use
this simple version in our algorithm to simultaneously op-
timize for the noise distribution and ««. However, when
we perform numerical privacy accounting for the resulting
distribution, we use the state-of-the-art Connect-the-Dots
accountant.

The sensitivity of a query ¢ : D — R describes the max-
imum difference in the query’s output when changing a
single entry in the input dataset. Formally, it is defined as

s = lq(d) — q(d")]. (®)

= max

d,d’€D,d~d’
Given a real-valued query function ¢ with sensitivity bound
s, the Gaussian mechanism involves adding Gaussian noise
with zero mean and variance o2 to the query ¢. Similarly, the
Laplace mechanism involves adding noise from a Laplace
distribution with zero mean and scale parameter ¢ to the
query q.

For many natural queries, the output is inherently discrete,
specifically integer-valued, such as when counting how
many records in a dataset meet a certain condition. In these
cases, it is preferable to add discrete noise directly to the
query results. Adding continuous noise to discrete results
would require rounding, which can affect the privacy guar-
antees. Discrete Gaussian and discrete Laplace distributions
are the discrete counterparts of their continuous versions and
are specifically designed for discrete-valued queries. The
definitions of discrete Gaussian and Laplace distributions
are as follows. Let Z be the set of integers. The discrete
Gaussian distribution, denoted N7 (u1, 0%), for p € Z and
o > 0, is the PMF in P(Z) given by

x € Z. ©)]
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The discrete Laplace distribution, denoted Lapy (u, t), for
u € Z and t > 0, is the PMF in P(Z) given by

e/t —1

el/t +1

P(z) = e~lemnl/t gy e . (10)

3. Optimized Rényi DP Distributions

In this section, we find noise distributions with the best
Rényi DP guarantees by formulating a minimax optimiza-
tion problem. To set up this problem, we first give the
following definitions. We use Z to denote the domain of
the DP query output, which can be either the real numbers
or the integers. The set S is defined as the intersection of
the interval [—s, s] with Z, where s € ZT represents the
query’s sensitivity. Specifically, S = [—s,s] if Z = R,
and S = {—s,...,0,...,s}if Z = Z. We assume a cost
function ¢ : Z — [0, 00) that is symmetric, and an upper
bound C' € R™ on the expected cost. For a function f, T} f
is the shifted version of f by ¢, i.e., (T1f)(z) == f(x — ).

With the above definitions, the optimization problem is

minimize max D, (Pz||T;Pz),
P;eP(Z) teS

subjectto  E[e(Z)] < C. (11)

For oo > 1, we can move the min-max operation inside the
logarithm of the Rényi divergence, considering it as our
main objective. Let g, (Pz, t) denote the expression inside
the logarithm of D, (Pz||T:Pz), defined as:

PZ a—1
Py t)=E — 12
ga( Z ) Py (TtPZ) ) (12)

and let g, (Pz) denote the inner maximization:

9o (Pz) = %%Xga(PZJ)' (13)

We first show that g, (Py) is convex in Pz. By leveraging
this property, along with the symmetry of the cost function,
we restrict our search to symmetric noise distributions, as
formalized in the following theorem. A detailed proof is
provided in the Appendix A.

Theorem 3.1. The function g,,(Pz) is convex in Py;. More-
over, it suffices to restrict the search to the set of symmetric
noise distributions within P(Z) to solve the optimization
problem in (11).

3.1. Finite-Dimensional Distribution Classes

While we would like to solve (11), it cannot be solved
as-is because the search space of distributions is infinite-
dimensional. In this subsection, we address this by defining
finite-dimensional families of distributions that can closely

approximate solutions to (11) while being computationally
tractable. These families draw inspiration from a simi-
lar finite-dimensional parameterization in (Alghamdi et al.,
2022). We then present a method for solving the optimiza-
tion problem within these defined families.

For the continuous case, we focus on symmetric piecewise
constant probability density functions (PDFs). Importantly,
this approach is highly flexible, as any PDF can be closely
approximated by using sufficiently small bin widths. This
shifts the problem from optimizing the density at every real
number to determining the probability p; of bin 7. Given
these probabilities, the PDF is given by

fe) =

where I; = ((i — 3)A, (i + 1)A) denotes the open interval
corresponding to bin ¢, and A > 0 represents the bin width.
Remark 3.2. As the Lebesgue measure of the breakpoints
in the piecewise-constant representation is zero, it is not

necessary to explicitly define the value of f at these points.

forzel;, i €7, (14)

This formulation still involves countably infinite variables,
specifically {p;};cz.,. To ensure a finite number of vari-
ables, we introduce the constraint that the distribution ex-
hibits geometric tails. The geometric tails begin beyond a
specific interval, starting after bin N, where N is a hyper-
parameter for the distribution family. The decay rate of the
geometric tail is given by a second hyperparameter r. Impor-
tantly, this tail assumption does not significantly impact the
optimization, provided that the interval is sufficiently large
to capture the majority of the PDF’s significant behavior.
For a fixed A, these tails are fully characterized by the prob-
ability mass of the bins immediately preceding them and the
decay factor r. This reduces the problem to determining the
probability masses of the bins preceding the geometric tails,
thus converting the problem into a finite-dimensional one.
The following formally defines the family of distributions
under consideration.

