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TransBox: EL++-closed Ontology Embedding
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Abstract
OWL (Web Ontology Language) ontologies, which are able to

represent both relational and type facts as standard knowledge

graphs and complex domain knowledge in Description Logic (DL)

axioms, are widely adopted in domains such as healthcare and

bioinformatics. Inspired by the success of knowledge graph em-

beddings, embedding OWL ontologies has gained significant atten-

tion in recent years. Current methods primarily focus on learning

embeddings for atomic concepts and roles, enabling the evalua-

tion based on normalized axioms through specially designed score

functions. However, they often neglect the embedding of complex

concepts, making it difficult to infer with more intricate axioms.

This limitation reduces their effectiveness in advanced reasoning

tasks, such as Ontology Learning and ontology-mediated Query

Answering. In this paper, we propose EL++-closed ontology em-

beddings which are able to represent any logical expressions in

DL EL++ via composition. Furthermore, we develop TransBox, an

effective EL++-closed ontology embedding method that can han-

dle many-to-one, one-to-many and many-to-many relations. Our

extensive experiments demonstrate that TransBox often achieves

state-of-the-art performance across various real-world datasets

for predicting complex axioms. Code and data are available at the

https://anonymous.4open.science/r/TransBox-F4B7.

Keywords
Ontology Embedding, Description Logic, Web Ontology Language,

Ontology Completion, Ontology Learning

1 Introduction
Ontologies

1
structured according to the Web Ontology Language

(OWL) standards developed by the W3C [14] are extensively used

across various domains such as the Semantic Web [16], healthcare

[13], finance [4], and biology [6]. In recent years, OWL ontology

embeddings, which are vector-based knowledge presentations, have

gained significant attention due to the increasing need for more

effective methods to predict or infer missing knowledge as well

as for more wider ontology application especially in combination

with machine learning [11].

Unlike Knowledge Graphs [18], which focus on individual enti-

ties (a.k.a. instances), ontologies emphasize concepts that represent

groups of individuals, allowing for richer semantic interpretations.

These interpretations are typically formalized through Description

Logics (DLs) [3], which provide a logical foundation for reasoning

within ontologies.

In ontologies, knowledge is often represented and leveraged

through the intricate composition of atomic concepts and roles. For

example, defining a disease typically requires the integration of

various components, such as its symptoms and the affected loca-

tions in the body (Formally, Disease ≡ ∃hasSymptom.Symptom ⊓
1
This study explores advanced methods related to OWL ontologies, a widely used

Web-based approach for knowledge representation, and aligns with the focus of the

semantics and knowledge track at the Web Conference.

∃occursIn.BodyLocation ⊓ . . .). Similarly, when utilizing this infor-

mation for diagnosis, one must consider a wide array of patient data

(see Section 6.2.4 for a more concrete example). Embedding meth-

ods must effectively capture these complex constructs, which are

formed by logical operators (e.g., conjunction ⊓, existential quan-
tification ∃𝑟 ), to accurately model intricate knowledge and enhance

practical applicability in real-world scenarios. This capability is es-

sential for a variety of applications, such as Ontology Learning [23],

ontology-mediated query answering [5], and tasks like updating

ontologies to incorporate newly emerging complex concepts from

external resources, such as the latest clinical guidelines or research

findings [12].

In this work, we propose EL++-closed ontology embeddings that

guarantee all logical operations in EL++ (i.e., ⊓, ∃𝑟 , and role com-

position ◦) are effectively captured. In other words, EL++-closed
embedding could generate the embedding of any complex EL++
concept by composing the embeddings of atomic concepts, and

thus could be applied in many ontology reasoning tasks beyond the

standard subsumption predictions over atomic concepts. However,

we show that most existing methods, whether based on language

models (LMs) or geometric models, are either not EL++-closed or

have other theoretical limitations.

Firstly, LM-based approaches [9, 10, 28] rely on textual informa-

tion, such as concept descriptions, to predict logical relationships.

However, these approaches obscure the reasoning process within

large neural networks and are unable to guarantee adherence to

any formal logical constraint, including EL++-closeness.
Secondly, geometric model-based methods also face challenges

related to EL++-closure or theoretical limitations. For example,

methods that embed concepts as balls, such as ELEM [22] and

EMEM++ [24], struggle to handle conjunctions (⊓) because the

intersection of two balls is generally not a ball.

On the other hand, methods that embed concepts as boxes, such

as BoxEL [31], ELBE [26], and Box
2
EL [17], generally maintain

closure under ⊓, except Box2EL, which introduces bump vectors

that are not defined for conjunctions like𝐴⊓𝐵. Despite being more

effective with conjunctions, box embedding methods face several

significant challenges, as outlined below:

• Inadequate handling of roles. BoxEL and ELBE embed roles as

invertible mappings, inherently assuming that all roles are func-

tional across instances. This assumption limits their ability to

handle many-to-one, one-to-many, and many-to-many roles,

making it challenging to accurately embed even simple ontolo-

gies (an example is deferred to Section 6.1). In contrast, Box
2
EL

represents roles as products of boxes, allowing it to effectively

capture many-to-many relationships. However, it faces difficul-

ties with role composition, as all roles are implicitly treated as

transitive (see Appendix B).

• Issues with box intersections. In relatively low-dimensional spaces,

such as R50
, box embeddings often struggle to produce non-

empty intersections, as outlined in Theorem 4.5. Consequently,

this may result in disjoint boxes where overlap is expected. This

1

https://anonymous.4open.science/r/TransBox-F4B7
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limitation undermines the model’s ability to accurately represent

complex concepts that involve conjunctions of parts and restricts

the scalability of the embedding methods to higher-dimensional

spaces.

To address these challenges, we propose a novel EL++-closed
ontology embedding method, TransBox. Firstly, TransBox captures
many-to-many roles by embedding roles as group transitions of

vectors within a box, rather than relying on the single transition

used in previous methods. This approach effectively models more

complex relational dynamics and provides a natural mechanism

for capturing role compositions. Secondly, TransBox introduces
a novel approach to handling box intersections. It defines inter-

sections using the space (R ∪ ∅)𝑛 rather than R𝑛
, thus offering

more flexibility in embeddings. This extension enables the model

to effectively handle scenarios where non-empty overlaps between

concept boxes are expected.

Our main contributions can be summarized as follows:

• We propose EL++-closed ontology embeddings that can repre-

sent all logical information expressed in the description logic

EL++, including role compositions.

• We introduce TransBox, an EL++-closed embeddingmethod that

effectively handles the embedding of many-to-many roles, role

compositions, and overlapping concepts, and has been proved to

be sound.

• Experimental results on three real-world ontologies demonstrate

that our method often achieves state-of-the-art performance in

predicting complex axioms.

2 Preliminaries and Related Work
2.1 Ontologies
Ontologies use sets of statements (axioms) about concepts (unary

predicates) and roles (binary predicates) for knowledge represen-

tation and reasoning. We focus on EL++-ontologies which keep a

good balance between expressivity and reasoning efficiency with

wide application [2]. Let NC = {𝐴, 𝐵, . . .}, NR = {𝑟, 𝑡, . . .}, and
NI={𝑎, 𝑏, . . .} be pair-wise disjoint sets of concept names (also called
atomic concepts) and role names, and individual names, respectively.
EL++-concepts are recursively defined from atomic concepts, roles

and individuals as

⊤ | ⊥ | 𝐴 | 𝐶 ⊓ 𝐷 | ∃𝑟 .𝐶 | {𝑎} (1)

and an EL++-ontology is a finite set of TBox axioms of the form

𝐶 ⊑ 𝐷, 𝑟 ⊑ 𝑡, 𝑟1 ◦ 𝑟2 ⊑ 𝑡

and ABox axioms 𝐴(𝑎) or 𝑟 (𝑎, 𝑏). Note 𝐶, 𝐷 are (possibly complex)

EL++-concepts, 𝐴 is a concept name, 𝑟1, 𝑟2, 𝑡 are role names, and

𝑎, 𝑏 are individual names. The following is an example of axioms of

a toy family ontology (see Figure 5 for the complete version).

Example 1. Using atomic concepts Father,Child,Male, . . ., role
hasParent, and individuals Tom, Jerry, we can construct a small fam-
ily ontology consisting of two TBox axioms

Father ⊑ Male ⊓ Parent, Child ⊑ ∃hasParent.Father,

and two ABox axioms: Father(Tom), hasParent(Jerry, Tom) .

An interpretation I=(ΔI , ·I ) consists of a non-empty set ΔI

and a function ·I mapping each 𝐴∈NC to 𝐴I⊆ΔI , each 𝑟∈NR
to 𝑟I⊆ΔI×ΔI , and each 𝑎∈NI to 𝑎

I∈ΔI , where ⊥I=∅,⊤I=ΔI ,
{𝑎}I=𝑎I . The function ·I is extended to any EL++-concepts by:

(𝐶 ⊓ 𝐷)I = 𝐶I ∩ 𝐷I , (2)

(∃𝑟 .𝐶)I =

{
𝑎 ∈ ΔI | ∃𝑏 ∈ 𝐶I : (𝑎, 𝑏) ∈ 𝑟I

}
, (3)

(𝑟1 ◦ 𝑟2)I =

{
(𝑎, 𝑐) | ∃𝑏 ∈ ΔI : (𝑎, 𝑏) ∈ 𝑟I

1
, (𝑏, 𝑐) ∈ 𝑟I

2

}
. (4)

An interpretation I satisfies a TBox axiom 𝑋 ⊑ 𝑌 if 𝑋 I ⊆ 𝑌 I for

𝑋,𝑌 being two concepts or two role names, or 𝑋 being a role chain

and𝑌 being a role name. It satisfies an ABox axiom𝐴(𝑎) if 𝑎I ∈ 𝐴I
and it satisfies an ABox axiom 𝑟 (𝑎, 𝑏) if (𝑎I , 𝑏I ) ∈ 𝑟I . Finally, I is

a model of O if it satisfies every axiom in O. An ontology O entails
an axiom 𝛼 , written O |= 𝛼 if 𝛼 is satisfied by all models of O.

