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Abstract

We show that inequalities of many commonly used fairness metrics (true/false posi-
tive/negative rates, predicted positive/negative rates, and positive/negative predictive val-
ues) are guaranteed for groups with different outcome rates under a monotonically calibrated
model whose risk distributions have a monotone likelihood ratio, extending existing impossi-
bility results. We further provide lower bounds on the FNR/FPR disparities and PPR/PNR
disparities in the same setting, showing that either the FNR disparity or FPR disparity is at
least as large as the positive outcome rate disparity (for FNR disparity) or negative outcome
rate disparity (for FPR disparity), and either the PPR disparity or PNR disparity is at least
as large as the positive outcome rate disparity (for PPR disparity) or negative outcome rate
disparity (for PNR disparity). While incompatibilities of some combinations of these met-
rics have been demonstrated previously, we are unaware of any work that has demonstrated
direct incompatibility of calibration with these individual equalities, equivalence of these in-
equalities, or lower bounds for the disparity in these values under distributional assumptions
about a model’s predictions.

1 Introduction

In 2016, ProPublica published an analysis (Angwin et al., 2016) of the COMPAS recidivism prediction
algorithm, which assesses a defendant’s risk of committing another crime and is used to assist judges in
making pre-trial release and sentencing decisions. Using publicly available data on the algorithm’s predictions
and outcomes in Broward County, Florida, they determined that the false positive rate for Black defendants
was significantly higher than for White defendants, i.e. a non-recidivating Black defendant was almost
twice as likely to be asssessed as high-risk than a non-recidivating White defendant. The false negative
rate for White defendants was also significantly higher than for Black defendants, meaning a recidivating
White defendant was much more likely to be incorrectly labeled as low risk than a recidivating Black
defendant. Based on these results, they concluded that the algorithm was biased against Black defendants.
Northpointe, the developer of the COMPAS software, rebutted that the algorithm is fair because it satisfies
predictive parity (equal positive predictive values) across the two groups (Dieterich et al., 2016). Shortly
after, both Chouldechova (2017) and Kleinberg et al. (2017) established that these notions of fairness (equal
false positive/negative rates and predictive parity) are impossible to satisfy simultaneously, except in trivial
cases. Kleinberg et al. (2017) further prove the impossibility of well-calibration (scores equaling the outcome
probabilities across groups) and balance for the positive/negative class (equality of average scores for members
in the positive/negative class). Pleiss et al. (2017) demonstrated additional conflict between error rate
equality and well-calibration by showing that well-calibration is compatible with only a single error rate
constraint, but achieving this compatibility essentially requires randomizing predictions from an existing
classifier, an intuitively disturbing procedure.

While well-calibration is clearly a desirable condition for both the fairness and effectiveness of such an
algorithm (Pleiss et al., 2017; Corbett-Davies et al., 2023), the same is not necessarily true of false pos-
itive/negative rate equality. Many authors have identified both technical and social issues resulting from
reliance on these metrics (Corbett-Davies et al., 2023; Chohlas-Wood et al., 2023; Pierson, 2024), including
“the problem of infra-marginality” (Ayres, 2002; Simoiu et al., 2017), the sensitivity of these metrics to
model behavior and population distributions far away from the decision margin. Nonetheless, they are still
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commonly relied upon by machine learning practitioners for detecting potential bias in models. For exam-
ple, many popular algorithmic fairness toolkits, including Microsoft’s Fairlearn (Bird et al., 2020), IBM’s
AT Fairness 360 (Bellamy et al., 2019), and Aequitas (Saleiro et al., 2019), calculate ratios of these met-
rics across groups as part of their fairness reports, with some identifying the ratios as the disparity in the
corresponding metric. Some of these further instruct users that these disparities and/or the disparities in
predicted positive/negative rates must be between 80% and 125% in order for the model to be fair, a range
derived from disparate impact law in a process that has been deemed “epistemic trespassing” (Watkins &
Chen, 2024). If the toolkit or end user determines that a given disparity between two groups is sufficiently
large, mitigation algorithms (such as those described by Agarwal et al. (2018) and Hardt et al. (2016)) are
provided that can adjust the model’s predictions or choose group-specific thresholds to achieve a specified
level of parity, at the cost of (potentially substantial) performance degradation at both the population and
group level (Pfohl et al., 2021).

