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ABSTRACT

To enhance the generalization of machine learning models to unseen data, tech-
niques such as dropout, weight decay (L2 regularization), and noise augmentation
are commonly employed. While regularization methods (i.e., dropout and weight
decay) are geared toward adjusting model parameters to prevent overfitting, data
augmentation increases the diversity of the input training set, a method purported
to improve accuracy and calibration error. In this paper, we investigate the im-
pact of each of these techniques on the parameter space of neural networks, with
the goal of understanding how they alter the weight landscape in transfer learning
scenarios. To accomplish this, we employ Random Matrix Theory to analyze the
eigenvalue distributions of pre-trained models, fine-tuned using these techniques
but using different levels of data diversity, for the same downstream tasks. We
observe that diverse data influences the weight landscape in a similar fashion as
dropout. Additionally, we compare commonly used data augmentation methods
with synthetic data created by generative models. We conclude that synthetic data
can bring more diversity into real input data, resulting in a better performance on
out-of-distribution test instances.

1 INTRODUCTION

Machine learning (ML) models excel at discovering patterns from training data, which allows them
to make predictions on unseen data. However, as models grow more complex, they risk a phe-
nomenon called overfitting – the tendency of models to capture not only meaningful patterns but
also noise and random variations from the training data, resulting in poor generalization to new in-
stances. To address this, model regularization techniques, such as dropout (Srivastava et al., 2014)
and weight decay (L2 regularization)(Krogh & Hertz, 1991), are used in conjunction with Deep
Neural Networks (DNNs) to enhance their generalization capability. While dropout reduces model
complexity by randomly deactivating neurons during training, weight decay adds a penalty to the
loss function based on the magnitude of model weights. These techniques shape the model’s weight
landscape in different ways: dropout works by randomly deactivating neurons during each train-
ing iteration, forcing the network to distribute learning across multiple independent pathways rather
than over-relying on particular features. Weight decay, on the other hand, encourages a smoother
and more evenly distributed weight structure by penalizing large weights, pushing the model toward
simpler and more generalizable solutions (Andriushchenko et al., 2023; Zhang et al., 2018).

Beyond direct parameter adjustments, empirical regularization techniques such as adding noise to
input data or employing data augmentation have also proven effective for improving model gener-
alization (Bishop, 1995). By exposing models to greater breadths of input patterns, these methods
help improve their adaptability to diverse, real-world data. Despite existing evidence of their ef-
fectiveness, the underlying mechanisms of data augmentation remain an insufficiently studied area
of research. Recently, synthetic data generated by models such as stable diffusion (Rombach et al.,
2022) and large language models (LLMs) (Brown, 2020), has emerged as a promising, new approach
to boost model performance(Sahu et al., 2023; He et al., 2022). Synthetic data not only augments
existing datasets but also simulates rare events and edge cases (Santoso et al., 2017).

Similar to dropout, data augmentation acts as a form of regularization by introducing purposeful
variability into the model’s training process. Techniques such as rotation, flipping, cropping, random
erasing, color jittering, and mixup are used to modify input image data in deep neural networks
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(DNNs), therefore increasing the diversity of the data seen during training . This broader input
variation helps prevent overfitting by encouraging the model to capture more generalizable features
and patterns. Dropout shares the goal of enhancing diversity but achieves it by randomly deactivating
neurons, forcing the model to explore different configurations of its weights. Weight decay, on the
other hand, works by penalizing large weights to simplify the model, thus controlling complexity and
preventing it from fitting noise in the training data. Ultimately, these regularization strategies aim
to enhance model generalization – either by promoting adaptability through diverse representations
(dropout and data augmentation) or by constraining complexity (weight decay) to avoid overfitting.

Given that these regularization methods all seek to improve generalization, albeit through different
mechanisms, a natural question arises: does data augmentation have a similar effect on the neu-
ral network’s weight landscape as dropout or weight decay? To investigate our hypothesis, we
utilize Random Matrix Theory (RMT), a statistical framework for analyzing the structure of large
matrices, to analyze the changes in weight matrices across different regularization approaches. The
weight matrix W from a specific layer can be approximated as the sum of a random noise matrix
Wrand and a difference matrix W∆, so that

W ≈ Wrand +W∆

After a layer has been properly trained, either through extensive training on labeled data or fine-
tuning on a downstream task, the difference matrix W∆ provides meaningful structural patterns that
represent learned features, which are distinct from the random noise components Wrand (Martin &
Mahoney, 2019). Thus, examining W∆ can provide insights into the effects of data diversity on the
learned weight matrices (Pennington & Worah, 2017; Sagun et al., 2017), facilitating comparisons of
robustness among regularization approaches. Specifically, measures of weight matrices, such as the
empirical spectral density (ESD), reveal characteristic signals that indicate the presence of implicit
self-regularization during training (Martin & Mahoney, 2019).