2.2 Ontology Embeddings
There are two primary kinds of ontology embedding approaches:

those based on Language Models (LMs) and those based on geomet-

ric models. LM-based approaches, including those based on tradi-

tional non-contextual word embedding models and those based on

Transformer [30] with contextual embeddings, such as OPA2Vec

[28], OWL2Vec [10], and BERTSub [9], rely on textual data (e.g.,

concept descriptions) and predict logical informations by LMs. How-

ever, these methods loosely capture the underlying conceptual

structure and often lack the interpretability needed for human

understanding. In this work, we focus on geometric model-based

approaches, which offer more intuitive representations.

Geometric model-based methods use different geometric objects

for constructing the geometric models of ontologies. For exam-

ple, cones [15, 33] and fuzzy sets [29] have been used for ALC-
ontologies. For EL-family ontologies, most methods using either

boxes (Box
2
EL [17], BoxEL [31], ELBE [26]) or balls (ELEM [22],

EMEM++ [24]). Among these, box-based methods have gained pop-

ularity due to their closure under intersection, which aligns well

with the intersection of concepts in Description Logic. In contrast,

ball-based embeddings are not closed under intersection, as the

intersection of balls does not typically form a ball.

However, these existingmethods only consider embedding atomic

concepts but neglect the embeddings of complex concepts, which

prevents them from evaluating axioms beyond normalized ones.

This limitation restricts their applicability to tasks involving com-

plex axioms. In this work, we propose the EL++-closed ontology

embedding, which is able to generate embeddings of complex con-

cepts from atomic ones, allowing for both training and evaluation

across a wider variety of ontologies. Our analysis reveals that a

large part of the existing geometric model-based approaches are not

EL++-closed, while the remaining methods cannot model many-to-

many relationships, demonstrating suboptimal performance when

tested on real-world datasets.

3 EL++-Closed Embeddings
Before introducing our ontology embeddingmethod, we first present

the concept of EL++-closed embedding. Given an ontology O, the
goal of ontology embedding is to create a geometric model of the

ontology O that “faithfully” represents the meaning of concepts,

2
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roles, and individuals in O. In this model, each element in NC,

NR, and NI occurring in O is mapped to a geometric object in an

embedding space S (e.g., linear space R𝑛
). For clarity, we define:

• E𝐶 : the set of all geometric objects, such as balls or boxes, that

are considered as subsets of S and serve as candidates for concept

embedding.

• E𝑅 : the set of all geometric objects that are considered as subsets

of S × S and serve as candidates for role embedding.

To align with the machine learning framework, the elements of E𝐶
and E𝑅 should have numerical representations by vectors or specific

values. We omit the collection for individuals because individuals

are often embedded as points in the space S, and therefore the

collection is equivalent to the space itself.

Example 2. Different embedding methods define their ontology
embedding spaces in distinct ways. For example:
• For ELEM and ELEM++, E𝐶 consists of all 𝑛-dimensional balls

represented by their centers in R𝑛 and radii in R, and E𝑅 consists
of subsets defined by vector-based translations: 𝐸v𝑟 = {(x, x+v𝑟 ) |
x ∈ R𝑛}, where v𝑟 ∈ R𝑛 .

• For Box2EL, when all the bump vectors are set to zero vector, E𝐶
consists of 𝑛-dimensional boxes2 represented by their lower left and
upper right corners in R𝑛 or by their centers and offsets both in R𝑛 ,
and E𝑅 consists of products of boxes, Head(𝑟 ) ×Tail(𝑟 ) ⊆ R𝑛 ×R𝑛 .

• For ELBE, E𝐶 also consists of boxes as in Box2EL, and E𝑅 is defined
similarly to the ELEM case.

• For BoxEL, E𝐶 consists of boxes as in Box2EL and ELBE, and E𝑅
consists of subsets defined by affine transformations: 𝐸 (k𝑟 ,b𝑟 ) =
{(x, k𝑟 · x + b𝑟 ) | x ∈ R𝑛}, where k𝑟 , b𝑟 ∈ R𝑛 .

The EL++-closed embeddings refer to embeddingmethodswhere

the assigned spaces E𝐶 (for concepts) and E𝑅 (for roles) are closed

under the EL++-semantics defined by Equations 2, 16, and 4. The

formal definition is provided in Definition 3.1, where each of the

three conditions directly corresponds to these equations.

Definition 3.1 (EL++-Closed Embeddings). An ontology embed-

ding method over a space S, with embedding candidate sets E𝐶 for

concepts and E𝑅 for roles, is EL++-closed if E𝐶 includes the empty

set ∅, the whole space S, all singletons {x} with x ∈ S, and satisfies
the following closure properties:

(1) Conjunction closure: 𝑆 ∩ 𝑆 ′ ∈ E𝐶 for all 𝑆, 𝑆 ′ ∈ E𝐶 ;
(2) Existential quantification closure: ∃𝐸𝑆 ∈ E𝐶 , where ∃𝐸𝑆 =

{x | ∃y ∈ S : (x, y) ∈ 𝐸} for any 𝐸 ∈ E𝑅 and 𝑆 ∈ E𝐶 ;
(3) Role composition closure: 𝐸 ◦ 𝐸′ ∈ E𝑅 for all 𝐸, 𝐸′ ∈ E𝑅 ,

where 𝐸◦𝐸′ = {(x, z) | ∃y ∈ S : (x, y) ∈ 𝐸 and (y, z) ∈ 𝐸′}.
We require that E𝐶 includes ∅, S, and {x} to capture the seman-

tics of ⊥, ⊤, and {𝑎}, respectively. It is important to note that this

closure property is not specific to any particular ontology; rather,

it is an inherent characteristic of the ontology embedding method

itself.

Example 3. ELEM and ELEM++ are not EL++-closed, as the collec-
tion of n-balls violates the first condition. Box2EL also violates the first
requirement, as bump vectors cannot be defined for any conjunction.
In contrast, it can be verified that ELBE and BoxEL are EL++-closed.
2
In the general case, E𝐶 consists of products of the form 𝐵𝑜𝑥 × {v}, where v ∈ R𝑛

represents bump vectors.

x𝑎

x𝑏

𝐵𝑜𝑥 (𝑟 )

Figure 1: Illustration of embedding roles as boxes

According to our definition, EL++-closed embeddings can be

extended to encompass the embedding of any EL++-concept and,
consequently, can be applied to complex tasks such as axiom learn-

ing and query answering. However, as we demonstrated, the current

state-of-the-art method, Box
2
EL, is not EL++-closed. While sim-

pler methods like ELBE and BoxEL achieve EL++-closure, they
fail to represent complex many-to-many relationships and their

performance is limited as shown in the experiments over real-world

ontologies. In the following section, we present TransBox, our pro-
posed EL++-closed method aimed at addressing these challenges.

4 Method: TransBox
We now introduce TransBox, our method for constructing geomet-

ric models of a given EL++ ontology O. This section is structured

as follows. First, we present the basic framework of TransBox in

Section 4.1. In Section 4.2, we demonstrate that TransBox is EL++-
closed. Sections 4.3 and 4.4 introduce two enhancements that im-

prove the learned embeddings and handling of box intersections.

The training procedure for TransBox is outlined in Section 4.5.

4.1 Geometric Construction
Concept and individual. In TransBox, we embed each atomic

concept𝐴 ∈ N𝐶 to a box𝐵𝑜𝑥 (𝐴), which is defined as an axis-aligned
hyperrectangle in the n-dimensional linear spaceR𝑛

. As in previous

works [17, 26, 31], each box 𝐵𝑜𝑥 (𝐴) is represented by a center

c(𝐴) = (𝑐1, . . . , 𝑐𝑛) ∈ R𝑛
and offset o(𝐴) = (𝑜1, . . . , 𝑜𝑛) ∈ R𝑛

≥0.
Formally, 𝐵𝑜𝑥 (𝐴) ⊆ R𝑛

is the area defined by:

𝐵𝑜𝑥 (𝐴) = {x ∈ R𝑛 | c(𝐴) − o(𝐴) ≤ x ≤ c(𝐴) + o(𝐴)}, (5)

where ≤ is the element-wise comparison. Each individual 𝑎 ∈ N𝐼 is

embedded as a points x𝑎 ∈ R𝑛
.

Role. Each role 𝑟 ∈ NR is also associated with a box 𝐵𝑜𝑥 (𝑟 ) ⊆ R𝑛
,

with the semantics defined as follows: For each pair of embedded

instances x𝑎, x𝑏 ∈ R𝑛
, we have 𝑟 (𝑎, 𝑏) is true if x𝑎 − x𝑏 ∈ 𝐵𝑜𝑥 (𝑟 )

(see Figure 1 for an illustration). Formally, we embed each 𝑟 to an

area in 𝐸𝐵𝑜𝑥 (𝑟 ) ⊆ R𝑛 × R𝑛
defined by:

𝐸𝐵𝑜𝑥 (𝑟 ) = {(x, y) | x, y ∈ R𝑛, x − y ∈ 𝐵𝑜𝑥 (𝑟 )}. (6)

Expressiveness. TransBox extends models based on TransE [7]

by using a set of translations defined by the vectors in 𝐵𝑜𝑥 (𝑟 ).
This extension allows for more flexible modeling of one-to-many,

many-to-one, andmany-to-many roles, which cannot be handled by

TransE-based models like ELEM and ELBE. Additionally, our frame-

work captures role embeddings more effectively: (1) it preserves

3
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Figure 2: Illustration of 𝐵𝑜𝑥 (∃𝑟 .𝐵)

the ability to represent role compositions, as we will demonstrate

in Section 4.2; (2) it naturally expresses role inclusion 𝑟 ⊑ 𝑠 as

𝐵𝑜𝑥 (𝑟 ) ⊆ 𝐵𝑜𝑥 (𝑠), while allowing for different embeddings of 𝑟

and 𝑠 . This can not be supported by previous methods except for

Box
2
EL.