The contributions of this paper are as follows: we introduce a slightly stronger version of calibration called
monotonic calibration, which requires increasing model predictions to correspond to increasing outcome
probabilities, but not the exact outcome probabilities as required by well-calibration. We then examine the
scenarios where the distributions of a model’s predictions across two groups satisfy the monotone likelihood
ratio property (MLRP), a frequently considered property in statistical problems that is satisfied by many
commonly encountered families of distributions, including the exponential, binomial, Poisson, Gamma, or
normal with a fixed o (Karlin & Rubin, 1956). Distributions satisfying the MLRP have recently been
considered in the context of testing outcomes for fairness (Gaebler & Goel, 2025), but we are unaware of
any work that has examined the consequences of the property, or any other distributional assumptions on a
model’s predictions, for the inequalities and disparities of these commonly used algorithmic fairness metrics.
We show that if a model is monotonically calibrated for two groups and the risk distributions of the groups
under the model satisfy the MLRP, then for any non-trivial decision threshold, the group with the higher
outcome rate will have:

o a larger predicted positive rate (equivalently, a smaller predicted negative rate),

e a larger false positive rate and smaller false negative rate,

 a larger positive predictive value (unless the likelihood ratio or outcome probabilities are constant
above the decision threshold, in which case the PPVs are equal), and

o a smaller negative predictive value (unless the likelihood ratio or outcome probabilities are constant
below the decision threshold, in which case the NPVs are equal).

We further show that either:

e the disparity in predicted positive rates is greater than the disparity in positive outcome rates, or

e the disparity in predicted negative rates is greater than the disparity in negative outcome rates
and also that either

o the disparity in false negative rates is greater than the disparity in positive outcome rates, or

e the disparity in false positive rates is greater than the disparity in negative outcome rates.

In particular, for many commonly encountered distributions of model predictions, calibration is incompatible
with equality of any of these metrics when outcome rates are unequal, and even approximate equalized
odds (equal false negative and false positive rates) and approximate demographic parity cannot be satisfied
between groups with large differences in outcome rates. We conclude with an example of how these results
guarantee large disparities in the error rates studied in the COMPAS dataset, and discuss the dangerous
consequences of reliance on these metrics for detecting bias.
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2 Main Results

In what follows we discuss a model M intended to predict the probability of a binary outcome, but we do
not require that M take values only in [0, 1], so M may be a more general risk score (as in the COMPAS
example).

Definition 1. Let M be a model defined on groups P and @ and used to predict the probability of a binary
outcome O(r) : PUQ — {0,1} for r € PUQ. M is calibrated for groups P and @ if for each predicted value
x

Pr(O(pi) =1|pi € P,M(p;) =) =Pr(O(q;) =1 | ¢; € Q,M(q;) = )

and M is well-calibrated for P and @ if for each predicted value x

Pr(O(p;)=1|p; € PLM(p;) =) =Pr(O(q;) =1]| ¢ € Q, M(q;) =) = x.

The term calibration is often used to mean well-calibration as given above. We distinguish between the two
properties here because well-calibration is not necessary for the results that follow; however, we do require
a slightly stronger version of calibration, that ensures that increasing predictions correspond to increasing
outcome rates. This avoids degenerate cases where predictions do not correspond to outcomes in any natural
way. Such cases rarely occur in practice, and most models satisfying (not necessarily well-)calibration for
groups will also satisfy this stronger property.

Definition 2. Let M be a model defined on groups P and @ and used to predict the probability of a binary
outcome O(r) : PUQ — {0,1} for r € PUQ. M is monotonically calibrated for groups P and Q if it is
calibrated for those groups, and the function ¢ : Range(M) — [0, 1] given by

c(z) =Pr(O(pi) = 1| pi € P,M(pi) = ) = Pr(O(q;) = 1| ¢ € Q, M () = x)
is increasing and not almost everywhere constant.

