
Beyond Single Frames: Can LMMs Comprehend Temporal and
Contextual Narratives in Image Sequences?

Anonymous ACL submission

Abstract

Large Multimodal Models (LMMs) have001
achieved remarkable success across various002
visual-language tasks. However, existing003
benchmarks predominantly focus on single-004
image understanding, leaving the analysis of005
image sequences largely unexplored. To ad-006
dress this limitation, we introduce STRIPCI-007
PHER, a comprehensive benchmark designed to008
evaluate capabilities of LMMs to comprehend009
and reason over sequential images. STRIP-010
CIPHER comprises a human-annotated dataset011
and three challenging subtasks: visual narrative012
comprehension, contextual frame prediction,013
and temporal narrative reordering. Our evalu-014
ation of 16 state-of-the-art LMMs, including015
GPT-4o and Qwen2.5VL, reveals a significant016
performance gap compared to human capabili-017
ties, particularly in tasks that require reordering018
shuffled sequential images. For instance, GPT-019
4o achieves only 23.93% accuracy in the re-020
ordering subtask, which is 56.07% lower than021
human performance. Further quantitative anal-022
ysis discuss several factors, such as input for-023
mat of images, affecting LMMs’ performance024
in sequential understanding, underscoring the025
fundamental challenges that remain in the de-026
velopment of LMMs.027

1 Introduction028

In the space between the panels, human029

imagination takes separate images and030

transforms them into a single idea.031

— Scott McCloud (1993)032

Recent advancements in Large Multimodal Mod-033

els (LMMs), particularly GPT-4o (Hurst et al.,034

2024), have yielded significant breakthroughs in035

a various visual-language tasks, including image036

captioning (Liu et al., 2023b; Ghandi et al., 2024),037

visual question answering (Lu et al., 2023; Zhu038

et al., 2024), video understanding (Zhang et al.,039

2023; Maaz et al., 2024), and so on. LMMs have040

Reordering Task:  A.④②③①           B... C... D...
 

Prediction Task:   A. Two cats jumped to the side of 
the fish tank, and the bear looked at them curiously.         
B... C... D...

Comprehension Task:   A. The cats encourage the 
fish to jump out of the water to gain freedom, but in 
reality, they are trying to lure the fish out to eat them. 
This showcases the cats' mischief and highlights the 
concept of understanding freedom.           B... C... D...

Figure 1: An example from the STRIPCIPHER dataset
includes the correct answers for our three sub-tasks:
comprehension, frame prediction, and reordering. All
these tasks are presented as multiple-choice questions,
with distractors excluded due to limited context. Star
means correct answer.

shown promising efficacy in processing and inter- 041

preting visual content (Yin et al., 2024), greatly 042

enhancing their capacity to interact with the real 043

world. 044

Despite recent advances, the capability of LMMs 045

to process and reason over sequential images re- 046

mains underexplored, even though sequential vi- 047

sual inputs are prevalent in real-world applica- 048

tions (Yang et al., 2024; Liu et al., 2024b). While 049

existing benchmarks primarily evaluate LMMs on 050

single images, often emphasizing surface-level un- 051

derstanding, they fail to address the complexities 052

of sequential dependencies. In multi-image con- 053

texts, the ability to discern implicit meanings and 054
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Benchmark Task Sequential Reorder #Frames #Seq #Cat

HCD (Radev et al., 2016) Funniness Classification No No 50 0 1
MTSD (Cai et al., 2019) Sarcasm Classification No No 9,638 0 3
HUB (Hessel et al., 2023) Matching+Ranking+Explanation No No 651 0 1
MORE (Desai et al., 2022) Sarcasm Explanation No No 3,510 0 1
DEEPEVAL (Yang et al., 2024) Description+Title+Deep Semantics No No 1,001 0 6
AutoEval-Video (Chen et al., 2024a) Open-Ended Question Answering Yes No 1,033 327 12
Mementos (Wang et al., 2024c) Description Generation Yes No 8,124 699 1

STRIPCIPHER (Ours) Prediction+Comprehension+Reorder Yes Yes 3,635 896 6

Table 1: Features and statistical information of STRIPCIPHER and prior related datasets. "Sequential" refers
to whether image sequences are included. "Reorder" refers to whether benchmark tests the model’s ability to
understand images and reorder them. "#Frames" refers to the number of the frames(sub-image). "#Seq" refers to the
number of image sequences. "#Cat" refers to the number of categories of the images.