Model Complexity. In an 𝑛-dimensional space, TransBox requires

2𝑛(𝑁𝐶+𝑁𝑅) parameters to represent the bounding boxes for atomic

concepts and roles, along with additional 𝑛𝑁𝐼 parameters to encode

individuals. Here, 𝑁𝐶 , 𝑁𝑅 , and 𝑁𝐼 refer to the number of concepts,

roles, and individuals in the ontology O, respectively. Thus, the
total model complexity of TransBox is 𝑂 (𝑛(2𝑁𝐶 + 2𝑁𝑅 + 𝑁𝐼 )).

4.2 EL++-closeness
In the TransBox framework, the candidate space for representing

concepts E𝐶 3
comprises all boxes in R𝑛

, and the candidate space

for representing roles E𝑅 is defined as a subset 𝐸𝐵𝑜𝑥 (𝑟 ) ⊆ R𝑛 ×
R𝑛

, as specified in Equation (6). To demonstrate that TransBox is

EL++-closed, it suffices to verify the three conditions outlined in

Definition 3.1 for any boxes 𝐵𝑜𝑥 (𝐴), 𝐵𝑜𝑥 (𝐵) ∈ E𝐶 and subsets

𝐸𝐵𝑜𝑥 (𝑟 ) , 𝐸𝐵𝑜𝑥 (𝑡 ) ∈ E𝑅 as follows.

(1) Closed under conjunction: 𝐵𝑜𝑥 (𝐴) ∩𝐵𝑜𝑥 (𝐵) is always a box, and
thus belongs to E𝐶 . Therefore, the first condition of Definition

3.1 holds. We denote by 𝐵𝑜𝑥 (𝐴 ⊓ 𝐵) := 𝐵𝑜𝑥 (𝐴) ∩ 𝐵𝑜𝑥 (𝐵);
(2) Closed under existential qualification: The second condition of

Definition 3.1 holds according to the following proposition:

Proposition 4.1. Let 𝑆 = 𝐵𝑜𝑥 (𝐵) and 𝐸 = 𝐸𝐵𝑜𝑥 (𝑟 ) , and let

∃𝐸𝑆 = {x | ∃y ∈ R𝑛
: (x, y) ∈ 𝐸}.

Then ∃𝐸𝑆 is a box with center c(𝑟 ) + c(𝐵) and offset o(𝑟 ) + o(𝐵),
and thus, we have ∃𝐸𝑆 ∈ E𝐶 .

In the remainder of this paper, we will denote 𝐵𝑜𝑥 (∃𝑟 .𝐵) :=
∃𝐸𝐵𝑜𝑥 (𝑟 )𝐵𝑜𝑥 (𝐵), given that 𝑟 and 𝐵 are embedded as 𝐵𝑜𝑥 (𝑟 )
and 𝐵𝑜𝑥 (𝐵), respectively. For an illustration, see Figure 2.

(3) Closed under role composition: The third condition of Definition

3.1 holds based on the following proposition:

Proposition 4.2. Let 𝐵𝑜𝑥 (𝑟 ◦𝑡) be the box with center c(𝑟 )+c(𝑡)
and offset o(𝑟 ) + o(𝑡). Then, we have 𝐸𝐵𝑜𝑥 (𝑟◦𝑡 ) = 𝐸𝐵𝑜𝑥 (𝑟 ) ◦
𝐸𝐵𝑜𝑥 (𝑡 ) , where the composition is defined as 𝐸𝐵𝑜𝑥 (𝑟 ) ◦𝐸𝐵𝑜𝑥 (𝑡 ) =
{(x, z) | ∃y ∈ R𝑛

: (x, y) ∈ 𝐵𝑜𝑥 (𝑟 ) and (y, z) ∈ 𝐵𝑜𝑥 (𝑡)}. Thus,
𝐸𝐵𝑜𝑥 (𝑟 ) ◦ 𝐸𝐵𝑜𝑥 (𝑡 ) ∈ E𝑅 .

3
All singletons {x} ∈ E𝐶 by setting the offset to 0. We also assume that ∅,R𝑛 ∈ E𝐶 .

𝐵𝑜𝑥 (𝐵) 𝐵𝑜𝑥 (∃all𝑟 𝐵)

𝐵𝑜𝑥 (𝑟 )

Figure 3: Illustration of 𝐵𝑜𝑥 (∃all𝑟 𝐵)

4.3 Semantic Enhancement
Semantic enhancement refers to replacing the ontology O with a

“stronger” version, Ostg, during the training process. We consider

Ostg stronger than O if it derives all axioms in O (i.e., Ostg |= 𝛼

for any 𝛼 ∈ O). This enhancement can lead to better results by

imposing stronger constraints (an example is provided in Section

6.1).

To realize the semantic enhancements, we introduce a new log-

ical operator, ∃all, which denotes individuals related by a role to

every individual in a concept
4
. Therefore, 𝐵𝑜𝑥 (∃all𝑟 𝐵), as illustrated

in Figure 3, is formally defined by:

𝐵𝑜𝑥 (∃all𝑟 𝐵) = {x ∈ R𝑛 | ∀y ∈ 𝐵𝑜𝑥 (𝐵) : x − y ∈ 𝐵𝑜𝑥 (𝑟 )}.

Proposition 4.3. 𝐵𝑜𝑥 (∃all𝑟 𝐵) is a box with center c(𝑟 ) + c(𝐵) and
offset max{0, o(𝑟 ) − o(𝐵)}, and we have 𝐵𝑜𝑥 (∃all𝑟 𝐵) ⊆ 𝐵𝑜𝑥 (∃𝑟 .𝐵).

Based on Proposition 4.3, we perform a semantic enhancement

on a given ontology O by replacing any axiom 𝛼 ∈ O of the form

𝐶 ⊑ 𝐷 with 𝐶 ⊑ 𝐷stg
, where 𝐷stg

is obtained by substituting each

occurrence of ∃𝑟 with ∃all𝑟 . Such an operation is guarantee to be an

enhancement by the following result:

Proposition 4.4. Let Ostg be the collection of all axioms𝐶 ⊑ 𝐷stg

obtained as described above. Then, for any 𝛼 ∈ O, we have Ostg |= 𝛼 .

It is important to note that only TransBox can apply the above

enhancement, as it embeds roles as a set of translations represented

by boxes. In contrast, methods like ELBE and BoxEL would collapse

into TransE with this enhancement. This occurs because ELBE

and BoxEL embed roles as a single translation, meaning 𝐵𝑜𝑥 (𝑟 ) is
reduced to a single point, which would similarly reduce 𝐵𝑜𝑥 (𝐴) to
a single point under the same enhancement.

4.4 Enhancing Box Intersections
The standard intersection of boxes tends to become empty as the

space grows exponentially sparser with increasing dimensions. Con-

sequently, the likelihood of finding intersecting boxes decreases

exponentially, as demonstrated in Theorem 4.5. However, the ex-

isting solutions to such a problem violate the objective of finding

valid geometric models. For example, in implementation, Box
2
EL

defines the intersection of two disjoint intervals, such as [−1, 0] and
[2, 3], as [0, 2], disregarding the fact that they do not overlap. BoxEL
addresses this issue by defining specific volumes for such cases;

however, it only works for concepts of the form 𝐴 ⊓ 𝐵 and cannot

be extended to handle more complex cases, such as 𝐴 ⊓ 𝐵 ⊓ 𝐵′.
4∃all𝑟 is different from ∀𝑟 , see Appendix C for an example.
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(c) TransBox

Figure 4: Embedding visualization of ELBE and TransBox for the family ontology in the 2-dimensional case. The box embeddings
for roles in TransBox are highlighted in blue. ’w/o Enhancement’ refers to training TransBox without the semantic and
intersection enhancements.

Father ⊑ Male ⊓ Parent Mother ⊑ Female ⊓ Parent

Male ⊓ Parent ⊑ Father Female ⊓ Parent ⊑ Mother

Male ⊓ Female ⊑ ⊥ Parent ⊓ Child ⊑ ⊥
Child ⊑ ∃hasParent.Mother Child ⊑ ∃hasParent.Father
Parent ⊑ ∃hasChild.Child

Figure 5: Family Ontology

Theorem 4.5. Let 𝐵𝑜𝑥 and 𝐵𝑜𝑥 ′ be two randomly generated boxes
in an 𝑛-dimensional space, with centers uniformly selected from
[−1, 1]𝑛 and offsets chosen from (0, 1]𝑛 . Then, we have the possi-
blity 𝑃 (Box ∩ Box′ ≠ ∅) = (2/3)𝑛 . Thus, for 𝑛 ≥ 50, we have
𝑃 (Box ∩ Box′) < 1.6 × 10−9.

To address this issue, we propose extending the box representa-

tion from R𝑛
to (R∪{∅})𝑛 . This solution is more natural compared

to existing approaches and better aligns with the goal of developing

geometric models.

