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ABSTRACT

Spatio-temporal forecasting is pivotal in numerous real-world applications, includ-
ing transportation planning, energy management, and climate monitoring. In this
work, we aim to harness the reasoning and generalization abilities of Pre-trained
Language Models (PLMs) for more effective spatio-temporal forecasting, particu-
larly in data-scarce scenarios. However, recent studies uncover that PLMs, which
are primarily trained on textual data, often falter when tasked with modeling the
intricate correlations in numerical time series, thereby limiting their effectiveness
in comprehending spatio-temporal data. To bridge the gap, we propose REPST, a
physics-aware PLM reprogramming framework tailored for spatio-temporal fore-
casting. Specifically, we first propose a physics-aware decomposer that adaptively
disentangles spatially correlated time series into interpretable sub-components,
which facilitates PLM to understand sophisticated spatio-temporal dynamics via a
divide-and-conquer strategy. Moreover, we propose a selective discrete reprogram-
ming scheme, which introduces an expanded spatio-temporal vocabulary space
to project spatio-temporal series into discrete representations. This scheme mini-
mizes the information loss during reprogramming and enriches the representations
derived by PLMs. Extensive experiments on real-world datasets show that the pro-
posed REPST outperforms twelve state-of-the-art baseline methods, particularly in
data-scarce scenarios, highlighting the effectiveness and superior generalization
capabilities of PLMs for spatio-temporal forecasting.

1 INTRODUCTION

Spatio-temporal forecasting aims to predict future states of real-world complex systems by simultane-
ously learning spatial and temporal dependencies of historical observations, which plays a pivotal
role in diverse real-world applications, such as traffic management (Li et al., 2018; Wu et al., 2019),
environmental monitoring (Han et al., 2023), and resource optimization (Geng et al., 2019). In
the past decade, deep learning has demonstrated great predictive power and led to a surge in deep
spatio-temporal forecasting models (Xie et al., 2020; Jin et al., 2023a). For example, Recurrent
Neural Networks (RNNs) and Graph Neural Networks (GNNs) are frequently combined to capture
complex patterns for spatio-temporal forecasting (Jin et al., 2023a; Li et al., 2018; Han et al., 2020).
Despite fruitful progress made so far, such approaches are typically confined to the one-task-one-
model setting, which lacks general-purpose utility and inevitably falls short in handling widespread
data-scarcity issue in real-world scenarios, e.g., newly deployed monitoring services.

In recent years, Pre-trained Language Models (PLMs) like GPT-3 (Brown, 2020) and the LLaMA
family (Touvron et al., 2023) have achieved groundbreaking success in the Natural Language Pro-
cessing (NLP) domain. PLMs exhibit exceptional contextual understanding, reasoning, and few-shot
generalization capabilities across a wide range of tasks due to their pre-training on extensive text
corpora. Although originally designed for textual data, the versatility and power of PLMs have
inspired their application to numerically correlated data (Zhou et al., 2024; Jin et al., 2023b; 2024).
For example, Frozen Pretrained Transformer (FPT) (Zhou et al., 2024) pioneers research in this
direction and showcases the promise of fine-tuning PLMs as generic time series feature extractors.
Besides, model reprogramming (Jin et al., 2023b; 2024) have considered the modality differences
between time series and natural language, solving time series forecasting tasks by learning an input
transformation function that maps time series patches (Nie et al., 2022) to a compressed vocabulary.
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In this work, we aim to harness the reasoning and generalization abilities of PLMs for more effective
spatio-temporal forecasting, particularly in data-scarce environments.

However, significant challenges remain in directly applying aforementioned reprogramming tech-
niques to spatio-temporal forecasting. The foremost issue lies in the underutilization of PLMs’ full
potential. Recent work (Tan et al., 2024) suggests that existing PLM-based approaches for time series
forecasting (Zhou et al., 2024; Jin et al., 2023b; Wang et al., 2024) fail to leverage the generative
and reasoning abilities of PLMs. This limitation becomes even more apparent when handling more
complex spatially correlated time series data. A crucial question that arises is: how can we better
explain this shortcoming and unlock the potential of PLMs for spatio-temporal forecasting? Another
challenge is PLMs’ limited capacity to model the intricate correlations present in spatio-temporal
data. While PLMs excel at capturing dependencies within one-dimensional sequential data, they fall
short in comprehending spatio-temporal data, which often has more complex structures like grids or
graphs (Li et al., 2024c). This gap in PLMs’ understanding of spatio-temporal correlations poses a
significant obstacle to their effective use in this domain.

2.34

5.92

2.68

6.33

0

1

2

3

4

5

6

7

PEMS-BAY METR-LA
M
AE

w Decompositoin w/o Decomposition

Figure 1: Simple Fourier-based decompo-
sition (Liu et al., 2024c) can improve the
PLM’s understanding of spatio-temporal data.
We report the forecasting results by applying
reprogrammed GPT-2 (Jin et al., 2023b) on
widely used PEMS-BAY and METR-LA (Li
et al., 2018) datasets.

To address these challenges, we argue that the primary
limitation of existing approaches lies in their oversimpli-
fied treatment of spatio-temporal data, which prevents
PLMs from fully understanding the underlying semantics.
Instead of merely serving as a one-dimensional encoder,
PLMs need a more sophisticated understanding to han-
dle spatio-temporal data effectively. Through explorative
experimental study, we observe even apply simple decom-
position techniques can significantly facilitate PLMs to
better understand spatio-temporal data and leading to im-
proved performance, as shown in Figure 1.

Building on this insight, we propose REPST, a reprogram-
ming framework specifically designed for spatio-temporal
forecasting using PLMs. Specifically, we first propose
a physics-aware spatio-temporal decomposer, which
adaptively disentangles spatio-temporal dynamics into
components that represent physical processes within the system. This is achieved through a Koopman
theory-based evolutionary matrix, which results in decomposed components rich in spatio-temporal
semantics that PLMs can more easily comprehend. This decomposition-based approach enables
PLMs to capture both spatial and temporal dynamics more effectively. Moreover, we introduce a
selective reprogramming strategy to tackle the complexity of spatio-temporal structures, which
differ fundamentally from the one-dimensional sequence-like structure of textual data. Our strategy
constructs an expanded spatio-temporal vocabulary by selecting the most relevant spatio-temporal
word tokens from the PLM’s vocabulary through a differentiable reparameterization process. Unlike
previous works that use compressed vocabularies, which can lead to ambiguous semantics, our
approach reconstructs the reprogramming space with a rich, semantically distinct spatio-temporal vo-
cabulary. By leveraging pretrained spatio-temporal correlations, this strategy enables PLMs to focus
on relationships among tokens in a 3D geometric space, significantly enhancing their ability to model
complex spatio-temporal dynamics. We evaluate REPST on a variety of spatio-temporal forecasting
tasks, including energy management, air quality prediction, and traffic forecasting. Extensive experi-
mental results highlight the framework’s superior performance compared to state-of-the-art models,
particularly in few-shot and zero-shot learning contexts. Our main contributions are summarized as:

• We identify the underlying reason for the underperformance of existing PLM-based approaches for
spatio-temporal forecasting, highlighting the need to decompose spatio-temporal dynamics into
interpretable components to fully leverage PLMs’ potential.

• We propose REPST, a spatio-temporal forecasting framework that enables PLMs to grasp complex
spatio-temporal patterns via physics-aware decomposition-based reprogramming. The reprogram-
ming module reconstructs an expanded spatio-temporal vocabulary using a selective strategy,
allowing PLMs to model spatio-temporal dynamics without altering their pre-trained parameters.

• We show that REPST consistently achieves superior performance across real-world datasets,
particularly in data-scarce settings, demonstrating strong generalization capabilities in few-shot
and zero-shot learning scenarios.
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2 PRELIMINARIES

Spatio-temporal data can be considered as observations of the state of a dynamical system. It is
typically represented as a two-dimensional matrix X ∈ RN×T , which captures the states of a set
of N nodes V , where each node in V corresponds to an entity (e.g., grids, regions, and sensors) in
space. Specifically, we denote xit−T+1:t = [xit−T+1, xit−T , ..., xi

t]
⊤ ∈ RT×1 as the observations of

node i from time step t− T + 1 to t, where T represents the look-back window length. The goal of
spatio-temporal forecasting problem is to predict future states for all nodes i ∈ V over the next τ time
steps based on a sequence of historical observations. This involves uncovering the complex spatial
and temporal patterns inherent in spatio-temporal data to reveal the hidden principles governing the
system’s dynamics:

Ŷt+1:t+τ = fθ(Xt−T+1:t), (1)

where Xt−T+1:t = [x0t−T+1:t, x1t−T+1:t, ..., xN−1
t−T+1:t]

⊤ ∈ RN×T denotes the historical observations
in previous T time steps, and fθ(·) is the spatio-temporal forecasting model parameterized by θ.
Ŷt+1:t+τ = {ŷit+1:t+τ}Ni=0 and Yt+1:t+τ = {yit+1:t+τ}Ni=0 denote the estimated future states and the
ground truth in the next τ time steps, where Ŷt+1:t+τ ,Yt+1:t+τ ∈ RN×τ . For convenience, we omit
the lower corner mark and represent Xt−T+1:t,Yt+1:t+τ as X,Y and xi

t−T+1:t, yit+1:t+τ as xi, yi.

