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Abstract
Numerous recent prompt optimization approaches like chain-of-
thought, tree-of-thought prompting, have been demonstrated to
significantly improve the quality of content generated by large lan-
guage models (LLMs). In-context learning (ICL), a recent paradigm
where a few representative examples guide content generation has
also led to strong and consistent improvements in generation qual-
ity of LLM generated content. This idea has been applied to great
effect in synthetic tabular data generation, where LLMs, through
effective use of ICL and prompt optimization, can generate data that
approximate samples from complex, heterogeneous distributions
based on representative examples. However, ensuring high-fidelity
synthetic data often requires a very large number of ICL examples
which may be unavailable or costly to obtain. At the same time, as
LLMs get larger and larger, their in-built prior knowledge becomes
vast and can potentially substitute for specific data examples. In
this paper, we introduce Knowledge-Guided Prompting (KGP) as a
new knob in prompt optimization and explore the ability of KGP-
based prompt optimization to offset the cost of ICL. Specifically, we
explore the question ‘how many examples can a prompt substitute
for?’ and explore knowledge-guided prompting (KGP) where do-
main knowledge, either inferred or available, is explicitly injected
into the prompt, reducing dependence on ICL examples. Our exper-
iments systematically explore the trade-off between ICL and KGP,
revealing an empirical scaling law that quantifies how quality of
generated synthetic data varies with increasing domain knowledge
and decreasing example count. We classify prior knowledge into
strong knowledge (e.g., symbolic constraints, statistical priors) ver-
sus weaker knowledge (e.g., monotonicity constraints, dependency
relationships) and explore relationships between both forms and in-
context examples. Our results demonstrate that knowledge-guided
prompting can be a scalable alternative, or addition, to in-context
examples, unlocking new approaches to synthetic data generation.

1 Introduction
Synthetic data generation is a key ingredient inmanyKDDpipelines,
e.g., to help overcome privacy limitations [1, 18], to support ma-
chine learning in domains where there are imbalanced classes [14],
to enable data augmentation when real data is scarce [6], and to
simulate rare or extreme events that are difficult to capture in real-
world datasets [11]. Many powerful ML algorithms, e.g., generative
adversarial networks (GANs) [13, 17, 35, 38, 39] rely on synthetic
data generation as a key ingredient to their workflow.

Recently, large language models (LLMs), especially the latest
variants such as GPT-4o and the LLaMA series, have been exam-
ined for their potential as structural data regressors or generators.
Most modern LLMs are based on the transformer architecture [34]
with parameters ranging from few millions to billions [15], and

researchers have developed creative ways to harness LLMs in tra-
ditional machine learning and data contexts. For instance, LIFT [8]
transforms table rows of raw numerical data into sentences such
as ‘An Iris plant with sepal length 5.1cm, sepal width 3.5cm...’, and
employs an LLM to solve traditional machine learning taasks like
classification, regression, and generation. GReaT [4] fine-tunes an
LLM for synthetic data generation and show that even small-scale
models such as Distill-GPT [27] are capable of synthetic data gen-
eration [4].

While the above works fine-tune an LLM to support data gen-
eration, newer variants support synthetic data generation out-of-
the-box, i.e., with in-context learning (ICL) [29]. After prompt en-
gineering paradigms are carefully designed to facilitate in-context
learning, just a few example rows in the context window can enable
an LLM to generate synthetic data that conforms to the inferred
properties of the supplied rows. However ensuring fidelity to com-
plex, heterogeneous distributions by finding representative exam-
ples remains a challenge and requires careful experimentation. Just
as sampling points on a curve might require more points where
there are shifts in behavior (versus regions where there is more
normalcy), we will require more ICL examples for some regions
versus others to support improved generalization.

In this paper, we investigate if prompt optimization by inject-
ing prior knowledge into the prompt , can help in synthetic data
generation and, more specifically, whether it can replicate behavior
that previously required an inordinate number of ICL examples.
We ask the question: ‘how many examples can a knowledge-guided
prompt substitute for?’ and aim to capture this tradeoff by defining
knowledge levels and studying their interplay with the number of
ICL examples. Through our experiments, we show how prompt
optimization with explicit domain priors including symbolic, statis-
tical priors, can be infused into prompts to reduce or even eliminate
ICL examples.