In this work, we focus on the transfer learning domain and investigate the changes in weight matri-
ces between the pre-trained and fine-tuned models in response to data augmentation techniques. By
examining these changes, we aim to understand the underlying mechanisms by which diverse input
data improves model performance and generalizability. Previous studies have shown that fine-tuning
can significantly alter the spectral properties of weight matrices, often resulting in changes that are
consistent with improved feature specialization and adaptation to new tasks(Li et al., 2020). We
investigate the effects of real and synthetic data on the weight landscape, using RMT to show how
data augmentation interacts with regularization techniques such as dropout and weight decay. Addi-
tionally, we evaluate the impact of traditional and synthetic data augmentation on model robustness
across both in-distribution (ID) and out-of-distribution (OOD) tasks.

Our contributions can be summarized as follows: (1) We investigate the changes in the weight
space of Deep Neural Networks (DNNs) resulting from varying levels of data diversity; (2) we
provide theoretical and empirical insights into why diverse data improves model performance, link-
ing these findings to changes in learned feature representations and their robustness; and (3) we
explore the use of synthetic data generated through generative models, evaluating its effect on both
in-distribution (ID) and out-of-distribution (OOD) tasks to determine how it complements traditional
data augmentation approaches in improving model robustness and generalization. Our study offers
a comprehensive perspective on how data diversity, both from real and synthetic sources, influences
the internal dynamics of DNNs.

2 METHODS

2.1 PRELIMINARY

This section introduces data diversity measurement and the basics of RMT, as well as the metrics
that will be used in the subsequent analyses.

2.1.1 REGULARIZATION

Dropout. Dropout (Srivastava et al., 2014) helps minimize overfitting during training by randomly
disabling neurons in fully connected layers based on a given probability p. This randomness is
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controlled by a Bernoulli distribution, where neurons are either kept or deactivated during each
training iteration. However, during inference, all neurons are active. To ensure consistency between
training and inference, the output is scaled by 1 − p during training. Dropout has become almost a
default method for training or fine-tuning deep neural networks. In this paper, we implement dropout
operations on different layers in transformer-based models.

Weight Decay. Weight decay (Krogh & Hertz, 1991; Ishii & Sato, 2018) is another commonly
used regularization technique to prevent overfitting. It works by adding a small penalty, which is
proportional to the size of weight parameters, to the loss function during training. This encourages
the model to keep weights smaller. During training, the weights are updated not only based on
the prediction error-induced losses but also on this penalty, which pushes the model to find simpler
solutions.

Data Augmentation. Data augmentation (Rebuffi et al., 2021; Shorten & Khoshgoftaar, 2019) is a
strategy to artificially expand the size and diversity of training datasets without requiring the acqui-
sition of new data. This technique involves applying a range of transformations to existing samples,
such as flipping, cropping, adjusting brightness, and adding noise. Mixup (Zhang, 2017) is a spe-
cific data augmentation technique that creates new training examples by linearly combining pairs
of input data and their corresponding labels. By introducing these variations, data augmentation
enables models to learn more robustly from a wider array of instances, improving generalization.
This approach is particularly advantageous in domains related to image tasks.

2.1.2 DIVERSITY MEASURE

Vendi Score (Dan Friedman & Dieng, 2023) has been recently proposed for measuring diversity in
ML data. This score quantifies data diversity based on the similarities between elements in a dataset,
making it particularly useful for evaluating the effectiveness of data augmentation techniques and
assessing the diversity of synthetic samples from generative models. The score is derived by using
a set of samples along with a pairwise similarity function, which calculates a value that reflects the
effective count of unique elements in the dataset. More specifically, given a positive semi-definite
matrix K ∈ Rn×n representing similarity scores, the Vendi Score (VS) is defined as

V S(K) = exp

(
−tr
(
K

n
log

K

n

))
= exp

(
−

n∑
i=1

λi log λi

)
,

where λi are the eigenvalues of the matrix K/n, with the definition of 0 log 0 = 0. In essence, VS is
the exponential of the von Neumann entropy of the scaled similarity matrix, K/n, equivalent to the
Shannon entropy of this matrix’s eigenvalues, also known as effective ranks. The higher the Vendi
Score, the more diverse the dataset is. For evaluating images, Vendi Score provides two correlation
methods (as the similarity function) – the pixel-pairwise correlation by comparing raw pixels directly
and the correlation of the embeddings learned from pre-trained models. We use VS as a diversity
measure to evaluate different datasets. The default embedding model of VS is INCEPTION V3,
which we replace with CLIP in this paper.

From Figure 1 one can see that commonly used image augmentation methods typically increase
input data diversity. Some methods (e.g., Auto-v3) increase the diversity score at a larger rate than
others. Additionally, we observe that as the number of label classes increases, the diversity score
initially increases but then exhibits a drop afterward. This suggests that, to a certain extent, the output
label diversity can be captured by input similarities. We also observe that pixel-wise diversity scores
do not always match embedding-wise scores after applying data augmentation. Similarly, we will
see later that synthetic data itself is less diverse than real data but when it is combined with real data,
the combined dataset can often reach a higher diversity score.