3 METHODOLOGY

As illustrated in Figure 2, REPST consists of three components: a physics-aware spatio-temporal
decomposer, a selective reprogrammed language model, and a learnable mapping function. To be
specific, in physics-aware spatio-temporal decomposer, we first decompose the input signals into a
series of distinct physics-aware components. Then, we utilize an adaptive reprogramming strategy to
reprogram these components into textual embeddings via an expanded spatio-temporal vocabulary
constructing through a selective manner. After that, we employ a frozen PLM to construct spatio-
temporal correlations based on these textual embeddings. Finally, a learnable mapping function
generates future predictions based on the output of PLM.

3.1 PHYSICS-AWARE EVOLUTIONAL SPATIO-TEMPORAL DECOMPOSITION

Recent studies have revealed that PLMs possess rich spatio-temporal knowledge and reasoning
capabilities (Gurnee & Tegmark, 2023; Mai et al., 2023; Jin et al., 2024). However, existing methods
failed to fully leverage the capabilities of PLMs, which raises challenges for spatio-temporal data
forecasting as well. As aforementioned, reasons for this shortcoming lies in their over simplistic
encoding to time series. PLMs requires further process of spatio-temporal data to enhance their
comprehensibility to such complex structure. In this section, we address this shortcoming through a
carefully designed physics-aware spatio-temporal decomposer. Previous works (Liu et al., 2024c; Yi
et al., 2024; Shao et al., 2022b) decouple the time series in Fourier space and handle the decoupled
signals separately for better use of the hidden information of time series. Simply decomposing time
series solely based on frequency intensity is not interpretable and cannot effectively capture the highly
coupled spatio-temporal dynamics. Furthermore, this cannot be easily realized by language models
as well due to their limited comprehension of physical semantics.

To fully unlock the spatio-temporal knowledge, inspired by dynamic mode decomposition (Schmid,
2010; Kutz et al., 2016), we propose to capture the underlying dynamic signals in an interpretable
manner by leveraging the dynamic system’s evolution matrix A. To be specific, considering two
state observations X1:t−1 and X2:t, it satisfies X2:t = AX1:t−1. This evolution matrix A is sought in
a low-rank setting to capture the modes governing the system’s dynamics. By applying a series of
mathematical process such as singular value decomposition (SVD) to X1:t−1 and X2:t, we obtain the
eigenvectors Ω = [ω1, ω2, ..., ωC ] and corresponding eigenvalues V = [v1, v2, . . . , vC ] , which can
be leveraged to decompose spatio-temporal dynamic systems into different components. Each ωi,
referred to as a mode of the dynamical system, reflects certain physical behaviors of the system. We
provide a detailed calculation process in Appendix A.5.

Specifically, we first obtain Xnorm by normalizing the input X for each node to have zero mean
and unit standard deviation using reversible instance normalization (RevIN) (Kim et al., 2021).
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Figure 2: The model framework of REPST. (1) Given a raw input spatio-temporal data, we first
perform normalization and then decouple the spatio-temporal data into a set of evolutionary signals.
(2) After that, the signals are concatenated and divided into patches and further transformed into
embeddings by a physics-aware context encoder. (3) Then, the patch embeddings are aligned with
natural language by reprogramming with expanded spatio-temporal vocabulary and further processed
by the frozen GPT-2 backbone. The output patches of the pre-trained language model are reprocessed
by a learnable mapping function to generate the forecasts.

Then, we disentangle a set of physics-aware dynamic components Xdyn ∈ RN×T×C from intricate
spatio-temporal data through reconstructing the system dynamics via modes ωi from the system’s
evolution matrix’s eigenvectors Ω and the corresponding eigenvalues vi. By explicitly decoupling
the physics-aware nature of the spatio-temporal system, our approach is well-suited to capture the
various physical behaviors of the system, providing PLMs with a series of components enriched
with spatio-temporal semantic information that is significantly easier to comprehend compared to the
originally densely coupled dynamic signals (Rowley et al., 2009; Li et al., 2024a).

Xdyn = ε0e
ω0tv0 ∥ ε1e

ω1tv1 ∥ · · · ∥ εCe
ωCtvC , (2)

where Xdyn is a set of spatio-temporal dynamics calculating based on the modes ωi and eigenvalues
vi. εi is based on the input observation (see section A.5). Since the dynamics of the system is
disentangled, we can distinguish the noise from the dominant dynamic signals in the original data.
If only the most significant information is retained during reconstruction, the reconstruction results
can remove noise, thus obtaining a smoother state evolutionary information. Therefore, we further
reconstruct the whole system Xrec ∈ RN×T with most dominant modes to enhance prediction:

Xrec =
∑︂
i

εie
ωitvi, i ∈ α, (3)

where α represents a set of indices stands for top-k most dominant modes, constructed based on each
mode’s contribution to the overall system (Schmid, 2010), which is calculated through the analysis
of ωi and vi (see section A.5). Compared to existing Fourier-based methods, the system’s evolution
matrix Ω is derived from data representing the true dynamics of the system. It can separate modes
corresponding to specific physical processes, enabling us to capture various aspects of the system’s
evolution, such as periodic oscillations in traffic flows caused by traffic signals or slow changes in air
pollution driven by wind direction (Proctor et al., 2016; Brunton et al., 2016; Chen et al., 2012).

Additionally, to enhance the information density of decoupled signals, we employ patching strategy
(Nie et al., 2022) to construct patches as the input tokens for PLMs. Given the decoupled signals
Xdec = Xrec ∥ Xdyn ∈ RN×T×(C+1), we divide the observations of each node as a series of
non-overlapped patches XP

dec ∈ RN×P×TP×(C+1), where P = [T/TP ] + 1 represents the number
of the resulting patches, and TP denotes the patch length. Next, we encode the patched signals as
patched embeddings : Xenc = Conv(XP

dec, θp) ∈ RN×P×D, where N stands for the number of
nodes, and D is the embedding dimension. Conv(·) denotes the patch-wise convolution operator
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and θp represents the learnable parameters of the patch-wise convolution. Unlike previous works
(Liu et al., 2024a;b) that simply regard each node as a token, our model treats each patch as one
token, allowing to construct fine-grained relationships among both spatial and temporal patterns.
By doing so, our model can preserve representations rich in semantic information, allowing PLM’s
comprehension in both spatial and temporal dynamics more effectively.

3.2 SELECTIVE REPROGRAMMED LANGUAGE MODELS

Based on the decoupled signal patches Xenc, how to tackle the complexity of spatio-temporal
structures raises another question. Compared to directly handling the spatio-temporal embeddings,
representations in natural language space are inherently suitable for PLMs. To enrich spatio-temporal
semantics and enable more comprehensive modeling of hidden spatio-temporal physical relationships,
as well as unlocking the reasoning capabilities of PLMs, we further reprogram the components
into the textual embedding place via an expanded spatio-temporal vocabulary. When handling
textual-based components, the rich physical semantic information can boost the pretrained physical
knowledge of PLMs, resulting in an adequate modeling of the hidden physical interactions between
disentangled components.

Specifically, we introduce our selective reprogramming strategy, which further constructs an expanded
spatio-temporal vocabulary in a differentiable reparameterization process. We begin with E ∈ RV×d,
the pretrained vocabulary of the PLMs, where V is the vocabulary size and d is the dimension of the
embedding. We introduce a learnable word mask vector m ∈ RV×1 to adaptively select the most
relevant words, where m[i] ∈ {0, 1}. In specific, we first obtain m through a linear layer followed by
a Softmax activation, denoted as m = Softmax(EW), where W is a learnable matrix. Afterward,
we sample Top-K word embeddings from E based on probability m[i] associated with word i for
reprogramming. Since the sampling process is non-differentiable, we employ Gumbel-Softmax
trick(Jang et al., 2016) to enable gradient calculation with back-propagation, defined as

m′[i] =
exp((logm[i] + gi)/τ)∑︁V
j=1 exp((logm[i] + gj)/τ)

, (4)

where m′ is a continuous relaxation of binary mask vector m for word selection, τ is temperature
coefficient, gi and gj are i.i.d random variables sampled from distribution Gumbel(0, 1). Concretely,
the Gumbel distribution can be derived by first sampling u ∼ Uniform(0, 1) and then computing
gi = − log(− log(u)). By doing so, we can expand vocabulary space while preserving the semantic
meaning of each word.