Definition 3.3 (Symmetric Piecewise-Constant PDF Fam-

ily). Let N € N, r € (0,1), and A > 0. The PDF associ-

ated with a vector of probabilities p = (po, p1,...,PN) €

[0, 1]V+1 s

%, itz e, |i| <N,

forna(z) = PN L (15)
SN if 2 e, i > N,

subject to the normalization constraint
N-1 %
N
/ fornal(z)dz=po+2> pj+ oo =1L (16
R =1 -r

For the discrete case, it is again sufficient to restrict our
search to symmetric distributions. We also assume geomet-
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ric tails as in the continuous setting to reduce to a finite-
dimensional search space. The following gives the family
of discrete distributions under consideration.

Definition 3.4 (Symmetric PMF Family). Let N € N, r €
(0,1). The PMF associated with a vector of probabilities
P = (po,p1,---,pn) € [0, 1]V s

Poon(i) = Dlil» fori € Z,with |i| < N
P pnrl=N . fori € Z, with |i| > N,

)

subject to the normalization constraint:

N-1
. 2pN
‘Eez Py rn(i) =po+2 E_l pi + 1=, 1. (18)

The following proposition characterizes the expected cost
for these two distribution families.

Proposition 3.5. Let Z be a random variable with distribu-
tion given by either the continuous or discrete distribution
families described above. Then the expected cost is

N—-1 00
Ele(Z)] = podo +2 > pidi+2pn Y r VA, (19)
=1 =N

where, for a continuous distribution,

1
A; = 7/ C(Z) dz, Yi € Z>o, (20)
A z€I; B

and for a discrete distribution A; = ¢(i). In the special
case where c(z) = 22, corresponding to the variance® of Z,
the expression simplifies to, for the continuous case,

Var(Z) = 75 + 207 " p; i
1=1

2(N—=1)2+ N2(1 —2r)+7(2N +1)
(1-r)3 '
2D

+ QPNAz !

For the discrete case, the variance is the same as in (21),
except that the A% /12 term is not present, and A = 1.

The proof is provided in Appendix B.
3.2. Finite-Dimensional Convex Optimization

Within the distribution family described in Definition 3.3 or
Definition 3.4, the task of finding the optimal distribution
in (11) reduces to determining the vector p = (po, - .., pPnN)-
Since g, (Pz), defined in (13), is convex in Py, it is also
convex in p. Therefore, the minimization component of
the optimization reduces to a finite-dimensional convex op-
timization problem. The following theorem characterizes

*The distribution’s symmetry ensures Z has a mean of zero.

9o (Pz,t) in (12) for the two distribution families, and de-
lineates the feasible regions for both continuous and discrete
cases. Notably, the resulting finite-dimensional convex opti-
mization problem is almost the same for the two domains.
Theorem 3.6. Let s be the sensitivity of a query. Within
the symmetric piecewise-constant PDF family defined in
S
Definition 3.3, with a specified bin width of A such that N
is an integer, the optimization problem for the continuous
case, as detailed in (11), can be reformulated as follows:

minimize max
p=(po,p1,PN) te{l,.... % }

subjectto  E[c(Z)] < C,

N—1 2]9
N
p()+2z:1pj+ﬁ:11
j=

9o (Pst)

p; €[0,1] forall ¢ € [N], (22)
where
1) = pnT (1—a)t at = (e -«
ga(pt) = T (r" )+ Y )
j=-N
N
FRRrN ST gl
j=N—t+1
~N-1
_’_p}VfanN(lfa) Z pﬁﬂ‘?rj(lfa). (23)
j=—t—N

For the discrete case within the symmetric PMF family from
Definition 3.4, the optimization problem in (11) can also
be reformulated as (22)—(23) except that we take A = 1.
The cost constraint B[e(Z)] < C for both cases is further
detailed in Proposition 3.5.

Proof Sketch: The objective in (22) is the quantity inside
the logarithm of the Rényi divergence — thus the RDP can
be easily calculated from the optimal objective. Although
the inner maximization in the continuous case initially con-
siders t € [—s, s], we demonstrate that the divergence is
maximized when the bins of a piecewise constant PDF align
with those of its shifted version. In this scenario, the opti-
mal shift is a multiple of the bin width A within the interval
[—s,s]. The set {1,..., X} corresponds to the possible in-
teger multiples of A that determine the optimal shift values.
The detailed proof is in Appendix C.

In the piecewise-constant PDF family introduced in Defini-
tion 3.3, setting A = 1 creates a PDF where each bin has
a width of 1 and is centered on the integers, which can be
interpreted as a PMF over the integers. This leads to the
objective for the discrete case being a specific instance of
the continuous case when A = 1.

Theorem 3.6 highlights that solving for the optimal noise in
the two domains (continuous and discrete) is nearly identical.
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Algorithm 2 Initialize Distribution

Algorithm 3 Optimization Algorithm

input : Noise scale o, type (discrete or continuous),
Query sensitivity s, Distribution parameters IV, r, A
output : pg
1: émin ~0
2: C’max — 202
3: repeat R .
C, - C(mirl + C1max

for i = Ot02N— 1do

pi = 0((i+ HA/VE) (i - AV
end for _
Py — (1=1)[1= (N = H)A/VC)]
Var < variance of the noise associated with p and
type using Proposition 3.5
10:  if Var < o” then

Rl e A A

11: Chin < C

12:  else

13: Conax — C

14:  endif

15: until Var and o2 are sufficiently close
16: po < P

The objectives differ only in that A must be 1 for the discrete
case. Moreover, as shown in Proposition 3.5, for quadratic
cost, the constraints differ only in that the continuous case
includes an extra constant term A?/12 whereas discrete
does not.