contextual relationships is essential for comprehen-055

sive interpretation. In particular, understanding056

nuanced concepts such as sarcasm (Cai et al., 2019;057

Tang et al., 2024), humor (Patro et al., 2021; Hessel058

et al., 2023), and other multi-faceted deep mean-059

ings (Zhang et al., 2024a) requires reasoning be-060

yond isolated frames. This gap highlights the need061

for a deeper investigation into the reasoning capa-062

bilities of LMMs over dynamic image sequences.063

To address this gap, we introduce STRIPCIPHER,064

a novel benchmark designed to assess the reason-065

ing ability of LMMs on temporal image sequences,066

including contextual structure, temporal relation-067

ships among images, and underlying semantics.068

STRIPCIPHER consists of three challenging sub-069

tasks: visual narrative comprehension, contextual070

frame prediction, and temporal frames reordering,071

as shown in Figure 1.072

With STRIPCIPHER, we aim to advance the de-073

velopment of LMMs in temporal-visual compre-074

hension while identifying their current limitations.075

Our comprehensive evaluation of 16 state-of-076

the-art LMMs on STRIPCIPHER reveals a substan-077

tial performance gap between AI and human capa-078

bilities in sequential image comprehension, espe-079

cially in the reordering task. Most notably, GPT-4o080

achieves only 23.93% accuracy in the reordering081

subtask and trails human performance by 30% in082

visual narrative comprehension. Further quantita-083

tive analysis identifies several key factors affect-084

ing the sequential understanding performance of085

LMMs, highlighting the fundamental challenges086

that remain in the development of LMMs.087

2 Related Work088

Large Multimodal Models Large language mod-089

els (LLMs) have demonstrated strong performance090

in various natural language understanding and091

generation tasks (Dubey et al., 2024; Liu et al.,092

2024a; Ray, 2023). Building on the scaling law 093

of LLMs, a generation of Large Multimodal Mod- 094

els (LMMs) has emerged, with LLMs serving as 095

the backbone. These models (Team, 2025; Wang 096

et al., 2024a; Zhu et al., 2024; Liu et al., 2023a; 097

Wang et al., 2023; Ye et al., 2023) integrate vi- 098

sual features with language models using addi- 099

tional layers or specialized modules. Moreover, 100

several closed-source LMMs (Reid et al., 2024; 101

Driess et al., 2023; Yang et al., 2023b), including 102

GPT-4o (Hurst et al., 2024), have demonstrated 103

remarkable capabilities in handling complex multi- 104

modal inputs (Yue et al., 2024; Fu et al., 2023; Li 105

et al., 2023). Beyond single-image LLMs, video 106

LLMs (Zhang et al., 2025; Ye et al., 2024; Zhang 107

et al., 2024c) further analyze and understand video 108

content, which is essentially a continuous sequence 109

of images. However, studies indicate that LMMs 110

still encounter limitations in understanding implicit 111

meanings (Yang et al., 2024; Liu et al., 2023c; Yang 112

et al., 2023a), especially in the context of multiple 113

sequential images, where research is lacking. 114

Visual Implicit Meanings Understanding Be- 115

yond studies on surface-level image understand- 116

ing (Antol et al., 2015; Wang et al., 2022; Dong 117

et al., 2022; Xia et al., 2023), recent works have 118

shown that LMMs struggle implicit meaning un- 119

derstanding (Desai et al., 2022; Abu Farha et al., 120

2022; Hu et al., 2024). A recent study (Yang et al., 121

2024) further highlights a significant gap between 122

AI and human comprehension of implicit meanings 123

in images. However, these works are limited to 124

single-image analysis. Multiple sequential images, 125

arranged temporally, provide richer contextual in- 126

formation and serve as a bridge between static im- 127

ages and videos. Existing studies on sequential 128

images have only focused on surface-level under- 129

standing (Chen et al., 2024a; Wang et al., 2024c). 130
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Figure 2: Schematic diagram of STRIPCIPHER dataset construction process including three stages: Image Collection,
Data Annotation and Cross Check. Only comprehension task is displayed, the process of prediction task is the same
as understanding. The reordering task only requires first-stage processing to ensure the ordering of frames is unique,
and it does not require data annotation.

For instance, Wang et al. (2024c) collects image131

sequences and provides descriptions of their sur-132

face content and events without delving into deeper133

meanings. A detailed comparison with prior work134

is presented in Table 1, and the detailed descrip-135

tion of categories and distributions covered by our136

method are illustrated in Appendix E.137

3 Dataset and Task Overview138

To investigate the capabilities of LMMs to com-139

prehend sequential images, we introduce STRIP-140

CIPHER, a novel benchmark consisting of three141

subtasks:142

• Visual Narrative Comprehension: Exam-143

ines whether models accurately interpret the144

narrative content of image sequences.145

• Contextual Frame Prediction: Assesses the146

model reasoning ability to predict missing147

frames in image sequences based contextual.148

• Temporal narrative Reordering: Evaluates149

whether models correctly infer and restore the150

chronological order of image sequences based151

causal temporal relationship.152

The instructions for three subtasks are presented153

in Table 2. These subtasks provide a rigorous154

and multifaceted assessment of LMMs, offering155

insights into their strengths and limitations in se-156

quential image understanding. In the following, we157

may use their full names or refer to them as compre-158

hension, prediction, and reordering for simplicity.159

Detailed statistics is displayed on Table 3. Over-160

all, our proposed STRIPCIPHER includes 896 im-161

Comprehension: What is happening in this comic
strip? What is the implicit meaning? Based on your
understanding, answer the question.

Prediction: Based on the overall story, what is hap-
pening in the blank frame (second-to-last)?

Reordering: The sequence of the comic strips pro-
vided below is incorrect. Your task is to find out the
correct order of the comic strips based on the storyline
and temporal logical relationship. Number each comic
strip in the order they should appear, starting from 1.

Table 2: Instruction for each subtasks.

