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ABSTRACT

Across various science and engineering applications, there often arises a need to
predict the dynamics of one data stream from another. Further, these data streams
may have different statistical properties. Studying the dynamical relationship be-
tween such processes, especially for the purpose of predicting one from the other,
requires accounting for their distinct statistics while also dissociating their shared
dynamical subspace. Existing analytical modeling approaches, however, do not
address both of these needs. Here we propose a path forward by deriving a novel
analytical multi-step subspace identification algorithm that can learn a model for
a primary generalized-linear process (called “predictor”), while also dissociating
the dynamics shared with a secondary process. We demonstrate a specific ap-
plication of our approach for modeling discrete Poisson point-process activity,
while finding the dynamics shared with continuous Gaussian processes. In simu-
lations, we show that our algorithm accurately prioritizes identification of shared
dynamics. Further, we also demonstrate that the method can additionally model
the residual dynamics that exist only in the predictor Poisson data stream, if de-
sired. Similarly, we apply our algorithm on a biological dataset to learn models
of dynamics in Poisson neural population spiking streams that predict dynamics
in movement streams. Compared with existing Poisson subspace identification
methods, models learned with our method decoded movements better and with
lower-dimensional latent states. Lastly, we discuss regimes in which our assump-
tions might not be met and provide recommendations and possible future direc-
tions of investigation.

1 INTRODUCTION

Modeling the shared dynamics between temporally-structured observations with different statistical
properties is useful across multiple application domains, including neuroscience and biomedical
engineering (D’mello & Kory, 2015} [Lu et al., [2021). However, building models of the dynamic
relation between such signals is challenging for two key reasons. First, continuous- and discrete-
valued observations exhibit different statistics, which the modeling approach must appropriately
reconcile. Second, residual (i.e., unshared or unique) dynamics present in each observation stream
can obscure and confound modeling of their shared dynamics (Allen et al., |2019; [Stringer et al.,
2019;|Sani et al.| 2021)). Thus, the modeling approach also needs a way to accurately dissociate and
prioritize identification of the shared dynamics. Current analytical methods do not simultaneously
enable both of these capabilities, which is what we address here.

Linear dynamical state-space models (SSMs) are a commonly used framework for modeling dy-
namics using a low-dimensional latent variable that evolves over time (Paninski et al., [2010; Macke
et al., [2015; Newman et al., [2023). Even though the past decade has seen an increased use of arti-
ficial neural networks and deep learning methods for training dynamical models of time-series data
(Pandarinath et al.| 2018; |Hurwitz et al., 2021; Kramer et al., [2022} |Schneider et al., [2023), analyt-
ical SSMs still remain widely popular due to their interpretability and broad applicability both in
scientific investigations and in real-time engineering applications (Kao et al., 2015} |Aghagolzadeh
& Truccolo, 2016; [Lu et al. 20215 |Yang et al., |2021; Newman et al.l 2023). For Gauss-Markov
models with continuous Gaussian observations, subspace system identification (SSID) theory pro-
vides computationally efficient non-iterative algorithms for analytically learning state-space models,
both with and without identification of shared dynamics and dissociation of intrinsic vs input-driven



Under review as a conference paper at ICLR 2024

activity(Van Overschee & De Moorl, [1996; Katayama, 2005; [Sani et al.| 2021} |Galgali et al., [2023;
Vahidi et al.}[2023)). These methods, however, are not applicable to generalized-linear processes with
non-Gaussian observations. While there has been work extending SSID to generalized-linear pro-
cesses, such as Poisson and Bernoulli observations (Buesing et al., |2012; [Stone et al., [2023), these
methods only learn the dynamics of a single observation time-series rather than modeling shared
dynamics between two time-series (see section [2.1). Finally, prior multimodal learning algorithms
do not explicitly tease apart the shared vs. residual (disjoint) dynamics in a predictor (primary)
time-series, but instead model the collective dynamics of two modalities in the same latent states
(Abbaspourazad et al., 2021} |[Kramer et al., 2022; /Ahmadipour et al.,|2023)).

Here we fill these methodological gaps by deriving a novel covariance-based SSID learning algo-
rithm that (1) is applicable to generalized-linear processes, and (2) is capable, with its two-staged
learning approach, of identifying with priority the shared dynamics between two processes before
modeling residual (predictor-only) dynamics. To illustrate the method, we focus on the specific case
of modeling Poisson-distributed discrete time-series while dissociating their shared dynamics with
Gaussian-distributed continuous observations, which is of particular interest in neuroscience. How-
ever, we emphasize that our method can be extended to other output distributions in the generalized-
linear model family (section [5). We show that our method successfully dissociated the shared dy-
namics between Poisson and Gaussian observations both in simulations and on a public non-human
primate (NHP) dataset of discrete population spiking activity recorded during continuous arm move-
ments (O’ Doherty et al.,[2017)). Further, compared with existing Poisson SSID methods, our method
more accurately decoded movements from Poisson spiking activity using lower-dimensional latent
states. Lastly, we discuss limitations and propose potential solutions and future research directions.

2 BACKGROUND

Our method provides the new capability to dynamically model Poisson observations, while prior-
itizing identification of dynamics shared with Gaussian observations. We first review the existing
SSID method for modeling Poisson observations, which serves as our baseline, as well as standard
covariance-based SSID, to help with the exposition of our method in section

2.1 SSID FOR POISSON LINEAR DYNAMICAL SYSTEMS (PLDSID)

A Poisson linear dynamical system (PLDS) model is defined as

Xpy1 = Axp +wg
ry = Cyxp+b (D
Vi |rr ~ Poisson(exp(ry))

where x; € R"= is the latent state variable and y; € R™ corresponds to discrete (e.g., neural
spiking) observations which, conditioned on the latent process ry, is Poisson-distributed with a
rate equal to the exponential of ry (i.e., log-rate). Finally, N'(wy;0,Q) is state noise and b is
a constant baseline log-rate. The PLDS model is commonly used for modeling Poisson process
events, such as neural spiking activity (Smith & Brownl 2003} Truccolo et al.| | 2005; Lawhern et al.,
2010; Buesing et al., [2012; Macke et al.,[2015). |Buesing et al.|(2012) developed an SSID algorithm,
termed PLDSID, to learn the PLDS model parameters © = (A, C,, b, Q) given training samples
vy, and hyperparameter n, corresponding to the latent state dimensionality.