Our approach is dubbed knowledge-guided prompting (KGP),
where domain knowledge, either inferred or available, is explicitly
injected into the prompt (serving as an additional knob for prompt
optimization), reducing the dependence on ICL examples. This
enables new approaches to synthetic data generation than purely
data-driven or purely knowledge-driven approaches.

Our contributions are:

(1) We propose a new approach for prompt optimization called
knowledge-guided prompting (KGP), to improve the qual-
ity of structured data generation while at the same time
limiting the number of ICL examples required. This ap-
proach is especially valuable in scenarios where there is
data paucity or we wish to reduce the number of tokens
while maintaining synthetic data generation quality.
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(2) The KGP approach proposed here systematizes prior knowl-
edge into strong knowledge (e.g., symbolic constraints, sta-
tistical priors) versus weaker knowledge (e.g., monotonicity
constraints, dependency relationships), and explores their
interplay w.r.t. the number of ICL examples.

(3) Through numerous experiments, we demonstrate that our
KGP approach yields better generation quality than using
purely ICL examples, unlocking new hybrid approaches to
synthetic data generation. Most importantly, we demon-
strate how the KGP framework provides a framework to
think about scaling laws that predict the number of exam-
ples needed for given levels of prior knowledge.

2 Related Work
Tabular data synthesis and representation learning for tables have
been extensively studied [9, 10, 12, 22, 24–26, 30, 36, 37, 42]. For
completeness, we survey both pre-LLM (or non-LLM) and LLM
approaches for synthetic table generation.

Pre-LLMapproaches.As one of the pre-LLM approaches to syn-
thetic data generation, Lei et al. [39] proposed CTGAN where rows
are independent of each other; a conditional GAN architecture en-
sures that the dependency between columns is learned. Tabsyn [42]
showcased remarkable advancements in joint-distribution learning
via a VAE plus diffusion approach, surpassing previous models of
similar lineage, in terms of distributional correlation measures and
machine learning efficiency. DoppelGanger [20] uses a combination
of an RNN and a GAN to incorporate temporal dependencies across
rows but this method has been tested in traditional, low-volume
settings such as Wikipedia daily visit counts. For high-volume ap-
plications, STAN [41] utilizes a combination of a CNN and Gaussian
mixture neural networks to generate synthetic network traffic data.
GraphDF [5] is geared toward multi-dimensional time series data.
GOGGLE [21] employs a generative modeling method for tabular
data by learning relational structures.

LLM approaches. LIFT [8] and GReaT [4] mentioned in the
introduction fall in this category. OmniPred [32], provides a frame-
work for training language models as universal end-to-end regres-
sors over (𝑥,𝑦) data from arbitrary formats. Similarly, Treutlein et al.
[33] exhibit the ability of inductive out-of-context reasoning (OOCR)
in a regression fine-tuning task of a language model. (A key differ-
ence between these works and our paper is that in the regression
setting, the prompt conditions the output to only predict the target
label whereas we are attempting data conforming to the entire joint
distribution at once.) Recent works [4, 31, 40, 43, 44] have shown
the ability to use fine tuning to inject controlled distribution into
LLMs, but these approaches are inflexible and do not leverage prior
LLM’s pre-trained knowledge. Curated LLM [29] is an approach
that prompts LLMs with specific domain requirements (in English)
but this approach is primarily intended for low-data regimes. In
recent times, instruction-tuned models have shown great strides in
‘following instructions’ (and some forms of reasoning) but they are
still limited at generating a diversity of datasets as considered here
(some recent efforts [2, 7, 16, 28], e.g., BARE [45], aim to combine
base models with post-training to address this issue).

The Prompt vs the Example. The idea of modeling tradeoffs
between prompts and in-context learning (ICL) examples has been

studied before [19], but primarily in the context of NLP tasks and
for a single prompt, not a range of knowledge levels in prompting
as studied here. Our work is the first to systematically explore the
tradeoff between knowledge and ICL examples for synthetic tabular
data generation.

3 Knowledge Guided Tabular Data Generation
with LLMs

Synthetic tabular data generation typically comprises a generation
function G(·) : Dtrain → Dout where Dtrain is the set of samples
supplied to G as input and Dout is the target data distribution. The
main objective of the tabular data generation task is to generate
synthetic data Dsyn conditioned upon Din such that Dsyn ∼ Dout
i.e., the generated data captures the joint distribution inherent in
Dout.