Task #Examples Length #Frames #Type

Comprehension 680 30.53 2406 6
Prediction 600 19.07 2640 6
Reordering 890 4.09 3641 6

Table 3: Statistics of STRIPCIPHER. #Nums refers to
the sum of samples. Length refers to the average of
options. #Frames refers to the sum of frames. #Type
refers to the sum of categories of images.

age sequences, with an average frame length of 162

4.09 of each sequence. The number of frames 163

ranges from 3 to 8. Each task is designed in 164

the form of multiple-choice questions, except for 165

the reorder task, which also includes a question- 166

answering format. Since its options are simple and 167

well-defined, accuracy can be directly computed. 168

In our tasks, the input format uniformly consists of 169

images paired with textual prompts. Specifically, 170

the comprehension task utilizes the whole images 171

without split, the reordering task takes shuffled im- 172

age sequence as input, and the frame prediction 173

task involves masking second-to-last frame within 174
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the image sequence. For the frame prediction task,175

we select the second-to-last frame, as it typically176

serves as a bridge between the preceding frames177

and the final frame. The start and end frames are178

generally more challenging to predict.179

4 Dataset Construction180

We construct our STRIPCIPHER dataset in a multi-181

step crowd-sourcing pipeline, including 1) anno-182

tator training, 2) data annotation, and 3) cross-183

check examination. An overall demonstration of184

our dataset construction pipeline is illustrated in185

Figure 2.186

4.1 Image Source187

We use silent comic strips, comic with panels and188

no dialogue, as our primary data source. As a dis-189

tinct art form, comic strips often encapsulate com-190

plex narratives within concise visual sequences,191

addressing deeper themes such as social satire, hu-192

mor, and inspiration. These characteristics make193

comic strips a particularly challenging medium194

for evaluating ability of LMMs to understand vi-195

sual sequences. The dataset comprises samples196

from well-known comics, such as Father and Son197

and Peanuts, along with web-scraped images from198

GoComics 1, Google, and Facebook 2. Initially, we199

collected 1, 260 images and then refined the dataset200

through a filtering process. We conducted a thor-201

ough manual inspection to eliminate unclear, toxic,202

overly simplistic images, along withmulti-panel203

comics lacking a clear temporal sequence. More-204

over, comics with dialogue will also be removed to205

prevent the model from using OCR to understand206

the meaning of the comics through text rather than207

through images. As a result, the final dataset was208

reduced to 896 images.209

4.2 Phase 1: Data Annotation.210

Annotator Training We posted job descriptions211

on online forums and received over 50 applications212

from candidates with at least a Bachelor’s degree.213

To ensure dataset quality, we provided training ses-214

sions that included online pre-annotation instruc-215

tions and a qualification test to assess candidates’216

performance. Only those scoring above 95% were217

selected. candidates were assigned to one of two218

groups: annotators or inspectors. Ultimately, we219

1https://www.gocomics.com/
2https://www.facebook.com/

hired 13 annotators and 7 inspectors for our data an- 220

notation process. To optimize efficiency and reduce 221

costs, we implement a semi-automated pipeline 222

for STRIPCIPHER annotation, leveraging GPT-4o3. 223

Specifically, our data annotation process consists 224

of two substeps: answer creation and distractor 225

generation. 226

Answer Creation. The bottom panel of Figure 2 227

illustrates the process of our answer creation phase. 228

Notably, only the comprehension task and frame 229

prediction task need option annotation. The re- 230

ordering task only necessitates using a program 231

to randomly shuffle the frame order as the an- 232

swer order, without the need for manual selection 233

of the correct answer. We adopt an AI-assisted 234

annotation approach in which human annotators 235

refine pre-generated answers instead of creating 236

them from scratch. Initially, we leverage GPT-4o, 237

GPT-4o-Mini (Hurst et al., 2024) and Gemini 238

(Reid et al., 2024) to generate diverse candidate 239

answers. Human annotators then evaluate the im- 240

age sequence and candidate answers, selecting the 241

most appropriate ground truth. If none of the candi- 242

date answers is suitable, annotators are instructed 243

to either refine a specific answer or create a new 244

ground truth from scratch, which is about 28%. 245

Distractor Generation. We use candidates with 246

plausible hallucinations from the previous sub-step 247

as strong distractors. To ensure diversity in the 248

multiple-choice options, we also prompt GPT-4o, 249

GPT-4o-mini (Hurst et al., 2024) to generate in- 250

tentionally incorrect responses as weak distractors. 251

Typically, the responses of GPT-4o-mini are not 252

very accurate and are mostly used as distractors. A 253

detailed example of model annotation can be found 254

in the appendix C Annotators are instructed to eval- 255

uate the quality of these distractors and select top-3 256

options, refining them if necessary. Finally, each 257

ground truth is paired with three high-quality dis- 258

tractors for evaluation. 259

4.3 Phase 2: Cross-Check Examination 260

We implement a cross-check examination mecha- 261

nism to ensure rigorous screening of high-quality 262

annotations. During the data annotation process, 263

hired inspectors review the annotated data and cor- 264

responding image sequences. If they encounter 265

low-quality annotations, they have the option to 266

reject them. Each annotation is reviewed by two 267

3We use the gpt-4o-2024-11-20 version for the data an-
notation process and subsequent evaluations in this work.
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inspectors. If both inspectors reject the annotation,268