After obtaining the sampled word embeddings E′ ∈ RK×d, we perform modality alignment by using
cross-attention. In particular, we define the query matrix Xq = XencWq, key matrix Xk = E′Wk

and value matrix Xv = E′Wv, where Wq, Wk, and Wv . After that, we calculate the reprogrammed
patch embedding as follows:

Z = Attn(Xq,Xk,Xv) = Softmax(
XqX⊤

k√
d

)Xv, (5)

where Z ∈ RN×P×d denotes the aligned textual representations for the input spatio-temporal data.
Based on the aligned representation, we utilize the frozen PLMs as the backbone for further processing.
Roughly, PLMs consist of three components: self-attention, Feedforward Neural Networks, and
layer normalization layer, which contain most of the learned semantic knowledge from pre-training.
The reprogrammed patch embedding Z is encoded by this frozen language model to further process
the semantic information and generates hidden textual representations Ztext. A learnable mapping
function is then used to generate the desired target outputs, which map the textual representations
into feature prediction.

Overall, in our REPST, the process of predicting the future states Ŷ based on the history observation
X can be simply formulated as:

Z = Evolutionary-Decomposition(X), (6)
Ztext = Reprogrammed-LM(Z,E), (7)

Ŷ = Projection(Ztext), (8)
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where Evolutionary-Decomposition(·) represents the physics-aware spatio-temporal decomposer
and Reprogrammed-LM(·, ·), Projection(·) is the selective reprogrammed Language Model and
learnable mapping function.

Model optimization. Following the previous GNN-based works (Wu et al., 2019; Shao et al., 2022a),
our REPST aims to minimize the mean absolute error (MAE) between the predicted future states
Ŷ and ground truth Y. This provides us effective capability to generate predictions among various
spatio-temporal scenarios, formulated as: L = 1

N

∑︁N
i=1

⃓⃓⃓
ŷi − yi

⃓⃓⃓
. Here, ŷi, yi represents a sample

from Ŷ and Y, and N represent the total number of samples.

Scalability. Technically, the proposed REPST can be viewed as utilizing GPT-2 after performing
cross-attention over N × P patches and V ′ word embeddings, which has the time and memory
complexities that scale with O(N ·P · V ′ +(N ·P )2). Notably, the frozen GPT-2 blocks account for
O((N · P )2), which do not participate in back propagation. To reduce such computational burden
that undermines the application of the proposed method to large N , we train the model by partitioning
the pre-defined spatial graph into multiple sub-graphs. In practice, we train REPST by sampling a
sub-graph each time. By doing so, we can effectively reduce the computational costs and enable the
model to scale to large N .

4 EXPERIMENTS

We thoroughly validate the effectiveness of REPST on various real-world datasets, including gen-
erative performance, overall forecasting performance and ablation study. We first introduce the
experimental settings, including datasets and baselines. Then we conduct experiments to compare the
few-shot, zero-shot and overall performance of our REPST with other previous works. Furthermore,
we design comprehensive ablation studies to evaluate the impact of the essential components.

4.1 EXPERIMENTAL SETTINGS

Datasets. We conducted experiments on six commonly used real-world datasets (Song et al., 2020;
Lai et al., 2018), each varying in the fields of traffic, solar energy, and air quality. The traffic
datasets, Beijing Taxi (Zhang et al., 2017), NYC Bike 1, PEMS-BAY and METR-LA (Li et al., 2018),
are collected from hundreds of individual detectors spanning the traffic systems across all major
metropolitan areas of Beijing, NYC and California. The Air Quality2 dataset includes six indicators
(PM2. 5, PM10, NO2, CO, O3, SO2) to measure air quality, collected hourly from 35 stations across
Beijing. Lastly, the Solar Energy dataset records variations every 10 minutes from 137 PV plants
across Alabama, capturing the dynamic changes in solar energy production. Each dataset comprises
tens of thousands of time steps and hundreds of nodes, offering a robust foundation for evaluating
spatio-temporal forecasting models. The statistics of the datasets are summarized in Appendix A.2.

Baselines. We extensively compare our proposed REPST with the state-of-the-art forecasting
approaches A.1, including (1) the GNN-based methods: Graph Wavenet (Wu et al., 2019), D2STGNN
(Shao et al., 2022b) and MTGNN (Wu et al., 2020) (2) non-GNN-based state-of-the-art models:
STID (Shao et al., 2022a), STAEformer (Liu et al., 2023a) and STNorm (Deng et al., 2021) which
emphasizes the integration of spatial and temporal identities; (3) the state-of -the-art time series
model: Informer (Zhou et al., 2021), iTransformer (Liu et al., 2023b) and PatchTST (Nie et al., 2022)
(4) PLM-based time series forecasting models: FPT (Zhou et al., 2024); (5) methods with no trainable
parameters: HI (Cui et al., 2021). We reproduce all of the baselines based on the original paper or
official code.

4.2 REPST GENERALIZATION PERFORMANCE

Few-Shot performance. PLMs are trained using large amounts of data that cover various fields,
equipping them with cross-domain knowledge. Therefore, PLMs can utilize specific spatio-temporal
related textual representations to unlock their capabilities for spatio-temporal reasoning, which can

1https://github.com/LibCity/Bigscity-LibCity
2https://www.biendata.xyz/competition/kdd_2018/data/
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Table 1: Few-Shot performance comparison on six real-world datasets in terms of MAE and RMSE.
We utilize data in one day (less than 1%)for training and the same data as full training settings for
validation and test. The input history time steps T and prediction steps τ are both set to 24. We
use the average prediction errors over all prediction steps. Bold denotes the best performance and
underline denotes the second-best performance.

Dataset METR-LA PEMS-BAY Solar Energy Air Quality
Beijing Taxi NYC Bike

Inflow Outflow Inflow Outflow
Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Informer 8.19 14.35 5.30 10.43 8.95 11.92 38.02 56.45 29.20 53.52 28.76 52.53 6.99 16.44 6.33 15.62
iTransformer 7.72 15.85 5.20 10.94 4.74 8.27 35.59 52.95 31.56 58.11 32.22 59.93 8.23 16.21 7.46 15.68

PatchTST 7.20 15.56 4.52 8.85 4.65 7.82 35.76 53.80 32.66 61.17 32.58 60.95 7.03 15.32 6.88 14.84
MTGNN 9.62 17.60 5.67 8.91 4.73 8.68 36.51 53.14 28.98 48.72 28.80 46.87 6.51 14.85 6.56 14.90
GWNet 7.04 12.58 5.84 9.42 9.10 11.87 36.26 54.88 29.24 51.68 29.47 50.52 12.55 21.97 12.68 22.27
STNorm 7.93 13.67 5.15 8.92 5.36 9.59 36.38 57.66 28.92 50.59 28.86 49.39 11.69 20.17 12.53 21.84

D2STGNN 6.41 11.57 5.31 9.39 8.80 11.26 40.77 55.07 36.73 58.70 36.06 66.01 10.64 18.96 10.33 18.43
STID 7.26 12.70 6.83 12.88 4.89 9.41 43.21 61.07 32.73 51.77 32.91 51.94 8.94 16.34 8.88 15.77

STAEFormer 6.35 11.38 5.37 9.35 4.66 12.57 37.68 53.39 28.88 49.86 28.06 48.13 12.50 20.77 11.84 20.88
FPT 6.80 11.36 4.55 9.71 10.59 13.92 36.62 51.33 41.66 74.87 43.28 77.84 12.97 20.06 12.72 20.11

REPST 5.63 9.67 3.61 7.15 3.65 6.74 33.57 47.30 26.85 45.88 26.30 43.76 5.29 12.11 5.66 12.85

handle the difficulties caused by data sparsity. To verify this, we further conduct experiments on
each field to evaluate the predictive performance of our proposed REPST in data-sparse scenarios.
Our evaluation results are listed in Table 1. Concretely, all models are trained on 1-day data from
the train datasets and tested on the whole test dataset. REPST consistently outperforms other deep
models and PLM-based time series forecasters in various datasets. This illustrates that our REPST
can perform well on a new downstream dataset and is suitable for spatio-temporal forecasting tasks
with the problem of data sparsity.

Specifically, our REPST show competitive performance over other baselines in few-shot experiments.
It demonstrates that PLMs contain a wealth of spatio-temporal related knowledge from pre-training.
Moreover, the capabilities of spatio-temporal reasoning can be enhanced by limited data. This shows
a reliable performance when transferred to data-sparse scenarios.