There exist standard covariance-based SSID algorithms (section [2.2) that can learn the parameters
of a latent dynamical system given a future-past Hankel matrix, H, constructed from the cross-
covariances of the system’s linear observations as (Van Overschee & De Moorl, [1996; [Katayamal,
2005)

Ari AI{i71 krl r; ry
rit1 r; ro

H:=Covlrpomp) =1 : o=l =] | @
Ar2i—1 Argi,Q Ari r2i—1 ri—1

where the integer ¢ denotes the user-specified maximum temporal lag (i.e., horizon) used to con-
struct H and A,  := Cov(ryir,ry) is the 7-th lag cross-covariance for any timepoint k, under
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time-stationary assumptions. Such covariance-based SSID algorithms, however, are not directly
applicable to Poisson-distributed observations (section [2.3). This is because the log-rates ry, that
are linearly related to the latent states in equation (I)) are not observable in practice — rather, only
a stochastic Poisson emission from them (i.e., y) is observed. As a result, the second moments
constituting H (i.e., A, ) cannot be directly estimated. The critical insight by Buesing et al.[(2012)
was to leverage the log link function (i.e., exp~1) and the known conditional distribution yy|r) to
compute the first (u1,+) and second (A,+) moments of the log-rate rj from the first (p1y+) and sec-
ond (A +) moments of the discrete observations y},. The & denotes that moments are computed for
the future-past stacked vector of observations r* := [r? )] T and yE = [y? vy T, where
Pt = Ert] pys = E[y*] Az = Cov(r®,r¥) Ays := Cov(y*, y*).

To compute moments of the log-rate, Buesing et al.|(2012)) derived the following moment conversion

1 2
P = 2ln(pge) — gin(Ayx +ple — pyx)
Avi = WAy grpys) —In(iypy )

where m # n correspond to different indices of the first and second moments of the future-past
stacked observation vectors r* and y*, and n,m = 1,--- | K n, where K is the total number of
time points. With the first and second moments computed in the moment conversion above, the
baseline log rate b parameter is read off the first n, rows of u,+ and the Hankel matrix, H, is
constructed as per equation (2). From here, it is possible to proceed with the standard covariance-
based SSID algorithm for Gauss-Markov models using H, as outlined next.

2.2  STANDARD COVARIANCE-BASED SSID

Given an H matrix, covariance-based SSID first decomposes H into a product of observability (T'y)
and controllability (A) matrices as (Van Overschee & De Moor, |1996; |Katayamal, 2005])

&

C:A ,

HYT,A=| O |[A7G - AG G )
C A

where G := Cov(Xx+1, k). The factorization of H is done by computing a SVD of H and keeping
the top n, singular values and corresponding singular vectors. Note that the rank of H must be at
least n,; in order to identify a model with a latent dimension of n,. Thus, the user-specified horizon
i must satisfy ¢ X n, > n,. From the factors of H, C, is read off as the first n,, rows of Iy, and A is
learned by solving I'y = ' A, where I'; and I, denote I, from which the top or bottom 7, rows
have been removed, respectively. This optimization problem has the following closed-form least-
squares solution A = LTIF, with 1 denoting the pseudo-inverse operation. Discussion regarding
learning the state noise covariance model parameter Q is postponed to section [3.2.3| below.

2.3 CHALLENGES OF DEVELOPING COVARIANCE- VS PROJECTION-BASED SSID METHODS

At a high-level, there exist two common approaches for subspace identification (Van Overschee
& De Moor, |1996; [Katayama, 2005): (i) covariance-based methods (e.g., [Buesing et al.| (2012);
Ahmadipour et al.|(2023))) that aim to learn all model parameters based on the second-order statistics
of the observations and not the observation time-series directly, and (ii) projection-based methods
(e.g., Sani et al.| (2021); |Vahidi et al.| (2023))) that make direct use of the observation time-series
via linear projections. Projection-based methods are often used to model Gaussian time-series but
are not applicable to Poisson observations, which instead require a covariance-based approach since
the latent log-firing rates (r in equation (I))) are unobserved. To achieve our aim (i.e., modeling a
generalized-linear process with prioritized identification of shared dynamics), we need to develop a
novel covariance-based subspace identification algorithm, which presents the following challenges:
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1. Covariance-based methods, including PLDSID (Buesing et al., |2012), do not guarantee a
valid set of parameters that satisfy the positive semidefinite covariance sequence require-
ments (Van Overschee & De Moor, [1996). To address this challenge, we use the opti-
mization approach outlined in section [3.2.3]to ensure validity of noise statistics and enable
inference from the learned model.

2. We could not rely on time-series projections to isolate the residual predictor process dy-
namics at the beginning of the second stage (Sani et al., [2021). As a result, we derived
a new least-squares problem for learning the components of the state transition matrix A
corresponding to the unique predictor process dynamics (section [3.2.2), without changing
the shared components learned in the first stage (section [3.2.1). By doing so, prioritized
learning of shared dynamics is preserved.

3 METHOD

3.1 MODELING SHARED DYNAMICS BETWEEN POISSON AND GAUSSIAN OBSERVATIONS

The PLDS model (equation (I)) is for modeling Poisson observations on their own rather than with
Gaussian observations. To enable this capability, we write the following Poisson-Gaussian linear
dynamical system model

Xpr1 = Axp +wyg
Z = Cuxi + € (5)
Iy = Cyxp+b

Vi | rx ~ Poisson(exp(ry))

where z; € R™: represents continuous observations (e.g., arm movements), €; represents their
noise (either white, i.e., zero-mean temporally uncorrelated Gaussian noise, or colored, i.e., zero-
mean temporally correlated Gaussian noise), and y; € R™v represents the discrete observations (i.e.,
neural spiking). Further, we introduce a block structure to the system (Sani et al.,|2021)) that allows
us to dissociate shared latents from those that drive the Poisson observations only. Specifically,

_ A1 O _ [~ _[~m (2) _ [xW
4= l:A21 A22] C. = [CZ O} Cr = [Cr Cr } = 1x@ ©

where x,(:) € R™ corresponds to latent states that drive both zj; and yy, and x,(f) € R"=~™ to

states that only drive yj. The parameter G can also be written in block partition format such that

S o I B EV r_ |Bx )] (B ERT] _ e
G=E || G || —E G| Bleel” = | G 7 @) r| = |lgo|-
Xkt1 Xkt1 E[Xk-ﬁ-lrk} E[Xk-i-l]E[rk}

Our method, termed PG-LDS-ID (Poisson-Gaussian linear dynamical system identification), learns
the model parameters, i.e., 0 = (A, C,, C,b,Q), given training samples yy, and zj, and hyperpa-
rameters n; and ne = n, — ny denoting the shared and residual latent dimensionalities. Selection
of appropriate values for hyperparameters can be done with cross-validation (see appendix [A.3).

3.2 PG-LDS-ID

PG-LDS-ID uses a two-staged learning approach to model Poisson time-series while prioritizing
identification of the dynamics shared with Gaussian observations. During stage 1, shared dynamics
are learned using both observations. In stage 2, any residual dynamics in the predictor observations
are optionally learned. This two-staged approach allows prioritized learning of shared dynamics
in the sense that latent states will be dedicated to explaining non-shared predictor dynamics only if
there are enough latent states to explain the shared dynamics (full derivation in appendix [A.T). Note,
predictor refers to the data stream whose modeling is of primary interest (the Poisson observations
here) and that is used to predict the secondary data stream (the Gaussian observations). For example,
Poisson observations are the predictor within the context of decoding continuous behaviors from
discrete population spiking activity. The roles can be swapped without loss of generality and the
designation is made clear in equation (8]) below.
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3.2.1 STAGE 1: SHARED DYNAMICS