For what follows we treat a model M as a real-valued random variable on a probability space P U @, and
assume the cumulative distribution functions Fp(z) = Pr(M(p;) < z|p; € P) and Fg(z) = Pr(M(g;) <
x|g; € Q) are absolutely continuous with associated density functions p(z) and ¢(z).

Definition 3. Two probability density functions p(x) and g(z) satisfy the monotone likelihood ratio property
p(zo) _ p(z1)
a(wo) ~ qlz1)

is not constant almost everywhere.

(MLRP) with p dominating, denoted p =, ¢, if for almost every pair xg < x1, . We denote

p(x)

q(x)

Note that if p =, ¢, then p first-order stochastically dominates ¢q. See Shaked & Shanthikumar (2007) for
more general properties of distributions satisfying the MLRP.

p =i q if p =1 g but ¢ ilr p, or equivalently if p > ¢ and

Example 1. The probability density functions of any two distributions from one of the following families
must satisfy the MLRP:

e Exponential distributions

e Binomial distributions

o Poisson distributions

o Normal distributions with fixed o
Lemma 1. Let p(x) and q(x) be the probabilty density functions of the predictions of a model M on groups
P and @, and let O(P) = Pr(O(p;) = 1lp; € P) and O(Q) = Pr(O(q;) = 1|¢; € Q) denote the binary

outcome rates for groups P and Q. If M is monotonically calibrated for groups P and Q (via function c(x))
and p and q satisfy the MLRP (with either p = q or q = p) then O(P) > O(Q) iff p > q.
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Proof. (<) Letting ¢ = inf, c¢(x) > 0 and using that ¢(z) and p(z)/q(z) are increasing and not almost
everywhere constant, we must have both ¢(x) > ¢p and p(x) > ¢(z) on some set of non-zero measure, so we

have O(P) — 0(Q) = / () (pla) — q(2))dz > / eo(p(x) — q(x))dz = 0.

0

(=) From the proof of the direction above, if ¢ >; p then O(Q) > O(
p =i q. If p(x)/q(x) is constant almost everywhere then using that /p(a:)

P), so we must have that

q(z) = 1 we obtain

o(P) = /c(x)p(x) = /c(x)q(ac) = 0(Q), thus p >, q. O

Definition 4. The predicted positive rate PPRy; p of a model M with decision threshold ¢ (so that a
prediction less than ¢ is considered a predicted negative, and a prediction at least ¢ is considered a predicted
positive) on a group P is the proportion of P with predicted value at least t. The predicted negative rate
PNRytp=1—PPRy p is the proportion of P with predicted value less than ¢.

The predicted positive rate defined above is sometimes called selection rate, admission rate, or various other
terms, depending on the application of the model under discussion. Equality of these rates across groups is
also know by various terms including demographic parity, group fairness, and statistical parity.

Lemma 2. Let p(x) and q(x) be the probabilty density functions of the predictions of a model M on two
groups P and Q. Let t be a decision threshold for the predictions of M. If p > q then PPRy g <
PPRu . p (with equality only if both are 0 or 1) and PNRa . p < PNR) 1o (with equality only if both are
0 or1).

Proof. The desired inequality is:

PPRM,tQ = /

>t

q(x)dx < / p(x)dz = PPRy p
x>t

which follows directly from the first-order stochastic dominance of p over q. To obtain strictness of the
inequality when both are not 0 or 1, note that if [ _ ¢(z)dz = [ ., p(z)dz, integrating both sides of the
MLRP inequality p(zo)q(z1) < p(z1)q(zo) for o < t < 1 over the region z; > t gives q(z) > p(x) on
x < t. But since /q(m)dw = /p(x)dx = 1, we have / q(z)dx = / p(z), implying ¢(x) = p(x)

x<t <t
almost everywhere on z < t. Integrating both sides of p(xg)g(z1) < p(x1)q(xo) over the region zy < t gives

p(z) > q(x) on z > t, which then implies ¢(z) = p(z) almost everywhere on x > ¢, contradicting that
P =irq. O]

Lemma 3. Let p(z) and q(z) be the probabilty density functions of the predictions of a model M on two
groups P and Q. If M is monotonically calibrated for groups P and @Q (by a function c(x)), p > q, then
for any decision threshold t where the ratios below are defined, we have either