2.1.3 RANDOM MATRIX THEORY

Consider a d-layer DNN with corresponding weight matrices W1,W2, . . . ,Wd. For each weight
matrix Wi with shape N ×M , assume without loss of generality that N ≥ M (otherwise, consider
W⊤

i ). The correlation matrix is defined as

Xi = W⊤
i Wi.

The eigenvalues of Xi are given by {λj}Mj=1.
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Figure 1: Data diversity on CIFAR-10 measured by Vendi Score. Left is the result based on pixel-
wise similarity; Right is the result based on the similarity of embedding learned by CLIP. The
red-colored line contains the VS values of the original CIFAR-10 dataset with different numbers
of label classes. We employ automatic data augmentation packages to create other datasets: Auto,
Rand, AugM, and TrAU. Noise10, Noise30, and Noise50 are created by adding Gaussian noise with
a ratio of 0.1, 0.3, and 0.5. Auto-v1 to Auto-v3 are variants based on AutoAugment.

Let p(x) denote the correlation matrix’s Empirical Spectral Density (ESD). According to RMT, the
ESD of a Gaussian-noise random weight matrix follows the Marchenko-Pastur (MP) distribution
when the matrix dimension grows large. The MP distribution often exhibits a bulky shape. However,
the empirical study of Martin and Mahoney (Martin & Mahoney, 2021) showed that, for a well-
trained DNN model, specifically for a pre-trained large model, the ESD of its weight correlation
matrix is heavy-tailed, not following the Gaussian noise-based MP distribution. They called it the
Heavy-Tailed Self Regularization theory. Specifically, a Power Law (PL) distribution can be used to
fit the heavy tail, which is given by

p(x) ∝ x−α, xmin < x < xmax. (1)
Here, x takes values in the interval (xmin, xmax), and xmax is chosen to be the maximum eigenvalue
of the empirical correlation matrix, while xmin is selected to obtain a better power-law fitting, which
is not generally equal to the minimum eigenvalue.

The discussion above justifies the decomposition of weight matrix W into two components – a
random matrix Wrand and a difference matrix W∆, which are represented by the bulk and tail of
ESD, respectively, based on Martin and Mahoney’s theory. Analyzing properties of both Wrand

and W∆ can obtain insights into how models are trained. Figure 2 shows the λmin are selected to
divide the ESD into bulk (Wrand) and tail (W∆) parts. The exponent α of a fitted PL distribution
characterizes the tail behavior of the ESD, which is in close relevance to the model’s generalization
capability. A smaller α represents a more “heavy-tailed” landscape in ESD. More large eigenvalues
in the tail of ESD will exert more influence on the model’s weight spaces.

2.2 ANALYSIS APPROACH

Due to the heavy-tailed nature of pre-trained models, we cannot obtain direct conclusions if our
evaluation is based on a single metric. Instead, we focus on the trend of how regularization and
diverse data influence the weight spectrum by calculating the differences in multiple metrics before
and after fine-tuning on specific downstream tasks to gain valuable insights. For example, the initial-
ized α in the classification layer is around 6 while its value after fine-tuning can still display a certain
degree of heavy-tailed property (2-6 typically). The relative changes compared with the baseline (no
regularization applied) tell us the direction and magnitude of the impact of a regularization method
on the weight landscape.

Let M be a set of metrics that can capture the properties of the spectrum in weight matrices. ∆M
denotes the distance of these metrics in the spectral space between pre-trained models and fine-
tuning models with/without regularization or data augmentation, i.e.,

∆M = Mft −Mpre.

These metrics can be categorized from two perspectives – scale metrics and shape metrics. Scale
metrics measure the magnitude of eigenvalues or the overall size of the weight matrix, while shape
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Figure 2: Empirical Spectral Density (ESD) from a feedforward layer of a fine-tuned CLIP model
on CIFAR-100 with the linear (Right) and logarithm (Left) plotting scales. The bulk and tail parts
are separated by the selected λmin. Clearly, α guides the “heavy-tailed” nature.

metrics describe the distribution and structure of the eigenvalues. Scale metrics include Frobenius
Norm, Spectral Norm, Stable Rank, and MP Soft Rank (Martin & Mahoney, 2019). The definitions
of some of these metrics are given below:

Frobenius Norm: ∥W∥2F = ∥X∥F =
∑M

i=1 λi

Spectral Norm: ∥W∥2∞ = ∥X∥∞ = λmax

Shape metrics include power law exponent α, matrix entropy, number of power-law spikes
(num pl spikes), etc.

Matrix Entropy: H(W ) = −
∑

i λi log(λi)

The metric num pl spikes counts the number of eigenvalues that are larger than xmin.

Table 1 describes how the changes in these metrics may reflect the changes in weight space and the
corresponding characteristics of its spectrum. Our spectral analysis is implemented by a tool called
WeightWatcher(Martin et al., 2021), which provides multiple scale and shape metrics.