Extended Box intersections over (R ∪ {∅})𝑛 . First, noted that a

box 𝐵𝑜𝑥 ⊆ R𝑛
can be regarded as a Cartesian product of intervals:

𝐵𝑜𝑥 = 𝐼1 × 𝐼2 × . . . × 𝐼𝑛, (7)

where 𝐼𝑖 := [𝑐𝑖 − 𝑜𝑖 , 𝑐𝑖 + 𝑜𝑖 ] (1 ≤ 𝑖 ≤ 𝑛) is a interval with 𝑐𝑖 , 𝑜𝑖 the

coordinates of center c and offset o the 𝐵𝑜𝑥 .

We define 𝐼∗ := 𝐼 ∪ {∅}, and the boxes over (R ∪ {∅})𝑛 as:

𝐵𝑜𝑥 = 𝐼∗
1
× 𝐼∗

2
× . . . × 𝐼∗𝑛 (8)

Then, the intersection of two boxes 𝐵𝑜𝑥, 𝐵𝑜𝑥 ′ ⊆ (R ∪ {∅})𝑛 is

defined by taking the intersection over each component. Formally:

𝐵𝑜𝑥 ∩ 𝐵𝑜𝑥 ′ = (𝐼∗
1
∩ 𝐼∗

′
1
) × . . . × (𝐼∗𝑛 ∩ 𝐼∗

′
𝑛 ) . (9)

Under such a setting, we say 𝐵𝑜𝑥 and 𝐵𝑜𝑥 ′ is disjoint iff 𝐵𝑜𝑥 ∩
𝐵𝑜𝑥 ′ = {∅}× . . .×{∅}. One can see that, by our extension, we could

have non-empty intersection of 𝐵𝑜𝑥 and 𝐵𝑜𝑥 ′ even if 𝐼∗
𝑖
∩ 𝐼∗′

𝑖
= ∅

for several 1 ≤ 𝑖 ≤ 𝑛.

4.5 Training
Distance and inclusion loss of Boxes. As shown in [22, 26], the

distance of two boxes can be described by the following equation:

𝑑 (Box, Box′) = |c1 − c2 | − o1 − o2 . (10)

Note that 𝑑 (Box, Box′) ∈ R𝑛
is a vector that captures the mini-

mal difference between two points between Box and Box′, and a

negative 𝑑 (Box, Box′) indicates that Box and Box′ have non-empty

intersection.

The inclusion loss that determines whether one box is included

in another is defined as follows. We assign each box on (R∪{∅})𝑛 a

binary maskm = (𝑚1, . . . ,𝑚𝑛), where𝑚 𝑗 = 1 if 𝐼∗
𝑗
≠ ∅, and𝑚 𝑗 = 0

otherwise. Using this mask, we extend the standard inclusion loss

to boxes in (R ∪ {∅})𝑛 as:

L⊆ (Box, Box′) := | |o(Box) ∗m ∗ (1 −m′) | | +
∥max{0, (𝑑 (Box, Box′) + 2o(Box)) ∗m ∗m′ − 𝛾}∥

(11)

where (1) The first term encourages the offset of Box to shrink

to zero in dimensions where Box′ is empty (i.e., where 𝑚′
𝑗
= 0);

(2) The second term represents the standard inclusion loss [17],

but is restricted to the dimensions where both Box and Box′ are
non-empty (i.e.,𝑚 𝑗𝑚

′
𝑗
= 1 in those dimensions). Note that when

the mask vectors have a value of 1 in all dimensions, the above

inclusion loss becomes equivalent to the standard one over R𝑛
.

Axiom Loss. The model is trained by the following loss function

for two kinds of axioms with semantic enhancement applied:

(1) General concept inclusion axioms 𝐶 ⊑ 𝐷 : We define the loss as

the inclusion loss between 𝐵𝑜𝑥 (𝐶) and 𝐵𝑜𝑥 (𝐷):

L(𝐶 ⊑ 𝐷) = L⊆ (𝐵𝑜𝑥 (𝐶), 𝐵𝑜𝑥 (𝐷)) . (12)

(2) Role inclusion axioms 𝑟1 ◦ . . . ◦ 𝑟𝑛 ⊑ 𝑡 (𝑛 = 1, 2):

L(𝑟1 ◦ . . . ◦ 𝑟𝑛 ⊑ 𝑡) = L⊆ (𝐵𝑜𝑥 (𝑟1 ◦ . . . ◦ 𝑟𝑛), 𝐵𝑜𝑥 (𝑡)). (13)

Negative Sampling. Similar to Knowledge Graph Embedding

methods (e.g., [7]) and existing works on Ontology Embedding (e.g.,

[22]), we use negative sampling to avoid trivial embeddings and

enhance the learned embeddings’ quality. The negative samples

are built by replacing some atomic concepts in an axiom randomly

by a different concepts. Specifically, following [17], we generate

native samples of the form 𝐴′ ⊑ ∃𝑟 .𝐵′ by replacing 𝐴 with 𝐴′

and 𝐵 with 𝐵′ for each axiom 𝐴 ⊑ ∃𝑟 .𝐵 ∈ O. Moreover, a loss

has been introduced to discourage 𝐴′ ⊑ ∃𝑟 .𝐵′ from holding, as

𝐵𝑜𝑥 (𝐴′) ⊈ 𝐵𝑜𝑥 (∃𝑟 .𝐵′), using the following distance function that

makes the minimal distance between Box(𝐴′) and Box(∃𝑟 .𝐵′) close
5
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Table 1: Distribution of generated complex axioms

Dataset 𝐴 ⊑ 𝐷 𝐶 ⊑ 𝐴 𝐶 ⊑ 𝐷

GALEN 200 630 166

GO 397 347 256

ANATOMY 897 32 69

to 1 in each coordinate:

L⊈ (𝐴′ ⊑ ∃𝑟 .𝐵′) = (1− ∥max{0,−𝑑 (Box(𝐴′), Box(∃𝑟 .𝐵′)) −𝛾}∥)2 .

Regularization. Similar to TransE and ELEM, we introduce a

regularization term that encourages the norm of the centers of

concept boxes to be close to 1. That is:

L𝑟𝑒𝑔
𝑐𝑜𝑛 (𝛼) =

∑︁
𝐴 appears in 𝛼

| |c(𝐴) − 1| |. (14)

In Conclusion, the final loss function is defined as:

L =
1

𝑁

©­«
∑︁
𝛼∈O
(L(𝛼) + 𝜆 · L𝑟𝑒𝑔

𝑐𝑜𝑛 (𝛼))2 +
∑︁

neg sample 𝛽

L⊈ (𝛽)
ª®¬ . (15)

where 𝜆 ≥ 0 is a regularization factor, 𝑁 the batch size.

5 Soundness
Let O be an EL++ ontology. We can extend any TransBox embed-

ding of O to an interpretation I𝑔 following the EL++ semantics

introduced in Section 2.1, where the atomic concepts in O are rep-

resented by 𝐵𝑜𝑥 (𝐴), and the roles in O by 𝐸𝐵𝑜𝑥 (𝑟 ) , as specified in

Equation (6).

By the following result, we show that Transbox is sound in the

sense that such an interpretation I𝑔 is a geometric model of O when

the loss for any axiom in O is zero.

Theorem 5.1 (Soundness). If for every axiom 𝛼 ∈ O, the loss
defined by Transbox is 0 (i.e., L(𝛼) = 0), then I𝑔 is a geometric model
of O.

Proof. Since Transbox is closed under EL++, for any (complex)

EL++-concept 𝐶 , we have 𝐵𝑜𝑥 (𝐶) = 𝐶I𝑔 by definition. Now, con-

sider any axiom 𝛼 of the form 𝐶 ⊑ 𝐷 . By our definition, L(𝐶 ⊑
𝐷) = 0 if and only if 𝐵𝑜𝑥 (𝐶) ⊆ 𝐵𝑜𝑥 (𝐷). This implies that 𝐶I𝑔 =

𝐵𝑜𝑥 (𝐶) ⊆ 𝐵𝑜𝑥 (𝐷) = 𝐷I𝑔 . Similarly, for role composition axioms

of the form 𝑟1 ◦ 𝑟2 ⊑ 𝑡 , we have (𝑟1 ◦ 𝑟2)I𝑔 ⊆ 𝑡I𝑔 whenever

L(𝑟1 ◦ 𝑟2 ⊑ 𝑡) = 0.

Thus, we conclude that I𝑔 is indeed a geometric model of O. □

The theorem is not affected by either semantic enhancement

or extended intersections. For the semantic enhancement, this is

because L(𝐴 ⊑ ∃all𝑟 .𝐵) = 0 implies L(𝐴 ⊑ ∃𝑟 .𝐵) = 0. For the

extended intersections, the theorem remains as L(𝐵𝑜𝑥, 𝐵𝑜𝑥 ′) = 0

continues to imply that 𝐵𝑜𝑥 ⊆ 𝐵𝑜𝑥 ′ for boxes over (R ∪ {∅})𝑛 .

6 Evaluation Results
6.1 Proof of Concept: Family Ontology
To evaluate and demonstrate the expressiveness of the TransBox

embedding method, we use a simple family ontology and compare

the embedding results with ELBE [26]. For better illustration, we

Table 2: Overall comparison of prediction of complex axioms

Model H@1 H@10 H@100 Med MRR MR AUC

G
A
L
E
N BoxEL 0.00 0.01 0.05 959 0.00 4794 0.54

ELBE 0.00 0.00 0.00 995 0.00 5054 0.51

TransBox 0.01 0.05 0.15 727 0.02 2769 0.73

G
O

BoxEL 0.00 0.01 0.05 982 0.00 4516 0.67

ELBE 0.05 0.09 0.15 1035 0.07 5217 0.61

TransBox 0.16 0.41 0.65 30 0.25 717 0.95

A
n
a
t
o
m
y

BoxEL 0.00 0.00 0.05 1020 0.00 19744 0.60

ELBE 0.05 0.08 0.10 995 0.06 15661 0.68

TransBox 0.26 0.55 0.69 7 0.35 622 0.99

train all embeddings in a 2-dimensional space, and add visualization

loss below into the final loss functions to avoid overly small boxes

as in Box
2
EL [17].