Remark 3.7. Let o represent the standard deviation of the
noise. As demonstrated in (Mironov, 2017), for Gaussian
and Laplace distributions, the RDP of order o depends
solely on the ratio o /s, rather than on ¢ and s individually.
In fact, our noise distributions satisfy exactly the same prop-
erty. In the optimization problem in (22), for a quadratic cost
with C' = o2, we can rewrite the cost constraint from (21)
as:

o 1
—_ —_—_ 49 52
A2 T2 ;p”
2(N—-1)24+N23(1-2 2N +1
+2er( )2+ N4( r)+r(2N + ) (24)

(1—-r)3

Moreover, s appears only in the set over which we maxi-
mize. By fixing s/A to an integer, say m, which is feasible
because A can be adjusted to maintain the desired ratio,
we get A = s/m. Substituting this into (24), it becomes
a function of ¢/s. This implies that the optimization now
depends solely on the ratio ¢ /s. Therefore, the RDP of our
noise depend solely on the ratio /s, similar to the behavior
observed for Gaussian and Laplace distributions.

input : Privacy parameter §, Number of compositions N,
Noise scale o, Query sensitivity s, Total number of
iterations K, Initial distribution pg, Distribution param-
eters N, r, A, Rényi parameter (o) update time step 7T,
type (discrete or continuous)

output : Final solution px

210%01/6)% 1

2: Calculate A, b so the linear constraints for cost and

normalization are given by Ap = b

3: fork=1to K do

4 " argmaxieqy,.. 2} 9o (Pr—1,1)

5. M <« diag(pr_1)~!

6: g+« M 'Vpga(pr-1,t)

7.

8

9

1. o+

B+ AM!
B+« BT (BB")!
. gproj —g-— B+Bg
10: p® <+ N, g i ﬁ
11:  pg < Pr-1
12: Imin ga(pkfly t*>

ub ub
13: forpu e {ﬂ“b,%7...,§‘ﬁ} do

14: p <+ M~ Y1 — p gP)

15: g+ maXieq1,.. 2} 9a(D,t)
16: if ¢ < gmin then

17: Pr < D

18: end if

19:  end for

20:  if k is a multiple of T" then

"/;,k,Nc,é(a)

21: A4~ O — "
’ka,Nc,g(O‘)

22:  end if

23: end for

4. Preconditioned Gradient Descent Algorithm

In this section, we present our algorithms for identifying
the noise distribution that achieves the best (¢, §)-DP guar-
antees. Algorithm 1 is the overall algorithm, which calls
Algorithm 2 and then Algorithm 3. The role of Algorithm 2
is to initialize the vector p, which is passed to Algorithm 3.
This latter algorithm performs preconditioned gradient de-
scent to find the optimal noise distribution.

Algorithm 2 Overview: Since the Gaussian distribution
is a straightforward baseline, we initialize with an approxi-
mation of this distribution. Since our distribution families
cannot exactly capture the Gaussian (or discrete Gaussian)
distribution, we must slightly adjust the parameters to ex-
actly match the desired o. In the algorithm, C represents
the variance of the Gaussian: based on this, we derive p
to approximate a Gaussian with variance C. However, the
resulting distribution will have a slightly different variance,
denoted Var. We employ a bisection algorithm to find C so
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Figure 2. The left plot compares our optimized noise distribution and a Cactus distribution, both with standard deviation 0.3, under
the setting § = 1075, s = 1, and 50,000 compositions, corresponding to o = 1.006 (moments accountant), with noise parameters
A = 0.005, N = 1600, and r = 0.9999. The right plot compares our optimized noise and a Staircase distribution, both with standard
deviation 1, under the setting § = 1072°, s = 1, and one composition, corresponding to o = 125.01, with noise parameters A = 0.01,

N = 2000, and r = 0.9999.
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Figure 3. The left plot displays the optimized noise distribution for a standard deviation of 4, § = 107%, s = 1, and 20 compositions,
corresponding to o = 5.95 (using the moments accountant). The right plot shows the distribution for a standard deviation of 2, § = 10717,
s =1, and 8 compositions, corresponding to v = 11.32. The noise parameters are A = 0.01, 7 = 0.9999, and N = 8000 for the left

plot, and N = 4000 for the right.

that Var = o2. The bisection method allows us to converge
to the desired variance for the initial noise mechanism itera-
tively. It does so by iteratively tightening the chosen upper
and lower bounds on C until they converge.

Algorithm 3 Overview: The main task is to solve the op-
timization problem described from Theorem 3.6, given by
(22). The minimization problem is convex in p, so gradi-
ent descent will convergence to the optimal objective value.
Recall that our optimization is a minimax problem. The
maximization in (22) only requires iterating over a finite set,
while a preconditioned gradient descent method is used to
solve the convex optimization part.