3 EXPERIMENT

3.1 EXPERIMENT SETUP

We employ the state-of-the-art text-to-image model CLIP (Radford et al., 2021) given its powerful
capability of performing image classification tasks and fine tune CLIP on CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), Imagenette (Howard, 2019), Flowers102 (Nilsback & Zisserman, 2008),
Stadford Cars (Krause et al., 2013), DomainNet (Peng et al., 2019). During fine-tuning, we freeze
the text encoder, thus only the weights in the image encoder and the last classification layers are
updated. The pre-trained vision model we used is VIT-B32 and ResNet50. The setting of the
following training hyperparameters – a learning rate of 1e-5, 5 epochs, and a batch size of 32 – are
kept the same in all experiments. Model performance measures are evaluated on the real test images.

3.2 IMPACT OF REGULARIZATION

The default CLIP-VIT-B32 model does not apply dropout in the image encoder. To investigate the
impact of dropout on both hidden layers and output layers, we add dropout layers in both Multi-
headAttention layers and feedforward layers within each transformer block, as well as in the final
classification layer. In the hidden layers, dropout is applied after the normalization layer. For CLIP-
ResNet50, we add dropout after each block. The dropout rate in the baseline model is zero, and we
subsequently deploy the dropout rates of 0.1, 0.3, 0.5, and 0.7 to conduct a comparison study. The
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Metric Change W ESD

α

↑
Less complex W , fewer

directions dominate.
A sharper drop-off in ESD, less

”heavy-tailed”

↓
More complexity, more

dominant directions.
A slower decay in ESD, more

eigenvalues with large magnitudes

Matrix Entropy
↑

More diverse and less
structured weight patterns

More uniform distribution of λ
across the spectrum

↓
More organized and
meaningful weight

structures

More concentrated around a few
large λ

Frobenius Norm
↑ Larger weight values overall Larger λ in total
↓ Smaller weight values Overall λ shrink

Spectral Norm
↑

At least one dominant
direction in W

More outliers in the long tail

↓
The maximum influence of

any single direction is
reduced

Smaller maximum λ, more
compact distribution

num pl spikes ↑
More important and distinct

features in W
More λ separate from the Wrand

↓
Weight structure becomes

more random-like
More uniform bulk distribution

with fewer outliers

Table 1: Interpretations of metric changes on the weight matrix and its spectral density

weight decay values are varied with six levels – 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, and 5e-3 – to investigate
how they change weight matrices.

Figure 3 shows the scale-shape plot of distance measure (∆M ) on CIFAR-10/100, Imagenette,
Flower102, StandfordCars, DomainNet(Real) datasets. The horizontal and vertical dash lines show
the position of the baseline, to which no regularization technique is applied. These lines divide the
plot into 4 quadrants, which assist in understanding the impact of a regularization technique on the
weight matrix as comparing to the baseline. If two different regularization techniques give similar
change directions of ∆M , we consider they have similar impacts on the weight space. Compared
with the baseline, on multiple test datasets, dropout tends to increase the value of α, reduce the
Frobenius Norm, and increase the matrix entropy with an increasing dropout rate. In particular,
dropouts tend to reduce the entire size of the weight matrix. On the other hand, increasing weight
decay leads to a drop of α significantly, and it decreases the matrix entropy, which causes a more
heavy-tailed ESD. Similar to dropout, weight decay reduces the size of the weight matrix. Smaller
weight decay values make the overall size of the weight matrix shrink more effectively.

Summary. After fine-tuning the same dataset, dropout, and weight decay display a certain degree
of resembling behaviors on some ESD metrics but diverge on others. In scale metrics, both dropout
and weight decay can significantly shrink the size of the weight matrix and diminish the largest
eigenvalue. But in shape metrics, dropout encourages a more evenly distributed ESD, while weight
decay tends to make long-tailed ESD, thus increasing the nonrandom part of the weight matrix.

3.3 IMPACT OF DATA DIVERSITY

To increase training data diversity, we implement ten types of data augmentation: First, four auto-
matic image augmentation techniques in PyTorch are applied: AutoAugment (Cubuk et al., 2018),
RandAugment (Cubuk et al., 2020), AugMix (Hendrycks et al., 2019), and TrivialAugment(Müller
& Hutter, 2021). Then we add Gaussian noise into the original images with a ratio of 0.1, 0.3, and
0.5. Finally, we created three advanced augmented datasets by combining AutoAugment with other
data augmentation methods. They are auto-v1: AutoAugment + Gaussian noise with 0.5 ratio; auto-
v2: AutoAugment + Gaussian noise with 0.5 ratio + RandomHorizontalFlip + RandomVerticalFlip;
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(a) Frobenius norm vs. alpha on
CIFAR-10