L𝑉 =
1

𝑛 |N𝐶 |
∑︁

𝐴∈N𝐶

𝑛∑︁
𝑖=1

max{0, 0.2 − 𝑜 (𝐵𝑜𝑥 (𝐴))𝑖 }.

In this simple experiment, we set the margin to𝛾 = 0, regularization

factor 𝜆 = 0, and omit negative sampling. The resulting embeddings

are shown in Figure 4.

As shown in Figure 4a, the ELBE embeddings fail to capture

the disjointness between Father and Mother. This is because, in
ELBE, roles are embedded as translations defined by a single vector.

Consequently, the embedded boxes of Father and Mother must be

close to the translated box 𝐵𝑜𝑥 (Child) +vhasParent due to the axioms

Child ⊑ ∃hasParent.Mother and Child ⊑ ∃hasParent.Father.
In contrast, TransBox embeddings (Figures 4b and 4c) resolve this

issue by utilizing multi-transition representations within 𝐵𝑜𝑥 (𝑟 ).
This approach allows TransBox to correctly learn distinct embed-

dings for each concept. Additionally, applying the semantic en-

hancements described in Section 4.3 further improves the embed-

dings of roles. Specifically, in Figure 4c, we observe that the em-

bedding 𝐵𝑜𝑥 (ℎ𝑎𝑠𝑃𝑎𝑟𝑒𝑛𝑡) ≈ −𝐵𝑜𝑥 (ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑) well captures the fact
that the role hasParent is the inverse of hasChild.

6.2 Axiom Prediction
Benchmark. Following with prior research [17, 31], we utilize

three normalized biomedical ontologies: GALEN [27], Gene Ontol-

ogy (GO) [1], and Anatomy (Uberon) [25] in our study. Training,

validation, and testing employ the established 80/10/10 partition

as in [17] for predicting normalized axioms. For predicting com-

plex axioms, however, we adopt a distinct test set generated via

forgetting [21]. The forgetting tool LETHE [20] is chosen as its

results are typically more compact and readable compared to others

[8, 32]. The statistics of generated axioms are shown in Table 1.

More details of the test set generation can be found in Appendix D.

Baselines. We primarily compare TransBox with leading box-

based methods: BoxEL [31], ELBE [26], and Box
2
EL [17]. These

approaches are closely aligned with our objectives and provide a

strong basis for evaluating the effectiveness of TransBox. Ball-based

methods like ELEM [22] and ELEM++ [24], while relevant, are only

applicable to specific axioms, and thus comparisons with them are

discussed in Appendix G.
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Table 3: Comparasion over subtask: ∗ ⊑?𝐴

Model H@1 H@10 H@100 Med MRR MR AUC

G
A
L
E
N BoxEL 0.00 0.00 0.00 12600 0.00 11714 0.49

ELBE 0.00 0.00 0.00 16779 0.00 11904 0.50

TransBox 0.00 0.07 0.15 4887 0.02 6683 0.71

G
O

BoxEL 0.00 0.00 0.00 9439 0.00 11937 0.74

ELBE 0.00 0.00 0.00 16230 0.00 17480 0.62

TransBox 0.02 0.65 0.86 4 0.24 1216 0.97

A
n
a
t
o
m
y

BoxEL 0.00 0.00 0.09 1299 0.00 6358 0.95

ELBE 0.00 0.05 0.08 24293 0.02 29700 0.73

TransBox 0.03 0.43 0.76 16 0.16 970 0.99

Table 4: Comparasion over subtask: ?𝐴 ⊑ ∗

Model H@1 H@10 H@100 Med MRR MR AUC

G
A
L
E
N BoxEL 0.00 0.00 0.00 6176 0.00 7426 0.68

ELBE 0.00 0.00 0.00 7775 0.00 8931 0.62

TransBox 0.07 0.16 0.35 558 0.10 3164 0.87

G
O

BoxEL 0.00 0.00 0.01 17396 0.00 19249 0.58

ELBE 0.00 0.00 0.00 16162 0.00 16836 0.64

TransBox 0.00 0.12 0.56 61 0.04 2566 0.95

A
n
a
t
o
m
y

BoxEL 0.00 0.00 0.00 41038 0.00 42455 0.60

ELBE 0.00 0.00 0.00 27471 0.00 32689 0.69

TransBox 0.17 0.70 0.90 5 0.33 876 0.99

Evaluation Metric. In line with previous works [17, 22, 26, 31],

we assess the performance of ontology embeddings using a variety

of ranking-based metrics on the test set. Following [17], we rank

the candidates based on a score function defined as the negative

value of the distance between the embeddings of the concepts on

both sides of the subsumption (detailed in Appendix F). A higher

score indicates a more likely axiom. To evaluate the performance

of different methods, we record the rank of the correct answer

and report it using several standard evaluation metrics: Hits@k

(H@k) for 𝑘 ∈ {1, 10, 100}, median rank (Med), mean reciprocal

rank (MRR), mean rank (MR), and area under the ROC curve (AUC).

Experimental Protocol. We train all models with dimensions 𝑑 ∈
{25, 50, 100, 200}, margins 𝛾 ∈ {0, 0.05, 0.1, 0.15}, learning rates

𝑙𝑟 ∈ {0.0005, 0.005, 0.01}, and regularization factor 𝜆 = 1, using the

Adam optimizer [19] for 5,000 epochs. All reported results represent

the average performance across 10 random runs, with the optimum

hyper parameters selected based on validation set performance.

Our experiments are based on a re-implementation of [17], with

a corrected evaluation on axioms of the form 𝐴 ⊓ 𝐵 ⊑ 𝐵′. More

details can be found in Appendix E.

6.2.1 Prediction of complex axioms.

Evaluation Task. As shown in Table 1, the test set for the complex

axiom prediction task consists of three types of axioms:𝐴 ⊑ 𝐶 ,𝐶 ⊑
𝐴, and 𝐶 ⊑ 𝐷 , where 𝐴 represents an atomic concept, and 𝐶 and 𝐷

are complex EL++-concepts. Based on this structure, we define four
different evaluation tasks: ∗ ⊑?𝐴, ?𝐴 ⊑ ∗, ∗ ⊑?𝐶, ?𝐶 ⊑ ∗,
where ?𝐴 (resp. ?𝐶) refers to a query for the atomic concept 𝐴

Table 5: Comparasion over subtask: ∗ ⊑?𝐶

Model H@1 H@10 H@100 Med MRR MR AUC

G
A
L
E
N BoxEL 0.00 0.03 0.27 184 0.02 368 0.68

ELBE 0.00 0.00 0.01 334 0.00 459 0.61

TransBox 0.01 0.06 0.34 204 0.04 200 0.83

G
O

BoxEL 0.00 0.02 0.15 561 0.01 611 0.58

ELBE 0.02 0.05 0.16 664 0.03 593 0.59

TransBox 0.25 0.52 0.62 8 0.34 388 0.73

A
n
a
t
o
m
y

BoxEL 0.00 0.01 0.10 497 0.01 503 0.53

ELBE 0.09 0.12 0.15 564 0.11 538 0.50

TransBox 0.37 0.46 0.48 365 0.41 406 0.62

Table 6: Comparasion over subtask: ?𝐶 ⊑ ∗

Model H@1 H@10 H@100 Med MRR MR AUC

G
A
L
E
N BoxEL 0.00 0.00 0.00 684 0.00 680 0.42

ELBE 0.00 0.00 0.00 763 0.00 761 0.35

TransBox 0.00 0.00 0.00 758 0.00 747 0.36

G
O

BoxEL 0.00 0.00 0.00 823 0.00 827 0.43

ELBE 0.11 0.18 0.25 1046 0.14 777 0.47

TransBox 0.19 0.29 0.60 68 0.23 311 0.79
A
n
a
t
o
m
y

BoxEL 0.00 0.00 0.00 974 0.00 974 0.09

ELBE 0.18 0.38 0.57 56 0.25 425 0.61

TransBox 0.09 0.21 0.69 45 0.13 254 0.77

(resp. the complex concept 𝐶) on one side of the subsumption, and

∗ represents the candidate concepts on the other side. For tasks

involving 𝐴, the candidate set consists of all atomic concepts in the

ontology. For tasks involving 𝐶 , the candidates include all complex

concepts 𝐶 or 𝐷 present in the test set.

Results. The overall result is summarized in Table 2, and the

result of each subtask is presented in Tables 3, 4, 5 and 6. Note that

for the task of predicting complex axioms, we can only make a

comparison with EL++-closed methods BoxEL and ELBE.

We observe that TransBox outperforms all the existing EL++-
closed methods, with particularly notable improvements on the

GO and Anatomy datasets. For instance, the median rank (Med)

improves from over 900 to below 30, while the mean rank (MR)

decreases by more than 80% in GO and 95% in Anatomy. A detailed

analysis of each subtask, shown in Tables 4 to 6, highlights consis-

tent performance gains across nearly all the cases. This is especially

evident in the prediction of atomic concepts (i.e., ∗ ⊑?𝐴, ?𝐴 ⊑ ∗),
where median ranks drop from thousands or tens of thousands to

under 100 or even below 10. As expected, predicting atomic con-

cepts performs better than predicting complex concepts. This is

because as concept complexity increases, the embeddings’ ability

to capture meaning diminishes due to accumulated errors in the

composition process.