Recently, LLMs owing to their semantic recognition capabilities
as well as pre-trained knowledge, have demonstrated effectiveness
in the synthetic tabular data generation task. In the context of
LLM based tabular data generation, we can think about the LLM
as a few-shot generator where the few-shot nature of the problem
arises from the in-context learning (ICL) examples Dtrain supplied
as input to the LLM-based generator G as part of the input query
𝑞 = [< prompt >;Dtrain]. The query ‘q’ comprises the prompt
along with Dtrain ICL examples.

In the LLM tabular data generation task, owing to the limited
effective context windows in LLMs, the input data is chunked into
‘c’ chunks, each a group of 𝑘 rowsDtrain = {D (1)

train, . . . ,D
(𝑐 )
train} and

each chunk is supplied to the LLM as a set of in-context learning
(ICL) examples, in addition to a prompt i.e., 𝑞𝑖 = [< 𝑝𝑟𝑜𝑚𝑝𝑡 >

;D (𝑖 )
train]. The result of all the queries 𝑞𝑖 |𝑖 = 1 . . . 𝑐 are merged

to form the final generated table Dsyn =
⋃𝑐

𝑖=1D
(𝑖 )
syn. Thus, the

LLM, conditioned upon the prompt and ICL examples (i.e., D (𝑖 )
train),

generates new table rows similar to D (𝑖 )
train.

However, the properties of data in each chunk, D (𝑖 )
train strongly

influence the quality of data generated and issues such as lack of full
distributional coverage and process noise may affect the data D (𝑖 )

train
thereby carrying over to the generated output chunkD (𝑖 )

out, and also
create intra-chunk and inter-chunk inconsistensies. To alleviate
these adverse effects, we propose knowledge-guided prompting
(KGP) as a novel method for prompt optimization by injecting
prior domain knowledge about (global) properties prevalent in
the ground-truth data distribution in addition to the ICL exam-
ples D (𝑖 )

train. Essentially, this entails augmenting each query with
prior knowledge as follows 𝑞𝑖 = [< knowledge − guided𝑝𝑟𝑜𝑚𝑝𝑡 >

;D (𝑖 )
train]. Prior domain knowledge may occur in many forms and

we now detail the various types of domain knowledge and how to
inject each into the LLM tabular data generation pipeline via KGP.
The full LLM-based tabular data generation pipeline with KGP is
depicted in Fig. 1.

3.1 Encoded Knowledge Types
A knowledge guided prompt (KGP) accompanying a chunk D (𝑖 )

train of
a dataset Dtrain, holds for all of Dtrain. Otherwise stated, KGP en-
codes global knowledge while a data chunk holds local knowledge.
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(a) Traditional synthetic tabular data generation pipeline.

(b) Knowledge-guided prompting (KGP) pipeline.

Figure 1: (a) a traditional synthetic tabular data generation pipeline using LLMs encodes sample data as in-context learning
examples to drive the generation process. (b) Our prompt optimization approach based on knowledge-guided prompting
(KGP), incorporates automatically inferred domain knowledge, providing the LLM-based generator a complementary context
in addition to ICL examples. Our experimental findings indicate that such global property conditioning via. KGP leads to a
significant improvement in synthetic data generation quality, indicating that KGP can indeed be employed as a useful knob for
prompt optimization.

Prior domain knowledge may appear as symbolic relationships,
functional dependencies, semantic descriptions of the data as well
as statistical knowledge about the data distribution. The various
types of domain knowledge we categorize are illustrated in Table 1,
along with KGP examples of each. More detailed examples in the
context of specific datasets investigated in this paper, are included
in Table 2. We specifically focus on three major types of knowledge
guidance in this work:

(1) Symbolic KGP: In this form of KGP, we assume access to the
symbolic (theoretical) relationship governing the (possibly
noisy) data generation process.

(2) Semantic KGP: In this form of KGP, we assume we can en-
code (partial) knowledge of the data distribution in terms
of common prior to take advantage of the semantic recog-
nition capabilities of the LLM.

(3) Statistical KGP: In this form of KGP, we assume (weak)
knowledge about ranges of specific columns in our tabular
data.

