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ABSTRACT

Recent advancements in deep learning optimization have introduced new algo-
rithms, such as Schedule-Free optimizers, AdEMAMix, MARS and Lion which
modify traditional momentum mechanisms. In a separate line of work, theoretical
acceleration of stochastic gradient descent (SGD) in noise-dominated regime has
been achieved by decoupling the momentum coefficient from the current gradient’s
weight. In this paper, we establish explicit connections between these two lines
of work. We substantiate our theoretical findings with experiments on 300m and
150m scale language modeling task. We find that AdEMAMix, which most closely
resembles accelerated versions of stochastic gradient descent, exhibits superior
performance. Building on these insights, we introduce a modification to AdE-
MAMix, termed Simplified-AdEMAMix, which maintains the same performance
as AdEMAMix across both large and small batch-size settings while eliminating
the need for two different momentum terms.

1 INTRODUCTION

Recently, numerous optimization algorithms have been introduced for deep learning such as
Lion (Chen et al., 2023), ScheduleFreeSGD/AdamW (Defazio et al., 2024), and AdEMAMix (Pagliar-
dini et al., 2024). While these optimizers have been proposed with distinct motivations, they share a
common characteristic: each modifies the momentum scheme employed in optimization.

A separate body of theoretical research has focused on accelerating gradient descent in noisy envi-
ronments. Although classical momentum methods, such as heavy-ball or Nesterov momentum, are
sufficient to accelerate deterministic gradient descent (particularly for quadratic functions), they do
not accelerate SGD (Jain et al., 2018; Liu & Belkin, 2020). This limitation has led to the development
of alternative momentum schemes aimed at achieving acceleration in the presence of noise(Jain et al.,
2018; Vaswani et al., 2019; Liu & Belkin, 2020; Gupta et al., 2023). Notably, all proposed accelerated
SGD methods can be interpreted as decoupling the momentum coefficient from the weight assigned
to the current gradient in the optimizer update.

Our primary contribution is to establish a direct connection between the ideas developed in these two
research directions. Specifically, we demonstrate that Schedule-Free SGD is mathematically equiva-
lent to performing accelerated SGD followed by weight averaging. Furthermore, optimizers such
as Lion, Schedule-Free AdamW, and AdEMAMix can be understood as combining preconditioning
techniques with accelerated SGD approaches. While certain aspects of these connections have been
noted in prior literature (Defazio, 2021), to the best of our knowledge, the relationship between these
recently proposed optimizers and accelerated SGD has not been formally established before.

To validate our theoretical findings, we conduct experiments using a 300m and a 150m decoder-
only transformer model, trained on 6b and 15b tokens respectively with a small batch size of 32k
tokens, ensuring that the training process operates in a noise-dominated regime. As predicted by our
theoretical insights, the performance of Schedule-Free AdamW closely aligns with that of accelerated
SGD-based AdamW (Algorithm 3). Additionally, we observe that accelerated methods offer slightly
improved performance at small batch sizes. However, we also demonstrate that these performance
benefits diminish at sufficiently large batch sizes, which is consistent with the theoretical connections
to accelerated SGD.
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Our main contributions are stated below:

1. We establish precise theoretical connections between accelerated SGD and recently proposed
optimizers, such as Schedule-Free SGD and AdEMAMix.

2. We provide empirical validation through experiments on a 300m and 150m decoder-only
transformer, comparing AdamW, Schedule-Free AdamW, AdEMAMix, and MARS. Our
findings indicate that AdEMAMix, which most closely aligns with accelerated SGD variants,
demonstrates superior performance among these methods.

3. As anticipated from its equivalence to accelerated SGD, the performance advantages of
these methods diminish at large batch sizes relative to Adam. Notably, we show that Adam
with momentum scheduling can match the performance of AdEMAMix.

4. At high batch sizes, we observe that Schedule-Free AdamW performs significantly worse
than AdamW with cosine decay, which we attribute to the intrinsic coupling of momentum
and weight averaging coefficients in Schedule-Free optimizers.

5. We introduce a modification to AdEMAMix, termed Simplified-AdEMAMix, which pre-
serves the performance of AdEMAMix across both large and small batch size regimes, while
eliminating the need for two distinct momentum terms.

2 RELATED WORK

We review the existing literature on accelerated SGD variants and optimization algorithms that are
directly relevant to our work.