In the first stage, our algorithm identifies the parameter set corresponding to the shared dynamical

subspace, (A1, Cﬁl), C,, b), given hyperparameter n; and using both Gaussian and Poisson ob-
servations, zj, and y. To do this, we first compute a moment conversion to estimate joint moments
of z; and r; from the joint moments of the observed signals z;, and y;, with the following equation
derived using the conditional statistical properties of both observations (see appendix

Azfmrpn = COV(me’ypn) / HyPn : (7)

Next, we use these moments to construct a Hankel matrix between future continuous observations
and past log-rates of the discrete observations

Azrl Azri71 e Azr1 .
AZl‘i+1 Azri e _Azr2 7
H,. :=Cov(zy,r,) = : : |, = -
AZI‘2F1 Azrgi,Q ce Azr,; Z2i—1

with r,, defined as in equation . Although equation uses the same horizon for both ob-
servations, in practice we implement the method for a more general version with distinct hori-
zon values i, for the discrete observations and i, for the continuous observations, resulting in
H,, € Ri=*=>i*y_This allows users to independently specify the horizons for the two observa-
tions, which can improve modeling accuracy especially if the two observations have very different
dimensionalities (see section [4.2] and appendix [A.3.T). Further, and importantly, by using z as the
future observations in the Hankel matrix, we learn a dynamical model wherein Poisson observations
y can be used to predict the Gaussian observations z. After constructing H,,, we decompose it
using SVD and keep the top ny singular values and their corresponding singular vectors

C,
H, T, A0 — Cz‘jl“ (AT .. ALG0 GO ©)
C.AL
where 7 is the user-specified dimensionality of the shared latent states x,(cl), T, denotes the observ-

ability matrix for the continuous observations, and A1) denotes the controllability matrix associated
with the shared latent states (defined as in equations (@) and (I7) in the appendix). At this point, we

extract C, by reading off the first n, rows of I',. To extract C,gl) we first form H per equation

and extract the observability matrix for r associated with the shared latent dynamics, 1“§”, by right
multiplying H with the pseudoinverse of A1)

cM
ciV Ay,

HAWT =1 =
chAy!

We then read Cﬁl) from the first n,, lines of 1",(,1) (defined as in equation in the appendix). The
baseline log rate b is read off the first n, rows of p,+ computed in the moment conversion from
equation . Lastly, to learn the shared dynamics summarized by the parameter A;, we solve

the optimization problem AY) = Auz(l) where A and A" denote AM from which ny
columns have been removed from the right or left, respectively. The closed-form least-squares solu-

tion for this problem is A;; = A (K(l))T. This concludes the learning of the desired parameters
(Aq1, C,El), C,,b), given hyperparameter n1, in stage 1.

3.2.2 STAGE 2: RESIDUAL DYNAMICS

After learning the shared dynamics, our algorithm can learn the residual dynamics in the predictor

observations that were not captured by x,(cl). Specifically, we learn the remaining parameters from
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equation @): ([A21  Ago) ,052)), with hyperparameter no = n, — n; determining the unshared

latent dimensionality. To do so, we first compute a “residual” Hankel matrix, H @), using I‘,(rl) and

AWM from stage 1 and decompose it using SVD, keeping the first no singular values and vectors
H® =H-TOAOZLTEAG), (10)
With 0,52), which corresponds to the first n, rows of 1"52), we construct C,. = [Cr(l) CT(Q)]

We then use A(®) to form the controllability matrix A as the concatenation of A(Y) and A

. . . A
(derivation in appendix [A.1): A= [A"!G -+ AG G|=

A2
extract [A2;  Aag| by solving the problem A@) =[A1  Ags] A where
AP = [[Ay Ap|AT2G - [An An]|G], A:=[AT2G - G].

Concatenating all the sub-blocks together A = Lﬁ;l A022:| , we now have all model parameters,
1

} . Given A, we next

(A, C,, C,,b), given hyperparameters n; and no, except state noise covariance Q.

3.2.3 NOISE STATISTICS

Standard SSID algorithms (e.g., section[2.2)) learn linear SSMs of the following form

{ Xpr1 = Axp+wy (11
T = Cyxp + Vi

where the new term A/ (vi; 0, R) corresponds to observation noise. State noise, wy, and observation
noise, vy, can have a non-zero instantaneous cross-covariance S = Cov(wy, v ). SSID in general
does not assume any restrictions on the noise statistics. However, the Poisson observation model
(equations (EI) and @) has no additive Gaussian noise for r; and instead exhibits Poisson noise
in yx, when conditioned on ri. This means that v = 0 in equation @), and thus R = 0 and
S = 0. Imposing these constraints is important for accurate parameter identification for Poisson
observations, but was not previously addressed by Buesing et al.| (2012). Thus, we require our
algorithm to find a complete parameter set ©’ that is close to the learned (A, Cy., C,, b) from the two
stages in sections[3.2.1] and [3.2.2) and imposes the noise statistic constraints R = 0 and S = 0. To
do this, inspired by |Ahmadipour et al.|(2023)), we form and solve the following convex optimization
problem to satisfy the noise statistics requirements

minimize |S(Ax)||% + | R(Ax)||% suchthat Ay = 0, Q(Ax) = 0, R(Ay) =0 (12)

where Ay := Cov(xy,X}) denotes the latent state covariance and the following covariance rela-
tionships, derived from equation @ (Van Overschee & De Moor, [1996)), hold
QAx) = Ax — AAAT
R(Ay) = A, — C.ACT (13)
S(Ax) = G — AACL.

This approach has multiple benefits. First, it finds noise statistics that are consistent with the as-
sumptions of the model (e.g., R = 0). Second, it enforces the validity of learned parameters, i.e.,
parameters corresponding to a valid positive semidefinite covariance sequence (see section [.3)). It
also enables state prediction (see appendix [A.4). Combining the previously found parameters and
the matrix @ that corresponds to the minimizing solution A of equation (I2)), we have the full pa-
rameter set ©' = (A, Cy, C,, b, Q). We used Python’s CVXPY package to solve the semidefinite
programming problem defined in equation (I2)) (Diamond & Boyd [2016;/Agrawal et al.| 2018). For
all of our comparisons against baseline, we learned the noise statistics associated with PLDSID’s
identified parameters using this approach, keeping the rest of the algorithm the same.