Explanation of Key Aspects of Algorithm 3:

Linear constraints: The optimization problem involves
two linear constraints, corresponding to the cost constraint
(which is active) and the normalization constraint. These
two constraints can be expressed as a matrix equation:
Ap = b. We focus on the quadratic cost c(z) = 22 with

C = 02, where ¢ is the standard deviation of the noise. The
appropriate cost constraint (depending on whether t ype is
discrete or continuous) from Proposition 3.5 is used in each
case. The normalization constraint is in (22).

Optimization for a:: Algorithm 3 simultaneously optimizes
for p and «. Specifically, we optimize « according to the
moments accountant formula, given by

log(1/9)

logga(p) + =77 (29

c

a—1

Yp.N.s(a) =

where g, (P) = max;c(1,....s/A} 9o (P, ). The initial value

of « is set to the optimal « for the moments accountant with

Gaussian noise (corresponding to the initialization of p to

being approximately Gaussian). Using the fact that the RDP
2

of Gaussian noise is % in the moments accountant formula,

the optimal « for Gaussian is a* = 4/ 21%(1/5)% + 1.

Subsequently, every T iterations, « is updated by taking a
Newton step to optimize the moments accountant formula.
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Figure 4. For fixed § = 1075, the grid evaluates different combinations of composition count and noise standard deviation (), marking
RDP noise as the winner whenever it achieves more than a 2% improvement in € over the best alternative (among Gaussian, Laplace,
Staircase, and Cactus). Even when another distribution is marked as the best, our noise still consistently outperforms the others, although

by less than 2%.
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Figure 5. The plots compare the pointwise minimum of privacy curves from our optimized noise distributions—designed for 10 composi-
tions, sensitivity 1, and varying —with privacy curves for Gaussian, Laplace, Cactus, and Staircase mechanisms, all with a fixed standard
deviation of & = 8. The left plot shows continuous distributions; the right plot shows discrete distributions. All curves are evaluated at 10

compositions.

Preconditioning: Standard gradient descent is ill-suited to
this optimization problem. The reason is that the probability
vector p is constrained to be non-negative, in addition to
the normalization and cost constraints. All these constraints
by themselves can be handled by projected gradient descent
(indeed, this is our approach to dealing with the normal-
ization and cost constraints; see below). However, doing
so will tend to produce p vectors with zeros, which lead
to infinite values of the objective in (23). This blowing-up
occurs because the Rényi divergence between distributions
with different supports is infinite. Thus, it is not enough
to keep p in the feasible set, it must be kept strictly fea-
sible. This can be addressed using standard gradient de-
scent by reducing the step size, but this causes very slow
convergence. To address this limitation, we instead use
preconditioned gradient descent, where we apply a linear
transformation to the solution space, and take a gradient
step in the transformed space. In particular, we use the

transformation matrix M = diag(ps_1)~!, where ps_1
is the current optimization variable. This transformation
introduces uniformity, ensuring that p maintains a roughly
consistent distance from the boundary imposed by the non-
negativity constraint.

Gradient Calculation and Projection: After computing
the gradient in the transformed basis, we project it onto the
region that meets the cost and normalization constraints.
Satisfying the equation Ap = b for a vector p in the orig-
inal basis is equivalent to satisfying AM~'q = b for a
vector q in the transformed basis.

Backtracking Line Search: The current position
Px—1 in the original basis maps to Mpy_;
diag(pk,l)_lpk,l = 1 in the transformed basis. Thus,
in each update within the transformed basis, the current
position is represented by an all-ones vector. The update
rule is: q = 1 — p gP™, where f is the learning rate. The
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Table 1. MSE improvement (%) of RDP noise over Gaussian for § = 107% and 10 queries (mean =+ std across 20 seeds).

Dataset €=0.62 0.69 0.78 0.84 0.97 1.05

Breast Cancer 8.28+0.19 9.14+0.19 9.63£0.23 8.61+£0.17 10.34+0.20 11.48+0.18
Diabetes 8.11£0.19 9.06£0.21 9.434+0.16 8.48+0.17 10.06+0.17 11.124+0.22
UCI Heart Disease ~ 8.14+0.22  9.05+0.16 9.50+0.26  8.52+0.19 10.204£0.20 11.31+0.18

corresponding update in the original basis is: p, = M~ 'q.

The constraint p; > 0 implies g > 0, leading to the upper
ub _ .3 ) 1

bound n = mlnie[N]7gzl‘o|>O ggmj .

We implement a backtracking line search strategy that evalu-

ates learning rates in the sequence p*®, u®/2, ..., ut® /210,

Among these, the learning rate that achieves the largest

reduction in the objective function is selected.

5. Numerical Results

In this section, we present numerical results evaluating the
privacy characteristics of our proposed RDP noise. All
(e, 6)-DP guarantees presented here are computed using the
Connect-the-Dots accounting (Doroshenko et al., 2022).

Figures 2 and 3 show optimized RDP noise distributions
across different settings. In particular, Figure 2 highlights
how our framework automatically recovers Cactus and Stair-
case distributions in the regimes where they perform best
(a close to 1 and oo respectively).