6.2.2 Normalized Axioms Prediction. The overall results for the
four types of normalized axioms (𝐴 ⊑ 𝐵, 𝐴 ⊑ 𝐵 ⊑ 𝐵′, 𝐴 ⊑ ∃𝑟 .𝐵,
and ∃𝑟 .𝐵 ⊑ 𝐴) are presented in Table 7. While TransBox achieved

the best overall performance among EL++ methods, it is less com-

petitive compared to non-EL++ methods for predicting normalized
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Table 7: Overall comparison of EL-closed method on nor-
malized axioms

Model H@1 H@10 H@100 Med MRR MR AUC

G
A
L
E
N

Box
2
EL 0.04 0.17 0.31 1360 0.08 5183 0.78

BoxEL 0.00 0.03 0.16 4750 0.01 7213 0.69

ELBE 0.01 0.07 0.14 5340 0.03 7447 0.68

TransBox 0.01 0.08 0.18 4986 0.03 7227 0.69

G
O

Box
2
EL 0.02 0.17 0.52 86 0.07 4593 0.90

BoxEL 0.01 0.06 0.08 8572 0.03 15116 0.67

ELBE 0.03 0.13 0.19 6836 0.06 10809 0.76

TransBox 0.01 0.16 0.35 1503 0.06 8199 0.82

A
n
a
t
o
m
y Box

2
EL 0.07 0.34 0.65 27 0.15 2918 0.97

BoxEL 0.03 0.11 0.25 1527 0.06 11930 0.89

ELBE 0.02 0.27 0.47 162 0.10 9562 0.91

TransBox 0.03 0.35 0.62 29 0.13 8186 0.92

Table 8: Comparasion over prediction: 𝐴 ⊓ 𝐵 ⊑?𝐵′

Model H@1 H@10 H@100 Med MRR MR AUC

G
A
L
E
N

Box
2
EL 0.00 0.00 0.00 10910 0.00 11063 0.52

BoxEL 0.00 0.00 0.01 11217 0.00 11437 0.51

ELBE 0.00 0.00 0.00 10898 0.00 11053 0.52

TransBox 0.03 0.21 0.39 996 0.08 5112 0.78

G
O

Box
2
EL 0.00 0.00 0.01 14273 0.00 15566 0.66

BoxEL 0.00 0.00 0.00 22263 0.00 22569 0.51

ELBE 0.00 0.00 0.01 14712 0.00 16109 0.65

TransBox 0.06 0.60 0.77 7 0.21 2783 0.94

A
n
a
t
o
m
y Box

2
EL 0.00 0.01 0.02 29327 0.00 34052 0.68

BoxEL 0.00 0.00 0.01 16982 0.00 24917 0.77

ELBE 0.01 0.02 0.06 22228 0.01 28524 0.73

TransBox 0.05 0.29 0.57 56 0.12 2215 0.98

axioms. This is expected, as non-EL++ methods, unconstrained by

extensional capabilities, are often better suited to capture normal-

ized axioms due to their specific design. For instance, Box
2
EL’s use

of bump vectors provides enhanced capacity for embedding con-

cepts and roles to fit axioms. However, this approach is restricted

to atomic concepts for which bump vectors are explicitly defined.

Furthermore, it introduces greater model complexity for storing

these bump vectors compared to TransBox, with a total complexity

of 𝑂 (𝑛(3𝑁𝐶 + 4𝑁𝑅 + 2𝑁𝐼 )) versus 𝑂 (𝑛(2𝑁𝐶 + 2𝑁𝑅 + 𝑁𝐼 )).
Notably, thanks to the enhanced box intersection mechanism

introduced in Section 4.4, TransBox performs significantly better

on predicting 𝐴 ⊓ 𝐵 ⊑?𝐵′, which is an important and common

type of axioms that encapsulate the relationships between multiple

concepts and their implications. However, since this type of axiom

makes up a small portion of our test sets (16.14% in GALEN, 9.33%

in GO, and 0.77% in ANATOMY), its contribution to the overall

results in Table 7 is underrepresented.

6.2.3 Ablation Study. We performed an ablation study to evaluate

the effects of semantic enhancement and extended intersection

on prediction performance, using the GALEN ontology for all ex-

periments. The results demonstrate that applying intersection en-

hancement significantly improves performance on tasks involving

Table 9: Ablation Study: SemEn refers to Semantic Enhance-
ment, and IntEn refers to Intersection Enhancement.

Task SemEn IntEn H@1 H@10 H@100 Med MRR MR AUC

C
o
m
p
l
e
x ✓ ✓ 0.01 0.05 0.15 727 0.02 2769 0.73

✓ 0.01 0.04 0.12 784 0.02 3043 0.71

✓ 0.00 0.00 0.01 994 0.00 5061 0.51

0.00 0.00 0.00 994 0.00 5050 0.51

N
o
r
m
a
l
i
z
e
d ✓ ✓ 0.01 0.08 0.18 4986 0.03 7227 0.69

✓ 0.01 0.04 0.08 9296 0.02 9931 0.57

✓ 0.01 0.09 0.20 4352 0.03 6857 0.70
0.01 0.05 0.10 8620 0.02 9421 0.59

complex axioms. However, when restricted to normalized axioms,

the intersection enhancement shows minimal impact. In such cases,

semantic enhancement plays a more critical role. Overall, the com-

bination of both semantic and intersection enhancements yields

the best results, highlighting their complementary strengths in

improving predictive accuracy.

6.2.4 Case Study. In the following query of the form 𝐶 ⊑?𝐴 over

GALEN, our model correctly identified the correct answer En-
dometriosisLesion with a score of -0.32, ranking 3rd. Note the score

is the negative value of the distance. It effectively distinguished En-
dometriosisLesion from other similar conditions such as Endometri-
alHypoplasia (-0.65), EndometrialRegeneration (-0.69), and Endome-
trialNeoplasia (-0.64).

EndometrioidStructure ⊓ SnowLeopard
⊓ ∃ isSpecificConsequenceOf. MenopauseProcess ⊑?𝐴.

This example also underscores the significance of handling com-

plex axioms in practical, real-world applications. In the original,

normalized GALEN ontology, EndometriosisLesion appears on the

right-hand side of two normalized axioms:

Depolarising ⊓ SerumCalciumTest ⊑ EndometriosisLesion

EndometrioidStructure ⊓ LigamentOfUterus ⊑ EndometriosisLesion

While these normalized axioms are informative, the more com-

plex axiom used in the query provides richer context and deeper

insights that may not be captured in simpler forms. Additionally,

this complexity makes the axiom more intuitive and actionable

for medical professionals, aiding in more accurate diagnosis and

decision-making.

7 Conclusion and Future Work
In this work, we introduced EL++-closed ontology embeddings that

can generate embeddings for complex concepts from embeddings of

atomic ones, enabling their use in more various tasks. Additionally,

we proposed a novel EL++-closed embedding method, TransBox,
which achieves state-of-the-art performance in predicting complex

axioms for three real-world ontologies.

In future work, we plan to extend the closed embeddings to more

expressive Description Logics, such asALC. We are also interested

in integrating geometric models with language models, incorporat-

ing the textual information of concepts and roles in EL++-closed
embeddings for more accurate complex axiom prediction.
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A Proofs
A.1 Proposition 4.1

Proof. (of Proposition 4.1) By definition, a point x ∈ ∃𝐸𝑆 if and

only if there exist y ∈ 𝐵𝑜𝑥 (𝐵) and z ∈ 𝐵𝑜𝑥 (𝑟 ) such that

x − y = z.

Since y ∈ 𝐵𝑜𝑥 (𝐵), we can express y as y = c(𝐵)+u1, where u1 ∈ R𝑛

and |u1 | ≤ o(𝐵). Here, |u1 | means the vector obtained by taking

the absolute value of each component of u1. Similarly, z ∈ 𝐵𝑜𝑥 (𝑟 )
can be written as z = c(𝑟 ) + u2, where u2 ∈ R𝑛

and |u2 | ≤ o(𝑟 ).
Substituting these into the equation x − y = z, we get:

x − (c(𝐵) + u1) = c(𝑟 ) + u2 .

Thus, we have:

x = (c(𝐵) + c(𝑟 )) + (u1 + u2) .

Let u = u1+u2, then u is any point inR𝑛
such that |u| ≤ o(𝐵) +o(𝑟 )

by construction. Therefore, the set ∃𝐸𝑆 of all possible x of the

above form is exactly a box with center c(𝐵) + c(𝑟 ) and offset

o(𝐵) + o(𝑟 ). □

A.2 Proposition 4.2
Proof. (of Proposition 4.2) It suffices to show that (x, y) ∈

𝐵𝑜𝑥 (𝑟 ) and (y, z) ∈ 𝐵𝑜𝑥 (𝑡) if and only if x − z ∈ 𝐵𝑜𝑥 (𝑟 ◦ 𝑡), which
is demonstrated as follows.

Since x − y ∈ 𝐵𝑜𝑥 (𝑟 ), we can express x − y = c(𝑟 ) + u1, where
u1 ∈ R𝑛

and |u1 | ≤ o(𝑟 ). Similarly, since y − z ∈ 𝐵𝑜𝑥 (𝑡), we write
y − z = c(𝑡) + u2, where u2 ∈ R𝑛

and |u2 | ≤ o(𝑡).
Therefore, we have: x−z = (c(𝑟 )+c(𝑡))+(u1+u2) . Letw = u1+u2,

thenw is a point in R𝑛
such that |w| ≤ o(𝑟 ) +o(𝑡). By construction,

the set of all possible x− z is exactly the box 𝐵𝑜𝑥 (𝑟 ◦ 𝑡), with center

c(𝑟 ) + c(𝑡) and offset o(𝑟 ) + o(𝑡). □

A.3 Proposition 4.3
Proof. (of Proposition 4.3) For any y ∈ 𝐵𝑜𝑥 (𝐵), it can be written

as c(𝐵) + u1, where |u1 | ≤ o(𝐵). Assume x ∈ 𝐵𝑜𝑥 (∃all𝑟 𝐵), then
x − y = x − c(𝐵) − u1 ∈ 𝐵𝑜𝑥 (𝑟 ) for any |u1 | ≤ o(𝐵). That is:

|x − c(𝐵) − u1 − c(𝑟 ) | ≤ o(𝑟 ), ∀|u1 | ≤ o(𝐵) .