2.03
NYC->CHI

11.90
CHI->NYC

5.53
NYC->Solar

35.86
Solar->Air

5.57
CHI->Solar

3.61
Solar->CHI

9.07

6.39

RePST
TimesFM

OpenCity-plus
OpenCity-base

OpenCity-mini

Figure 3: Zero-Shot Performance. We eval-
uate the zero-shot capability of our REPST
in the same evaluation setting as few-shot ex-
periments.

Zero-Shot performance. In this part, we focus on evaluat-
ing the zero-shot generalization capabilities of our REPST
within cross-domain and cross-region scenarios following
the experiment setting of (Jin et al., 2023b). Specifically,
we test the performance of a model on dataset A after
training under a supervised learning framework on an-
other dataset B, where dataset A and dataset B have no
overlapped data samples. We use the similar experiment
settings to full training experiments and evaluate on var-
ious cross-domain and cross-region datasets. The datasets
includes NYC Bike, CHI Bike (Jiang et al., 2023), Solar
Energy and Air Quality (NYC, CHI, Solar and Air). We
compare our performance with recent works in time series
or spatio-temporal data with open-sourced model weights
(Das et al., 2023; Li et al., 2024c; Ekambaram et al., 2024).

Our results in 3 show that REPST consistently secure
top positions on all settings. This outstanding zero-shot
prediction performance indicates REPST’s versatility and
adaptability in handling diverse scenarios. It does obtain transferable knowledge for dynamic
systems by unlocking the reasoning capabilities of PLMs. Its excellent adaptation to brand new
scenarios significantly reduces the time and computational resources typically required by traditional
approaches. Although our REPST falls a little short to OpenCity-base in Solar Energy → CHI_Bike,
it is because of the large amount of traffic related datasets included by OpenCity’s pretrain datasets.
Compared to it, our REPST is trained on Solar Energy dataset which has almost no connection
with such traffic datasets. This relatively comparable performance demonstrate REPST’s excellent
generative capability in cross-domain settings.
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Table 2: Performance comparison of full training on six real-world datasets in terms of MAE and
RMSE. The input history time steps T and prediction steps τ are both set to 24. We use the average
prediction errors over all prediction steps. Bold denotes the best performance and underline denotes
the second-best performance.

Dataset METR-LA PEMS-BAY Solar Energy Air Quality
Beijing Taxi NYC Bike

Inflow Outflow Inflow Outflow
Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

HI 9.88 16.98 5.51 10.50 9.42 12.53 53.18 67.42 105.55 142.98 105.63 143.08 11.98 19.23 12.18 19.50
Informer 4.68 8.92 2.54 5.30 3.92 5.91 29.38 42.58 16.41 29.03 16.01 26.90 3.49 8.36 3.92 9.52

iTransformer 4.16 9.06 2.51 5.90 3.33 5.41 28.37 44.33 21.72 36.80 22.15 38.63 3.15 7.55 3.28 7.82
PatchTST 4.15 9.07 2.06 4.85 3.49 5.89 28.05 44.81 23.64 43.63 22.71 41.52 3.58 8.83 3.66 8.99
MTGNN 3.76 7.45 1.94 4.40 3.60 5.61 27.07 40.17 15.92 26.15 15.79 26.08 3.31 7.91 3.38 8.24
GWNet 3.93 8.19 2.28 5.06 3.55 5.39 31.57 44.82 15.69 26.82 15.76 26.84 3.13 7.58 3.33 7.64
STNorm 3.98 8.44 2.20 5.02 4.17 5.99 30.73 44.82 15.37 27.50 15.45 27.52 3.14 7.46 3.24 7.63

D2STGNN 3.94 7.68 2.11 4.83 4.36 5.85 27.77 41.87 24.33 45.65 26.86 45.57 3.10 7.43 3.25 7.75
STID 3.68 7.46 1.93 4.31 3.70 5.57 26.94 41.01 15.60 27.96 15.81 28.28 3.36 7.91 3.38 8.24

STAEFormer 3.60 7.44 1.97 4.33 3.44 5.21 28.12 41.83 15.47 26.45 16.08 26.83 3.03 7.39 3.27 7.56
FPT 6.03 10.85 2.56 5.01 6.02 8.31 32.79 47.55 32.41 55.28 32.77 55.77 7.21 12.76 7.75 13.85

REPST 3.63 7.43 1.92 4.33 3.27 5.12 26.20 39.37 15.13 25.44 15.75 25.24 3.01 7.33 3.16 7.43

Increasing predicted length. In this part, we analyze the model performance across varying
prediction horizons τ ∈ {6, 12, 24, 36, 48}, with a fixed input length T = 48. Figure 4 showcases
the MAE and RMSE across two datasets: Air Quality and NYC Bike, for four models. The REPST
model demonstrates the most stable performance across both MAE and RMSE metrics, particularly
in longer prediction horizons (τ = 36, 48). In contrast, previous state-of-the-art models exhibit
notable performance degradation as the prediction horizon increases. The performance of REPST,
on the other hand, remains relatively stable and robust, demonstrating its efficacy in leveraging PLM
to improve performance over longer-term predictions, which can also be attributed to its ability
to capture both spatial and temporal correlations effectively, making it highly suited for few-shot
learning tasks in spatio-temporal forecasting.

6 12 24 36 48
Prediction Horizons

30

40

50

60

70 Air Quality (MAE)

6 12 24 36 48
Prediction Horizons

5.0

6.0

7.0

8.0

9.0 NYC Bike (MAE)

6 12 24 36 48
Prediction Horizons

40

50

60

70

80 Air Quality (RMSE)

6 12 24 36 48
Prediction Horizons

12

14

16

18

20 NYC Bike (RMSE)

STID STAEformer GWNET RePST

Figure 4: Few-Shot performance with multiple prediction horizons τ ∈ {6, 12, 24, 36, 48} and fixed
input length T = 48. While the performance of previous state-of-the-art models keeps declining with
the increasing of prediction length, the REPST framework empowers the pretrain knowledge of the
reprogrammed spatial language model and obtains a relatively stable performance.

4.3 FULL TRAINING PERFORMANCE OF REPST

Table 2 reports the overall performance of our proposed REPST as well as baselines in 6 real-world
datasets with the best in bold and the second underlined. As can be seen, REPST consistently
achieves either the best or second-best results in terms of MAE and RMSE.

Notably, REPST surpasses the state-of-the-art PLM-based time series forecaster FPT (Zhou et al.,
2024) by a large margin in spatio-temporal forecasting tasks, which can demonstrate that simply
leveraging the PLMs cannot handle problems with complex spatial dependencies. Additionally,
the performance of our REPST reaches either the best or second-best results in METR-LA and
PEMS-BAY datasets. Previous state-of-the-art models, STAEformer and STID, learn global shared
embeddings both in spatial structure and temporal patterns tailored for certain datasets, which is
harmful to their generalization abilities but benefits their capabilities to handle single datasets. Our
spatio-temporal reprogramming block leverages a wide range of vocabulary and sample words that
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Figure 5: Ablation study. We conduct multiple detailed ablation studies on Air Quality, Solar Energy
and Beijing Taxi datasets to figure out the effects of REPST’s main components.

can adequately capture the spatio-temporal patterns, which do make an impact on unlocking the
capabilities of PLMs to capture fine-grained spatio-temporal dynamics.

4.4 ABLATION STUDY

To figure out the effectiveness of each component in our REPST, we further conduct detailed ablation
studies on Air Quality and Solar Energy datasets with three variants as follows:

• r/p PLM: it replaces the pre-trained language model backbone with transformer layers,
following the setting of (Tan et al., 2024).

• r/p Decomposition: it replaces the physics-aware spatio-temporal decomposer with a trans-
former encoder.

• w/o expanded vocabulary: it removes our selective spatio-temporal vocabulary and utilizes
the dense mapping function to enhance reprogramming.

Figure 5 shows the comparative performance of the variants above on Air Quality, Solar Energy and
Beijing Taxi. Based on the results, we can make the conclusions as follows: (1) Our REPST actually
leverage the pretrain knowledge and generative capabilities of PLMs. When we replace the PLM
backbone with transformer layers, the performance of all the datasets decline obviously, indicating
that the pretrain knowledge makes an effect to handle spatio-temporal dynamics. (2) The physics-
aware spatio-temporal decomposer which adaptively disentangles input spatio-temporal data into
physics-aware components can actually enable PLMs to better understand spatio-temporal dynamics.
When constructing spatio-temporal dependencies by a transformer encoder layer, it is still unclear for
PLMs to comprehend. (3) The impressive performance in w/o expanded vocabulary demonstrates
that the selectively reconstructed spatio-temporal vocabulary achieves accurate reprogramming which
enables PLMs to focus on relationships among tokens in 3D geometric space.