Figure 4 illustrates what we call the “moderate composition
regime,” showing the range of compositions and noise stan-
dard deviations (o) where our optimized noise distribution
achieves at least a 2% improvement in € compared to other
known mechanisms (Gaussian, Laplace, Staircase, and Cac-
tus) for § = 1075, The regions with more than two percent
improvement depend on both ¢ and the number of compo-
sitions. Importantly, there is no single mechanism that is
always best across all parameter settings—so finding the
best one typically requires testing all four for each combina-
tion. Even in cases where another distribution is labeled as
the best, our noise still consistently performs better than the
rest, although the margin is less than 2%. Our noise is bene-
ficial not only when it gives a clear 2% or greater advantage,
but also in situations where it is unclear in advance which
mechanism will perform best. For example, even though the
Staircase distribution is provably optimal only for a single
composition and in the pure DP limit (§ — 0), it sometimes
outperforms the others at § = 10~° for certain o and compo-
sition choices—yet it is easy to mistakenly pick a different
baseline like Laplace. Our optimized noise is robust and
helps avoid mistakes when choosing among existing mecha-
nisms. Note that this plot is specific to § = 10~5; for other
values of ¢, there are additional combinations of o and com-
positions where our noise provides similar improvements,

some of which are shown in Appendix D.

In the two parts of Figure 5, we fix the number of compo-
sitions and standard deviation while optimizing the noise
distribution for different ¢ values, for both continuous (left)
and discrete (right) domains. Each 4 results in a different op-
timized noise distribution, generating its own privacy curve.
The RDP noise curves represent the pointwise minimum
of these curves: that is, each point (g,0) on this curve is
derived from the noise distribution optimized for that spe-
cific 4. In contrast, Figure 1 shows the privacy curve for
a specific noise distribution optimized for a single target .
Our approach remains optimal across all § values, closely
matching the performance of other noise mechanisms in
their respective optimal regimes while significantly outper-
forming them elsewhere. Note that the range of € where we
observe the greatest improvement varies with the choice of
o and the number of compositions. We provide an additional
set of plots for a different combination in Appendix D.

In Table 1, we report the performance improvement of
our optimized noise over the Gaussian baseline on three
widely used datasets for privacy-preserving machine learn-
ing: Breast Cancer Wisconsin (Diagnostic) (Wolberg et al.,
1993), Diabetes (learn developers), and the UCI Heart Dis-
ease dataset (Cleveland subset) (Janosi et al., 1988). Details
about the datasets and the experimental setup are provided
in Appendix D due to space constraints. Since Gaussian
noise consistently outperformed Laplace, Cactus, and Stair-
case mechanisms across all tested settings (with § = 1076,
10 queries, and a range of target € values), we focus our
comparison on the Gaussian baseline. As shown, replacing
Gaussian noise with our optimized mechanism yields an
improvement of 8% to 12% across the evaluated € values.

6. Conclusion

We have introduced a unified optimization framework to
identify optimal continuous and discrete noise distributions
for (e, 6)-DP for a given cost and number of compositions.
To address the problem’s non-convexity, we have converted
the objective into Rényi DP of an optimized order «, yield-
ing a finite-dimensional convex optimization problem. We
have introduced a novel preconditioned gradient descent
algorithm to efficiently solve this optimization problem.
The resulting noise distributions are consistently better than
Gaussian and Laplace distributions, with significant im-
provements in the moderate composition regime.
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A. Proof of Theorem 3.1

Let Z be the domain of the query’s output, which may consist of real numbers or integers, and let P(Z) denote the set of
all probability distributions supported on Z. Let the distribution P_ z represents the reflection of P with respect to the
y-axis, such that P_z(z) = Pz(—=z) for all z € Z. The feasible region P; C P(Z) encompasses all noise distributions
Py € P(Z2) that satisfy the normalization constraint Ep, [1] = 1, the positivity constraint Pz(z) > 0 for all z € Z, and
the cost constraint Ep, [c(Z)] < C. The set S represent the possible shifts: specifically, S = [—s, s] if Z = R, and
S={-s,...,0,...,s}if Z=17Z.

Recall that

(Pz,t)=E P\ (26)
o Zy — Lp, TtPZ )
and

9a(Pz) = max 9a(Pz,t). 27

To justify restricting the search to symmetric noise distributions, we demonstrate that the feasible region Py is both
symmetric and convex. Additionally, we prove that g, (P) exhibits symmetry in Z and convexity in Py. By leveraging
these properties, we establish that minimizing over the entire feasible region yields the same result as minimizing solely
over the symmetric distributions within that region.

Convexity of the Feasible Region: Let A € (0,1) and Pz, Q72 € Py, we show that APz + (1 — A)Qz € Py. The convex
combination APz + (1 — \)Qz is a valid distribution, as it satisfies the normalization constraint as follows:

Exps+1-0Qz 1] = AEp, 1]+ (1 = A) Eq,[1] = 1, (28)
and it is non-negative for all z € Z,i.e., A\Pz(z) + (1 — A\)Qz(z) > 0.

We also have
Exps+(1-0@z[c(Z2)] = AEp,[c(Z)] + (1 = A) Eq,[c(Z)] < AC+ (1 =) =C. (29)
The inequality holds because Pz, Qz € Py, and thus Ep, [¢(Z)] < C and Eg, [¢(Z)] < C. So, we have
APz + (1 —-XN)Qz € Py,

and the feasible region Py is convex.

Symmetry of the Feasible Region: We show that if P lies within the feasible region, its reflection P_ z must also belong
to the feasible region. If Pz € P(Z) (i.e., it is a non-negative, normalized measure), then P_z € P(Z). Thus, our focus is
on verifying the cost constraint. Given that Ep, [¢(Z)] < C, we need to show that Ep_,, [¢(Z)] < C as well. We have

Ep_,[c(2)] = Ep,[c(=2)] = Ep,[c(2)] < C (30)

where the first equality follows from a variable change and the symmetry of Z. The second equality follows from the
symmetry of the cost function.