Fig. 1b depicts the proposed KGP pipeline with the various types
of domain knowledge considered. Throughout our experimentation,
we do not treat all three types of domain knowledge equally, we
assume ‘Statistical KGP’ as weak domain knowledge that is themost
prevalent, ‘Semantic KGP’ also as weak domain knowledge with
relatively lower prevalence than Stastical knowledge and finally
we assume ‘Symbolic KGP’ as the strongest as well as the least
prevalent type of domain knowledge.

Table 1: Types of domain knowledge along with examples of
how each type can be incorporated into KGP.

Type Knowledge Example

Strong Symbolic Equation: 3𝑥4 + 4𝑥3 − 12𝑥2 + 2.

Strong Distribution The data follows a specific form of the
Bohachevsky function.

Strong Functional
Dependency

If Protocol is TCP, then packet size is
between 40 to 65,535 bytes.

Weak Semantic
Description

x and y coordinates of points when plot-
ted visually depict a dinosaur.

Weak Statistical
Knowledge

The variables are defined over the fol-
lowing domains: temp ranges from 7.6
to 9.7, press ranges from 0.19 to 269.9.

4 Experimental Results
In this section, we design experiments on synthetic tabular data gen-
eration tasks to investigate the effectiveness of knowledge-guided
prompting (KGP) as a novel prompt optimization strategy for LLMs.
We evaluate our approach using numerous datasets across math-
ematical, geometric, and real-world applications. Specifically, we
wish to investigate the following research questions:
RQ1: What is the trade-off between domain-knowledge and ICL

examples? (Section 4.2)
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Table 2: Example setup of different types of datasets and different levels of knowledge. In practice, the data contains more
digits; however, for presentation purposes, we only display up to two to three decimal places.

Example Data W/o KGP Statistical (Stat.) KGP Semantic (Sem.) KGP Symbolic (Sym.) KGP Preview

AP Calculus
(Math)

x is 2.4278, y is -0.8169.
x is 0.2925, y is 1.9153.
x is 1.1009, y is -0.1916.
[...More]

The variables are de-
fined over the follow-
ing domains: x ranges
from -4.0 to 4.0.

The function f is de-
creasing if x<=-2, in-
creasing if -2<=x<=0,
decreasing if 0<=x<=1,
and increasing if x>=1.

Consider the equation:
3𝑥4 + 4𝑥3 − 12𝑥2 + 2.

Datasaurus Dozen
(Graphical)

x is 55.3846, y is
97.1795. x is 51.5385, y
is 96.0256. [...More]

The range of x is
from 31.10686656
to 85.4461864, and
the range of y is
from 4.57766135 to
97.83761472.

x and y coordinates
of points when plot-
ted visually depict a di-
nosaur.

N/A

𝑂2 Sensing
(Real World)

temp is 9.471, sal is
35.344, press is 32.58,
O2 cal is 266.88. temp
is 9.473, sal is 35.344,
press is 47.60, O2 cal is
267.02. [...More]

The variables are
defined over the
following domains:
temp ranges from 7.6
to 9.7, sal ranges from
35.2 to 35.4, press
ranges from 0.19 to
269.9, O2 cal ranges
from 250.3 to 326.5.

It has been observed
that O2 solubility in
water is inversely pro-
portional to both tem-
perature and salinity.
The other factor is
pressure. Higher pres-
sure leads to increased
O2 solubility.

N/A

RQ2: Can domain-knowledge alleviate effects of poor data cov-
erage or help with (out-of-domain) OOD generalization?
(Section 4.3)

RQ3: Which type of knowledge injection is the most effective?
(Section 4.4)

RQ4: How does KGP affect the quality of the synthetic data gen-
erated? (Section 4.5)

RQ5: (Case Study) Can we characterize the effectiveness of KGP
in a real-world cyber-physical scenario? (Section 4.6)

4.1 Setup & KGP Scope
Datasets.We have adopted real datasets across three application
domains. Wemanually extracted datasets from the AP Calculus text-
book (specifically, Section 4 [3]), featuring variations of equations
and descriptions of function characteristics, Thirteen datasets from
the Datasaurus Dozen exhibiting distinct visual characteristics [23],
and an 𝑂2 sensing dataset from real-world applications related to
cyber-physical systems 1.

Baselines. We aim to investigate the potential of in-context
prompting techniques utilizing large language models, and in this
experiment the flagship OpenAI model GPT-4o is utilized as the
foundation model. In accordance with the system outlined in the
previous section, three levels of knowledge-guidance prompts will
be introduced and analyzed in an ablation study: Statistical KGP,
Semantic KGP, and Symbolic KGP.