5 RELATED WORKS

5.1 SPATIO-TEMPORAL FORECASTING

Spatio-temporal forecasting has been playing a critical role in various smart city services, such as
traffic flow prediction (Liu et al., 2023a; Shao et al., 2022a; Liu et al., 2020), air quality monitoring
(Han et al., 2023; 2021), and energy management (Geng et al., 2019). Unlike traditional time series
forecasting, the forecasting challenges associated with spatio-temporal data are often characterized
by the unique properties of strong correlation and heterogeneity along the spatial dimension, which
are inherently more complex.

Early studies usually capture spatial dependencies through a predefined graph structure (Li et al.,
2018; Han et al., 2020; Shao et al., 2022b; Wu et al., 2020), which decribes the explicit relationships
among different spatial locations. In recent years, there is a growing trend toward the utilization of
adaptive spatio-temporal graph neural networks, which can automatically capture dynamic spatial
graph structures from data. For instance, Graph WaveNet (Wu et al., 2019) eliminate the need for
predefined graphs by learning an adaptive adjacency matrix using two embedding matrices. AGCRN
(Bai et al., 2020) introduces a node adaptive parameter learning layer, allowing it to learn node-
specific spatio-temporal patterns. Besides, attention mechanism is also widely employed in existing
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models, as seen in examples like GMAN (Zheng et al., 2020), ASTGNN (Guo et al., 2021), and
STAEformer (Liu et al., 2023a). In contrast, STID (Shao et al., 2022a), a model based on Multi-Layer
Perceptrons (MLPs), achieves state-of-the-art results by utilizing multiple embedding techniques to
memorize stable spatial and temporal patterns.

More recently, inspired by the huge success of PLMs in natural language processing field, there
is increasing interest in building pre-trained models for spatio-temporal forecasting tasks. Several
studies (Liu et al., 2024a;b; Yan et al., 2023; Jiang et al., 2024) explore the application of PLMs
for handling spatio-temporal data. Among these, UrbanGPT (Li et al., 2024b) offers a promising
end-to-end solution by integrating spatio-temporal data with textual information, enabling accurate
predictions of urban dynamics. Furthermore, the strong power of Transformer offers an opportunity
to build spatio-temporal foundation models, such as OpenCity (Li et al., 2024c) and UniST (Yuan
et al., 2024). Trained on numerous spatio-temporal data, these models demonstrate strong capabilities
and versatility across diverse forecasting scenarios. However, due to the problems of data-sparsity
in multiple spatio-temporal scenarios, it is difficult for these models to gather large amount of data
to perform pretraining comprehensively. In addition, the PLM-based spatio-temporal forecasting
approaches do not fully leverage PLM’s potential. To address these gaps, this paper introduces a
new reprogramming framework to leverage PLM’s generative and reasoning capabilities for spatio-
temporal forecasting, particularly in data-sparse scenarios.

5.2 PRETRAINED LANGUAGE MODELS FOR TIME SERIES

In recent years, PLMs have demonstrated remarkable performance across various time series analysis
tasks, including forecasting (Zhou et al., 2024; Gruver et al., 2024; Zhang et al., 2024), classification
(Sun et al., 2023), and anomaly detection (Zhou et al., 2024). A significant body of research has
focused on leveraging PLMs to address these challenges (Cao et al., 2023; Zhou et al., 2024; Gruver
et al., 2023; Lai et al., 2023). However, a persistent issue in these efforts is the modality gap between
time series data and natural language. To address this challenge, Time-LLM (Jin et al., 2023b)
develops a time series reprogramming approach (Yang et al., 2021), which can effectively bridges
the modality gap between time series and text data. The objective of reprogramming is to learn a
trainable transformation function that can be applied to the patched time series data, enabling it to be
mapped into the textual embedding space of the PLM.

Nevertheless, (Tan et al., 2024) conducted numerous experiments showing that existing PLM-based
approaches (Zhou et al., 2024; Jin et al., 2023b; Wang et al., 2024) do not fully unlock the reasoning
or generative capabilities of PLMs. The reason these approaches achieve high performance lies in
the similar sequential formulation shared by time series and natural language (Liu et al., 2024d). In
fact, even when PLMs are merely used as one-dimensional encoders, time series analysis tasks can
still benefit from the pre-trained weights of PLMs. Although PLMs can handle one-dimensional
sequential data like text and time series, they fall short in capturing dependencies among complex
spatio-temporal structure, leading to suboptimal performance for spatio-temporal forecasting tasks.
In this work, we propose REPST, which enables PLMs to comprehend complex spatio-temporal
dynamics via a physics-aware decomposition-based reprogramming strategy.

6 CONCLUSION

In this paper, we highlight the underlying reason for the poor performance of previous PLM-based
approaches in spatio-temporal forecasting, emphasizing the need for the interpretability to fully
leverage PLM’s potential. To address this problem, we developed REPST, a tailored spatio-temporal
forecasting framework that enables PLMs to comprehend the complex spatio-temporal patterns
via a physics-aware decomposition-based reprogramming strategy. We design a physics-aware
spatio-temporal decomposer which adaptively disentangles complex spatio-temporal dynamics into
components with rich physical semantics for PLM’s better comprehension. Moreover, we construct
an expanded spatio-temporal vocabulary by a selective approach, which enables PLMs to focus on
relationships among 3D geometric space. As a result, PLM’s potential is full unlocked to handle spatio-
temporal forecasting tasks. Extensive experiments demonstrate that our proposed framework, REPST,
achieves state-of-the-art performance on real-world datasets and exhibits exceptional capabilities in
few-shot and zero-shot scenarios.
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A IMPLEMENTATION DETAILS

A.1 BASELINE MODELS

• D2STGNN: D2STGNN Shao et al. (2022b) is an advanced model designed to improve
the accuracy and efficiency of traffic prediction by addressing the complexities inherent in
spatial-temporal data. By decoupling spatial and temporal components, the model reduces
complexity, making it more computationally efficient without sacrificing accuracy.

• STAEformer: STAEformer (Liu et al., 2023a) is a cutting-edge model that elevates the
standard Transformer architecture for traffic forecasting by incorporating Spatio-Temporal
Adaptive Embeddings. These embeddings dynamically encode both spatial and temporal
dependencies, allowing the model to capture the complex, evolving patterns typical in traffic
data. The spatial embeddings represent geographical relationships between traffic nodes,
while the temporal embeddings account for time-related patterns like rush hours or seasonal
variations. Unlike traditional static embeddings, it adaptively adjusts to the changing traffic
conditions, enhancing the model’s ability to predict future traffic flows with greater accuracy

• Graph WaveNet: Graph WaveNet (Wu et al., 2019) is a neural network model designed
for spatio-temporal forecasting, particularly in graph-structured data like traffic networks.
It combines graph convolutions to capture spatial dependencies between nodes (such as
road intersections) and dilated temporal convolutions to model long-term and short-term
trends over time. A key feature of Graph WaveNet is its learnable adjacency matrix, which
dynamically adapts the relationships between nodes. It also uses diffusion convolutions to
model the flow of information across the graph.

• MTGNN: MTGNN (Wu et al., 2020) is a model designed for forecasting tasks involving
multivariate time series data with underlying graph structures, such as traffic or climate data.
It combines graph neural networks to capture spatial dependencies between variables with
temporal convolution layers to model time-based patterns. MTGNN uses an adaptive graph
learning mechanism, where the graph structure representing relationships between variables
is learned dynamically from the data, rather than being predefined. This allows the model to
capture both static and dynamic dependencies in multivariate time series.

• Informer: Informer (Zhou et al., 2021) is a Transformer-based model specifically designed
for long-range time-series forecasting, addressing the computational challenges of handling
large sequences. It introduces the ProbSparse self-attention mechanism, which selectively
focuses on the most important queries, reducing the computational load while maintaining
accuracy. Additionally, Informer incorporates a distilling mechanism, which progressively
reduces the length of the time series, retaining only essential features and improving effi-
ciency. These innovations allow Informer to handle large-scale time series data efficiently,
making it particularly effective for long-range forecasting tasks such as weather prediction,
traffic flow analysis, and energy consumption forecasting.

• iTransformer: iTransformer (Liu et al., 2023b) is an advanced model designed for multivari-
ate time series data forecasting, leveraging the strengths of the Transformer architecture to
effectively capture spatial dependencies between variables. Unlike traditional Transformers,
iTransformer employs a novel invert mechanism that adapts to the unique characteristics
of spatio-temporal data, enabling it to focus on relevant spatial features while modeling
long-range temporal patterns. By effectively integrating cross-variables information, iTrans-
former achieves high accuracy and efficiency in forecasting tasks that involve complex,
interrelated data.