(b) Frobenius norm vs. alpha on
CIFAR-100

(c) Frobenius norm vs. entropy
on Imagenette

(d) Frobenius norm vs. alpha on
Flowers102

(e) Frobenius norm vs. entropy
on Stanford Cars

(f) Frobenius norm vs. entropy
on DomaineNet (Real)

Figure 3: Various scale-shape plots of ESDs of the classifier layers on CIFAR-10/100, Imagenette,
Flower102, StandfordCars, DomainNet(Real). The results are marked with square and diamond
shapes for dropout and weight decay regularization techniques, respectively. The size of markers
represents the magnitude of the dropout rate and weight decay values. The results above are based on
the VIT-32 backbone. Please check Figure 6 in the Appendix for results of the ResNet50 backbone.

auto-v3: AutoAugment + Gaussian noise with 0.5 ratio + ElasticTransform. We try to combine
multiple data augmentations to explore how diverse datasets we can create (also see Figure 1).

Figure 4 adds the triangle markers representing multiple data augmentation methods into scale-
shape plots. They illustrate how training data diversity can alter the spectral distributions of weight
matrices. Comparing them with dropout and weight decay, the effects of data diversity are more
aligned with dropout than weight decay. In both scale and shape metrics, from Figure 4 (b)(d)(e), we
observe diverse data can reduce the Frobenius norm and increase the matrix entropy, thus shrinking
the size of weight matrix in the same fashion of dropout and weight decay. Moreover, its change
magnitude is comparable with that of dropout. Figure 4(a)(f) also shows the behavior of the entropy
due to data diversity is similar to that of dropout. Overall, more resembling behaviors of shape
metrics have been seen in the pair of data diversity and dropout than in the pair of data diversity and
weight decay. Readers can find more scale-shape plots about other layers in Appendeix.

Summary. Based on spectral analysis, we find many similarities between data augmentation and
dropout. By fine-tuning CIFAR-10/100, Imagenette, Flower102, StandfordCars, DomainNet(Real)
datasets, they display many common tendencies of impact on the weight matrix when compared with
the baseline. Data augmentation increases input data diversity, thus enriching features in the input
data, while dropout forces the neural networks to reduce the reliance on any specific neurons. The
induced effects of these methods on weight matrices seem to agree with each other – they reduce
the overall size of the weight matrix, thus limiting the maximum influence of any single weight
correlation direction and making the weight matrix less complex. Moreover, they have a similar
impact on shape metrics such as matrix entropy. However, diverse data sometimes has opposite
effects on shape metrics as compared with those of weight decay.
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(a) Frobenius norm vs. entropy
on CIFAR-10

(b) Frobenius norm vs. entropy
on CIFAR-100

(c) Frobenius norm vs. entropy
on Imagenette

(d) Frobenius norm vs. alpha on
Flowers102

(e) Frobenius norm vs. entropy
on Stanford Cars

(f) Frobenius norm vs. entropy
on DomaineNet (real)

Figure 4: Various scale-shape plots of ESDs of the classifier layers on CIFAR-10/100, Imagenette,
Flower102, StandfordCars, DomainNet(Real). The results are marked with triangle, square, and
diamond shapes for data augmentation, dropout, and weight decay, respectively. The color intensity
of triangles represents the magnitude of embedding-based diversity scores.The results above are
based on the VIT-32 backbone. Please check Figure 7 in the Appendix for results of the ResNet50
backbone.

3.4 DIVERSITY OF SYNTHETIC DATA

To investigate whether or not synthetic data can bring in more input data diversity and thus further
enhance model performance in the transfer learning context, we utilize the state-of-the-art image
generative model Stable Diffusion v1-5 (SD) (Rombach et al., 2022) to generate synthetic images.
We use Domainnet (Peng et al., 2019) datasets to evaluate the CLIP model performance on both
in-distribution (ID) and out-of-distribution (OOD) tasks. Specifically, for ID tasks, we use 50000
instances from the “real” category (i.e., they are real images, as opposed to artificially stylized
images), which covers 142 image labels. The baseline model is trained on these instances and
evaluated on “real” test images. Data augmentation techniques mentioned in section 3.3 are applied
to the “real” training data for model training as a comparison. For OOD tasks, we evaluate trained
models on stylized images, including “clippart”, “infograph”, “inpainting” and “sketch” styles in
DomainNet. All model parameters remain the same as those in previous sections.

To improve the diversity of SD-generated images, we increase the variance of prompts for the stable
diffusion model. We provide four prompt formats that are randomly picked for individual image-
generating processes. Moreover, we dynamically adjust the generated images by randomly selecting
and applying compressed resolutions within the ranges of 320-640 pixels for the first dimension and
240-720 pixels for the second dimension.