Symmetry and Convexity of the inner maximization:. As shown in (van Erven & Harremos, 2014) (Proof of Theorem
a—1

13), the expression Ep, (%) is jointly convex in (Pz,Qz). In (26), with Qz = T} Pz and the linearity of T3, it

follows that g, (Pz,t) is convex in Pz. Moreover, since the pointwise maximum over ¢t € S preserves convexity, go (Pyz) is

also convex in Pz. We now show that g, (Pz) is symmetric as follows:

9a(P-z) = max ga(P-z,1) (3D
P—Z a—1
= max Ep_ <TtPZ> (32)
PZ a—1
= max Ep, (T_tPZ) (33)

12



Optimizing Noise Distributions for Differential Privacy

PZ a—1
-1z o (77 o
= max ga(Pz,t) (35)
= 9a(Pz), (36)

where (33) follows from the symmetry of Z and the variable substitution from —z to z, while (34) results from the inherent
symmetry of S.

Sufficiency of Restricting the Search to Symmetric Noise Distributions: Leveraging these properties, we now establish
that it is sufficient to restrict the search to symmetric noise distributions. Let P} be an optimal noise distribution; i.e., P}
minimizes g, (Pz) over all P; € Py. Also let M* = g,(P}) be the optimal objective value. Let A € (0, 1), since the
feasible region is convex, we have

APS + (1—\)P*, € Py. (37)

Since g, (Pz) is symmetric, we have g, (P}) = go(P*,) = M*, and so P*, is also an optimal noise distribution.
Considering the convexity of g(Pz), we have

go (AP; + (1= XN)P%,) < Aga(Py) + (1= Nga(Pr5) = AM* + (1 = \)M* = M* (38)

which means every noise distribution on the line segment connecting P and P* , is an optimal noise distribution. For the
special case of A\ = %, we get an optimal noise distribution

Py +rr,
2

which is symmetric. This proves the existence of a symmetric noise distribution among the set of all possible solutions and
so the sufficiency of searching over only symmetric noise distributions.

B. Proof of Proposition 3.5

For the continuous case, we have

B2 = [ ele) fale) dz 39)
z€R
-y / Pl o(2) d (40)
icz Y #€L A
SB[ o) de 1)
=/ A z€el,
N— e
_ c(z)dz +2 z:l bi / c(z)dz+2 Z PN i-N / c(z) dz 42)
A z€lp i=1 A zel; i=N A z€l;
N-1 0
=poAo+2 ) pidi+2pn Y VA, (43)
i=1 i=N
where
T IRCL @4)
i = — c(z) dz,
A z€I;

and (42) follows from the symmetry of ¢(z). When c(z) = 22, A; simplifies to:

1 A2 1 1 1
A= — 2dr = ((1+2¥ (=¥ =A2(:2+ —
; A/Zgiz dz 3 <(z+2) © 2)) A (z + 12), 45)
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and so
DoAA? N-1 1
Var(Z) = = +2sz A? (z +12>+2pNZ’I“l NAQ( 12) (46)
A2 N-1 N-1
== <p0+ > 2+ Z2erZ N) +2)  p A% 4 2py Zrl N A2 47)
i=1 1=N i=1 i=N
A2 N-1
S (S SEEC I e T o @
=1 i=N
A2 N-—1 fe'e) .
= §+2A2 Zpi i2+2pNAQZT“Ni2, (49)
i=1 i=N

where (49) follows from the normalization constraint in (16), and we have

i N 2 r2(N —1)2 4+ N2(1 —2r) +r(2N + 1)

T—r)? (50)

i=N

The proof for the discrete case follows a similar approach.

C. Proof of Theorem 3.6

Here, we present a proof for the continuous case. The proof for the discrete case follows a similar approach to that of the
continuous case. Recall that in the continuous case, the PDF is given by

foama(z) =2, forz €L, withi € Z, (51)

where I; = ((i — $)A, (i + $)A), p—; = p;, and p; = pyrl?l= for |[i| > N. To simplify the expression inside the
logarithm of the RDP, as presented in (12), we begin by substituting the piecewise-constant form of the PDF and simplifying
it for any shift ¢ € [—s, s]. After substitution, the resulting expression becomes piecewise linear in ¢, with breakpoints
occurring when ¢ is a multiple of the bin width A, aligning the bins of the PDF and its shifted version. Thus, to find the
maximum over ¢, we only need to consider the breakpoints within [—s, s] and the interval’s endpoints, forming a finite set of
candidates. Finally, we simplify the expression for each element in this finite set.