it is discarded, and the image is returned to the269

dataset for re-annotation. If an image sequence is270

rejected in two rounds of annotation, it suggests271

that this sample is not suitable for the current sub-272

task (e.g., the meaning of the sample is unclear),273

and the image is subsequently removed from the274

subtask.275

After annotation, both advanced annotators and276

inspectors, acting as final examiners, review the277

annotations to ensure they meet the required stan-278

dards. Each annotation undergoes review by three279

examiners, who vote on whether to accept the an-280

notated sample. Only the samples that receive a281

majority vote are approved. To ensure the quality282

of the examiners’ work, we randomly sample 10%283

of the annotations for verification.284

4.4 Data Composition285

It is important to note that the reordering subtask286

does not require human annotation, as described in287

the previous process. For this subtask, we select288

suitable image sequences based on the criterion289

that the correct ordering must be unique. To ensure290

this, we conduct a manual review to verify that each291

sequence follows a logically unambiguous order.292

A script is then run to perform the initial splitting293

of panels within specific comics, followed by a ran-294

dom shuffling of these panels. Human annotators295

are tasked with verifying the format and quality of296

the frames to ensure they meet the required stan-297

dards. These processed image sequences serve as298

the evaluation data for the reordering subtask.299

The final version of our 32-day annotated STRIP-300

CIPHER contains 896 items (see Table 2), encom-301

passing three subtasks: visual narrative compre-302

hension, contextual frame prediction, and temporal303

narrative reordering. In each of these subtasks,304

each sample consists of an image sequence paired305

with a multiple-choice question offering four op-306

tions. The evaluated LMMs are required to select307

the option they deem most appropriate from the308

four. More information and examples of STRIPCI-309

PHER can be found in Appendix D.310

5 Experiments311

5.1 Models312

To comprehensively evaluate on LMMs, we con-313

ducted zero-shot inference across both commer-314

cial and open-source models. Our evaluation315

suite includes leading commercial models GPT-316

4o (Hurst et al., 2024) and Gemini1.5-Pro (Anil 317

et al., 2023) alongside state-of-the-art open-source 318

alternatives of varying scales: Qwen2.5-VL (Team, 319

2025), Qwen2-VL (Wang et al., 2024b), LLaVA- 320

v1.6 (Liu et al., 2023b), CogVLM (Wang et al., 321

2023), MiniCPM-o-2.6 (Yao et al., 2024), mPlug- 322

Owl2 (Ye et al., 2023), InternVL2v5 (Chen et al., 323

2024b),LLaVA-NEXT-Video (Zhang et al., 2024b) 324

and Cambrian (Tong et al., 2024). Besides, Janus- 325

Pro (Chen et al., 2025), which unifies multimodal 326

understanding and generation, is included to test 327

the abilities between Unified Model and Vision 328

Language Model. This diverse selection enables 329

us to analyze how model scale, architecture, and 330

training approaches influence comic comprehen- 331

sive capabilities. 332

5.2 Experimental Details 333

The task prompts is displayed in Table 2. For 334

visual narrative comprehension task, model is pro- 335

vided with the whole image. But for next-frame 336

prediction and multi-frame sequence reordering 337

task, LMMs infer with image sequences. The 338

hyper-parameters for each LMMs in the experi- 339

ments including possible settings are detailed in 340

Appendix B. Furthermore, to assess human capa- 341

bilities in these tasks, we randomly select 100 ques- 342

tions from the dataset for each task and instruct 343

human evaluators to answer. This allows us to 344

benchmark the performance of human participants 345

against our models, offering a thorough compari- 346

son of both human and LMMs proficiency in these 347

specific tasks. 348

5.3 Main Results 349

Our comprehensive evaluation reveals that while 350

LMMs show promising capabilities in comprehen- 351

sion and prediction tasks, they significantly under- 352

performed in sequence reordering tasks. More- 353

over, there remains a substantial performance gap 354

between current models and human performance 355

across all tasks. Unified Model underperformed 356

than Vision Language Model. 357

Contextual Frame Prediction The frame pre- 358

diction task appears to be the most tractable among 359

the three tasks. GPT-4o achieves the highest score 360

of 69.95%, followed closely by Qwen2-VL at 361

64.00%.This demonstrates that the performance 362

gap between closed and open-source models is rel- 363

atively small for this task. However, Janus-Pro 364

perform notably below expectations (27.50%), pos- 365
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Models Backbone #Params I-Video Comprehension Prediction Reordering AVG

TYPE choice VS generation

Human 80.00 82.00 86.00 80.00 82.00
Closed-Model

GPT-4o-mini (Hurst et al., 2024) - - 53.23 56.33 26.07 8.45 36.02
Gemini1.5-Pro (Reid et al., 2024) - - 49.56 67.83 25.51 32.02 43.73
GPT-4o (Hurst et al., 2024) - - 61.60 69.95 25.17 23.93 45.16

Open-Source
Janus-Pro (Chen et al., 2025) DeepSeek-LLM-7b-base 7B No 27.50 27.50 26.07 * 20.27
mPlug-Owl2 (Ye et al., 2023) LLaMA2 8B No 30.74 31.17 25.06 0.56 21.88
LLaVA-v1.6 (Liu et al., 2023b) Vicuna-v1.5 7B No 34.41 43.50 26.29 3.37 26.89
LLaVA-NeXT-Video (Zhang et al., 2024b) Vicuna-v1.5 7B Yes 45.74 44.50 23.71 * 28.49
CogVLM (Wang et al., 2023) Vicuna-v1.5 17B No 34.26 56.00 24.83 * 28.77
LLaVA-v1.6 (Liu et al., 2023b) Vicuna-v1.5 13B No 46.03 46.50 27.98 2.58 30.77
LLaVA-v1.6 (Liu et al., 2023b) Vicuna-v1.5 34B No 52.94 50.83 25.62 2.13 32.88
Cambrian (Tong et al., 2024) Vicuna-v1.5 13B No 45.59 55.00 26.85 4.94 33.10
Qwen2.5VL (Team, 2025) Qwen2.5 3B Yes 50.59 58.83 27.75 1.91 34.77
InternVL2v5 (Chen et al., 2024b) Intern 26B Yes 60.92 65.17 24.61 2.58 38.32
MiniCPM-o 2.6 (Yao et al., 2024) Qwen2.5 7B Yes 56.18 65.83 26.85 5.51 38.59
Qwen2.5VL (Team, 2025) Qwen2.5 7B Yes 56.03 64.00 29.21 11.01 40.06
Qwen2VL (Wang et al., 2024a) Qwen2 7B Yes 58.53 63.00 31.91 9.44 40.72