We use Top-1 accuracy and Expected Calibration Error (ECE) as evaluation metrics for both ID
and OOD tasks. ECE is widely used for model uncertainty evaluation. It quantifies how well a
model’s predicted probabilities (confidence) align with its actual outcomes (accuracy) (Guo et al.,
2017). The smaller ECE is, the better the model is calibrated. Synthetic training datasets are created
by replacing a certain proportion (15%, 25%, and 35%) of real images with SD-generated images,
thereby the total training data size is kept the same as the baseline and other data augmentation
methods.
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ID OOD OOD Avg
Data Acc ECE Clipart Infograph Painting Sketch Acc ECEAcc ECE Acc ECE Acc ECE Acc ECE
baseline 85.27 0.05 64.95 0.12 31.21 0.25 54.89 0.20 51.00 0.22 50.51 0.20
auto 85.03 0.04 67.99 0.10 31.93 0.10 57.74 0.18 55.83 0.18 53.37 0.14
rand 85.11 0.04 65.73 0.10 31.77 0.21 58.35 0.16 56.01 0.16 52.97 0.16
augM 84.48 0.04 67.10 0.10 31.69 0.21 55.98 0.18 54.51 0.18 52.32 0.17
trAu 84.30 0.03 65.93 0.08 31.12 0.20 55.31 0.16 54.17 0.17 51.63 0.15
noise10 84.41 0.03 66.69 0.08 32.12 0.18 56.76 0.16 57.18 0.14 53.19 0.14
noise30 84.45 0.03 67.59 0.07 32.68 0.16 56.76 0.15 58.12 0.14 53.79 0.13
noise50 83.51 0.03 64.87 0.08 30.44 0.19 55.77 0.15 54.55 0.15 51.41 0.14
auto-v1 83.44 0.03 65.53 0.07 31.59 0.15 55.93 0.14 55.73 0.14 52.20 0.13
auto-v2 81.86 0.02 64.32 0.06 27.82 0.16 53.96 0.13 53.67 0.13 49.94 0.12
auto-v3 75.89 0.03 55.37 0.06 23.71 0.15 49.37 0.13 46.68 0.13 43.78 0.12
synthetic(0.15) 85.85 0.05 66.91 0.11 33.00 0.19 56.65 0.15 59.97 0.15 54.13 0.15
synthetic(0.25) 85.11 0.05 67.21 0.07 32.28 0.20 53.84 0.17 54.98 0.12 52.08 0.14
synthetic(0.35) 84.58 0.05 64.59 0.14 30.58 0.22 54.75 0.15 51.07 0.17 50.25 0.17

Table 2: The Top-1 accuracy and ECE evaluations of ID and OOD tasks for the CLIP (VIT-32
backbone) trained and tested on DomainNet. Both traditional data augmentation methods and the
synthetic data method can result in better OOD performance.

Figure 5: Correlation between Vendi Score and
ID/OOD Accuracy. Vendi Score has a strong cor-
relation with both ID and OOD average perfor-
mance on DomainNet.

Result. Table 2 shows that both traditional data
augmentation methods and the synthetic data
method can result in better OOD performance,
i.e., higher top-1 accuracy and lower ECE on
average compared with the baseline. Extremely
augmented data such as auto-v2 and auto-v3
may harm the model’s learning ability. Figure 5
shows that Vendi Score has a strong correlation
with both ID and OOD average performance. It
also shows that, on DomainNet, data augmenta-
tion can increase the diversity score at the pixel
level but fails at the embedding level. Simi-
larly, infusing a larger proportion of synthetic
data into the training dataset may not bring ad-
ditional benefits; instead, it can decrease the
model’s performance in terms of classification
accuracy. A recent publication (Alemohammad
et al., 2023) describes a similar phenomenon
called model collapses, which is caused by ex-
cessively using synthetic data to retrain gener-
ative models. This may be partially due to the lack of diversity of synthetic data itself. The more
iterations of retraining, the less diverse the generated synthetic data will be. Our findings demon-
strate the importance of data diversity in enhancing machine learning capability.

4 RELATED WORK

Data diversity and applications of synthetic data have been getting more and more attention from the
machine learning research community in recent years. Authors in the paper (Lopes et al., 2020) ex-
plore the role of diversity in data augmentation and propose two diversity definitions. One definition
is model-based, or based on the performance of classification, and the other definition is input im-
age data-based, by comparing the conditional entropy of clean data distribution and the augmented
data distribution. They conclude that the diversity produced by data augmentation is able to im-
prove model performance. However, it falls short of explaining the underlying mechanisms of how
data diversity affects the ML model. The study from He et al. (2022) evaluates the use of synthetic
data, which are generated by test-to-image models such as GLIDE, for image recognition tasks. It
concludes that models trained solely on synthetic data do not outperform those trained on real data.
Following this work, we try to explain why using synthetic data alone to train a model cannot beat
what real data does. Similarly, model collapses have been observed by the authors of Alemoham-
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mad et al. (2023). They state that the self-consuming loop – that is, iteratively using synthetic data
from generative models as their own training data – can significantly harm the quality of generated
output. They suggest adding fixed real data to break the loop and to improve the quality of generated
images. In our experiments, we only use synthetic data to replace a small portion of real data so as
to increase overall data diversity and improve model performance on both ID and OOD tasks.