For the continuous case, we have

ga(forna,t) = /pr,r,N,A(Z)a fornalz— t)l_adz (52)

00 o oo 11—«

=/ Z&]l{zel'} Z &]l{z—tel} dz (53)

R\, A ! = A J

:*/ZP11{261}2p§“1{z—teI}dz (54)
i=—00 j=—00

:7/2 Zp Pz e L} 1{z—te;}dz (55)
i=—00 j=—00

:% Z Z Pip; ‘”/ 1{z e L} 1{z —t € I;} dz. (56)

1=—00 j=—00

Equation (56) follows from applying Tonelli’s theorem for non-negative measurable functions (Wikipedia, b) twice. This
holds true because both the Lebesgue measure on the real numbers and the counting measure on the integers are o-finite,
and the expression p§'p;~* 1{z € I;} 1{z —t € I,} is non-negative for all 7, j € Z and z € R. The integral within the
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expression above can be simplified as follows:

t+(G—i+1DA, if(i—7j—DAL<t<(i—j)A,
/Il{zefi}]l{z—tefj}dz: —t+(G—j+ DA, if(i—HA<t<(i—j+ DA, (57)
® 0, otherwise
=+ —i+DA)T{t e ((—j— DA, (@ - 5)AJ}
+(=t+(@—j+1DA)I{te ((—75A (i —7+1)A)} (58)
Substituting the expression from (58), the expression in (56) simplifies to:
i > 1a/ {zeL}1{z—teI;}dz (59)
1=—00 j=—00
A Z sz t+ G —i+DA)I{t e ((i —j— DA, (i —j)A]}
Jj=—001=—00
+(—t+AG—j+1)1{t € (i —-5)A, (i—j+1)A)}] (60)
1 (o) (o)
=X DD P py M|+ (mm A+ DA)L{t € ((m—1)A,mA]}
j=—00 m=—00

+ (=t + (m+1)A)L{t € (mA, (m+1)A)} (61)

where, in (61), we apply the variable change m = i — j for each fixed j. Since ¢ is a real number in the interval [—s, s],
the indicator functions 1 {t € ((m — 1)A,mA]} and 1 {t € (mA, (m + 1)A)} are zero for values of m outside the set

{—%, ...,0,..., %}, where A is chosen such that % is an integer. Therefore, go (fp,r N.A,t) simplifies to:
- .
golfornat) =% > Z Poy P (E+ (mm A+ DAY L{t € ((m — 1)A, mA]}
j=—00 m——f

+(—t+(m+DA)1L{t € (mA,(m+1)A)} (62)

To solve the maximization problem over ¢ € [—s, s|, observe that the above expression is piecewise linear in ¢. Therefore,
it is sufficient to evaluate the maximum at the endpoints of the linear segments. These endpoints are given by ¢ €

{aA |a € {—%, o0, i}} Let evaluate the expression in (62) at t = aA:

ga(fp, TNA,U,A)

AZ meﬂ -

j=—ocom=—%

(@A + (=m + 1)A) 1 {aA € ((m — 1)A, mA]}

+ (—aA 4+ (m+1)A) 1 {aA € (mA,(m+1)A)} (63)

Z Poy; Py Y (aA+ (—a+1)A) (64)

]——oo

Z Pey; Py " (65)

J_—OO
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min{—-N—-a,-N}—-1 max{N,N—a}
—a—j— i _ 1—
= >, (pn =@ (py eI N > Parjp; ©
j=—00 j=min{—-N—a,—N}
oo
D DR O O b i
j=max{N,N—a}+1
min{—-N—-a,—N}—-1 max{N,N—a} 0o
j=—0o0 j=min{—-N-a,—N} j=max{N,N—a}+1
. max{N,N—a} _
o Tfmln{foa,fN}+1 ax{N, 3 N Tmax{N,N a}+1
=pyr N T + > Par;pj N T B p—
j=min{—N—-a,—N}
PN T max{N,N—a}
—ao— _ _ 1—
== G aa NHMﬂNﬂMW*ﬂmeﬂmﬂNW'@)+ E: P, pie

j=min{—N—a,—N}
o max{N,N—a}
_ (Tfaa+max{a,0} +raa+max{0,fa}) + Z pg+j pl—a

L=r j=min{—-N—a,—N}
. N—al
- ffi - (r<1fa>|a| +7aa|a|) i ZNPfélﬂ Pl 4 pgreal=N)
i
N —N-1
Z rod p;—oz + p}v—arfN(lfa) Z pﬁz\-{—j ,rfj(lfoz) ]]_{a 7& O}
i=N—lal+1 j=—lal-N

where (64) follows because an open interval (mA, (m + 1)A) does not include any endpoints. So
1{aA € (mA,(m+1)A)} =0
and a half-open interval ((m — 1)A, mA| includes the endpoint aA if m = a. The equality (71) follows because

— + .
rfanrmax{a,O} + ,r,aa+max{0,fa} _ T_:z a _A';Z;i‘; lfa >0 _ T(lfa)|a| + 7,o¢|a|
7Y 4 e ifa<0

and

max{N,N—a}
(o -«
j=min{—N—a,—N}

N —N-1

a -« l-a,,—N(1l—« o —j(l—«
= D Py py (v N S Y e #£ 0}
=N j=—lal-N

N—la| N
_ fe4 -« a a(la]—N) aj l1—a
= D Dl By PR m P
j=—N j=N—|a|+1

—N-1

+ [py N0 N pe I 1{a £ 0}
j==la|=N

where we have used the assumption that the distribution is symmetric, meaning p; = p_;.
The quantity in (71) is symmetric with respect to a; therefore, the maximum over

te{aA|a€{—§,...,O,...,§}}
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Figure 6. For fixed § = 1072, the grid evaluates different combinations of composition count and noise standard deviation (¢), marking
RDP noise as the winner whenever it achieves more than a 2% improvement in € over the best alternative (among Gaussian, Laplace,
Staircase, and Cactus). Even when another distribution is marked as the best, our noise still consistently outperforms the others, although
by less than 2%.