Rewriting x = c(𝐵) +c(𝑟 ) +u, we have |u−u1 | ≤ o(𝑟 ),∀|u1 | ≤ o(𝐵).
It follows that this holds if and only if |u| ≤ max{0, o(𝑟 ) − o(𝐵)}.
In conclusion, x ∈ 𝐵𝑜𝑥 (∃all𝑟 𝐵) if and only if x = c(𝐵) + c(𝑟 ) + u for

some |u| ≤ max{0, o(𝑟 ) − o(𝐵)}. This proves the proposition. □

A.4 Proposition 4.4
Proof. (of Proposition 4.4) For any interpretation I of O, the

following holds:

(1) 𝐴I ⊆ 𝐴I for any atomic concept 𝐴;

(2) If 𝐷I ⊆ 𝐷I , then (∃all𝑟 𝐷)I ⊆ (∃𝑟 .𝐷)I for any role 𝑟 ;

(3) If 𝐷I
𝑖
⊆ 𝐷I

𝑖
for 𝑖 = 1, 2, then 𝐷I

1
∩ 𝐷I

2
⊆ 𝐷I

1
∩ 𝐷I

2
.

By induction, we conclude that |= 𝐷stg ⊑ 𝐷 . Therefore, for any𝐶 ⊑
𝐷 ∈ O, we have {𝐶 ⊑ 𝐷stg} |= 𝐶 ⊑ 𝐷 , and thus O′ |= 𝐶 ⊑ 𝐷 . □

A.5 Theorem 4.5
Proof. (of Theorem 4.5) If we pick two values 𝑥, 𝑥 ′ (uniform)

randomly from [−1, 1], then we have the possibility of 𝑥 and 𝑥 ′ has
distance at most 2a be:

𝑃 ( |𝑥 − 𝑥 ′ | ≤ 2𝑎) = 4 − (2 − 2𝑎)2
4

= 2𝑎 − 𝑎2

If Box ∩ Box′ ≠ ∅, assuming c, c′ are the centers of Box, Box′, re-
spectively. Recall that the offset is also choice randomly in (0, 1]𝑛 ,
then we have

𝑃 (Box ∩ Box′ ≠ ∅) =
∫
(𝑎1,...,𝑎𝑛 ) ∈ (0,1]𝑛

∏
1≤𝑖≤𝑛

𝑃 ( |c𝑖 − c′𝑖 | ≤ 2𝑎𝑖 )

=

∫
(𝑎1,...,𝑎𝑛 ) ∈ (0,1]𝑛

∏
1≤𝑖≤𝑛

(2𝑎𝑖 − 𝑎2𝑖 )

=
∏

1≤𝑖≤𝑛

(∫
0≤𝑎𝑖≤1

(2𝑎𝑖 − 𝑎2𝑖 )
)

=
∏

1≤𝑖≤𝑛
[𝑥2 − 𝑥3

3

]1𝑥=0

= ( 2
3

)𝑛

□

B Box2EL treat roles as transitive
In Box

2
EL, the loss of a role-composition axiom is defined by:

L(𝑟1 ◦ 𝑟2 ⊑ 𝑡)

=
L⊆ (𝐻𝑒𝑎𝑑 (𝑟1), 𝐻𝑒𝑎𝑑 (𝑡)) + L⊆ (𝑇𝑎𝑖𝑙 (𝑟2),𝑇𝑎𝑖𝑙 (𝑡))

2

= 0

Therefore, we always have 𝑟 ◦ 𝑟 ⊑ 𝑟 holds as the corresponding

loss is 0:

L(𝑟 ◦ 𝑟 ⊑ 𝑟 )

=
L⊆ (𝐻𝑒𝑎𝑑 (𝑟 ), 𝐻𝑒𝑎𝑑 (𝑟 )) + L⊆ (𝑇𝑎𝑖𝑙 (𝑟 ),𝑇𝑎𝑖𝑙 (𝑟 ))

2

= 0

C Difference between ∃all and ∀
The semantics of the universal quantifier ∀𝑟 is defined as:

(∀𝑟 .𝐶)I =

{
𝑎 ∈ ΔI | ∀𝑏 ∈ 𝐶I such that (𝑎, 𝑏) ∈ 𝑟I , 𝑏 ∈ 𝐶I

}
,

(16)

where 𝑟 is a relation and 𝐶 is a concept.

The difference between ∃all (exists for all) and ∀ (for all) can be

illustrated with the following example:

Example 4. Consider the relation passExam and the concepts CS-
GraduatedStudent and CSMandatoryCourse. We distinguish between
the following three cases:

• ∃passExamCSMandatoryCourse: someone who has passed at
least one CS mandatory course.

• ∃allpassExamCSMandatoryCourse: someone who has passed all
CS mandatory courses.

• ∀passExamCSMandatoryCourse: someone who has only passed
CS mandatory courses.
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Table 10: Sizes of the different ontologies used in our evaluation from [17].

Ontology Classes Roles 𝐶 ⊑ 𝐷 𝐶 ⊓ 𝐷 ⊑ 𝐸 𝐶 ⊑ ∃𝑟 .𝐷 ∃𝑟 .𝐶 ⊑ 𝐷 𝐶 ⊓ 𝐷 ⊑ ⊥ 𝑟 ⊑ 𝑠 𝑟1 ◦ 𝑟2 ⊑ 𝑠

GALEN 24,353 951 28,890 13,595 28,118 13,597 0 958 58

GO 45,907 9 85,480 12,131 20,324 12,129 30 3 6

Anatomy 106,495 188 122,142 2,121 152,289 2,143 184 89 31

Then, we have the following axiom:

CSGraduatedStudent ⊑ ∃allpassExamCSMandatoryCourse,

meaning that every CS graduated student must pass all mandatory
courses. However, the statement

CSGraduatedStudent = ∀passExamCSMandatoryCourse

does not hold, because a CS graduated student might also pass exams
in courses other than the mandatory ones.

D Generation of complex axiom
Forgetting is a non-standard ontology reasoning task that can be

regarded as a rewriting process that eliminates unwanted concepts

or roles from the ontology while preserving the deductive logical

information of the rest.

Example 5. For ontology O = {𝐵 ⊑ ∃𝑟 .𝐵, 𝐵 ⊑ 𝐵1 ⊓ 𝐵2}. If we
forget the concept 𝐵, then the result could be {𝐴 ⊑ ∃𝑟 .(𝐵1 ⊓ 𝐵2)},
which can be regarded as a rewriting of O without the forgotten
concept 𝐵, but still preserves the logical information between other
concepts and roles 𝐴, 𝐵1, 𝐵2, 𝑟 .

Using forgetting is a robust method to construct our dataset for

complex axioms for two main reasons:

(1) The results of forgetting are always valid, as O |= 𝛼 for any

axiom 𝛼 in some forgetting result of O.
(2) Forgetting tends to producemore complex axioms, as shown

in the example above.

We use the forgetting tool LETHE [20] to generate our test data,

as LETHE’s results are typically more compact and readable com-

pared to others [8, 32].

Algorithm 1 Generating axiom test sets

Require: Ontology O, number of axioms 𝑁 = 1000

Ensure: A set of axiomsM with length between 4 and 10

1: M ← ∅ ⊲ Initialize the set of selected axioms

2: while |M| < 𝑁 do
3: Σ← Randomly select 1,000 atomic concepts from O
4: OΣ ← Forget(O, Σ)
5: for each axiom 𝛼 ∈ OΣ do
6: if 4 ≤ length(𝛼) ≤ 10 then
7: M ←M ∪ {𝛼} ⊲ Add to the set of selected axioms

8: end if
9: end for
10: end while
11: M ← Randomly select 1000 axioms fromM.

12: Remove non-EL++ axioms fromM.

13: returnM

In detail, for each ontology O, we create a signature Σ consisting

of 1,000 randomly selected atomic concepts. Then, we perform

forgetting over O and Σ, resulting in a forgotten ontology OΣ.
Finally, we select all axioms in OΣ with a length

5
between 4 and 10.

We repeat the progress multiple times if the generated axioms are

less than 1000. The exact progress has been shown in Algorithm 1.

E Issues with Axioms 𝐴 ⊓ 𝐵 ⊑ 𝐵′

Issues on box-based methods. We identified a design flaw in the

evaluation of axioms of the form 𝐴 ⊓ 𝐵 ⊑ 𝐵′ in the Box2EL imple-

mentation. Specifically, the evaluation fails when 𝐵𝑜𝑥 (𝐴) ∩𝐵𝑜𝑥 (𝐵)
is empty. The intersection box 𝐵𝑜𝑥 (𝐴 ⊓ 𝐵) is always computed as

follows:

(1) max(𝐵𝑜𝑥 (𝐴⊓𝐵)) = min{𝑐 (𝐵𝑜𝑥 (𝐴))+𝑜 (𝐵𝑜𝑥 (𝐴)), 𝑐 (𝐵𝑜𝑥 (𝐵))+
𝑜 (𝐵𝑜𝑥 (𝐵))};

(2) min(𝐵𝑜𝑥 (𝐴⊓𝐵)) = max{𝑐 (𝐵𝑜𝑥 (𝐴))−𝑜 (𝐵𝑜𝑥 (𝐴)), 𝑐 (𝐵𝑜𝑥 (𝐵))−
𝑜 (𝐵𝑜𝑥 (𝐵))};

(3) 𝑐 (𝐵𝑜𝑥 (𝐴 ⊓ 𝐵)) = max(𝐵𝑜𝑥 (𝐴⊓𝐵) )+min(𝐵𝑜𝑥 (𝐴⊓𝐵) )
2

;

(4) 𝑜 (𝐵𝑜𝑥 (𝐴 ⊓ 𝐵)) = |max(𝐵𝑜𝑥 (𝐴⊓𝐵) )−min(𝐵𝑜𝑥 (𝐴⊓𝐵) ) |
2

.