4 EXPERIMENTAL RESULTS

4.1 SHARED DYNAMICS ARE ACCURATELY IDENTIFIED IN SIMULATIONS

We simulated Poisson and Gaussian observations from random models as per equation (5 to eval-
uate how well our method identified the shared dynamics between the two observations. All state
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and observation dimensions were randomly selected and the corresponding system parameters gen-
erated to simulate stable and slow-decaying dynamics (see appendix [A.5.1). We computed two
performance metrics: 1) the normalized eigenvalue error between ground truth and identified shared
dynamical modes (i.e, the eigenvalues of A;; in equation (6)), and 2) the predictive power of the
model when using discrete Poisson observations to predict continuous Gaussian observations in a
held-out test set. This second metric allowed us to test our hypothesis that PG-LDS-ID’s explicit
modeling of the shared subspace improved decoding of Gaussian observations from Poisson obser-
vations compared with PLDSID (Buesing et al., 2012). To compute the first metric for PLDSID,
which does not explicitly model shared dynamics, we needed to select the 77 modes identified from
the Poisson time-series only that were the most representative of the Gaussian time-series. To do so,
we first trained PLDSID on Poisson observations and extracted the latent states. Then, we sorted
these learned latent states based on their accuracy in predicting the Gaussian observations (appendix
[A-4). We computed the eigenvalues associated with the top n; most predictive latent states, which
we considered as the shared modes identified by PLDSID. We computed the normalized eigenvalue
error as |Woue — Yid| g / | Worue| o, Where Wi and Wiy denote vectors containing the true and learned
shared eigenvalues and | - | denotes the Frobenius norm.
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Figure 1: In simulations, PG-LDS-ID more accurately learns the shared dynamical modes
and better predicts the Gaussian observations from Poisson observations, especially in low-
dimensional regimes. Solid traces show the mean and the shaded areas denote the standard error
of the mean (s.e.m.) for each condition. (a-b) Results for random models. Both the prediction
correlation coefficient for the Gaussian observations in (a) and the normalized identification error
of the shared dynamical modes (in log10 scale) in (b) are shown as a function of training samples
used to learn the model parameters. (c-d) Same as (a-b) but for models with fixed shared (n1 = 4)
and residual (ne = 12) latent dimensions in the Poisson observations. PG-LDS-ID stage 1 used a
dimensionality given by min(4, n ). For configurations wherein learned n,, is smaller than true n1,
we substituted missing modes with O prior to computing the normalized error.

In our first simulation experiment, we generated 50 random systems and studied the effect of train-
ing set size on learning. We used le2, 1e3, le4, 1e5 or 1e6 samples to train models and tested them
on le6 samples of independent held-out data (figure [T). We found that our method required sub-
stantially fewer training samples (~1e4 samples compared to PLDSID’s ~1e5) to reach ideal (i.e.,
ground truth) prediction (figure[Th). Similarly, our method more accurately identified the shared dy-
namical modes compared to PLDSID even when methods had increasingly more training samples
(figure[Ip). In our second simulation experiment, we studied the effect of latent state dimension on
learning. We generated 50 systems with fixed dimensions for shared and total latent states given by
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n1 = 4 and n, = 16, respectively. We swept the learned latent state dimension from 1 to the true
dimensionality of n,, = 16, with the dimensionality of shared dynamics set to min(current n,, n).
We found that our method identified the correct shared modes with very small errors using only 4 la-
tent state dimensions; in contrast, PLDSID did not reach such low error rates even when using higher
latent state dimensions (figure[Id). In terms of predictive power, our method achieved close-to peak
performance even when using as few as 4 latent states whereas PLDSID required much larger latent
states dimensions, of around 16, to do so (figure E}:). Taken together, these results show the power
of PG-LDS-ID for performing dimensionality reduction on Poisson observations while prioritizing
identification of shared dynamics with a secondary Gaussian data stream.

4.2 MODELING SHARED AND RESIDUAL DYNAMICS IN POISSON POPULATION NEURAL
SPIKING ACTIVITY IMPROVES MOTOR DECODING

As a demonstration on real data, we used our algorithm to model the shared dynamics between
discrete population neural spiking activity and continuous arm movements in a publicly available
NHP dataset from the Sabes lab (O’Doherty et al.| [2017). The dataset is of a NHP moving a 2D-
cursor in a virtual reality environment based on fingertip position. We use the 2D cursor position and
velocity as the continuous observations z. We removed channels that had average firing rates less
than 0.5 Hz or greater than 100 Hz. Similar to Lawlor et al.|(2018])), we also removed channels that
were correlated with other channels using a correlation coefficient threshold of 0.4. For all methods
we used S0ms binned multi-unit spike counts for the discrete observations y. We evaluated decoding
performance of learned models using five-fold cross validation across six recording sessions. We
performed cross-validation using randomly-selected, non-overlapping subsets of 15 channels (n, =
15) within each session. We used a nested inner cross-validation to select hyperparameters per fold
based on the prediction CC of kinematics in the training data. Hyperparameters in this context
were discrete horizon 7y, continuous horizon i,, and time lag, which specifies how much the neural
time-series should be lagged to time-align with the corresponding behavioral time-series (Moran &
Schwartz, |1999; [Shoham et al.,|2005; |Pandarinath et al., 2018). We swept 7, values of 5 and 10 time
bins, ¢, values of 10, 20, 22, 25, 28, and 30 time bins; and lag values of 0, 2, 5, 8, and 10 time bins.
To train PG-LDS-ID, we use the shared dynamics dimensionality of ny; = min(current n,, 8). We
chose a maximum 7, of 8 because behavior decoding roughly plateaued at this dimension.

Compared with PLDSID, our method learned models that led to better behavioral decoding at all
latent state dimensions (figure [2p) and achieved a higher behavior decoding at the maximum latent
state dimension. This result suggests that our method better learns the shared dynamics between
Poisson spiking and continuous movement observations due to its ability to dissociate shared vs.
residual latent states in Poisson observations. Interestingly, despite the focus on learning the shared
latent states in the first stage, PG-LDS-ID was also able to extract the residual latent states in Poisson
observations because of its second stage. This led to PG-LDS-SID performing similarly to PLDSID
in terms of peak neural self-prediction AUC while outperforming PLDSID in terms of peak behavior
decoding (figure Zk). Indeed, even with the inclusion of just two additional latent states to model
residual Poisson dynamics (ne = 2, n, = 10), neural self-prediction was comparable to models
learned by PLDSID (figure [2b). Taken together, our method was extensible to real data and helped
boost decoding performance, especially in low-dimensional latent regimes, by better identifying
shared dynamics between Poisson and Gaussian observations. In appendix [A.8] we also include
preliminary results comparing against PLDS models fit using EM on a subset of this dataset.

4.3 LIMITATIONS

PG-LDS-ID, similar to other SSID methods, uses a time-invariant model which may not be suitable
if the data exhibits non-stationarity, e.g., in chronic neural recordings. In such cases one would need
to intermittently refit the model or develop adaptive extensions (Ahmadipour et al.| 2021)). Moreover,
as with other covariance-based SSID methods, our method may be sensitive to the accuracy of the
empirical estimates of the first- and second-order moments. However, with increasing number of
samples these empirical estimates will approach true statistical values, thereby improving overall
performance, as seen in figure [Th-b. Further, it may be possible that SSID methods fail to learn a
valid set of parameters corresponding to a positive-definite covariance sequence (Van Overschee &
De Moor, [1996} [Katayamal [2005)) or they may learn unstable state dynamics, meaning A has some
eigenvalues with magnitude greater than 1 (see appendix [A.6). These issues can arise due to errors
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Figure 2: In NHP data, PG-LDS-ID improves movement decoding from Poisson population
spiking activity. (a) Solid traces show the average cross-validated kinematic prediction CC and
the shaded areas denote the s.e.m. for Poisson models of different latent dimensions learned by
PG-LDS-ID (green) and PLDSID (orange). (b) Same as (a) but visualizing one-step ahead neural
self-prediction AUC. (c) The left bar plots visualize the kinematic prediction CC and the right bar
plots visualize the neural self-prediction AUC for models of latent dimensionality n, = 14. We
used Wilcoxon signed-rank test to measure significance. Asterisks in kinematic prediction CC plot
indicate statistical significance with p < 0.0005; neural self-prediction AUCs were not significantly
different at n,, = 14. (d) Example decoding of cursor (x,y) position and velocity from test data.

in the empirical estimates of the covariances and because these methods do not explicitly impose
stability constraints on model parameters. Future work may consider incorporating techniques from
control theory, such as mode stabilization and covariance matching, to help mitigate these limitations
(Maciejowskil |1995} [Lindquist & Piccil [1996; Byrnes et al., |[1998;; |Alkire & Vandenberghel |2002).
Finally, our modeling approach can only provide an approximation of nonlinear dynamics/systems
within the class of generalized-linear models, which have been shown to well-approximate nonlinear
data in many applications, including modeling of neural and behavioral data.