Table 4: Model performance comparison across different architectures and scales. The table is sorted by accuracy.
I-Video indicates whether the large multimodal models (LMMs) support video input. Scores are reported as
percentages (%). Prediction, Comprehension, and Reordering correspond to visual narrative understanding, next-
frame prediction, and multi-frame reordering, respectively. The * denotes that the model failed on the corresponding
task. AVG represents the average score across the four scores including the failed one. Bolded values indicate the
highest scores among closed-source and open-source models.

sibly due to its unified model architectural.366

Visual Narrative Comprehension For visual367

narrative comprehension, we observe a similar pat-368

tern but with generally lower scores. GPT-4o leads369

with 61.60%, while other models show varying370

degrees of capability.371

Temporal Narrative Reordering The frame re-372

ordering task proves to be the most challenging,373

with all models performing significantly below hu-374

man capability. Even the best-performing mod-375

els struggle to exceed 30% accuracy, with many376

achieving scores around 25−26%, which is slightly377

higher than random selection. Notably, several378

models (marked with *) are unable to perform379

this task due to their architectural limitations in380

processing multiple images simultaneously. For381

these models, we attempted to accommodate their382

single-image constraint by concatenating multiple383

frames horizontally into a single image, with white384

margins serving as frame boundaries. However,385

this workaround appears to be suboptimal, as these386

models likely struggle to properly distinguish indi-387

vidual frame boundaries and maintain the semantic388

independence of each frame, ultimately leading to389

their poor performance on the reordering task.390

The poor performance on reordering task sug-391

gests that current LMMs, regardless of their scale392

or architecture, have not yet developed robust ca-393

pabilities for understanding temporal relationships 394

and sequential logic in visual narratives. 395

6 Analysis 396

Our analysis addresses the following questions: 397

Does fine-tuning with reorder task help? Yes, 398

it does. We fine-tune Qwen2-VL using 3,160 sam- 399

ples for one epoch. This not only significantly 400

improves performance on the reordering VQA task 401

but also enhances comprehension tasks. To con- 402

struct the training dataset, we applied data augmen- 403

tation to 790 images using the reorder task. Specif- 404

ically, we randomly shuffled the sequence of im- 405

ages four times, generating a total of approximately 406

3,160 distinct samples. For evaluation on the re- 407

order task, we used only the remaining 100 samples. 408

For the comprehension task, we conducted a full 409

test set evaluation, as the training data provided 410

only images without any analytical content. Mean- 411

while, we excluded the frame prediction task from 412

testing due to potential data leakage. The experi- 413

mental results are presented in the table 5. Overall, 414

our reordering data is useful for fine-tuning, as it 415

can enhance the LMMs to reason on sequential 416

images. However, the ultimate performance still 417

depends on the base capability of the model. From 418

the table, it can be seen that Qwen2.5-VL benefits 419

greatly from fine-tuning, with improvements not 420

only in the reordering task but also in comprehen- 421
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Choices:
A.  The father marked son's height on a tree, but a year 
later, the son appeared shorter than the mark. Both 
looked puzzled, forgetting that trees grow too, and faster 
than children.
B. The son's growth rate slowed unexpectedly, leaving 
both the father and son to contemplate whether external 
factors might have stunted his physical development 
compared to previous expectations.   C...  D…

Task1: Comprehension

Answer

Choices:
A. The rabbit, concerned about its weight, approaches 
the fridge while imagining the scale and questioning its 
eating habits. 
B. The rabbit is confused about the scale's reading and 
decides to open the fridge to check if it contains 
something other than carrots.  C... D...

Task2: Frame Prediction

Choices: A.③②①④ B.④②①③ C.①④③② D.①③②④ 

Choices: A.②③④① B.④③①② C.③①②④ D.①③②④ 

C A B D
①②④③ ①②④③ ①②③④ ②①④③

Choice A B A D
①②③④ ③④①② ①②③④ ②①③④Gen.

Chioce

Gen.
A                      A                           B                         A

Answer A                       A                        B                          B

Task3: Reordering

Figure 3: Sample outputs of our three tasks generated by different vision language models, along with gold truth.
We highlight errors in distractors.

sion tasks. The improvement in generation tasks422

in the reordering task is much larger than that in423

choice tasks. We believe this is because the gener-424

ation task’s instructions are very challenging, and425

the model has not been trained on them before,426

leading to difficulty in solving them. On the other427

hand, for choice tasks, the model can make edu-428

cated guesses based on the options provided. Due429

to the relatively small amount of training samples,430

the model’s improvement in choice tasks is limited.431

In contrast, LLaVA shows improvement only in the432

reorder-choice task after training.433

Tasks Comprehension Reordering-G Reordering-C

Qwen2-VL 58.53 6.00 31.00
+finetune 62.94 31.00 38.00

LLaVA-1.6 34.41 3.00 26.00
+finetune 33.82 2.00 32.00

Table 5: Performance on Qwen2-VL-7B and LLaVA-
1.6-7B finetuned with reordering task data. Reordering-
C refers to the Reordering-choice. Reordering-G refers
to the Reordering-generation