KGP Scope. It is important to clarify that for the purpose of this
evaluation, we treat the levels of knowledge as a set of concentric

1https://www.bco-dmo.org/dataset/3426

circles. In other words, “Semantic KGP” denotes the combina-
tion of Statistical and Semantic KGP. Similarly, “Symbolic KGP”
includes all three forms of knowledge. Notably, Without knowl-
edge implies no guidance from knowledge is utilized, serving as
the traditional baseline for synthetic data generation.

Metrics. The traditional metrics for synthetic data from the tab-
ular data generation community are utilized, including machine
learning utility (MLU), negative log likelihood (NLL), KL diver-
gence, and distance to the closest record (DCR). Additionally, for
datasets containing ground-truth symbolic equations, we employ
mean square error (MSE) as the primary metric for assessing data
record validity. For datasets characterized by shape-focused distri-
butions, we employ Hausdorff distance to assess the similarity of
the shapes.

4.2 RQ1: What is the trade-off between
domain-knowledge and ICL examples?

Encoding structural data within a text sentence for LLM utilization
incurs a substantial token load. This underscores the rationale for
saving example data tokens to maintain performance expectations
or to enhance performance in scenarios where example data is
insufficient.

Although LLM developers continue to explore the upper limits
of context windows for both input and output, their efforts remain
insufficient in the domain of synthetic structural data generation.
Therefore, it is important to consider strategies for conserving
tokens utilized by in-context data samples, as well as identifying
ways to assist a language model when a user’s example data is
limited. Here are two common cases:
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Figure 2: Showcasing the MAPE and Hustoff distance between the synthetic data and the real data. X-axis represents different
ICL data sizes. The green curve represents the semantic KGP and the blue curve represents the No-KGP setting. Take (a) for
example, by incorporating the visual knowledge phrase “x and y coordinates of points when plotted visually depict a dinosaur.”
into the prompt, the quality of the generated data improves when the dataset is limited. The quantitative metric Hausdorff
Distance decreased from 18.54 to 7.72 indicating a significant improvement when using 60 In-Context Samples.

Simple Data Distributions. When the joint distribution of the
data is easy to model, using KGP will decrease data requirements
and thereby reduce token demand, leading to financial and time
saving. Figure 2a,b,c and e investigate the impact of KGP on data
generation when the target data follows a simple joint distribution.
Specifically, Figure 2a, b have been evaluated on datasets from the
AP calculus [3] data corpus, where 4 KGP variants have been evalu-
ated enabling us to investigate the full range of knowledge-guidance
granularity (i.e., statistical, semantic and symbolic knowledge guid-
ance). For each KGP variant, one context with 20 ICL examples
and another with 50 ICL examples has been evaluated. The plots in
Figure 2a,b both clearly demonstrate the benefit of KGP over the
‘No KGP’ variant in low data (i.e., 20 ICL examples) scenarios.
Finding: Semantic KGP, Symbolic KGP require 40% fewer ICL examples
to achieve the same generation quality as a variant without KGP.

Further, a similar experiment is carried out on the Datasaurus
corpus [23] employing the popular Hausdorff distance metric to
test data generation quality. In this scenario, we compare the ‘No
KGP’ variant with the ‘Semantic‘ KGP variant. The two variants
are each evaluated in two ICL contexts namely, one with 10 and
another with a 100 random ICL data points. The goal is once again
to evaluate how the KGP affects tabular data generation quality
and its utility in low-data scenarios.

Figure 2d evaluated in the context of the Dino dataset from
the Datasaurus corpus, illustrates that ‘Semantic KGP’ achieves
equivalent generation quality as ‘No-KGP’ with a 40% reduction
in the number of ICL examples. Figure 2e is a similar comparison