5 DISCUSSION

We developed a novel analytical two-staged subspace identification algorithm termed PG-LDS-ID
for modeling Poisson data streams while dissociating the dynamics shared with Gaussian data
streams. Using simulations and real NHP data, we demonstrated that our method successfully
achieves this new capability and thus, compared to existing Poisson SSID methods, more accu-
rately identifies Poisson dynamics that are shared with Gaussian observations. Furthermore, this
capability allows our method to improve decoding performance despite using lower-dimensional
latent states and requiring a fewer number of training samples. Although we specifically focused
on modeling Gaussian and Poisson observations, our algorithm can be extended to alternate dis-
tributions described with generalized-linear models. Our algorithm only requires the second-order
moments after moment conversion (see equations (2), (3), (7, (8)). Because the moment conversion
algorithm can be modified for the desired link function in generalized-linear models, as explained by
Buesing et al.|(2012)), we can combine our method with the appropriate moment conversion to extend
it to other non-Gaussian and non-Poisson observation distributions. Due to the high-prevalence of
generalized-linear models across various application domains (e.g., biomedical engineering, neuro-
science, finance, etc.), our method can be a general tool for modeling shared and residual dynamics
of joint data streams with distinct observation distributions.



Under review as a conference paper at ICLR 2024

6 REPRODUCIBILITY STATEMENT

We have taken a few steps to ensure reproducibility of the results reported here. First, we are sharing
the implementation of our algorithm, as supplementary material, along with example simulated data
and a tutorial IPython notebook to demonstrate usage. Second, we used a publicly available dataset
(O’Doherty et al., [2017) that can be easily accessed by anyone interested in reproducing the results
reported in section 4.2| Finally, to further aid in reproducing results, we have also outlined the
preprocessing and analyses steps we have taken in section4.2]and appendix [A.5.2]
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A APPENDIX

A.1 DERIVATION

Here we provide the derivation for a prioritized covariance-based subspace identification algorithm
that learns a dynamical model of a predictor data stream while dissociating shared vs. residual latents
with a secondary data stream. We define the following equivalent formulation for our dynamical
model (equation (3))), where the block structure delineates shared and unshared latent states

W] e o[,
) = ) ]
.- o
Zj e C;) 0} ](Cg) + €
- Xk (14)
- . ) X(l)
Tk = ng) CI(‘ )} %2) +b
L X,
vi |ty ~ Poisson(exp(rg))

with parameters and noise terms defined as in sections [2.1]and [3.1]

A.1.1 STANDARD COVARIANCE-BASED SSID

Before we present the derivation for PG-LDS-ID, we review a few steps in standard covariance-
based SSID (section @]) that will help us in the derivation. First, it can be shown that the
7-th lag cross-covariance terms for r can be written in terms of model parameters as A, =
Cov (ryr,rx) = CoAT1G, where G := Cov(xy,1,1%). Using this relationship, the Hankel
matrix, H, can be expanded as (Van Overschee & De Moor, |1996; Katayama, [2005)

Ari Ari—l e Ar1
H=Cov(rpr)= | & 1 .
_Ar2i—1 Al‘2i—2 e Al‘i
FC.AC'G  CLATG .- GG (15
|C,A%*2G C,A* 3G --- C,A"'G

Second, using a singular-value decomposition, the above Hankel matrix H can be decomposed into
observability, I',., and controllability, A, matrices from which model parameters can be extracted
(Van Overschee & De Moor, [1996; Katayama, [2005))

C:
C.A _
A = _ [A-lG - AG G]. (16)

SVD

H
CrAifl

A.1.2 PRIORITIZED COVARIANCE-BASED SUBSPACE IDENTIFICATION: STAGE 1 DERIVATION

In the first stage of our algorithm, our goal is to learn the model parameters that correspond to

the shared dynamical subspace of z and r via the latent state xg): (Aq1, Cﬁl), C,,b). First, it
can be shown that the 7-th lag cross-covariance between z and r can be written in terms of model
parameters as Ay, = Cov (Zgyr,Ti) = C,A™ 1@, where G is defined as before. Due to the
1
block structure of equation (14), we have shown that G can be partitioned as G = [g@)] (see

14
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section[3.1). As a result, A (equation (I6))) also has a block-partition format

A= [AG - AG G]
_ Ay, O Ai2G ... A 0] [GW G
A2 Ag Ay Axn| |GP G® (17)
B AiTtgM A, GO Gl [AaM
B [Ag1 Agp) AT2G| [A21 Ax]G G|~ |a®@]"

and the cross-covariance term can be simplified as

T—1
A 0 GW _
— (1) 11 _ (1) A1 (1)
.[er,r = |:Cz 0j| |: 201 A22:| |:G(2):| = Cz A11 G\,

Henceforth we drop the superscript (1) on Cél), without loss of generality. The Hankel matrix

between future continuous observations and past log-rates of the discrete observation can then be
expanded as

Azri, Azri,l T Azr1
H,, = Cov(zs,rp,) =
_AZ!‘2i—1 Azr2i—2 T AZl‘f,
'CzAlﬁlg(l) CZAZHQG(U e c,GW
CZAﬁ;ZG(U CZA2Z"—3G<1> e CzAﬁ'lG(l).

A singular-value decomposition of H,,. yields the observability matrix for z (i.e., I';) and the con-
trollability matrix A1) associated with the shared dynamics

C,
CzAll .
H,2T,AM = . [AiT'eW .. ALGY G (18)

C,AT!

At this point, C, can be read off the first n, rows of I',. The shared latent dynamics matrix A1; can
be learned by solving a least-squares problem based on the controllability matrix A (") (as introduced

in section [3.2.1))
AD — A, AY where (19)

AWM = [AiTlG0 . A0, AY = [4Ai2q0) .. g0,

which has the following closed-form solution: A1; = AW (K(l))T.