reduces to a maximum over

te{aA|a6{0,...,§}},

and |a| simplifies to a. Moreover, when a = 0, the two distributions are identical, and the divergence reaches its minimum
value of zero. Hence, we can exclude a = 0 from the set. So, the task of finding the worst-case shift collapses to the
following optimization:

N—a
max PN T (T(l—a)a_i_raa) + Z pg+j p;fa _,'_p?vroz(a—N)
j=—N

ae{l,...,%} 1
N —N-—-1
S ripipyer NOT N e (e, (76)
j=N—-a+1 j=—a—N

Utilizing the symmetry of the noise distribution (p; = p—_;), we can rewrite the maximization as follows:

N-—a
pnT - 1— _N
SN - (T( a)“”"aa) + D Py 2y o
ae{l,...,z} J=—N
N —N-—1
i1 l1-a,—~N(1— i1
j=N-—-a+1 j=—a—N

D. Additional Numerical Results

The region of compositions and noise levels (o) where our optimized noise achieves at least a 2% improvement in € over
standard mechanisms (Gaussian, Laplace, Staircase, and Cactus) shifts as § changes. Figure 6 presents a plot similar to
Figure 4 but for § = 10, These results further highlight that the optimal noise distribution is highly setting-dependent.
Since our RDP noise consistently performs well across different settings and avoids the need for manual selection among
existing mechanisms, it offers a more reliable default.

Figure 7 shows a plot similar to Figure 5, but for a smaller 0 = 5, with the number of compositions fixed at 10 in both
cases. As shown, the range of € where our method provides the greatest improvement shifts with the choice of ¢. For
o = 5 (Figure 7), the peak improvement occurs between ¢ = 2 and 2.8, while for the larger 0 = 8 in Figure 5, it lies
between approximately 1.2 and 1.8. This shift is expected—optimizing for a larger o corresponds to a higher privacy regime,
resulting in smaller € values.

To obtain the results in Table 1, we assume that the Sth and 95th percentiles of each feature are privately released. These
quantiles are used to rescale each feature by subtracting the Sth percentile and dividing by the difference between the 95th
and 5th percentiles. This transformation maps most feature values to the [0, 1] range, and any values outside this range are
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Figure 7. The plots compare the pointwise minimum of privacy curves from our optimized noise distributions—designed for 10 composi-
tions, sensitivity 1, and varying —with privacy curves for Gaussian, Laplace, Cactus, and Staircase mechanisms, all with a fixed standard
deviation of o = 5. The left plot shows continuous distributions; the right plot shows discrete distributions. All curves are evaluated at 10
compositions.

clipped to O or 1. This normalization step ensures that all features are on a consistent scale before noise is added. Mapping
back to the original feature scale can be done using the privately released quantiles.

Since the quantile release step incurs the same privacy cost for both the Gaussian and RDP noise mechanisms, we do not
account for it separately in our analysis. Instead, we focus on evaluating the privacy-utility trade-offs introduced by the
noise-adding mechanisms themselves.

We then add noise using either the Gaussian mechanism or our optimized RDP noise. For each query, we generate 100,000
differentially private outputs by adding noise according to the selected mechanism and compute the mean squared error
(MSE) with respect to the true (non-private) value. We average the MSEs across 10 queries, repeat the process for 20 random
seeds, and report the mean and standard deviation (4) of the improvement over Gaussian noise.

For the remainder of this section, we provide details about the datasets and the queries used in the experiments presented in
Table 1.

Breast Cancer Wisconsin (Diagnostic) (Wolberg et al., 1993): This dataset contains 569 records with 30 continuous
features extracted from digitized images of fine needle aspirates of breast masses. These features capture various properties
of cell nuclei, including radius, texture, perimeter, area, smoothness, and symmetry. We define 10 continuous queries, each
computing the average of a key diagnostic indicator. These include the overall average values of features such as mean
radius, texture, area, smoothness, and fractal dimension. Such queries are commonly used in biomedical research and
medical data analysis to support disease characterization and model interpretability in diagnostic applications.

Diabetes dataset (learn developers): This dataset includes 442 patient records and 10 features representing physiological
variables such as age, sex, body mass index (BMI), blood pressure, and six blood serum measurements (sl to s6). We define
10 continuous queries, each computing the mean of a feature across the dataset. These queries capture the average body
mass index, blood pressure, age, sex indicator (reflecting gender distribution), and the average values of each of the six
serum biomarkers.

UCI Heart Disease Dataset (Cleveland subset)(Janosi et al., 1988): A widely used clinical dataset containing diagnostic
information for 303 patients undergoing evaluation for coronary artery disease. It includes a mix of demographic and
clinical features such as age, sex, resting blood pressure, serum cholesterol, maximum heart rate achieved during exercise,
and indicators of exercise-induced angina. To simulate realistic medical analytics, we define 10 queries focused on patient
demographics and cardiac health metrics. These include the average age and maximum heart rate within subgroups defined
by sex and angina status, as well as the average resting blood pressure and cholesterol levels for higher-risk populations,
such as individuals with hypertension or adults over the age of 55.
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