• PatchTST: PatchTST (Nie et al., 2022) is a novel framework tailored for time series
forecasting that utilizes a patch-based approach to capture temporal dynamics efficiently. By
dividing the input data into patches and employing a transformer architecture, it enhances
the model’s ability to learn local and global patterns simultaneously. This design not only
improves predictive performance but also reduces computational complexity, making it
suitable for large-scale time series applications across various domains, including finance,
healthcare, and IoT.

• STNorm: STNorm Deng et al. (2021) normalizes data to better capture underlying patterns
in both spatial and temporal dimensions. By addressing the variability in data across different
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time steps and locations, STNorm improves the accuracy of predictions, offering a robust
approach to handling complex, dynamic datasets.

• STID: STID Shao et al. (2022a) emphasizes the integration of spatial and temporal identities
to enhance predictive performance. It employs unique identifiers for spatial and temporal
components to effectively capture and utilize the inherent structure and patterns in the data.

• FPT: FPT Zhou et al. (2024) demonstrate that partly frozen pre-trained models on natural
language or images can handle all main time series analysis tasks.

• HI: HI Cui et al. (2021) is a baseline model designed to leverage the natural continuity of
historical data without relying on trainable parameters. HI directly uses the historical data
point closest to the prediction target within the input time series as the forecasted value. HI
capitalizes on the inherent persistence of historical patterns, making it a simple yet effective
benchmark for time series forecasting tasks.

A.2 DATASET DESCRIPTIONS

We follow the same data processing and train-validation-test set split protocol used in the baseline
models, where the train, validation, and test datasets are strictly divided according to chronological
order to make sure there are no data leakage issues. As for the forecasting settings, we fix the length
of the lookback series as 24 , and the prediction length is 24. Six commonly used real-world datasets
vary in fields of traffic (PEMS-BAY, METR-LA, Beijing Taxi, NYC Bike), energy (Solar Energy)
and air quality (Air Quality), each of which holds tens of thousands of time steps and hundreds of
nodes. Beijing Taxi and NYC Bike datasets are collected in every 30 minutes from tens of individual
detectors spanning the traffic system across all major metropolitan areas of NYC and Beijing, which
are widely used in previous spatio-temporal forecasting studies. PEMS-BAY and METR-LA datasets
are collected in every 5 minutes from nearly 40,000 individual detectors spanning the highway system
across all major metropolitan areas of California. Air Quality dataset holds 6 indicators (PM2.5,
PM10, NO2, CO, O3, SO2) to measure air quality. They are collected from 35 stations in every
1 hour. And Solar Energy dataset collect the every 10 minutes variations of 137 PV plants across
Alabama. Notably, we construct the graph for 35 stations by leveraging series similarity between
nodes. The details of datasets are provided in Table 3

Table 3: Detailed dataset descriptions. Dim denotes the variate number of each dataset. Dataset
Participation denotes the total number of time points in (Train, Validation, Test) split respectively.
Frequency denotes the sampling interval of time points.

Dataset Dim Dataset Participation Frequency Information

Air Quality 35 (6075, 867, 1736) 1 hour Air Quality

PEMS-BAY 325 (35488, 5207, 10414) 5 min Traffic Speed

METR-LA 207 (23958, 3422, 6845) 5 min Traffic Speed

Beijing Taxi(Inflow) 1024 (3831, 547, 1095) 30 min Taxi Service

Beijing Taxi(Outflow) 1024 (3831, 547, 1095) 30 min Taxi Service

NYC Bike(Inflow) 128 (3058, 437, 874) 30 min Bike Service

NYC Bike(Outflow) 128 (3058, 437, 874) 30 min Bike Service

CHI Bike 270 (6183, 883,1766) 30 min Bike Service

Solar Energy 137 (36776, 5254, 10507) 10 min Energy

A.3 EVALUATION METRICS

Three metrics are used for evaluating the models: mean absolute error (MAE) and root mean squared
error (RMSE). Lower values of metrics stand for better performance. RMSE and MAE measure
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absolute errors, while MAPE measures relative errors.

MAE =
1

N

N∑︂
i=1

⃓⃓⃓
ŷi − yi

⃓⃓⃓
,

RMSE =

⌜⃓⃓⎷ 1

N

N∑︂
i=1

(ŷi − yi)2,

where ŷi, yi represents a sample from Ŷ and Y, and N represent the total number of samples.

A.4 KOOPMAN THEORY

Koopman Theory (Koopman, 1931) shows that any nonlinear dynamic system, including spatio-
temporal series, can be modeled by an infinite-dimensional linear Koopman operator acting on a
space of measurement functions.

Koopman operator theory provides a powerful framework for analyzing nonlinear dynamical systems
by lifting them into a linear infinite-dimensional space. The Koopman framework has shown particular
utility in analyzing spatio-temporal dynamic systems, where complex, nonlinear behaviors can be
represented using linear superpositions of Koopman eigenfunctions. The Koopman operator, denoted
as K, is a linear operator that acts on observable functions of the system state, rather than directly on
the state space itself. In a nonlinear dynamical system described by xt+1 = f(xt), where x ∈ Rn is
the state and f is a nonlinear map, the Koopman operator is defined as:

Kg(xt) = g(f(xt)), (9)

where g is an observable, a scalar-valued function that maps the system’s state to a measurable
quantity. The key insight is that while the system dynamics may be nonlinear, the evolution of
observables under the action of the Koopman operator is linear. This allows for the application
of spectral analysis techniques to extract meaningful modes of the system’s dynamics. Central to
Koopman analysis are the Koopman eigenfunctions, ϕ(x), which satisfy:

Kϕ(x) = λϕ(x), (10)

where λ is the associated Koopman eigenvalue. The eigenfunctions provide a coordinate system in
which the dynamics of the system are fully described by linear evolution:

ϕ(xt+1) = eλtϕ(xt). (11)

In practice, the Koopman spectrum, which consists of the eigenvalues λ, determines the growth,
decay, or oscillatory behavior of different dynamic modes within the system. This makes it an
invaluable tool for decomposing complex, high-dimensional spatio-temporal dynamics into simpler,
interpretable components.

A.5 EVOLUTIONARY DECOMPOSITION

Decomposition methods based on the eigenvectors of a dynamic system’s evolution matrix, such as
Dynamic Mode Decomposition (Schmid, 2010; Kutz et al., 2016), often have more explicit physical
interpretations compared to Fourier-based methods. It captures both transient (non-periodic) and
periodic dynamics, as the eigenvalues can describe exponentially growing or decaying modes. In
is derived from data representing the true dynamics of the system, which can separate modes that
correspond to specific physical processes, such as fluid flow patterns, mechanical oscillations, or heat
transfer (Proctor et al., 2016; Brunton et al., 2016; Chen et al., 2012). A dynamic system can be
represented in a state-space form as:

dx(t)

dt
= Ax(t) (12)

where x(t) is the state vector at time t, A is the evolutionary matrix that describes the dynamics of
the system. The solution to this differential equation can be expressed using the matrix exponential:

x(t) = eAtx(0), (13)
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where eAt is the matrix exponential of A and represents the evolution of the state over time.

Specifically, we can approximate the evolutionary matrix At in the following steps. Given an
observation X1:m representing the dynamic system’s state at discrete time intervals, we organize the
data into two matrices:

X1:t−1 = [x1,x2, . . . ,xt−1] ∈ Rn×(t−1) (14)

X2:t = [x2,x3, . . . ,xt] ∈ Rn×(t−1), (15)

Here, xi ∈ Rn represents the state of the system at the i-th time step, while t denotes the number of
snapshots. The evolutionary matrix At maps the two data matrices such that:

X2:t ≈ AX1:t−1, (16)

Then, we get the mathematical expression of A, formulated as:

A ≈ X2:tX
+
1:t−1, (17)

where X+
1:t−1 is the pseudoinverse of X1:t−1. Assuming A is diagonalizable, we can express the

evolution of the system using the matrix exponential. The eigenvalue decomposition of A is given by:

A = V DV −1, (18)

where D = diag(ω1, ω2, . . . , ωn) is a diagonal matrix of eigenvalues ωi, V = [v1, v2, . . . , vn] is the
matrix of corresponding eigenvectors. We can further write:

Avi = ωivi, (19)

The matrix exponential can be computed using the Jordan canonical form or the spectral decomposi-
tion:

eAt = V eDtV −1, (20)

and the matrix exponential of D is computed as:

eDt = diag(eω1t, eω2t, . . . , eωnt), (21)