The spectral analysis of weight metrics has been applied to various scenarios. Martin & Mahoney
(2021) found deep neural networks naturally regularize themselves by shaping their weight matrices,
for which they proposed a Heavy-Tailed Self-Regularization (HTSR) theory. Their follow-up work
(Martin et al., 2021) used the power-law fitting on weight matrices’ spectra to predict a model’s
quality and generalization ability without needing training or testing data, thus purely focusing on
the intrinsic properties of the model’s weights. Yang et al. (2023) applied the HTSR theory in the
natural language processing area. They proposed a KS distance-based estimation method to make
a better power law fitting, making the exponent α better capture the shape of the tail distribution
of ESD. On the other hand, the significance of weight matrices has been explored in other recent
studies. Wortsman et al. (2022) demonstrated that merging weights from different fine-tuning mod-
els can improve overall model performance and highlighted the impact of weight manipulation on
optimizing model behavior without retraining. All of these prior studies motivated us to investigate
the impact of data diversity from the model’s weight matrices perspective.

5 DISCUSSION

Model generalizability is an open challenge for deploying machine learning and deep learning mod-
els, as it directly impacts their adaptability and reliability in real-world applications. Regularization
techniques, such as dropout and weight decay, are typically used to reduce overfitting and improve
model robustness. Data augmentation, an empirical method that increases the diversity of training
data, particularly in situations where training data is scarce, could achieve similar effects. However,
the underlying mechanisms of how and why data augmentation enhances model performance re-
main an open question in theory and practice. With advancements in generative AI, the concept of
data diversity has received significant attention with respect to both training data and model outputs.
Diverse training data enables large pre-trained models to learn a wide range of meaningful features
without overfitting to noise, while ensuring diversity in generated outputs is crucial for their use as
effective training data in downstream tasks. This motivates our investigation into the role of data
diversity in the learning process of a model. Specifically, we aim to understand how data diversity
influences the weight landscape and provide insights into why data augmentation can lead to more
robust models. To achieve this, we used Random Matrix Theory (RMT) to analyze spectral patterns
in the weight matrices of neural networks, comparing the effects of dropout, weight decay, and var-
ious data augmentation techniques. Additionally, we quantified the diversity of training sets using
the Vendi score, which measures data variability and helps assess how training diversity contributes
to model generalization in our framework.

We observed that dropout and data augmentation exhibit similarities in how they affect the weight
space of neural networks. Both methods reduce the overall magnitude of the weight matrix and
induce similar changes in the spectral metrics of the empirical spectral density (ESD) on the same
dataset. This suggests that they influence weight formation in a comparable way: dropout forces the
model to be less reliant on specific weight correlations, resulting in a less concentrated ESD, while
the rich features in a diverse dataset encourage the model to focus on a broader range of information
during training, leading to a more balanced weight landscape. In contrast, weight decay, another
regularization method, also reduces the overall size of the weight matrix but impacts the shape of
the ESD differently, leading to distinct regularization effects.

We also explored the use of synthetic data generated by generative models as an augmentation strat-
egy to improve model performance. While previous studies have not thoroughly examined its effec-
tiveness, we compared this new approach with traditional data augmentation in both in-distribution
(ID) and out-of-distribution (OOD) tasks. Our results show that incorporating a small amount of
synthetic data enhances average model performance on both ID and OOD tasks, primarily due to
the increased diversity provided by the synthetic data. However, there is also a risk of model col-
lapse when relying too heavily on synthetic data, which occurs when the model starts overfitting
to synthetic patterns that lack the variability and quality of real-world data. This over-reliance can
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reduce generalizability, cause biased learning, and diminish the model’s ability to recognize a broad
range of real-world features, ultimately making the model less robust and effective in practical ap-
plications. Therefore, a careful balance between real and synthetic data is still necessary to prevent
model collapse and prevent overfitting.
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We present more scale-shape plots here:

(a) Frobenius norm vs. alpha on
CIFAR-10

(b) Frobenius norm vs. alpha on
CIFAR-100

(c) Frobenius norm vs. entropy
on Imagenette

(d) Frobenius norm vs. alpha on
Flowers102

(e) Frobenius norm vs. entropy
on Stanford Cars

(f) Frobenius norm vs. entropy
on DomaineNet (Real)

Figure 6: Scale-shape plots of ESDs of the classifier layers on CIFAR-10/100, Imagenette,
Flower102, StandfordCars, DomainNet(Real). The results are marked with square and diamond
shapes for dropout and weight decay regularization techniques, respectively. The size of markers
represents the magnitude of the dropout rate and weight decay values. The results above are based
on the ResNet50 backbone. Because of limitations of computing resources, CIFAR-10/100 and Do-
mainNet(Real) refer to a subset that samples 5000 images for fine-tuning.
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(a) Frobenius norm vs. entropy
on CIFAR-10