Jain et al. (2018) introduced an accelerated SGD variant that demonstrated improved convergence
rates for the least-squares problem. Kidambi et al. (2018) further simplified the update rule for this
variant and formally established that momentum does not provide acceleration in this specific case.
Subsequent works (Liu & Belkin, 2020; Vaswani et al., 2019; Gupta et al., 2023) extended these
results to general convex and strongly convex functions under various theoretical assumptions.

Over the years, several optimizers have been proposed that exhibit similarities to the accelerated
SGD variants described above. Lucas et al. (2019) introduced a method that incorporates a weighted
sum of multiple momentum terms, each with distinct coefficients, to compute the final update. Ma &
Yarats (2019) developed an optimizer explicitly inspired by the theoretical framework established in
Jain et al. (2018). More recently, Chen et al. (2023) proposed an optimizer discovered via a genetic
search algorithm, which, similar to previous accelerated SGD variants, assigns different weights to
the gradient and the momentum coefficient in the update step. Additionally, Pagliardini et al. (2024)
introduced a method that blends two distinct momentum scales in the final update.

3 BACKGROUND

3.1 MOMENTUM

Momentum is a well-established technique for accelerating the convergence of gradient descent in
deterministic settings. The momentum update for weights wt, with a momentum coefficient β, is
given by:

mt = βmt−1 +∇f(wt); wt = wt−1 − ηmt

3.2 WEIGHT AVERAGING

Weight averaging is a widely used technique in stochastic optimization to reduce noise in the iterates.
Instead of returning the final iterate wT , a weighted average w̄T of the iterates is computed, where
the weights are denoted by γt:

w̄T = (1− γT )w̄T−1 + γTwT

2
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All instances of weight averaging in this paper utilize coefficients γt of the form γt ≈ 1 − 1
δt for

some constant 0 ≤ δ ≤ 1.

3.3 ACCELERATED SGD

In this section, we provide a generalized framework encompassing many accelerated SGD methods:

mt = βa,tmt−1 + gt, wt+1 = wt − ηa,tmt − αa,tgt (1)

where βa,t, αa,t, ηa,t are (possibly time-dependent) scalar coefficients, and gt represents the stochastic
gradient evaluated at wt. We use the subscript ‘a’ to indicate coefficients that adhere to this specific
accelerated SGD formulation.

We first note that setting αa,t = 0 recovers standard SGD with momentum. Additionally, as observed
in prior work, many accelerated SGD algorithms proposed in the literature—such as those introduced
by Jain et al. (2018); Vaswani et al. (2019); Liu & Belkin (2020); Gupta et al. (2023)—fall directly
within this framework. A precise demonstration of this equivalence is provided in Appendix B.

4 CONNECTIONS BETWEEN EXISTING OPTIMIZERS AND ACCELERATED SGD

In this section, we theoretically establish precise connections between existing optimizers, such
as Schedule-Free optimizers and AdEMAMix, and accelerated SGD. Based on these insights, we
propose a simplified variant of AdEMAMix that utilizes a single momentum term while maintaining
performance comparable to AdEMAMix across both small and large batch size regimes.

4.1 SCHEDULE-FREE SGD

Schedule-Free SGD (Defazio et al., 2024) is a recently introduced constant learning rate optimizer
designed to eliminate the need for scheduling. Following the notation used in Defazio et al. (2024),
the update equations are given by:

yt = (1− β)zt + βxt

zt+1 = zt − γg(yt)

xt+1 = (1− ct+1)xt + ct+1zt+1

Here, yt represents the current model weights (where the gradient is evaluated), while xt denotes the
weights used for evaluation.

We first express the update in terms of yt and mt, where we define mt+1 = xt−zt+1

γ .