PPRy 4 P S o(P)
PPRyg — O(Q)

or

Proof. Using that M is monotonically calibrated the first inequality is

/ggztp(:v)d:r/C(x)Q(:c)dx > /xzt Q(x)dx/C(:r)p(x)dx i)
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and substituting [ _, p(z)de = 1~ [ _,p(z)dr and [ _, q(x)dx = 1 — [ ., q(x)dx the second inequality
becomes - -

/w>t q(x)dm/c(x)p(x)dx + /Dtp(fﬂ)dx + /c(x)q(x)dx > “
/I>tp($)dx/c(x)q(x)dx+/m>t Q(x)dx—F/C(x)p(x)dx. (if)

fwztp(x)dx
Josi a(@)dz

holds for ¢ € [t, 1]. Similarly if (ii) holds for ¢, it holds for ¢ € [0,%o]. Let ¢o be the minimum ¢ such that
/ p(z)dr = /c(m)p(m)dm. At tg, both (i) and (ii) reduce to /c(x)q(x)dx > / q(z)dx. Writing
x>t

z>to

/z>t0 q(z)dx = /pto(l —c(z))g(z)dz + /I>t0 e(x)q(x)dz,

(i) and (ii) further reduce to /

z<to

From the MLRP, is increasing in ¢ (by the mediant inequality), so if (i) holds for a given ¢, it

c(x)q(x)dx > / (1 —¢(x))q(z)dz. We have

{tzto

/pto p(z)dr = /pt0 c(x)p(x)ds + /z>t0(1 —c(x))p(z)dr = /c(x)p(x)da;
i téqf@ﬁ@ﬂx:/‘(l—q@m@m%

Izto

Now, if/ c(x)q(z)dr < / (1 = ¢(z))q(x)dz, there must be t; > tg where the set
r<to r>to

{t| (¢ <t & p(tr)q(t) = p(t)g(t1)) or (¢ > t1 & p(t)q(tr) = p(t1)q(t))}

has full measure and / c(z)g(z)dx < / (1 — e(x))g(x)dx. Note that if p(t;) = 0 for all such
r<ty >t
ty, then either O(P) = 0, contradicting that p >;. ¢, or O(P) = 1, contradicting that the ratio

(1-0(Q))/(1 —=0O(P)) is defined, so t; can be chosen such that p(t1) > 0. But using the MLRP at ¢;

and that c(z)p(x)dx > / (1 = ¢(z))p(x)dx we have:
<ty >t

/ _ cla(@p(s)do > / (@)p(@)g(ts)dz >

<ty

/ (= cla)ple)a(t)de > / (1 - e(a))q(@)p(t)da.

$2t1

Thus (i) and (ii) must hold at to, and we therefore have (ii) on [0, t] and (i) on [to, 1], as required. O

We note that the lower bounds provided in Lemma 3 are reached in the discrete case when c(z) takes only
values 0 and 1, so these bounds are tight in general.

Lemma 4. Let p(x) and g(z) be the probabilty density functions of the predictions of a model M on two
groups P and Q. Let t be a decision threshold for the predictions of M. If M is monotonically calibrated for
groups P and Q (by a function c(x)) and p > q, then FNRy 4+ p < FNRartq (with equality only if both
are 0 or 1) and FPRyr 1.0 < FPRyy p (with equality only if both are 0 or 1).

Proof. Using that M is monotonically calibrated on P and @ the first desired inequality becomes:

fx<t c(x)p(x)dw < fz<t c(z)q(z)dz
Je(@)p(x)de —  [c(x)q(x)ds

FNRuy4p = = FNRumt.q



Under review as submission to TMLR

or equivalently

/Kt c(:v)p(x)dx/c(x)Q(x)dm < /Kt C(l?)q(x)d.%‘/c(m)p(x)dx

Subtracting /

<t

c(x)p(:z:)d:c/ ¢(x)q(x)dx from both sides gives

<t

/Ktc(m)P(x)dx /pt c(z)g(z)dx < /Kt c(z)q(z)dx /z>tc(x)p(x)dx

/ _ clroplao)da, / et < / el [ claplaenan

1 Zt

/zo<t /g;lzt c(zo)e(z1)p(xo)g(21)dr1dzy < /JOQ /xlztC(ffo)c(m)]?(xl)(J(xo)dm1dxo

which follows directly from the MLRP. To obtain strictness of the inequality, observe that if p(zg)g(x1) =
p(z1)q(x0) almost everywhere on the rectangle [z¢ < t] x [z1 > t] (which is nontrivial if both FNR values are
not 0 or 1), then integrating both sides with respect to z¢ over z¢ < ¢t and using the stochastic dominance
of p over q gives p(z1) = ¢(x1) almost everywhere on x; > ¢, and integrating both sides with respect to z;
over 1 >t gives p(xg) = q(xo) almost everywhere on zy < ¢, contradicting that p >, q.

The second desired inequality follows in an identical manner, by reducing

Joai1 = c@)q@)de  [,o,(1 - clx))p(a)da

Fre = S5 ag@yds = (- c@)p@)da

=FPRy . p

to

/ <t/ >t(1 —c(20))(1 — c(z1))p(wo)q(z1)dz1dzo <
/ <t/ >t(1 B C(JC()))(l o C(xl))p(xl)q(fo)dl‘ldl‘o,

O

Lemma 5. Let p(x) and q(z) be the probabilty density functions of the predictions of a model M on two
groups P and Q. If the model M is monotonically calibrated for groups P and Q (by a function c¢(x)) and
D >1r q, then for any decision threshold t where the ratios below are defined, we have either

FNRuM 0 > O(P)
FNRMmP - O(Q)

or
FPRuyy P S 1-0(Q)

FPRy.q ~ 1-0(P)

Proof. Observe that whenever / c(x)q(x)dx > / c(x)p(x)dz, we have

FNRyq _ Jooy c@)a(@)dz [ c(x)p()de . o)
FNRuep [, cl@)p(x)de [ c(z)q(z)de = O(Q)

So if the first inequality in the lemma does not hold, we have /
x<t x<t
it follows that p > ¢ almost everywhere in some neighborhood of ¢ (else p(z) < ¢(x) for all z < ¢ from the

MLRP). Similarly, whenever />t(1 —c(z))p(x)dz > />t(1 —c(x))q(z)dz,

FPRyap _ Joo(1 = c@)pl@de [,(1 - c@a@)dz _ 1-0(Q)

FPRuupq  [,5,(1 = c(@))q(z)dz [ (1 - c(2))p(x)dz = 1 - O(P)’

c(x)q(x)dx < / c(x)p(z)dz, from which
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So if the second inequality in the lemma does not hold,

/ (1 —c(x)p(z)dx < / (1 — e(x))q(x)dx, giving ¢ > p almost everywhere in some neighborhood of ¢.
x>t >

x>t

Thus at least one of the inequalities holds. O

Both lower bounds in Lemma 5 can be reached simultaneously in the discrete case if p(z) and ¢(x) disagree
only when ¢(x) € {0,1}, meaning that these bounds are also tight in general. Intuitively, the FNR inequality
will fail to hold as ¢ becomes sufficiently large and FNR values approach 1, and the FPR inequality will fail
to hold as t becomes sufficiently small and FPR values approach 1. From the first line in the proof, the

Joci c(@)a(z)dz
Joey c(@)p(2)d
of false negative prevalences within the two populations. Similarly, the relationship of FPRs to the ratio
of non-outcome rates is determined by the ratio of false positive prevalences within the two populations.
These relationships follow directly from the definitions of FNR and FPR, and Lemma 5 simply shows that,
under the given assumptions, at any (non-trivial) threshold the group with a higher outcome rate has either
a lower false negative prevalence or higher false positive prevalence. Note that, following the proof, for a
threshold ¢t where ¢(t) = p(t), both inequalities must hold, and in most cases they will both tend to hold in
some neighborhood of such a threshold.

ratio of FNRs is higher than the ratio of the outcome rates, and this factor is just the ratio

Lemma 6. Let p(x) and q(z) be the probabilty density functions of the predictions of a model M on two
groups P and Q. Let t be a decision threshold for the predictions of M. If M is monotonically calibrated
for groups P and @ (by a function c(x)) and p >, q, then for any t where both sides of the inequality are
defined,

o PPViig < PPV p, with equality only if p(z)/q(x) or c¢(x) is constant almost everywhere on
x>t and

o NPViyyp < NPV, with equality only if p(z)/q(x) or c(x) is constant almost everywhere on
r <t.