performed on the Away dataset from the Datasaurus corpus and
demonstrates an even higher reduction (ie., 90%) in ICL examples in
the Semantic KGP context to achieve thee same generation quality
as the No KGP context.
Finding: Overall, KGP improves synthetic-data generation quality
with a 40% - 90% reduction in ICL examples while achieving the same
generation quality as a variant without KGP, even in for simple data
distributions.
Complex Data Distributions. In Figure 2c and 2f, we evaluate
datasets from the AP Calculus and Datasaurus corpora respectively
except here, we consider datasets where the data exhibits a more
complex (i.e., harder tomodel) joint distribution. Figure 2f illustrates
an example of modeling a relatively difficult joint distribution (i.e.,
High Lines dataset) which is difficult owing to the data being dis-
tributed in disparate statistical modes. Here, we notice that despite
being conditioned on 100 in-context samples, even a state-of-the-art
LLM like GPT-4o alone (i.e., (with No KGP) does not generate a
valid synthetic joint distribution (as evidenced by high Hausdorff
distance of the blue line even at ICL 100). However, by simply inject-
ing a semantic KGP statement such as ‘x and y are visually looking
like high lines’, the model can not only significantly improve the
quality of generated data but achieves the same generation quality
as ‘No KGP’ with 80% fewer ICL examples.

Figure 2 represents a cubic polynomial function, also hard to
model in a purely data-driven manner. We notice that incorporat-
ing any form of KGP (statistical, semantic or Symbolic) leads to a
significant reduction in data generation error and a 50% reduction
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(a) ICL Data & Full Scope (b) W/o KGP (c) Statistical KGP (d) Semantic KGP

(e) ICL Data & Full Scope (f) W/o KGP (g) Statistical KGP (h) Semantic KGP

Figure 3: Visualization of out-of-distribution (OOD) generation, featuring two mathematical functions: Sigmoid and Bo-
hachevsky. In the ICL Real Data figure (a) & (e), the red data points represent the observed field, whereas the grey data points
indicate the complete ground truth field. Figure (b)-(d), (f)-(h) showcase the generated synthetic data under corresponding KGP
settings.

in ICL examples to achieve the same generation quality as the ‘No
KGP’ variant.
Overall Finding:KGP results in a significant reduction in ICL examples
for synthetic tabular data generation, both in contexts where the data
follows an easy and a hard joint distribution. Specifically, knowledge
guidance leads to a 40%-90% reduction in ICL examples in the easy
data context and between 50%-80% reduction in the hard data context.

4.3 RQ2: Can domain-knowledge alleviate
effects of poor data coverage or help with
OOD generalization?

Table 3 showcases the capability of generating previously unob-
served structural data on the basis of the ‘Statistical’ and ‘Semantic’
KGP provided, while Figure 3 illustrates the visual representation.
When calculating the MSE of the uncovered field of the ‘No KGP‘
variant, noise will be examined. ‘Statistical’ KGP and ‘Semantic’
KGP will generate data to cover those region utilizing the injected
domain knowledge. The mean squared error (MSE) of the sigmoid
function can be significantly reduced by 98%. Furthermore, with
respect to the Bohachevsky function, the absolute value of the error
decreased from 1.62 to 0.44 due to its higher dimensionality and in-
creased complexity. In the realm of complex functions, delving into
unfamiliar areas demands increased caution, as the LLM generator
may mistakenly treat unknown fields as similar to known ones, as
illustrated in Figure 3c and 3g.
Overall Finding: With the support of domain knowledge, KGP is
capable of generating out-of-distribution (OOD) data and augmenting
datasets that suffer from poor coverage or missing values. The data
generated through ‘Statistical’ plus ‘Semantic’ KGP exhibits an error
rate that is 78% to 90% lower compared to the plain ‘No KGP’ method
when exploring to unknown data feild.

Table 3: MSE for OOD generalization.

Math Function W/o KGP Statistical
KGP

Semantic
KGP

MSE
Impr.

Sigmoid (2d) 0.11 0.09 0.002 ↓ 98%
Bohachevsky (3d) 1.62 2.23 0.44 ↓ 73%

4.4 RQ3: Which type of knowledge injection is
the most effective?

Table 4 shows that the injection of ‘Statistical’ KGP and ‘Seman-
tic’ KGP generally leads to consistent and improved data quality.
Utilizing the complete equation, notably ‘Symbolic’ KGP, does not
always produce beneficial outcomes due to the limited grasp of
complex mathematics.
Overall Finding: The integration of statistical KGP and semantic
KGP in data generation involving various mathematical function
relationships can produce a consistent improvement in quality (i.e.,
a reduction in MSE), ranging from 35% to 70%, without occasionally
causing negative error.