Does GPT-4o understand sequence images as434

well as humans? While GPT-4o achieves the435

highest performance among all tested models, there436

remains a substantial gap between its capabili-437

ties and human performance, particularly in novel438

tasks like frame reordering. Through our prelim-439

inary data annotation experiments, we observed440

that while GPT-4o can comprehend basic comic441

content and provide interpretations, it frequently442

generates hallucinated content and struggles with443

comics that depict unconventional or imaginative444

scenarios rarely encountered in real life. 445

In the visual narrative comprehension and next- 446

frame prediction tasks, the multiple-choice format 447

allows models to leverage similarity matching be- 448

tween options. Our investigation revealed that 449

model performance is heavily influenced by the 450

quality of distractor options. In initial experiments 451

with weak distractors (generated using GPT-4o 452

with instructions to provide distractors with hal- 453

lucinations, the prompt is followed HalluEval), the 454

model achieved accuracy rates up to 90%. Upon 455

analysis, we found these initial distractors were too 456

obviously incorrect or irrelevant to the comic con- 457

tent, making the selection task trivial. To address 458

this limitation, we carefully curated a new set of 459

challenging distractors. With these enhanced dis- 460

tractors, performance of GPT-4o decreased signif- 461

icantly to more realistic levels (61.60% for under- 462

standing and 69.95% for prediction), better reflect- 463

ing the true challenges in comic comprehension. 464

The scores obtained from multiple-choice ques- 465

tions with semantically transparent options tend to 466

be inflated. In subsequent reordering tasks, where 467

options lack explicit semantic meanings, coupled 468

with open-ended questions, the scores provided a 469

more authentic assessment of the LMMs. 470

Does input format of images influence perfor- 471

mance? Considering the distinct computational 472

pathways that LMMs employ in processing indi- 473

vidual versus multiple images, we designed follow- 474

ing experiments to measure the differential impact 475

of varied input formats using Qwen2.5VL as our 476

test case. We compared three input formats: (1) 477
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whole image - the entire comic strip as a single im-478

age, (2) sequential frames - individually separated479

frames input in order, and (3) shuffled sequence -480

separated frames input in random order. Table 6481

shows surprisingly consistent performance across482

all three formats (56.03%, 54.56%, and 57.65%483

respectively).484

This consistency suggests that while separated485

frames might theoretically help models extract486

clearer information from each panel and avoid vi-487

sual confusion from complex layouts, the current488

video-like processing mechanism used by LMMs489

for multiple images might not fully capitalize on490

these advantages. The similar performance with491

shuffled sequences further indicates that models492

might rely more on individual frame content rather493

than sequential relationships for understanding494

tasks.495

Input GPT-4o-mini Qwen2.5-VL

Whole Image 53.23 56.03
Image Sequence 51.03 54.56

Shuffled Sequence 49.56 57.65

Table 6: Performance with different input format for
understanding task.

Does implicit meaning help reordering task?496

To investigate whether poor reordering perfor-497

mance stems from inadequate semantic understand-498

ing, we enhanced the reordering task by providing499

explicit semantic annotations along with shuffled500

images. As shown in Table 7, this additional se-501

mantic information only marginally improved per-502

formance (from 30.01% to 32.54%). This modest503

improvement suggests that the bottleneck in re-504

ordering tasks lies not in semantic understanding505

but in the fundamental capability to reason about506

temporal and logical sequences in visual narratives.507

Input GPT-4o-mini Qwen2.5-VL

Shuffled image 26.07 30.01
+Meaning 28.40 32.54

Table 7: Performance with enhanced data (correct an-
swer for comprehension task) for reordering task.

How does model size affect? In this section, we508

will discuss the relationship between model param-509

eters size and reasoning performance for tasks due510

to the scaling law. We examine on LLaVA and511

Figure 4: Comparison of the accuracy results between
Qwen2.5-3B vs Qwen2.5-7B and LLaVA-1.6-7B vs
LLaVA-1.6-13B vs LLaVA-1.6-34B

Qwen2.5VL, from 3B scale to 34B scale. There 512

is a clear scaling effect across model sizes, as 513

demonstrated by LLaVA1.5’s performance improv- 514

ing from 34.41% (7B) to 46.03% (13B) to 52.94% 515

(34B). This suggests that model scale plays a cru- 516

cial role in comprehending implicit meanings in 517

visual narratives. Figure 4 provide a visual repre- 518

sentation of the performance trend for five models. 519

Where do LMMs fail? We present sample out- 520

puts of three tasks generated by vision language 521

models (VLMs) in Figure 3. These images are 522

easy for human but hard for VLMs. VLMs can 523

understand one comic strip but they can still make 524

mistakes with reordering task. 525

7 License and Copyright. 526

We used original web links to comic images with- 527

out infringing on their copyright. This work is 528

licensed under a CC BY-NC license. We will open- 529

source all related code for processing image se- 530

quences and frames to facilitate the reproducibility 531

of our evaluated image sequences. All annotators 532

participated voluntarily in the annotation process 533

and were provided fair compensation. 534

8 Conclusion 535

We present STRIPCIPHER, a comprehensive bench- 536

mark for evaluating Large Multimodal Models’ 537

capabilities in visual comic sequence reasoning. 538

Our benchmark comprises meticulously curated 539

and human-AI annotated tasks spanning visual nar- 540

rative comprehension, next-frame prediction, and 541

multi-frame sequence reordering. Through exten- 542

sive evaluations of state-of-the-art LMMs, we iden- 543

tify significant performance gaps between AI sys- 544

tems and human capabilities in comic strip under- 545

standing. These findings underscore the consider- 546

able challenges that remain in developing AI sys- 547

tems capable of deep visual semantic understand- 548

ing comparable to human cognition. 549
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Limitations550