Further simplifying mt+1, we obtain:

mt =
xt − zt+1

γ
(2)

=
xt + γgt − zt

γ
(3)

=
(1− ct)(xt−1 − zt) + γgt

γ
(4)

= (1− ct)mt−1 + gt. (5)

Thus, mt follows the momentum update in Equation (1) with βa,t = 1 − ct. Given mt, we now
examine the update for yt:

yt+1 = (1− β)zt+1 + βxt+1 (6)
= (1− β) (zt − γgt) + β ((1− ct+1)xt + ct+1zt+1) (7)
= (1− β)zt + βxt − (1− β)γgt + βct+1(zt+1 − xt) (8)
= yt − γ[βct+1mt + (1− β)gt]. (9)
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Thus, yt follows the weight update in Equation (1) with ηa,t = γβct+1 and αa,t = γ(1− β), where
wt = yt. Consequently, yt in Schedule-Free SGD precisely follows the accelerated SGD framework.
However, xt is used for evaluation in Schedule-Free SGD. We now analyze the dynamics of xt:

xt+1 = (1− ct+1)xt + ct+1zt+1

xt+1 = (1− ct+1)xt + c2

(
yt+1 − βxt+1

1− β

)
xt+1 (1− β + ct+1β) = (1− ct+1)(1− β)xt + ct+1yt+1

xt+1 =
(1− ct+1)(1− β)xt + ct+1yt+1

(1− ct+1)(1− β) + ct+1
.

Thus, xt is a weighted average of yt. Recursively expanding xt confirms that it is an exponential
average of yt when ct is a constant. This establishes that Schedule-Free SGD can be understood as
accelerated SGD followed by weight averaging.

The benefits of Schedule-Free SGD can be attributed to two key components:

1. Improved performance compared to standard SGD with momentum, due to its equivalence
to accelerated SGD.

2. The ability to use a constant learning rate without scheduling, enabled by weight averaging
(specifically, tailed weight averaging; see Section 4.1.3).

We note two advantages unique to Schedule-Free SGD/Adam:

• It does not require additional memory for weight averaging.
• It eliminates the need for an explicit weight averaging coefficient as a hyperparameter.

However, in Section 5.1, we demonstrate that this coupling of momentum and weight averaging
coefficients does not scale well for large batch sizes.

4.1.1 CASE: β = 0.0

As noted in (Defazio et al., 2024), when β = 0, Schedule-Free SGD reduces to standard SGD with
weight averaging. Since ct = 1/t, it applies weight averaging from the beginning.

4.1.2 CASE: β = 1.0

As noted in (Defazio et al., 2024), when β = 1, Schedule-Free SGD reduces to standard momentum
SGD, with the momentum coefficient βa,t scaling as 1− 1/t.

4.1.3 CASE: β = 0.9

For β = 0.9, the default setting in Schedule-Free SGD:

• As ct scales as 1/t, momentum grows as 1− 1/t.
• The ratio of the weight assigned to the current gradient versus momentum is fixed at
(1− β)/(βct+1) ≈ 0.11.

• Weight averaging is applied approximately over the most recent 10% of the iterates.

4.2 LION

The update rule for Lion (Chen et al., 2023) is given by:
m′

t = β1mt−1 + (1− β1)gt

θt = θt−1 − ηsign(m′
t)

mt = β2mt−1 + (1− β2)gt.

Lion (Chen et al., 2023) can be directly interpreted as an accelerated SGD method followed by a
coordinate-wise sign operation.
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4.3 MARS

In this section, we demonstrate that the practical version of the recently proposed optimizer
MARS (Yuan et al., 2024), referred to as MARS-Approx, follows the accelerated SGD frame-
work, supplemented by a preconditioning step. The update equations (ignoring bias correction and
clipping) are given by:

ct = gt + γ
β1

1− β1
[gt − gt−1]

mt = β1mt−1 + (1− β1)ct

vt = β2vt−1 + (1− β2)c
2
t

xt+1 = xt − η
mt√
vt + ϵ

where mt and vt represent the first- and second-order momentum terms, respectively, and xt denotes
the model parameters. Rewriting the update using m̂t = mt − γgt, we obtain:

ct = gt + γ
β1

1− β1
[gt − gt−1]

m̂t = β1m̂t−1 + (1− β1)(1− γ)gt

vt = β2vt−1 + (1− β2)c
2
t

xt+1 = xt − η
m̂t + γgt√

vt + ϵ

This formulation illustrates that the momentum update follows the general accelerated SGD frame-
work. However, it is important to note that MARS employs a distinct preconditioning approach
compared to AdamW. We further analyze its empirical performance in Section 5.