4.5 RQ4: How does KGP affect the quality of
generated synthetic data?

In addition to the savings on the number of ICL examples, it is
equally crucial for KGP based generation pipelines to ensure high-
quality synthetic data. To investigate this, we quantitatively evalu-
ate the synthetic data quality with well accepted metrics: low-order
statistics (Sec 4.5.1), machine learning utility (MLU) (Sec 4.5.3), and
closest distance to record (DCR) (Sec 4.5.2).

4.5.1 How close is synthetic data to the full distribution joint (low-
order statistics)? Table 5 provides a quantitative assessment of the
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Table 4: Mean Squared Error at the 50-ICL setting with var-
ious levels of KGP. Arrows indicate the trend of the effect
(MSE) as higher levels of KGP (i.e., more granular knowledge-
guidance rules) are injected.

Math Function W/o
KGP

Statistical
KGP

Semantic
KGP

Symbolic
KGP

𝑦 = 3𝑥 (5/3) − 15𝑥 (2/3) 0.35 (↓)0.29 (↓)0.23 (↓)0.15

𝑦 = 𝑥3 − 3𝑥2 + 1 1.10 (↓)0.75 (∼)0.72 (↑)0.75

𝑦 = 2𝑥3 − 15𝑥2 + 36𝑥 0.02 (∼)0.02 (∼)0.02 (↓)0.01

𝑦 = 𝑥 + 2𝑠𝑖𝑛 (𝑥 ) 0.40 (↓)0.14 (∼)0.12 (↑)0.57

performance of the synthetic table. The negative log likelihood
(NLL) quantifies the resemblance between synthetic data and real
data. The low KL-divergence simultaneously guarantees the mode
diversity of the synthetic data.

Table 5: Low-order statistics, evaluated by negative log like-
lihood (NLL) and KL-divergence. Both of the metrics are
smaller the better.

Negative Log Likelihood (NLL) (↓)

Dataset W/o KGP Statistical
KGP

Semantic
KGP

AP Calculus 4.75±0.90 4.73±0.73 4.91±1.14

Datasaurus Dozen 8.99±0.18 9.09±0.25 8.88±0.04

𝑂2 Sensing 31.18 11.62 8.54

KL-Divergence (↓)

Dataset W/o KGP Statistical
KGP

Semantic
KGP

AP Calculus 0.02±0.02 0.04±0.04 0.07±0.09

Datasaurus Dozen 0.06±0.07 0.10±0.06 0.01±0.01

𝑂2 Sensing 4.43 0.70 0.20

Figure 4 compares real and synthetic data, highlighting shape
trends. Analyzing columns two (no KGP) to five (Symbolic KGP)
shows that better knowledge guidance yields more realistic results
within the same sample. Figure (a) represents the ICL20 conditions,
while Figure (b) illustrates the ICL50 conditions. Comparison of
subfigures (a) and (b) in Figure 5 shows that the Semantic KGP form
in graphs requires a more detailed context in English. Otherwise,
the Semantic KGP can similarly contaminate synthetic data, akin
to a reverse de-noising process.

4.5.2 How does distance to the closest record change when knowl-
edge is incorporated? Table 6 shows improved row similarity with-
out adding a new leak record.

4.5.3 Can we use synthetic data in ML pipelines? Table 7 illustrates
the performance of machine learning using synthetic data. The
analysis reveals that synthetic data can effectively replace original
data for training two commonly used machine learning models,

(a) ICL-20 for four functions, one per row: (3𝑥4 +
4𝑥3 − 12𝑥2 + 2); (𝑥3 − 3𝑥2 + 1); (𝑐𝑜𝑠 (𝑥 )); (3𝑥 (5/3) −
15𝑥 (2/3) ).

(b) ICL-50 for four functions, one per row: (3𝑥4 +
4𝑥3 − 12𝑥2 + 2); (𝑥3 − 3𝑥2 + 1); (𝑐𝑜𝑠 (𝑥 )); (3𝑥 (5/3) −
15𝑥 (2/3) )

Figure 4: Diversity of modes in synthetic data. Five columns
from left to the right are real data, No KGP, statistical KGP,
semantic KGP, and symbolic KGP.

Table 6: Distance to the closest record: A lower distance yields
a better record in terms of validity; however, the occurrence
of a zero value, which indicates a leak of raw data, is unac-
ceptable.