Limited Availability of Comic Strips: Our dataset551

contains a relatively small number of samples due552

to the scarcity of standalone short-story comic553

strips available online. Most comics are either554

serialized narratives or dialog-driven, making it555

challenging to collect a diverse set of independent556

stories.557

Narrow Focus on Comics: While our dataset558

captures the narrative structure of comic strips, it559

does not encompass the full spectrum of sequential560

visual storytelling, such as photographic sequences,561

instructional diagrams, or movie storyboards. Fu-562

ture work could extend beyond comics to explore a563

broader range of visual sequences.564

Limited Training Data for Fine-Tuning: Our565

findings indicate that fine-tuning significantly en-566

hances model performance on the reordering task.567

However, the limited availability of training data568

constrains the model’s ability to fully develop tem-569

poral reasoning skills. Expanding the dataset or570

incorporating alternative sources, such as video571

sequences, could further improve performance.572

Ethics Statement573

The datasets used in our experiment are publicly574

released and labeled through interaction with hu-575

mans in English. In this process, user privacy is576

protected, and no personal information is contained577

in the dataset. The scientific artifacts that we used578

are available for research with permissive licenses.579

And the use of these artifacts in this paper is consis-580

tent with their intended use. Therefore, we believe581

that our research work meets the ethics of ACL.582
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Appendix897