4.4 ADEMAMIX

The recently proposed optimizer AdEMAMix (Pagliardini et al., 2024) shares structural similarities
with accelerated SGD-based AdamW. However, instead of using a linear combination of the current
gradient and the momentum term as in accelerated SGD, AdEMAMix maintains two distinct mo-
mentum terms with different coefficients and computes their linear combination. The algorithm is
formally stated in Algorithm 1.

To simplify our analysis, we consider a variant of AdEMAMix with β1 = 0. As demonstrated in
Pagliardini et al. (2024), this simplified version achieves performance nearly equivalent to the full
version for small batch sizes. Our experiments in Section 5 corroborate this finding. With β1 = 0,
AdEMAMix aligns with the general accelerated SGD framework (Equation (1)). Furthermore, we
show that the prescribed schedules for β3 (momentum coefficient) and α (which controls the relative
weight assigned to the current gradient) in AdEMAMix closely match theoretical schedules proposed
for accelerated SGD (Gupta et al., 2023).

In smooth convex optimization, achieving acceleration in stochastic settings requires a momentum
scheme of the form:

βa,t = 1− k

t

for some constant k > 0, as established by Gupta et al. (2023). The AdEMAMix optimizer
approximately follows this scheme by scaling up β3 accordingly.

Additionally, note that in accelerated SGD schemes, momentum is maintained in the standard form:

mt = βa,tmt−1 + gt

whereas in Algorithm 1, the momentum update follows:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

m
(t)
2 ← β

(t)
3 m

(t−1)
2 + (1− β

(t)
3 )g(t).

For βa,t scaling as 1− 1/t, the accumulated contribution of past gradients in mt in accelerated SGD
grows proportionally to t. Similarly, the coefficient α in AdEMAMix also scales proportionally to
t. Due to these similarities, AdEMAMix demonstrates improved empirical performance relative to
other optimizers, as observed in Figure 1.

For large batch sizes, however, AdEMAMix exhibits a performance decline when using β1 = 0.0, as
reported in Pagliardini et al. (2024). Gupta et al. (2023) suggests that for large batch sizes, the weight
assigned to the current gradient in the update must decrease. In contrast, AdEMAMix maintains a
fixed weight of 1 on the current gradient, which likely contributes to its diminished performance at
large batch sizes.

In the following section, we introduce a simplified variant of AdEMAMix that incorporates a weight
on the current gradient, removes the need for scheduling α and maintains only a single momentum
term. We empirically validate that this simplified version performs comparably to AdEMAMix across
both small and large batch setups.

Algorithm 1 Single step of AdEMAMix optimizer.

1: Input: Data distribution D. Initial model parameters θ(0). Number of iterations T . Learning
rate η. ϵ a small constant. AdamW parameters: β1, β2. AdEMAMix parameters β3, α. Warmup
parameter Tα,β3

, note that we usually set it to T . βstart is usually set to β1.
2: Optional: use schedulers η(t), β(t)

3 ← fβ3
(t, β3, βstart, Tα,β3

) and α(t) ← fα(t, α, Tα,β3
)

3: Sample batch: x ∼ D
4: Compute gradient: g(t) ← ∇θLθ(t−1)(x)

5: Update the fast EMA m1: m(t)
1 ← β1m

(t−1)
1 + (1− β1)g

(t)

6: Update the slow EMA m2: m(t)
2 ← β

(t)
3 m

(t−1)
2 + (1− β

(t)
3 )g(t)

7: Update the second moment estimate: ν(t) ← β2ν
(t−1) + (1− β2)

(
g(t)

)2
8: Update parameters: θ(t) ← θ(t−1) − η(t)

(
m̂

(t)
1 +α(t)m

(t)
2√

ν̂(t)+ϵ

)

Algorithm 2 Single step of Simplified AdEMAMix optimizer.

1: Input: Data distribution D. Initial model parameters θ(0). Number of iterations T . Learning rate
η. ϵ a small constant. AdamW parameters: β1, β2. AdEMAMix parameters α, βstart. Warmup
parameter Tβ1 , note that we usually set it to T .