So we get the mathematical expression of the state vector at any time t:

xt ≈ V diag(eω1t, eω2t, . . . , eωnt)V −1x0, (22)

xt ≈
C∑︂
i=1

εie
ωitvi, (23)

where C represents the number of eigenvalues and εi is calculated from x0 =
∑︁C

i=1 εivi. Specifically,
we get the physics-aware dynamic components Xdyn:

Xdyn =∥Ci=0 εie
ωitvi, (24)

Xrec =

C∑︂
i=0

εie
ωitvi (25)

We further introduce the evolutionary reconstruction of dynamic system based on analysis of eigen-
values ωi, V = [v1, v2, . . . , vn]. To further determine whether a mode is dominant, we can analyze
its energy contribution (Schmid, 2010; Proctor et al., 2016; Kutz et al., 2016) to the overall system.
The energy contribution of a mode is typically calculated using the following formula:

Ei = |ωi|2 · e2Re(vi)t (26)

This formula combines the initial amplitude of the mode ωi with the real part of the eigenvalue
Re(vi), providing an estimate of the mode’s energy contribution at time t . If the energy contribution
of a particular mode is significantly higher than that of other modes, it can be considered a dominant
mode. Then we sort the values of Ei for each mode ωi, and formulate the top-k mode ωi as our
selected most dominant modes α.
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B EXPERIMENTAL DETAILS

B.1 HYPER PARAMETER SETTINGS

For our prediction tasks, we aim to predict the next 24 steps of data based on the previous 24 steps.
Both the historical length (T ) and prediction length (τ ) are set to 24. Moreover, the parameters for the
convolution kernel in patch embedding layers are set to 3 and the number of the multi-head attention
larers of reprogramming layer is set to 1. Additionally, we obtain the embedding of patches with the
dimension of 64.

B.2 FURTHER EXPERIMENTAL SETUP DESCRIPTIONS

During the reprogramming phrase, we sample 1000 most relevant words to capture the complex
dynamic spatio-temporal dependencies. It is important to note that the missing data of the training
dataset are filled by the former time step of the same node. By doing so, it helps to improve the
performance of pre-trained language models to handle spatio-temporal time series tasks. Because
the value 0 could disturb the capabilities of pre-trained language models for understanding the
consistent textual series. Similar to traditional experimental settings, each time series is split into
three parts: training data, validation data, and test data. For the few-shot forecasting task, only a
certain percentage timesteps of training data are used, and the other two parts remain unchanged. The
evaluation metrics remain the same as for classic spatio-temporal time series forecasting. We repeat
this experiment 3 times and report the average metrics in the following experiments. Additionally,
before the training procedure, the Fourier representations of each node are pre-calculated to save
reduce the computation cost, as a result of which to reduce the training time cost. All the experiments
are implemented in PyTorch and conducted on a single NVIDIA RTX 3090 24GB GPU. We utilize
ADAM with an initial learning rate of 0.002 and MAE loss for the model optimization. We set the
number of frozen GPT-2 blocks in our proposed model gpt_layers ∈ (3, 6, 9, 12). The dimension
of patched representations D is set from {64, 128, 256}. All the compared baseline models that
we reproduced are implemented based on the benchmark of BasicTS Shao et al. (2023), which is
developed based on EasyTorch, an easy-to-use and powerful open-source neural network training
framework.

Category REPST TimesFM OC-plus OC-base OC-mini FPT Time-LLM
NYC → CHI 2.03 9.07 6.39 3.61 6.38 12.56 10.32
CHI → NYC 11.9 19.23 13.26 13.48 13.4 30.24 25.44
NYC → Solar 5.53 9.81 10.37 10.3 10.38 22.36 18.04
Solar → Air 31.86 38.62 37.34 45.44 48.71 68.44 OOT
CHI → Solar 5.57 9.81 10.17 10.3 10.38 26.32 16.28
Solar → CHI 3.96 9.07 6.39 3.61 6.38 15.44 OOT

Table 4: Zero-Shot performance comparison of different models across various dataset transfers.
OOT indicates Out-Of-Time errors for specific tasks.

B.3 DETAILED COMPARISON OF ZERO SHOT PERFORMANCE

We provide the complete numerical results corresponding to Figure 3 in Table 4.

Regarding the limited number of models compared for zero-shot performance, this is primarily due
to the current scarcity of open-source spatio-temporal forecasting models explicitly designed for
zero-shot capabilities. To the best of our knowledge, the baselines we included represent the available
state-of-the-art in this area. However, we acknowledge the importance of broader comparisons, so we
conducted more zero-shot experiments on time series models (FPT, Time-LLM). While these models
may not be specifically designed for spatio-temporal zero-shot forecasting tasks, their inclusion will
provide a more comprehensive context for evaluation.

As can be seen in the table, both FPT and Time-LLM fall short in such spatio-temporal prediction
tasks, primarily due to the lack of abilities for spatial modeling. Moreover, because of the huge
computational cost of Time-LLM caused by large amount of spatial variables, we could only complete
experiments on relatively small datasets (OOT for out of time). This further demonstrates the
superiority of our model in handling spatio-temporal tasks compared to the time series models.
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C SHOW CASES

To provide the visualization of the prediction effect, we list the prediction showcases of certain nodes
contained in dataset PEMS-BAY. Concretely, we visualize the input observation and prediction in 24
steps of four nodes from the node set (Figure 6).
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Figure 6: Case Study for PEMS-BAY. We show the input observation in 24 time steps and prediction
horizon as 24.By showing input, ground truth and prediction together, we can get a clear understanding
to the model performance.
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Figure 7: Case Study for NYC Bike. We show the ground truth and predictions for 240 time steps in
one figure to grasp a global perception.
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We also conduct cases from NYC Bike, which show the predictions in 240 time steps from certain
nodes to grasp a global perception.

Selected Vocabulary

Annual, Begin, rival, Bloom, refreshed, Gained, Wide, Split, incre, 

imitation, extremely, rising, few, inserted, core, air, ight, slowdown, 

cause, dawn, soon, erie, rapid, recalls, Develop, wer, St, Less, 

industry, move, icted, bad, regained, rain, atmosp, wind, 

unchanged, dusty, , itialized, intervals, Benefit, crease, spread, 

holding, ...

Figure 8: Visualization of selected spatio-temporal vocabulary.

We further show cases of our expanded spatio-temporal vocabulary by visualizing the selective
words (see Figure 8). Noted that these selective word embeddings are encodings for word or word
morphemes, which can be regarded as the smallest unit that makes up a word. To intuitive display,
we artificially combine these small units into words. In our RePST, this part is completed by cross
attention module, which can automatically match the spatio-temporal data with most relevant words.
Specifically, in order to minimize the subjective impact, we decrease the number of our expanded
spatio-temporal vocabulary as 100. Finally, we present a case study on real-world spatio-temporal
datasets. We sample the lookback window of one single node in Air Quality and visualize the selected
vocabulary learned by differentiable discrete reprogramming blocks. As shown in tables below, it
can be clearly observed that words from the selected vocabulary can jointly describe the temporal
trend along with the spatio-temporal pattern vividly, indicating the effectiveness of reprogramming
spatio-temporal data into textual representations.

We also observed the insightful interpretability of our framework. For temporal components, series
trends are reflected with words like "increase" Words like "Annual", "rapid", and "unchanged" also
show temporal patterns. For spatial components, we get words for relative relations such as "move"
and "spread". Furthermore, some words describe the pattern in certain scenarios vividly. "dusty",
"rain" and "wind" represent a kind of phenomena which have strong relationship with air quality. The
above results demonstrate that RePST effectively captures the characteristics of different scenarios
and can be used for various downstream tasks.

D DISCUSSION

D.1 DISCUSSIONS ON PHYSICAL KNOWLEDGE FROM DECOMPOSER

There are maybe questions that “Is the information extracted from spatio-temporal decomposer truly
physical knowledge or fine-grained feature?". To answer this question, we claim as follow:

Physics-Aware Justification. Although DMD is designed to extract dynamic modes directly from
observational data, numerous studies have demonstrated its capability to identify propagating waves,
oscillatory behaviors, and decay patterns, which are strongly associated with dominant physical
phenomena (Rowley et al., 2009; Tu, 2013; Yu et al., 2024). For example, research has shown that
DMD can reveal vortex shedding patterns and periodic oscillations in fluid dynamics (Rowley et al.,
2009). These patterns are closely aligned with the Navier-Stokes equations, reflecting the intrinsic
physical dynamics of fluid motion (Tu, 2013; Yu et al., 2024). For this reason, DMD is particularly
suitable for capturing physics-aware patterns from spatio-temporal data, such as traffic flow and
air pollution, which exhibit similar regularities with those governing fluid dynamics. For instance,
STDEN (Ji et al., 2022) and AirPhyNet (Hettige et al., 2024) model the dynamics of traffic flow and
air pollution as a continuous diffusion process via differential equations inspired by fluid dynamics
modeling.
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Why DMD Over PCA or Eigenvectors? Unlike DMD, PCA or eigenvector-based methods are
purely statistical tools that do not inherently account for the underlying physical behavior of a
system. By analyzing the dominant modes, DMD can uncover patterns that are both interpretable and
consistent with the underlying physical mechanisms, providing valuable insights for PLM that can
improve predictive accuracy.