Proof. Using that M is monotonically calibrated on P and @ the first desired inequality becomes:

sztC( q f>t p d.’,U
sztQ(x)dm T fosep(@)de

/ptc(a?)(J(x)dx /m>tp(x)da: < /Dt c(x)p(x)dx /th(g;)dx
/letc(m)Q(m)dxl LOth(mo)dxo < /letC(xl)p(fﬁ)del LOth(xO)dxo

/I1 tL0>t c(z1)q(xr)p(zo)drodr; < /Il>t A0>t e(x1)p(1)q(zo)daodn,

OS/ >t/ >tc(x1)(p(x1)q(x0)*q(xl)p(!ro))dxodxl

PPViig =

= PPV p

or equivalently

If p(x)/q(z) or c(z) is constant almost everywhere for = > ¢ the right hand side is 0; otherwise, by the MLRP
we have that p(z1)g(zo) — ¢(x1)p(z0) > 0 for almost every pair z1 > x¢ and p(z1)q(zo) — ¢(x1)p(z0) < 0 for
almost every ;1 < zg. Viewing the integral as a nonnegative and nonpositive component across these two
regions:

0< / 3 / el penateo)—a(e)p(ro)drods + / 3 /  ela)p)alao) ~g(e)plan)dnods
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and interchanging x; and xq in the second integral we obtain

o< [ [ @)oo -awp@)ddr— [ [ ca)penaeo)-aleplao) dsoda:

which follows immediately using that ¢(x) is increasing and nonconstant. The NPV inequality follows in an
identical fashion. O

Theorem 1. Let p(x) and g(x) be the probabilty density functions of the predictions of a model M on two
groups P and Q. Let t be a decision threshold for the predictions of M where the ratios in (7)-(10) all exist.
If M is monotonically calibrated for groups P and @ and p and q satisfy the MLRP (with either p = q or
q =i p), then any of (1)-(4) or strict inequality in (5) or (6) implies all of (1)-(6):

1. O(Q) < O(P)

PPRut.g < PPRyyp (equivalently PNRyrp < PNRy o)
FNRuyp < FNRum1 g (equivalently TPRy .o < TPRar,p)
FPRy.qg < FPRuy . p (equivalently TNRy v p < TNRu o)

PPV < PPV p

S & o

NPVyip S NPViig-

Any of (1)-(4) or strict inequality in (5) or (6) further implies at least one of (7) or (8), and at least one of
(9) and (10):

PPRyrvp _ O(P)
PPRuuq — 0(Q)

PNRyvq _ 1-0(Q)
PNRM7t7p -1 —O(P)

FNRuy 0 . O(P)
FNRM,typ - O(Q)

FPRy 4P S 1-0(Q)
FPRMmQ - 170(]3)

10.

Proof. Inequality in any of (2)-(6) implies that p and ¢ are not equal almost everywhere, and the direction
of the inequality then implies that p > ¢. This then implies (1)-(6) from Lemmas 1, 2, 4 and 6, and further
implies at least one of (7) and (8) from Lemma 3 and at least one of (9) and (10) from Lemma 5. O