2: Optional: use schedulers η(t), β(t)
1 ← fβ1(t, β1, βstart, Tβ1)

3: Sample batch: x ∼ D
4: Compute gradient: g(t) ← ∇θLθ(t−1)(x)

5: Update the EMA m1: m(t)
1 ← β1m

(t−1)
1 + g(t)

6: Update the second moment estimate: ν(t) ← β2ν
(t−1) + (1− β2)

(
g(t)

)2
7: Update parameters: θ(t) ← θ(t−1) − η(t)

(
m

(t)
1 +αg(t)

√
ν̂(t)+ϵ

)

4.5 SIMPLIFIED ADEMAMIX

Building on the insights discussed above, we propose a simplified optimizer that eliminates the need
for maintaining two separate momentum terms and removes the requirement for scheduling α. The
optimizer is formally presented in Algorithm 2, where we employ theory-style momentum (instead of
the exponential moving average (EMA) style). In the final update, we assign a fixed weight α to the
gradient. We note that setting α = 0 recovers the standard Adam optimizer (subject to appropriate
transformations of η and β1). In Section 5, we demonstrate that this simplified variant matches the
performance of AdEMAMix across both small and large batch sizes.
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Algorithm 3 Single step of accelerated SGD based Adam with weight averaging. For simplicity
we ignore the initialization, other boundary effects such as bias correction, and weight decay. Hy-
perparameters: Learning rate η, betas = (β1, β2, β3), weight averaging coefficient δ, and epsilon
ϵ.

1: Sample batch Bt.
2: g ← −∇wϕBt

(wt)
3: v ← β2v + (1− β2)(g ⊙ g)

4: N ← β3m+(1−β3)g√
v̂+ϵ

5: w ← w − ηN
6: m← β1m+ (1− β1)g
7: c = max(1− 1/t, 1− 1/(δt))
8: wavg ← cwavg + (1− c)w

5 EXPERIMENTS
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Figure 1: Comparison of the best runs of various optimizers as stated in Section 5 for language
modeling task on a decoder-only 300m (left) and 150m (right) transformer model. We find that
AdEMAMix and simplified-AdEMAMix perform the best, owing to their precise similarity to
accelerated SGD variants.

In this section, we present experiments conducted on a 300m and 150m scale decoder-only transformer
model for a language modeling task using the C4 dataset. The models are trained with a sequence
length of 1024 and a batch size of 32 for around 6b tokens for 300m (≈ 1× Chinchilla) and over 15
billion tokens for 150m (≈ 5× Chinchilla), ensuring that the training operates in a noise-dominated
regime.

We compare the following optimization algorithms 1:

1. Standard AdamW with cosine decay

2. Standard AdamW with weight averaging

3. Schedule-Free AdamW

4. Accelerated AdamW with weight averaging (Algorithm 3)

5. MARS

6. AdEMAMix

7. Simplified-AdEMAMix

Details of hyperparameter sweeps for these algorithms are provided in Appendix A.

As illustrated in Figure 1, Schedule-Free AdamW and Accelerated AdamW with tailed weight
averaging perform comparably, supporting our theoretical claims. Furthermore, both outperform

1Due to computational constraints, only a limited algorithms were compared on the 300m scale
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Figure 2: Comparison of the best runs of AdamW with cosine decay, schedule free AdamW and
LAProp at higher batch size. Experimental details can be found in Section 5.1
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Figure 3: Comparison of the best runs of AdEMAMix (with and without β1 = 0.0) and our variant of
simplified AdEMAMix for higher batch size experiments for 300m (Left) and 150m(Right) model
scale. Experimental details can be found in Section 5.1

AdamW with cosine decay and AdamW with tailed weight averaging. Moreover, AdEMAMix and
Simplified-AdEMAMix outperform all methods, which we hypothesize is due to their alignment with
accelerated SGD variants.

5.1 LARGE BATCH SIZE EXPERIMENTS

While the previous experiments focused on the small batch size regime (i.e., training with noisy
gradients), we now conduct experiments in the large batch size regime to assess whether these
algorithms generalize effectively. In this setup, we train the 300m and 150m model with a batch size
of 1 million tokens over 6b and 3b tokens (≈ Chinchilla scale) respectively.

Schedule-Free AdamW: As shown in Figure 2, Schedule-Free AdamW performs significantly
worse compared to AdamW. We attribute this performance gap to the coupling between weight
averaging and momentum coefficients. At higher batch sizes, the optimal momentum value is
significantly lower than 1− 1/t. Although one could use a scaling factor ≈ 1− r/t for some r ≥ 1,

8
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a higher r reduces the effective weight averaging window. We note that the decrease in performance
of Schedule-Free optimizers at higher batch sizes was also observed in Zhang et al. (2025).