To extract C'., we first note that the Hankel expansion in equation can be simplified due to the
block-structure of A and I';., which is defined as

C cV c?
- C.A chWa c@a

Il
|
—
-
A~
—
~—
[
A~
—
~—
[A—

(20)

C, A1 Cﬁl).Ai_l C!(Q)Ai—l
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using the fact that C, = [Cﬁl) Cﬁz)]. Then, we explicitly separate H = I', A (equation l|
into two parts based on its singular-value decomposition as

Ty A
H=UxV" =uz?)(=/2vT)

1/2 1/2
@ [Uy Uw) B 0 S Vi”
- 1/2 1/2
0 2(2/) 0 Z3(2/) Vi) (1)

2VT

— (U= D)=V )

1/2 1
EEVE) + (U B3

@ (¥
 JOYNOREE JOYNE

where simplification (a) is due to the block-partition structure of I, and A. Thus H can be written
as the sum of “shared” and “residual” components (equation ). We can compute 1.,1("1) as

HAMLT — (I‘E})A(l) + I‘l(f)A(Q))A(l)T — 1"51) (22)

where we have used the orthonormal property of right singular vectors V to conclude A AMT =

0. At this point, we can extract Cﬁl) by reading the top n, rows of 1"51). Finally, b is learned di-
rectly during the moment transformation (section[2.T)). This concludes the learning of all parameters

associated with the shared dynamical subspace, i.e., (411, Cﬁl), C,,b).

A.1.3 PRIORITIZED COVARIANCE-BASED SUBSPACE IDENTIFICATION: STAGE 2 DERIVATION

In the second stage of our algorithm, our goal is to learn model parameters that describe the residual
dynamics of r via the latent state x,(f): ([A21  Agg] ,6’52)). To learn these parameters, we first
extract the residual component in equation , termed H (), by subtracting I‘fpl)A(l) from H,
and decompose it via a singular-value decomposition to get I‘l(?) and A as

1)SvD

H? =H -TWAOZT@A?), (23)

At this point, we take C§2) as the top n,, rows of I‘,(f) and concatentate with C’ﬁl) to complete Cf..

To complete the state dynamics matrix A, we refer back to the block-structure representation of the
controllability matrix in equation (17)

AT _[[An 0] 4iag An 0 [6V] [V
AR | T [|Ag Ax A A |G® G®?
from which we construct the following relationship
AW A 0 A
|:A(2):| - |:A21 A22:| Z(2) (24)

where A and A are defined as in equation (19). We can further isolate the residual state transitions
as the solution to the following equation (taken from the second row of equation (24))

K(l) _
A(Q) — [A21 AQQ} K(z) = [A21 AQQ] A, (25)

which has the following closed-form least-squares solution: [Aa;  Agg] = A(Q)KT. The full state
dynamics is the concatenation A = {ii AO2 2] . This concludes the learning of all parameters for

the residual dynamics, i.e., ([A21  Ago] ,CP).
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A.1.4 PG-LDS-ID: TRANSFORMATION OF JOINT GAUSSIAN AND POISSON MOMENTS

In sections we demonstrated how all model parameters can be extracted in two stages
with prioritization, starting from the second-moments of the latent log-rates, r, and the Gaussian
observations, z. Here we explain how we estimate these moments from the computable moments of
y (the Poisson observations) and z, using equation (7)) as

Azfm Tpn COV(me ’ ypn) / I"l‘}’p” .

Here we provide a sketch of the proof. Without loss of generality, assume z and r are stationary
with a mean of O (e.g., demeaned during preprocessing). We can compute the covariance of any two
elements j and £ of vectors z¢ and y,, respectively as

COV(ij7ypk,) =F [zijpk:l =F [E [zijZ)k‘rpkH

(@)

= [E [ij'rpk] E [yfk|rpk]] =E [E [ij|rpk] exp(rpk)]

where (a) is because zf; and y,, are independent when conditioned on latent log-rate r,,, . Next,
we use the fact that zy and r, are jointly Gaussian random processes and, as a result, the mean
of the conditional distribution, E[zy, [ry, ], is equal to Az v, Ar_ptk rp, (i.e., the linear least-square
estimate of zy, using rp, ). The last step is to compute the expectation

E [Azfjrpk A;plhk o exp(rpk_)] = Az v, By, = Cov(zy,,¥p)
which, after rearranging terms, yields

Azf'm rPn = Cov(zfm, ? yp'n) / /”I'YZML :

We note that the final equation is equivalent to a derivation provided by Buesing et al| (2012)) as
their supplementary equation (6) to compute cross-covariances between Poisson observations and
Gaussian inputs, instead of between joint Poisson and Gaussian observations (as was in our case).
The remaining unimodal (i.e., Poisson-only) moment conversions that are required to compute H
are performed per equation (3)) in section

A.1.5 GENERALIZED CROSS-TERM HANKEL MATRIX WITH DIFFERENT HORIZONS PER
OBSERVATION

For ease of exposition, the derivation in section was provided for a cross-term Hankel matrix
H,, that was formed with equal horizons for z and r as

Azri Azr,;,l e Azr1
Z; To
Aer_l Azri Tt A—ZI‘2
H,, :=Cov(zs,rp) = : : : , Zf = : ,Tp =
’ ' ' Z2i—1 ri—1
AZI‘2i—1 AZI‘zi—2 T Azri

In general, the rank of Hankel matrices formed from ideal data covariances can be shown to be the
same as the state dimension associated with it (Van Overschee & De Moor} 1996} Katayama, |2005)),
i.e., ny = rank(H,.) per equation and n, = rank(H) per equation (16). However, during
system identification these Hankel matrices are formed from non-ideal empirical sample covariances
and, as a result, are typically full rank. Nevertheless, we expect the singular values associated with
real dynamics (e.g., the first ny singular values in H ) to be larger than subsequent singular values
that are due to noise. Indeed, the goal of the SVD applied to Hankel matrices, e.g., in equations (16),
(T8), and (23), is to remove noisy singular values and only keep the largest singular values that are
most likely due to real dynamics.

Given that the Hankel matrices formed during system identification are typically full rank, their rank
is determined based on their dimensions, i.e., rank(H,,) = min(¢ X n,,7 x n.) and rank(H) = i x
ny. Thus, the horizon parameter 4 that is used to form the Hankel matrix plays an important role in its
final dimensions, rank, and, consequently, on the maximum number of non-zero singular values that
can be preserved after applying SVD. This, in turn, determines the maximum state dimension that
can be learned for the resulting model. Thus, to provide more flexibility over the state dimensions
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that can be learned in each stage of PG-LDS-ID, we generalize the Hankel matrix H,, to support
different horizon values for each of the observations, 7, and 7,, such that

AZI‘iZ AZI‘iZ_l tee Azriz_iy_H
: Ziz Iro
AZI‘iz+1 AZl‘iz o 2, iy 42 . .
H, = . . ] with zj := : Py =
’ ' ' Z2i,—1 ri,—1
. Yy
AZI‘ziz—l AZI‘27‘,z—2 Azr2iz—iy

The discrete observation horizon i, is also used when forming the Hankel matrix H, per equation
(I5). The additional flexibility gained from having different horizon values is especially critical
in scenarios wherein the dimensionalities of z and y are very different, such as in the case of our
NHP analysis where n, = 4 and n, = 15. We select the final horizons %, and ¢, via an inner
cross-validation based on which values achieve the best accuracy in the training data.