Distance to the closest record. (↓)

Dataset W/o KGP Statistical
KGP

Semantic
KGP

AP Calculus 0 0 0

Datasaurus Dozen 0.21±0.20 0.41±0.24 0.12±0.09

𝑂2 Sensing 0.57 0.46 0.38

random forest and linear regression, yielding low MAPE errors on
actual test data.
Overall Finding: Using KGP (Statistical and Semantic) resulted in
optimal performance across all three standard synthetic table metrics,
with an average enhancement of 50% for each metric.
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(a) Good Semantic Knowledge: ‘Dinausour’,
‘x shape’, ‘star’.

(b) Misleading Semantic Knowledge: ‘bulls-
eye’, ‘slant up’, ‘wide lines’.

Figure 5: Diversity ofmodes in synthetic data. Three columns
from left to the right represent real data, No KGP, Semantic
KGP.

4.6 Case Study: Characterizing Effectiveness of
Prompt Optimization via KGP in a
Real-World Cyber-Physical Scenario

This section uses a dataset from a noisy cyber-physical system
recording temperature, salinity, and pressure to predict water’s
oxygen solubility. Table 8 presents the evaluation of generating
synthetic data from noisy raw data using Statistical KGP and Se-
mantic KGP.
Finding: Statistical KGP is vital for preserving a valid row joint distri-
bution in scenarios characterized by noisy data.

One of the advantages of using modern LLMs is the availability
and flexibility of the agent-embedded framework. Considering that
even explicitly including the instruction “does not copy the original
data” in the prompt, the generated data may still include some, see
Table 6. Given that the LLM generator can utilize foundational and
supplementary domain knowledge (statistical and semantic KGPs)
to correct errors, we will initially introduce noise to the original
data and subsequently employ the LLM to correct this noise, a

Table 7: MLU- Random Forest and Linear Regression.

Machine Learning Utility (MLU) - Random Forest (↓)

Dataset W/o
KGP

Statistical
KGP

Semantic
KGP

AP Calculus 0.47±0.45 0.30±0.32 0.27±0.31

Datasaurus Dozen 0.90±0.30 0.88±0.25 0.60±0.19

𝑂2 Sensing 0.031 0.029 0.0225

Machine Learning Utility (MLU) - Linear Regression (↓)

Dataset W/o
KGP

Statistical
KGP

Semantic
KGP

AP Calculus 1.61±2.02 1.61±2.02 2.13±2.90

Datasaurus Dozen 0.90±0.13 0.84±0.08 0.79±0.08

𝑂2 Sensing 0.039 0.053 0.023

Table 8: Distance to the closest record.

Distance to the closest record under Noisy Case. (↓)

Dataset W/o KGP Statistical KGP Semantic KGP

𝑂2 Sensing W/o Noise 0.57 0.46 0.38

𝑂2 Sensing W/ Noise 1.06 0.61 0.70

process referred to as noise-and-refix. When the real original
data are not presented to the LLM agent, concerns regarding the
copying or leaking of data are eliminated.
Finding:Amodicum of in-context example data is essential to generate
the hidden distribution, while knowledge guidance is more effective in
providing dependency, correcting errors, or establishing boundaries.

5 Conclusion
This paper proposes the use of a novel prompt optimization strat-
egy termed Knowledge-Guided Prompting (KGP), to enhance the
generation quality of structural tabular data by a Large Language
Model (LLM). Although examples of in-context learning data are
limited in a chunk size and offer localized knowledge only, the
comprehensive domain knowledge of the entire dataset can be in-
corporated as an English prompt using statistical KGP and semantic
KGP. We have investigated the relationship between symbolic and
statistical knowledge and prompt snippets, yielding an empirical
‘scaling law’ that estimates the number of snippets needed. Our
experiments demonstrate that the KGP strategy can reduce ICL
data (that is, tokens) by 40%, improve data with unknown regions
(out-of-distribution generation) or improve the quality of synthetic
data while utilizing the same level of ICL data.

Future work will be aimed at developing a multimodal learning
framework encompassing KGP with visual and semantic facets. A
user’s inconsistent semantic KGP, when compared to the example
data, may result in a decrease in generation quality, constituting a
form of model poisoning. Leveraging associations across modalities
via shared parameters will lead to more resilient approaches for
knowledge-guided applications.
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