Another key distinction between AdamW and Schedule-Free AdamW is the order in which momentum
and preconditioning are applied. AdamW applies momentum before preconditioning, whereas
Schedule-Free AdamW applies preconditioning before momentum, making it algorithmically similar
to LAProp (Ziyin et al., 2021). However, as shown in Figure 2, the performance of AdamW
is comparable to that of LAProp, suggesting that this difference is not the primary cause of the
performance gap.

AdEMAMix: For large batch sizes, as previously observed in Pagliardini et al. (2024), Figure 3
shows that setting β1 = 0.0 in AdEMAMix results in a significant performance drop compared to
using two separate momentum terms. This degradation occurs because AdEMAMix assigns a fixed
weight of 1 to the current gradient, whereas theoretical accelerated SGD variants (Gupta et al., 2023)
require a diminishing weight on the current gradient as batch size increases.

Additionally, as depicted in Figure 3, our proposed variant, Simplified-AdEMAMix, achieves per-
formance equivalent to AdEMAMix while eliminating the need for two separate momentum terms.
Notably, we achieve this performance at α = 0.0, meaning Simplified-AdEMAMix reduces to
standard Adam with momentum scheduling.

6 CONCLUSION

In this work, we establish explicit connections between accelerated SGD variants and several recently
proposed optimizers, including Schedule-Free optimizers, AdEMAMix, MARS, and Lion. We
also present empirical evidence demonstrating that AdEMAMix, which aligns most closely with
theoretical accelerated SGD variants, achieves superior performance in small batch size training.

Building on this connection, we introduce Simplified-AdEMAMix, which removes the need for
maintaining two separate momentum buffers. We empirically show that Simplified-AdEMAMix
matches the performance of AdEMAMix across both small and large batch sizes while eliminating
the additional memory overhead associated with AdEMAMix.
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A HYPERPARAMETERS

Below are the hyperparameters for the small batch experiments.

1. AdamW with cosine decay - 51.2k warmup - learning rate in [3.16e-4, 1e-3, 3.16e-3], β1

in [0.9, 0.95], β2 in [0.99, 0.999, 0.99968, 0.9999]. The optimal values of β1 and β2 were
.9 and .999 respectively matching the default values. We note that for larger batch sizes
it is common to use β2 = .95, the benfit of higher β2 at smaller batch sizes has also been
observed by Porian et al. (2024).

2. AdamW with cosine decay - 10k warmup - learning rate in [3.16e-4, 1e-3, 3.16e-3], β1 = 0.9,
β2 = 0.999 i.e. we fix β1, β2 to be the optimal values from the previous sweep. This
performed worse that warmup of 51.2k steps.

3. AdamW constant fraction weight averaging: - learning rate in [3.16e-4, 1e-3, 3.16e-3],
β1 = 0.9, β2 in [0.99, 0.997, 0.999, 0.9997], δ in [0.05, 0.1, 0.2].

4. AdamW with cosine decay and weight averaging - learning rate in [3.16e-4, 1e-3, 3.16e-3],
β1 = 0.9, β2 = 0.999, δ in [0.025, 0.05, 0.1].

5. Accelerated SGD based AdamW with cosine decay - learning rate in [3.16e-4, 1e-3, 3.16e-3],
β1 in [0.999, 0.99968, 0.9999], β2 in [0.99, 0.9968, 0.999], β3 = 0.9

6. Accelerated SGD based AdamW with constant learning rate and weight averaging - learning
rate in [3.16e-4, 1e-3, 3.16e-3], β1 in [0.99684, 0.999], β2 in [0.999], β3 = 0.9, δ in [0.05,
0.1]

7. Accelerated SGD based AdamW with cosine decay and weight average - learning rate in
[3.16e-4, 1e-3, 3.16e-3], β1 in [0.99684, 0.999], β2 = 0.999, δ in [0.05, 0.1], β3 = 0.9

8. Schedulefree AdamW with constant learning rate - learning rate in [3.16e-4, 1e-3, 3.16e-3,
1e-2], β1 in [0.8, 0.9, 0.95], β2 = 0.999

9. Schedulefree AdamW with cosine decay - [3.16e-4, 1e-3, 3.16e-3, 1e-2], β1 in [0.8, 0.9,
0.95], β2 = 0.999

10. MARS - [3.16e-4, 1e-3, 3.16e-3, 1e-2], β1 in [0.9, 0.95 0.99], β2 in [0.99, 0.999], γ in [0.0,
0.01, 0.02, 0.03, 0.04, 0.05], precondition 1d was set to True.