To validate our choice, we first conducted experiments by replacing the physical decomposer with
PCA (see Table 5). This results in a noticeable decline in model performance, suggesting that PCA’s
inability to benefit PLM in our context. Furthermore, when we randomly initialized the pretrained
weights of the PLM, the impact on performance was minor, further indicating that PCA could not
effectively leverage the pretrained knowledge. These findings underscore the superiority of DMD in
generating physically consistent interpretations and unlocking pretrained model knowledge.

Furthermore, to verify the effectiveness of the knowledge extracted by the physical decomposer, we
conducted experiments that apply the decomposed data to two state-of-the-art spatio-temporal fore-
casting models, i.e., STID and GWNet (see Table 5). The results showed only marginal improvement,
indicating that even advanced spatio-temporal forecasting models struggle to effectively utilize the
physical knowledge. This demonstrates that the knowledge extracted by the physical decomposer is
not simply a set of fine-grained features but represents a unique form of information that cannot be
easily leveraged by all models.

In summary, DMD demonstrates a clear advantage over simpler methods such as PCA or eigenvector
decomposition by integrating spatial and temporal dynamics through interpretable modes aligned
with physical phenomena. Our additional experimental results further emphasize its ability to enhance
PLM’s performance by capturing meaningful, physics-aware patterns rather than merely extracting
fine-grained statistical features.

Table 5: Performance comparison of few shot on real-world datasets in terms of MAE. PCA_REPST:
REPST with PCA as decomposer; PCA_random_REPST: REPST with PCA as decomposer and
randomly initialize the weights of the PLM; GWNet_decomposer: GWNet using decomposed
features; STID_decomposer: STID with decomposed features; REPST_random: randomly initialize
the weights of the PLM in REPST.

Dataset Air Quality Solar Energy
NYC Bike

Inflow Outflow
Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE

PCA_REPST 37.49 51.66 4.61 9.74 7.51 15.33 7.81 15.16
PCA_random_REPST 38.04 54.32 4.67 10.84 7.55 15.78 7.82 15.23
GWNet_decomposer 35.81 51.94 8.94 11.02 11.84 20.67 10.96 19.48

GWNet 36.26 54.88 9.10 11.87 12.55 21.97 12.68 22.27
STID_decomposer 42.44 59.68 4.34 8.75 8.07 16.04 8.04 16.55

STID 43.21 61.07 4.89 9.41 8.94 16.34 8.88 15.77
REPST_random 40.12 56.27 5.21 9.32 7.83 16.41 6.81 15.82

REPST 33.57 47.30 3.65 6.74 5.29 12.11 5.66 12.85

D.2 DISCUSSIONS ON REASONING ABILITY OF PLMS

First, in our work, reasoning refers to the ability to make predictions by comprehending both spatial
and temporal contexts. While zero-shot performance improvements demonstrate generalization, we
argue that they also reflect enhanced reasoning capabilities. In zero-shot setting, the model encounters
spatial regions or domains it has not seen during training. The model’s predictive performance solely
relies on its inherent reasoning capabilities and its capacity to infer patterns from prior spatio-temporal
knowledge.

Second, our DMD-based decomposer inherently captures spatial correlations within spatio-temporal
data by leveraging the co-evolving nature of spatial nodes. Specifically, the input matrix X, where
rows represent spatial nodes and columns represent time steps, implicitly embeds spatial relationships
through the correlated dynamics of the nodes. During decomposition, spatial nodes exhibiting similar
temporal behaviors (e.g., traffic flow on adjacent roads) are naturally grouped into the same dynamic
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mode, i.e., dominant global patterns that summarize the behavior of correlated spatial nodes. These
patterns reflect how the spatio-temporal system as a whole evolves over time. Furthermore, DMD
does not require prior spatial knowledge (e.g., spatial adjacency matrices), making it a flexible
approach for datasets with implicit spatial relationships.

Third, we further conducted empirical studies to validate the contribution of DMD to spatial reasoning.
In specific, we decomposed each node in the dataset independently and then concatenated them
together, rather than decomposing the entire spatio-temporal system. By doing so, we can eliminate
the impact of DMD on spatial dimension. We observe an obvious decrease in the model performance,
indicating that the decomposer extract spatio-temporal knowledge from the system rather than simple
temporal embeddings.

Table 6: Performance comparison of few shot on real-world datasets in terms of MAE and RMSE.
The input history time steps T and prediction steps τ are both set to 96.

Dataset Air Quality Solar Energy
NYC Bike

Inflow Outflow
Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE

iTransformer 50.92 72.95 4.58 9.91 4.45 10.34 4.45 10.33
PatchTST 44.22 66.67 4.24 8.56 4.47 10.88 4.48 10.88

STID 38.92 58.91 4.61 8.93 4.46 10.38 4.43 10.32
GWNet 40.47 60.44 OOM OOM 7.59 16.43 7.53 16.28
REPST 34.34 54.38 4.02 8.05 4.40 9.95 4.39 9.87

D.3 DISCUSSIONS ON LONGER PREDICTION HORIZONS

As is common in spatio-temporal forecasting research, our experiments focused on relatively short
prediction lengths to align with standard evaluation protocols in the field. However, we acknowledge
the importance of exploring longer prediction horizons to provide a more comprehensive assessment
of model performance. We conducted additional experiments with a prediction length of 96 across
four datasets (OOM: Out-Of-Memory).

As can be seen in Table 6, REPST consistently outperformed powerful baseline models even in
long-term predictions, undersoring the robustness of our approach across varying prediction lengths.

D.4 DISCUSSIONS ON THE EFFECTIVENESS OF RECONSTRUCTION

Reconstruction plays a pivotal role in DMD-related techniques, ensuring that the extracted modes
faithfully capture the system’s underlying dynamics while eliminating redundant noise. In our
approach, we enhance this process by prioritizing the most dominant modes, enabling a more precise
representation of key spatio-temporal patterns. We conducted experiments (Figure 9) to systematically
evaluate its role and assess its influence on the overall results, following the setting of the ablation
study in the paper.

As can be seen in the table above, the model performance declines obviously when we remove
either dynamic components (Xdyn) or reconstruction data (Xrec). The ablation studies confirm that
the reconstruction matrix is essential for maintaining high performance, alongside the dynamics
component. The results also demonstrate the necessity of integrating both components to fully realize
the advantages of the REPST framework.

E BROADER IMPACT

E.1 IMPACT ON REAL-WORLD APPLICATIONS

Our work copes with real-world spatio-temporal forecasting, which is faced with problems of data
sparsity and intrinsic non-stationarity that poses challenges for deep models to train a domain
foundation model. Since previous works thoroughly explore the solutions to deal with various
spatio-temporal dependencies, we propose a novel approach which leverage the power of pre-trained
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Figure 9: Ablation study. We conduct multiple detailed ablation studies on Air Quality, Solar Energy
and Beijing Taxi datasets to figure out the effects of REPST’s main components.

language models to handle spatio-temporal forecasting tasks, which fundamentally considers the
natural connection between spatio-temporal information and natural language and achieves modality
alignment by leveraging reprogramming. Without additional effort on prompts engineering(Li et al.,
2024b; Yan et al., 2023) which is a time-cost but essential part in enhancing the capabilities of
pre-trained language models, our REPST automatically learns the spatio-temporal related vocabulary
which can unlock the domain knowledge of pre-trained language models to do spatio-temporal
reasoning and predictive generation. Our model reaches state-of-the-art performance on the four
real-world datasets , covering energy, air quality and transportation, and demonstrates remarkable
capability to handle problem of data sparsity. Therefore, the proposed model makes it promising to
tackle real-world forecasting applications, which can help our society to prevent multiple risks in
advance with limited computational cost and small amount of data.

E.2 IMPACT ON FUTURE RESEARCH

In this paper, we find that models trained on natural languages can handle spatio-temporal forecasting
tasks, which is totally a different data modality from natural language. This demonstrates that aligning
different data modality properly can unlock the domain knowledge obtained by the pre-trained model
during the training process. Therefore, there is a possibility that models that pre-trained on data
from various domains hold the capability to handle problems in different fields even if in different
modalities. The underlying reasons why pre-trained models can handle cross-modality tasks still
remains to be explain.
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