A.2 GENERALIZABILITY OF THE BLOCK STRUCTURE FORMULATION

Here we explain how the blocked formulation in equation (6)) can be assumed without loss of gen-
erality. The latent states in our model describe the primary data stream (yy, e.g., Poisson spiking
activity), with a subset also explaining the secondary stream (zy, e.g., behavior). Formally, we define
the true dimensionality of the shared states (denoted by n1) based on the rank of the observability
matrix for the pair (A, C,). It can be shown using linear systems theory that an invertible linear
transformation of the latent states (i.e., a similarity transformation) always exists that can place the
n1 dimensional latent subspace that is observable via z; as the first few dimensions of the latent
space, thus giving the block-structured formulation of equation (6). This can be seen by applying
Theorem 3.8 from [Katayama| (2005) to the first two lines of equation @) Thus, the blocked formu-
lation of equation (6) is equivalent to the formulation from (5)) and we can aim to learn our model
in the form of equation (&) without any loss of generality. Moreover, note that this blocked formu-
lation also covers the special case of a non-blocked formulation when n; = n,, that is when all
latent states contribute to both data streams and the observability matrix is full-rank. In this case,
the top-left-block of A grows to cover the whole A, and thus no zero-filled upper-right block would
remain. The algorithm would still work in this special case by simply only applying the first stage
of learning. However, within the application of modeling neural and behavioral data, we typically
expect a minority of the neural dynamics to be related to a particular behavior of interest and so we
expect the most appropriate n; to be smaller than 7.

A.3 SELECTION OF HYPERPARAMETERS

Hyperparameters n; and n, denote the number of shared vs. total latent state dimensions (equation
(6)). When modeling real data, one can estimate the most appropriate values for these hyperparam-
eters for the data using the following procedure:

1. Sweep over values of n, increasing n; while keeping n, = n; (i.e., using stage 1 only
to learn). Quantify the prediction of the secondary data stream (e.g., behavior) in each
case to find the n; at which the prediction plateaus or reaches a peak. This value gives
the appropriate n;. Alternatively, n; can be estimated as the number of non-zero (or non-
negligible) singular values of the Hankel matrix H, (equations (8) and (9)).

2. Using the selected n; from above, sweep over values of n,, starting from n; and increasing
the latent state dimension. Quantify the self-prediction of the predictor data stream (e.g.,
spiking activity) in each case, and find the n, at which the self-prediction reaches a peak.

A.3.1 SECONDARY DATA STREAM NOISE STATISTICS AND CONSIDERATIONS

The model parameters stated in section 3.1 correspond to the parameters required by the point-
process filter (Eden et al., 2004) for state estimation (see appendix @ However, if desired, under
Gaussian assumptions the noise covariance term for the secondary data stream, A, can be learned
by computing the covariance of the prediction residuals as E[(2 — zx)(2 — zx)T], where 2y,
denotes the predicted value of z and the expectation denotes the empirical average across all time
samples. When ¢, is not white, the behavior prediction residuals under Gaussian assumptions can
be computed in the same way (i.e., Zy — z;) and modeled using Gaussian SSID.
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The Gaussian process’ noise has an effect on learning similar to that of the residual dynamics present
in the primary (i.e., Poisson) data stream: it reduces the overall signal-to-noise ratio of the shared dy-
namics present in both observation data streams. However, with increasingly more training samples
and improved estimates of the second-order moments (i.e., covariances), the algorithm can become
more robust to the impact of Gaussian observation noise.

A.4 STATE PREDICTION

For model evaluations we chose to predict the continuous Gaussian observations from the discrete
Poisson observations, which is a common use-case in neuroscience (Koyama et al., [2010; Macke
et al., 2015} [Lu et al.l |2021). Once model parameters are learned in a training set, either with
PLDSID or PG-LDS-ID, we can use the learned parameters to construct the Poisson point-process
filter (PPF) (Eden et al., 2004) and estimate the latent states in a test set. Note, using the PPF for
state estimation is only possible if noise statistics are valid (section[3.2.3). We denote the one-step
ahead latent state prediction of x; using all samples of yj, up to time k — 1 by Xy |—1. These state
estimates can be used to predict the continuous observations as szck| k—1- To learn a C, parameter
for PLDSID, we first estimate the latent states in the training data using a PPF and then fit a linear
regression (scikit-learn) from the latent states to zg, i.e., C, = ZXT(XXT)T, where columns of
Z and X contain zj, and Xp|k—1 for all training timepoints & (Pedregosa et al., [2011). To make the
methods more comparable, we use the same approach to refit the C, learned by PG-LDS-ID. We
quantify the decoding performance using correlation coefficient (CC). We also assessed the one-step
ahead self-prediction of Poisson observations using the predicted latent states. This was quantified
with the area under the curve (AUC) of the receiver operating characteristic (appendix [A.5.3).

A.5 EXPERIMENTAL DETAILS
A.5.1 SIMULATIONS

For our synthetic data in section .1} we simulated Poisson-Gaussian observations from random
models as per equation (5). We randomly selected the latent state dimension n,, the shared dimen-
sion n1, and the observation dimensions n, and n, with uniform probability from the following
ranges: 1 < ng, < 10,20 < ny, < 30,5 < n, <10,and 1 < n; < n,. Using these dimen-
sions we generated random model parameters © = (A, C.., C,, b, Q). We constrained the complex
eigenvalues (i.e., modes) of the state transition matrix A to have magnitudes uniformly distributed
between [0.93,0.99] and phases uniformly distributed between [0.019,0.314]. These restrictions
correspond to stable, slow-decaying systems with time-constants within [0.138,0.995] seconds and
frequencies within [0.3, 5] Hz that are representative of various real time-series data, such as neural
dynamics (Churchland et al., 2012} |Song et al., [2022). All simulations were on a 10 ms timescale
with a baseline log rate, b, randomly selected within [0.5, 15] Hz. Observation matrix C, was scaled
to achieve a desired per-dimension maximum firing rate such that max; <<y exp(ry) € [25,65]
Hz. This was to ensure a realistic range of firing rate and sufficient modulation depth for all dimen-
sions of the simulated Poisson point-process. () was randomly generated to be a positive definite
matrix and C, was generated to hit a target signal-to-noise, defined as the variance associated with
latent states normalized by observation noise variance (C,AxCL)/(A.). Target SNR values were
randomly generated as 10% with o uniformly distributed between [0, 2]. For every simulated model,
the colored noise for the Gaussian process, €5, was taken as the output of a 4-dimensional latent
linear dynamical system with random parameters that were generated similarly. By using a general
colored noise, we can simulate dynamics present in the continuous modality that are unshared with
the discrete modality.