11. AdEMAMix - [3.16e-4, 1e-3, 3.16e-3], β1 in [0.0, 0.9], β2 = 0.999, β3 in [0.99, 0.999,
0.9999], α in [2,4,8,16].

12. Sim-AdEMAMix - [1e-6, 3.16e-6, 1e-5, 3.16e-5], β1 in [0.99, 0.999, 0.9999], β2 = 0.999,
α in [10, 20, 50, 100]

The hyperparameter sweeps for the large batch experiments are provided below:

1. Schedule-Free AdamW: [1e-3, 3.16e-3, 1e-2], β in [0.8,0.9,0.95], β2 in [0.9,0.95], r in [0.0,
5.0, 9.0, 50.0]

2. AdamW: [1e-3, 3.16e-3, 1e-2], β1 in [0.9,0.95], β2 in [0.9, 0.95]

3. LAProp: [1e-3, 3.16e-3, 1e-2], β1 in [0.9,0.95], β2 in [0.9, 0.95]

4. AdEMAMix: [1e-3, 3.16e-3, 1e-2], β1 in [0.0, 0.9], β2 = 0.95, β3 in [0.9, 0.95, 0.99], α in
[2,4,8,16]

5. Sim-AdEMAMix: [1e-4, 3.16e-4, 1e-3], β1 in [0.9, 0.95, 0.99], β2 = 0.95, α in [0.0, 0.5,
1.0]

The overall GPU hours (on a single H100) used for the above sweeps were approximately 10k.

B EQUIVALENCE OF PREVIOUS ACCELERATION METHODS

The general accelerated SGD form is provided in Equation (1). In this section, we will show that all
the methods in the works Jain et al. (2018); Vaswani et al. (2019); Liu & Belkin (2020); Gupta et al.
(2023) fall within this form.
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B.1 AGNES

The update for Gupta et al. (2023) is given below:

x′
n = xn + αvn xn+1 = x′

n − ηg′n vn+1 = ρn(vn − g′n)

where g′n is stochastic gradient evaluated on x′
n and the final function is evaluated on xn. The above

equations can be rewritten as

x′
n+1 = x′

n − ηg′n + αvn+1 − vn+1

ρn
= ρn−1

(
− vn
ρn−1

)
+ g′n

Thus x′
n+1 follows update equation of the form of Equation (1).

B.2 ASGD

The update for Jain et al. (2018) is given by:

yj−1 = αxj−1+(1−α)vj−1 xj = yj−1−δgj−1 zj−1 = βyj−1+(1−β)vj−1 vj = zj−1−γgj−1

where gj−1 represents the stochastic gradient evaluated on yj−1 and the function is evaluated on the
tail averaged x.

The update equations above can be rewritten as:

yj = yj−1−αδgj−1− (1−α)[yj−1− vj ]
yj−1 − vj

γ − (1− β)αδ
= (1− β)α

yj−2 − vj−1

γ − (1− β)αδ
+ gj−1

The update equations above follow the form of Equation (1).

B.3 MASS

The update for Liu & Belkin (2020) is given by:

wt+1 = ut − η1gt ut+1 = (1 + γ)wt+1 − γwt + η2gt

where gt is the stochastic gradient evaluated on ut and the function is evaluated on wt. These
equations can be rewritten as:

ut+1 = ut − γ(wt − ut)− [η1(1 + γ)− η2]gt
wt − ut

η1γ − η2
= γ

wt−1 − ut−1

η1γ − η2
+ gt

The update equations above follow the form of Equation (1).

B.4 SGD WITH NESTEROV ACCELERATION

The update for Vaswani et al. (2019) is given by:

wk+1 = ζk − ηgk ζk = αkvk + (1− αk)wk vk+1 = βkvk + (1− βk)ζk − γkηgk

These equations can be rewritten as:

ζk+1 = ζk − ηgk +αk+1[vk+1−wk+1]; vk+1−wk+1 = βk(1−αk)[vk −wk]− η(γk − 1)gk
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