A Model898

Our evaluation suite includes leading commer-899

cial models GPT-4o (Hurst et al., 2024) and900

Gemini1.5-Pro (Anil et al., 2023) alongside901

state-of-the-art open-source alternatives of vary-902

ing scales: Qwen2.5-VL (Team, 2025), Qwen2-903

VL (Wang et al., 2024b), LLaVA-v1.6 (Liu et al.,904

2023b), CogVLM (Wang et al., 2023), MiniCPM-o905

2.6 (Yao et al., 2024), mPlug-Owl2 (Ye et al., 2023),906

InternVL2v5 (Chen et al., 2024b),LLaVA-NEXT-907

Video (Zhang et al., 2024b) and Cambrian (Tong908

et al., 2024). Besides, Janus-Pro (Chen et al., 2025),909

which unifies multimodal understanding and gen-910

eration, is included to test the abilities between911

Unified Model and Vision Language Model.912

B Model Hyper-parameter Details913

We use the default hyper-parameter values of the914

models. In the LLaVa-1.5-7B and LLaVa-1.5-13B,915

the temperature is set to 0.2. For MiniGPT-4, the916

temperature is set to 1.0, and num_beams is also917

set to 1.0. The temperature for mPlug-Owl-2 is set918

to 0.7. For CogVLM, the temperature is set to 0.4,919

top_p is set to 0.8, and top_k is set to 1.0.920

In the LLaVa-1.6-7B, LLaVa-1.6-13B and921

LLaVa-1.6-34B, the temperature is set to 0.2. In922

the Qwen2-VL-7B, Qwen2.5-VL-3B and Qwen2.5-923

VL-7B, the temperature is set to 0.01, top_p is set924

to 0.001, and top_k is set to 1. For CogVLM-17B,925

the temperature is set to 0.4, top_p is set to 0.8, and926

top_k is set to 1.0. For InternVL2-26B, do_sample927

is set to False. For Cambrian-13B, the temperature928

is set to 0.2.929

C Annotation930

The following listed prompts are used to construct931

data. By instructing to different LMMs, we can932

obtain option candidate pool.933

Prompt1: """What happened in comic strip?934

Conclude the whole story, then carefully ana-935

lyze the implicit meaning of comic. Ouput in 35936

words."""937

Prompt2: """ You are now a mature hallucina-938

tion generator. Please generate one strong distrac-939

tor option for the following question. You can use940

any method you have learned that is misleading for941

the given question."""942

Prompt3: """ Task Overview: Strive to under-943

stand this story and analyze its implicit meaning,944

then complete multi-choice question for test. You 945

should act in two roles to complete tasks. Image 946

Context: Pic1: The first picture shows the complete 947

comic strip. Read it from left to right, top to bottom, 948

to understand the full narrative arc. Pic2: The sec- 949

ond picture is the second-to-last frame from Pic1, 950

which is the target frame in Task 1. 951

###Role 1 - Excellent Comic Analysis Expert: 952

Task 1: Contextual Scene Description Question 953

1: Based on the overall story, what is happening in 954

the second-to-last frame (Pic2) of the comic strip? 955

Requirements: 1. Provide a clear and detailed 956

description of the key visual elements, characters, 957

relationships and actions in Pic2. 2. Ensure narra- 958

tive continuity with the events of the entire comic. 959

3. Output this as the right option for Task 2 with 960

30-40 words. 961

Task 2: Implicit Meaning Analysis Question 2: 962

What happened in comic strip (Pic1)? Describe 963

the whole story in detail, then analyze its implicit 964

meaning. Requirements: 1. Describe the whole 965

story in detail and analyze its implicit meaning and 966

sentiment. 2. Provide three sentences with 40-50 967

words as right option for Task 4. 968

###Role 2 - Strong Distractor Options Gener- 969

ator: Task 3: Frame Scene Options Generation 970

Question 1: Based on the overall story, what is 971

happening in the second-to-last frame (Pic2) of the 972

comic strip? Requirements: 1. Generate three plau- 973

sible but incorrect options for #Question 1#. 2.The 974

length of each option should be similar with the 975

correct answer from Task 1 (around 30-40 words)! 976

3. Ensure that the incorrect options are consistent 977

with the overall story but misinterpret the events of 978

Pic2. 979

Task 4: Comic Strip Analysis Options Genera- 980

tion #Question 2:# What happened in comic strip 981

(Pic1)? Describe the whole story in detail, then 982

analyze its implicit meaning. Requirements: 1. 983

Generate three plausible but incorrect options for 984

#Question 2#. 2. Each incorrect option should be 985

composed of 3 sentences and share the same length 986

with the correct answer from Task 2! 3. Avoid 987

obviously wrong or nonsensical answers. 988

#Please strictly adhere to the word count re- 989

quirement! The final output should be in the follow- 990

ing format:# #Question 1:# Based on the overall 991

story, what is happening in the second-to-last frame 992

(Pic2) of the comic strip? #Reasoning Chain 1:# 993

[Describe the story in sequence.] 994

#Options in Q1:# A. [Hallucination option with 995

30-40 words from Task 3] ### B. [Hallucination 996
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option with 30-40 words from Task 3] ### C. [Hal-997

lucination option with 30-40 words from Task 3]998

### D. [Right option with 30-40 words from Task999

1] ###1000

#Right Answer 1:# D1001

#Question 2:# What happened in comic strip1002

(Pic1)? Describe the whole story in detail. Care-1003

fully analyze the implicit meaning of comic.1004

#Reasoning Chain 2:# [Reason step by step1005

here.]1006

#Options in Q2:# A. [Hallucination option with1007

40-50 words from Task 4] ### B. [Hallucination1008

option with 40-50 words from Task 4] ### C. [Hal-1009

lucination option with 40-50 words from Task 4]1010

### D. [Right option with 40-50 words from Task1011

2] ###1012

#Right Answer 2:# D """1013

prompt4: """Predict what happened in the1014

blank panel? Output in 35 words."""1015

prompt5: """You are now a mature hallucina-1016

tion generator. Please generate one strong distrac-1017

tor option for the following question. You can use1018

any method you have learned that is misleading1019

for the given question. Question: Predict what1020

happened in the blank panel. Please output with1021

35 words without any additional text or explana-1022

tion."""1023

D Examples1024

Here is an example of data construction in Figure 7.1025

1026

E Category1027

We evaluated the performance of LLMs on com-1028

prehension tasks across 6 categories of comic strip.1029

Humorous

Touching
Critical

Satirical

Inspiring
Philosophical

Figure 5: The distribution of six categories of STRIPCI-
PHER.

touching

critical

satirical

inspiring

humorous

philosophical

28

45

62

Performance Comparison of Different Models

30
50

70

36
52

69
32

55

78

34
48

61

41
72

104

Cambrian_13B
Internvl_26B

LLaVA_34B
Qwen2.5_3B

LLaVA_13B
LLaVA_7B

Qwen2_7B
Qwen2.5vl_7B

MiniCPM_o2.6
Gemini1.5-Pro

Figure 6: Comprehension task performance compari-
sion of different LLMs on different categories.
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Category Definition

Satirical The comic uses irony, exaggeration, or ridicule to criticize social, political, or cul-
tural issues. It often highlights contradictions, hypocrisy, or absurdity in a way that
provokes thought or debate. The humor may be sharp or biting but serves a critical
purpose.

Inspiring The comic presents a positive or uplifting message, often encouraging personal
growth, motivation, or perseverance. It may depict acts of kindness, success against
adversity, or wisdom that encourages the reader to strive for betterment.

Touching The comic evokes emotions such as empathy, nostalgia, or affection. It may explore
themes of love, friendship, loss, or family bonds, aiming to create a sentimental or
heartfelt response from the audience.

Philosophical The comic explores deep, abstract, or existential ideas about life, morality, meaning,
or human nature. It prompts the reader to reflect on profound questions, often using
metaphors or thought-provoking dialogue rather than direct humor or emotion.

Critical The comic highlights flaws or problems in society, institutions, or human behav-
ior with a serious or analytical tone. Unlike satire, which uses humor as a tool for
critique, a critical comic may adopt a more straightforward, serious, or thought-
provoking approach to expose issues and encourage awareness.

Humorous The comic’s primary goal is to entertain and amuse the audience. It relies on light-
hearted jokes, wordplay, or visual gags without necessarily conveying a deeper
message or critique. The tone is playful, aiming for laughter rather than serious re-
flection.

Table 8: The types and definition of the categories in STRIPCIPHER.
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Refine answer： …… As the wave approaches, the dog confronts and repels it, 
safeguarding the sandcastle. The reversal of strength through exaggeration 
creates an unconventional ending, conveying a spirit of defiance against life's 
challenges.

Select Top-4：ABDE  Answer : D

D. …It reflects a carefree 
attitude and the joy of 
simple pleasures.

E. …showing acceptance 
of nature's course…

F. … It emphasizes the 
theme of distraction and 
the unpredictability of 
nature.

A. …illustrating that 
physical limitations do not 
define one's courage.

B. The comic portrays 
resilience and 
determination,…

C. … physical limitations 
do not define one's 
courage or spirit.

Option Pool

Human  Selecting:

LMM Generating

Prompt1

Prompt3

Prompt2

Done!Option1,Option2
Option3,Answer

Figure 7: An detailed example of data construction.
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