A.5.2 NHP DATASETS

All NHP analyses were performed on a public dataset released by the Sabes lab (O’Doherty et al.,
2017), using the following sessions from monkey I: 20160915/01, 20160916/01, 20160921/01,
20160927/04, 20160927/06, 20160930/02.
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A.5.3 NEURAL ONE-STEP AHEAD SELF-PREDICTION

To evaluate how well our algorithm modeled neural dynamics, we computed the one-step ahead self-
prediction performance as quantified by AUC (section[A.4). Our goal was to validate if our model
could, when using all past neural observations, accurately predict the occurrence of spikes versus
no spikes in a given time step. Since all self-predictions are made using the recursive point-process
filter estimates of the latent states (see appendix [A.4), we computed the probability of a spiking
event for the m-th dimension of y at time k, conditioned on all observations yi.,_1, as

P(yp' > 0lyte—1) =25, PO > 0| yir—1,%k)p(Xk | Y1:6-1)

m ®©) m
xi Ly POR > 01 x0)] = By, [L—exp(exp(ry))) | xi]

(@)
() m (d) . 1
S Fa 1y o0() | x]  exp (o + 34,

where in (a) we simplify using y’s conditional independence from the past y;.x—1, in (b) we sim-
plify based on yj | x; ~ Poisson(exp(rg)), in (c) we use the Taylor series approximation of
exp(exp(rg)) for small exp(ry), and (d) is simply the mean of a log-normal random variable. Note
that 1, = CrXpr—1 + band Ay = CrA;(k‘kflCrT, where Xy, is the current estimate for the
state and A the state-prediction covariance (appendix .

XEk|k—1

A.6 POSSIBILITY OF LEARNING UNSTABLE MODES IN SMALL DATA REGIMES

Subspace identification methods generally only converge to the correct system parameters asymp-
totically (see figure[Th-b), as the empirically estimated covariances also converge to their true values
(Van Overschee & De Moorl [1996)). For finite samples, however, there will always be some error
in the learned parameters. Although such errors are generally benign, extreme scenarios can result
in unstable state dynamics, i.e., the identified A has at least one eigenvalue with magnitude larger
than 1. In simulations (figure [I)), we excluded learned models that were unstable from the reported
mean performances, reflecting in the reduced number of samples in the standard error of the mean
(s.e.m). For training set sizes typical of neuroscience datasets, the occurrences of unstable models
was rare, with only 2 unstable systems for 1e5 training samples and no unstable systems for 1e6
training samples.

A.7 COMPUTATION TIME DETAILS

We measured the learning time of our method and, additionally, the inference time associated with
using a point-process filter for state estimation. Using one session of NHP data (section {.2)), we
repeatedly trained on 25 distinct time-series datasets. Each dataset consisted of a 6097-by-15 matrix
(timesteps-by-features) of Poisson observations and a 6097-by-4 matrix of Gaussian observations.
The training time of our algorithm averaged across 25 trials was 0.33s (including 0.072s spent on
the convex optimization problem outlined in [3.2.3). Further, we also measured the inference time
for our 1524-sample testset to be 0.33s (i.e., approximately 0.2ms per 50ms timestep).

Most of the computational cost of our algorithm is involved in the matrix operations associated with
1) computing the necessary covariance/Hankel matrices, 2) performing the moment conversion, and
3) performing the SVD of the future-past Hankel matrices. To perform the moment conversion our
method requires a covariance matrix for stacked future-past Poisson-Poisson observations (section
and a future-past Gaussian-Poisson Hankel matrix (section [3.2.I). Both of these empirical
estimates of second-order covariances are computed using matrix multiplications which scale with
the number of samples. As an example, we can consider the setup used for the computational cost
analysis here, wherein n, = 15 and %, = 10 (horizon). The computed square Poisson-Poisson
covariance matrix was of dimension 2 * ny * ¢, = 2% 10 * 15 and was the result of a matrix
multiplication between two matrices of dimension (2*¥10%15)-by-6078, where 6078 = timesteps —
2x1,+1. Thus, this operation would scale linearly with the length of the training data. Similarly, the
computational cost of this matrix multiplication scales linearly with feature dimension and horizon.
The remaining operations (i.e., the SVD and the moment conversion itself) are functions of the
latent-state dimension and the feature dimensions for each observation timeseries.
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A.8 COMPARISON AGAINST LAPLACE-EM PLDS

As further comparison with existing learning algorithms for Poisson generalized-linear dynami-
cal systems, we also performed a preliminary comparison with Laplace-EM. We used the same
NHP data as in section £.2] but limited our analysis to the first session from the manuscript (i.e.,
20160915/01). Preprocessing and other analysis details were as described in section [.2] We imple-
mented Laplace-EM using a well-known publicly available library for state-space modeling via EM
(https://github.com/lindermanlab/ssm). We used the default settings for Laplace-
EM from the above library and ran the optimization for 100 iterations. We used a state dimension
of n, = 8 for both PG-LDS-ID and Laplace-EM, and for our method we extracted all latent states
using the first stage (i.e., n; = n, = 8); the dimension was selected based on the results in Fig. 2.
Finally, for our decoding comparison with EM we used an approach similar to our PLDSID analysis,
wherein we model the Poisson neural dynamics first with EM, estimate the latent states using the
learned model, and finally regress the latent states to the second observation time-series, i.e., the
Gaussian behavior (as described in appendix [A.4). The results are presented in Table

Table 1: Results for Laplace-EM comparison

Method Latent size Gaussian prediction CC Poisson self-prediction AUC
PG-LDS-ID n; =n, =8 0.4720 £ 0.0097 0.6533 + 0.0018
Laplace-EM Ny =8 0.3884 + 0.0120 0.6718 £+ 0.0022

We find that PG-LDS-ID outperforms Laplace-EM in decoding behavior from neural activity (i.e.,
predicting the Gaussian observations). This is due to PG-LDS-ID’s ability to dissociate shared
Poisson-Gaussian dynamics and prioritize their identification, whereas Laplace-EM is optimized on
Poisson log-likelihood only. Further, PG-LDS-ID’s resulting model achieves a slightly lower Pois-
son self-prediction AUC compared to Laplace-EM, which is unsurprising due to the use of the first
stage only. As demonstrated in figure|2} the optional second stage of our method can additionally be
used to learn any remaining Poisson dynamics and match Laplace-EM’s self-prediction AUC.

A.9 SECOND BIOLOGICAL DATASET RESULTS

We performed a less comprehensive validation of our method on a second (independent) biological
public dataset from the Miller lab with a different behavioral task (Lawlor et al.,|2018} |Perich et al.,
2018)). The task for this dataset involved a NHP controlling a cursor via a manipulandum to reach
random targets on the screen sequentially. We used the same preprocessing, inner cross-validation,
and modeling procedures as described in section For both methods we used a latent-state di-
mension of n, = 8. For PG-LDS-ID we used only stage 1 (i.e., n; = n, = 8). We performed the
analysis on only one session of the data, using random subsets of 15 single-unit channels (similar to
the analysis in section[4.2). Results (Table[2)) are similar to those for the first dataset in[2] We find
that our method outperforms PLDSID in terms of behavior decoding. Also, as expected, the neural
self-prediction at this dimension is lower than PLDSID, due to the prioritization of shared dynamics
(i.e., the use of stage 1 only). However, as demonstrated in [2} we could add the second stage with
enough latent state dimensions such that PG-LDS-ID’s neural self-prediction improves.

Table 2: Results for the second NHP dataset

Method Latent size Gaussian prediction CC Poisson self-prediction AUC
PG-LDS-ID n; =n, =38 0.4025 4+ 0.0133 0.6176 4+ 0.0054
PLDSID Nng =38 0.3415 £ 0.0114 0.6569+0.0068
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