3 COMPAS Analysis

Using ProPublica’s COMPAS data (Larson et al., 2016), we observe first that the algorithm is approximately
calibrated for the groups of Black and White defendants (Figure 1), and approximately monotonically cali-
brated for the two groups as well. In addition, viewing the histogram of risk scores across races (Figure 2), we
would expect that the distributions of risk scores of these two groups would satisfy the MLRP. Letting p(x)
denote the pdf of risk scores for Black defendants and ¢(x) denote the pdf of risk scores for White defendants,
we confirm that p(z)/q(x) is increasing as required (Figure 3). Figure 4 provides the ratios compared in
Lemmas 3 and 5 across the possible decision thresholds. The ProPublica analysis used decile scores of 5 or
higher (corresponding to “Medium” or “High” risk) as a decision threshold, and because p(5) and ¢(5) are
approximately equal, from the proof of Lemma 5, we can expect both inequalities from Lemma 5 to hold,
instead of just one of them. We observe that both inequalities from Lemma 3 hold at this threshold as well.
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Figure 1: Calibration of the COMPAS risk score
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Figure 2: Histogram of the COMPAS risk Figure 3: Ratio of likelihood functions for the
scores by race COMPAS risk scores

If significant disparities in false negative/positive rates are guaranteed due to the shapes of the risk dis-
tributions of White and Black defendants, is it possible that these differences in distribution, instead of
the behavior of the model itself, provide evidence of systemic unfairness? Consider a hypothetical county
with identical distributions of Black and White defendants found in the COMPAS data, except where Black
residents are far more likely to be arrested for minor offenses, resulting in the addition of many more
lower-risk Black defendants and approximately equalizing the distributions of risk, and therefore the false
positive/negative rates, for the resulting Black and White defendants. If additionally, White residents are far
more likely to not be arrested for minor offenses, we could see the distributions in Figure 2 flip; as a result,
in this hypothetical county, the COMPAS algorithm would have a far higher false positive rate for White
defendants than for Black defendants. But this would be due to explicit systemic unfairness changing the
relative distributions of lowest-risk defendants, where the model’s predictions likely have no meaningful im-
pact on the resulting pre-trial decisions, an example of the problem of infra-marginality (Ayres, 2002; Simoiu
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Figure 4: FPR, FNR, PPR, and PNR disparities across different decision thresholds for the COMPAS risk

scores

et al., 2017). Reliance on false positive/negative rates to reveal unfairness in an algorithm or underlying
institution can mask, or even further exacerbate, systemic bias.

4 Conclusion

We have shown that, in many cases, inequalities of commonly used algorithmic fairness metrics are immediate
consequences of differences in outcome rates between groups, and large disparities in at least some of these
metrics are guaranteed for groups with large differences in outcome rates. We emphasize that these results
should not be used to help set expected ranges for the disparities in these metrics, but instead should
be taken as further evidence that these metrics primarily detect distributional differences between groups.
In contexts where such differences are expected, the ability of these metrics to quantify unfairness seems
extremely limited, if not non-existent. While it is straightforward to understand how enforcing demographic
parity between groups ignores that different groups may have different outcomes, the same clarity does
not appear to exist for false positive/negative rate parity, even though disparities in these metrics are very
often due to the same phenomena. Attempts to enforce parity of these metrics will result in sub-optimal
decision-making which may harm members of all groups involved (Corbett-Davies et al., 2023), and may
actually widen existing disparities. For example, comparing the predictions of a model on two groups under
the assumptions of Theorem 1, a group with a significantly lower outcome rate will necessarily have a
significantly higher false negative rate. If the model’s intended use is to offer, say, a screening for those
at highest risk of a certain medical condition, and the model designer determines that false negative rate
parity is a necessary goal and “mitigates” the disparity in the optimal model, the group at highest risk of
the condition will be most negatively impacted by the change to the model (i.e most under-screened relative
to their actual need). The determination that such a model is always unfair to the lowest-risk group, and
increasingly unfair as the risk of this group decreases, is clearly inconsistent with any reasonable notion of
fairness.
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In the presence of sufficient calibration, disparities in these metrics are rarely symptoms of algorithmic
unfairness, but instead indicate differences in distributions of risk across groups. When these distributional
differences are the result of systemic inequities, the solution to these inequities is not to mitigate an error
rate difference via intentional mis-calibration or selective randomization of the model outcome (Pleiss et al.,
2017). Instead, developers should seek to understand the sources of these differences and ensure their models
are ultimately used in ways that close gaps instead of widening them, a process which cannot be reduced to
computation and comparison of standard algorithmic fairness metrics.
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