(b) Frobenius norm vs. entropy
on CIFAR-100

(c) Frobenius norm vs. entropy
on Imagenette

(d) Frobenius norm vs. alpha on
Flowers102

(e) Frobenius norm vs. entropy
on Stanford Cars

(f) Frobenius norm vs. entropy
on DomaineNet (real)

Figure 7: Scale-shape plots of ESDs of the classifier layers on CIFAR-10/100, Imagenette,
Flower102, StandfordCars, DomainNet(Real). The results are marked with triangle, square, and
diamond shapes for data augmentation, dropout, and weight decay, respectively. The color intensity
of triangles represents the magnitude of embedding-based diversity scores. The results above are
based on the ResNet50 backbone. Because of limitations of computing resources, CIFAR-10/100
and DomainNet(Real) refer to a subset that samples 5000 images for fine-tuning.
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(a) Frobenius norm vs. entropy on Imagenette
(ViT)

(b) Frobenius norm vs. entropy on Flowers102
(ViT)

(c) Frobenius norm vs. entropy on Imagenette
(ResNet50)

(d) Frobenius norm vs. entropy on Flowers102
(ResNet50)

Figure 8: Scale-shape plots of ESDs of the classifier layers on Imagenette and Flower102. The
results are marked with square and diamond shapes for dropout and weight decay regularization
techniques, respectively. The size of markers represents the magnitude of the dropout rate and
weight decay values. We also refer (Zhang & Bottou, 2024) to apply a very large dropout (0.9 at the
last layer), as well as combinations with dropout(0.1, 0.5) and weight decay (1e-5, 5e-3). Results
show us combinations with dropout and weight decay, as well as the very large dropout can make
more intense changes in both scale and shape side.
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(a) Frobenius norm vs. entropy
on CIFAR-10

(b) MP soft rank vs.
num pl spikes on CIFAR-
10

(c) MP soft rank vs. entropy on
CIFAR-10

(d) Frobenius norm vs. entropy
on CIFAR-100

(e) MP soft rank vs.
num pl spikes on CIFAR-
100

(f) MP soft rank vs. entropy on
CIFAR-100

Figure 9: Various scale-shape plots of ESDs of the classification layer on CIFAR-10 and CIFAR-
100. The results are marked with triangle and square shapes for data augmentation and dropout,
respectively. The size of markers represents the magnitude of the dropout rate and embedding-
based Vendi score. More metrics from both scale and shape sides to compare dropout with data
augmentations. These plots strengthen our conclusion about the similarity between dropout
and diverse data in section 3.
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(a) MP soft rank vs. alpha on
CIFAR-10

(b) Spectral norm vs. alpha on
CIFAR-10

(c) Stable rank vs. num spikes on
CIFAR-10

(d) MP soft rank vs. alpha on
CIFAR-100

(e) Spectral norm vs. alpha on
CIFAR-100

(f) Stable rank vs. num spikes on
CIFAR-100

Figure 10: Various scale-shape plots of ESDs of all vision layers on CIFAR-10 and CIFAR-100. We
calculated the average changes through all layers in the vision encoder.The results are marked
with triangle and square shapes for data augmentation and dropout, respectively. The size of
markers represents the magnitude of the dropout rate and embedding-based Vendi score. In
addition to the classification layer, the average changes of all vision encoder layers in CLIP
exhibit similarities between dropout and data augmentation in both shape and scale. Even
though the way they shape the distribution of eigenvalues is similar, diverse data changes of
scale side to a larger value than dropout. Also, their changes compared with the baseline have
a similar trend.
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(a) Frobenius norm vs. alpha on
CIFAR-10

(b) Spectral norm vs. alpha on
CIFAR-10

(c) Frobenius vs. num pl spikes
on CIFAR-10

(d) Frobenius norm vs. alpha on
CIFAR-100

(e) Spectral norm vs. alpha on
CIFAR-100

(f) Frobenius vs. num pl spikes
on CIFAR-100

Figure 11: Various scale-shape plots of ESDs of the classifier layers on CIFAR-10 and CIFAR-100.
The results are marked with square and diamond shapes for dropout and weight decay regularization
techniques, respectively. The size of markers represents the magnitude of the dropout rate and
weight decay values.
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(a) Frobenius norm vs. entropy
on CIFAR-10

(b) Spectral norm vs. alpha on
CIFAR-10

(c) Frobenius vs. num pl spikes
on CIFAR-10

(d) Frobenius norm vs. entropy
on CIFAR-100

(e) Spectral norm vs. alpha on
CIFAR-100

(f) Frobenius vs. num pl spikes
on CIFAR-100

Figure 12: Various scale-shape plots of ESDs of the classifier layers on CIFAR-10 and CIFAR-
100. The results are marked with triangle, square, and diamond shapes for data augmentation,
dropout, and weight decay, respectively. The color intensity of triangles represents the magnitude of
embedding-based diversity scores.
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