This approach ignores cases where 𝐵𝑜𝑥 (𝐴) ∩ 𝐵𝑜𝑥 (𝐵) = ∅, instead
computing 𝑜 (𝐵𝑜𝑥 (𝐴 ⊓ 𝐵)) using the absolute difference between

max(𝐵𝑜𝑥 (𝐴⊓𝐵)) andmin(𝐵𝑜𝑥 (𝐴⊓𝐵)). This is neither logical nor
coherent.

To address this, we refined the evaluation of axioms𝐴⊓𝐵 ⊑ 𝐵′ by
setting 𝑠𝑐𝑜𝑟𝑒 (𝐴⊓𝐵 ⊑ 𝐵′) = 0 for all 𝐵′ when 𝐵𝑜𝑥 (𝐴) ∩𝐵𝑜𝑥 (𝐵) = ∅.
This is reasonable since ⊥ ⊑ 𝐶 is always true for any EL concept

𝐶 .

Issure on ball-based methods. Additionally, as the intersection of

balls is generally not a ball, we cannot evaluate the performance of

ELEM and ELEM++ on axioms like 𝐴 ⊓ 𝐵 ⊑ 𝐵′. In [17], this issue

was addressed by approximating the intersection of balls as boxes,

using the same center, and defining the offset with all coordinates

having the same value of the radii. However, we do not adopt this

method, as it lacks a solid logical foundation.

F Scoring function
Following [17], we define the scoring function for general concept

inclusion axioms 𝐶 ⊑ 𝐷 using the distance between the centers of

their Boxes. Formally,

𝑠 (𝐶 ⊑ 𝐷) = −||c(𝐶) − c(𝐷) | |.

Higher scores indicate a greater likelihood that 𝐶 ⊑ 𝐷 is a true

axiom.

5
We define the length of an axiom as the number of atomic concepts and roles it

contains
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Table 11: Comparasion over axioms: 𝐴 ⊑?𝐵

Model H@1 H@10 H@100 Med MRR MR AUC

G
A
L
E
N

ELEm 0.01 0.16 0.40 430 0.06 3568 0.85

EmEL++ 0.02 0.16 0.37 632 0.06 3765 0.84

Box
2
EL 0.04 0.30 0.51 89 0.12 2648 0.89

BoxEL 0.00 0.00 0.05 3427 0.00 5656 0.76

ELBE 0.02 0.12 0.28 751 0.06 3711 0.84

TransBox 0.00 0.03 0.11 6518 0.01 8120 0.65

G
O

ELEm 0.01 0.13 0.35 590 0.05 6433 0.86

EmEL++ 0.01 0.12 0.30 1023 0.05 6709 0.85

Box
2
EL 0.03 0.17 0.57 58 0.08 2705 0.94

BoxEL 0.00 0.01 0.04 5594 0.00 13734 0.70

ELBE 0.04 0.17 0.22 5098 0.08 9179 0.80

TransBox 0.01 0.09 0.24 3076 0.04 9137 0.80

A
n
a
t
o
m
y

ELEm 0.07 0.30 0.57 43 0.14 9059 0.91

EmEL++ 0.08 0.29 0.53 60 0.14 10414 0.90

Box
2
EL 0.07 0.34 0.65 27 0.15 2918 0.97

BoxEL 0.01 0.04 0.13 2109 0.02 10036 0.91

ELBE 0.03 0.13 0.30 1353 0.06 11724 0.89

TransBox 0.06 0.25 0.50 100 0.12 11575 0.89

Table 12: Comparasion over axioms: ?𝐴 ⊑ ∃𝑟 .𝐵

Model H@1 H@10 H@100 Med MRR MR AUC

G
A
L
E
N

ELEm 0.02 0.14 0.28 1479 0.05 4831 0.79

EmEL++ 0.02 0.11 0.22 2240 0.05 5348 0.77

Box
2
EL 0.08 0.18 0.32 662 0.12 3832 0.83

BoxEL 0.00 0.02 0.07 7638 0.01 8792 0.62

ELBE 0.00 0.07 0.13 5835 0.03 7623 0.67

TransBox 0.00 0.08 0.19 4115 0.03 6597 0.72

G
O

ELEm 0.06 0.40 0.52 54 0.15 6292 0.86
EmEL++ 0.05 0.39 0.48 210 0.15 7788 0.83

Box
2
EL 0.00 0.18 0.52 82 0.05 5085 0.89

BoxEL 0.00 0.00 0.00 16735 0.00 18848 0.59

ELBE 0.00 0.13 0.24 5092 0.03 11161 0.76

TransBox 0.00 0.24 0.53 63 0.06 6808 0.85

A
n
a
t
o
m
y

ELEm 0.12 0.47 0.69 13 0.23 4686 0.96

EmEL++ 0.13 0.42 0.60 23 0.23 7097 0.93

Box
2
EL 0.21 0.56 0.75 7 0.33 2457 0.98

BoxEL 0.04 0.17 0.33 885 0.08 12686 0.88

ELBE 0.01 0.36 0.59 33 0.13 7667 0.93

TransBox 0.02 0.42 0.70 17 0.14 6050 0.94

When extending this to boxes over (R∪ {∅})𝑛 , the scoring func-
tion becomes:

𝑠 (𝐶 ⊑ 𝐷) = −||(c(𝐶) − c(𝐷)) ·m𝐶 ·m𝐷 | | −𝑀 | |m𝐶 · (1 −m𝐷 ) | |,

where𝑀 is a large constant. Recall that m𝐶 and m𝐷 are the masks

of 𝐵𝑜𝑥 (𝐶) and 𝐵𝑜𝑥 (𝐷), indicating empty components along each

coordinate. The second term ensures that 𝑠 (𝐶 ⊑ 𝐷) becomes very

small if, for any 𝑖-th coordinate, 𝐵𝑜𝑥 (𝐶) is non-empty (i.e.,m𝐶,𝑖 = 1)

while 𝐵𝑜𝑥 (𝐷) is empty (i.e., m𝐷,𝑖 = 0).

Table 13: Comparasion over axioms: ∃𝑟 .𝐵 ⊑?𝐴

Model H@1 H@10 H@100 Med MRR MR AUC

G
A
L
E
N

ELEm 0.00 0.05 0.18 3855 0.02 6793 0.71

EmEL++ 0.00 0.04 0.12 4458 0.01 7020 0.70

Box
2
EL 0.00 0.07 0.16 4514 0.02 7317 0.68

BoxEL 0.00 0.14 0.69 49 0.04 2869 0.88
ELBE 0.00 0.00 0.01 11030 0.00 11139 0.52

TransBox 0.00 0.01 0.07 7665 0.00 8835 0.62

G
O

ELEm 0.01 0.49 0.60 12 0.12 6272 0.86

EmEL++ 0.01 0.49 0.58 12 0.13 6442 0.86

Box
2
EL 0.00 0.37 0.64 20 0.09 4971 0.89

BoxEL 0.08 0.55 0.55 3492 0.27 10293 0.78

ELBE 0.00 0.03 0.06 13218 0.01 15417 0.66

TransBox 0.00 0.07 0.34 2096 0.02 9905 0.78

A
n
a
t
o
m
y

ELEm 0.00 0.03 0.23 813 0.01 10230 0.91

EmEL++ 0.00 0.02 0.17 1470 0.01 10951 0.90

Box
2
EL 0.00 0.05 0.15 2891 0.02 8284 0.92

BoxEL 0.00 0.00 0.00 25795 0.00 30281 0.72

ELBE 0.00 0.00 0.00 16239 0.00 26970 0.75

TransBox 0.00 0.01 0.12 3562 0.01 12631 0.88

Table 14: Ablation Study on GO.

Task SemEn IntEn H@1 H@10 H@100 Med MRR MR AUC

C
o
m
p
l
e
x ✓ ✓ 0.16 0.41 0.66 30 0.25 730 0.95

✓ 0.08 0.19 0.32 596 0.12 3143 0.77

✓ 0.09 0.18 0.21 1052 0.12 4920 0.64

0.02 0.04 0.07 1068 0.03 5184 0.62

N
o
r
m
a
l
i
z
e
d ✓ ✓ 0.01 0.16 0.35 1390 0.06 8186 0.82

✓ 0.00 0.06 0.16 5464 0.02 11733 0.74

✓ 0.01 0.16 0.30 1498 0.06 9369 0.80

0.01 0.07 0.15 4342 0.03 10925 0.76

Table 15: Ablation Study on ANATOMY.

Task SemEn IntEn H@1 H@10 H@100 Med MRR MR AUC

C
o
m
p
l
e
x ✓ ✓ 0.26 0.55 0.68 7 0.35 668 0.99

✓ 0.01 0.02 0.05 989 0.01 29806 0.40

✓ 0.17 0.22 0.24 1001 0.19 17421 0.65

0.00 0.01 0.04 996 0.01 16560 0.66

N
o
r
m
a
l
i
z
e
d ✓ ✓ 0.03 0.35 0.63 27 0.13 8238 0.92

✓ 0.02 0.04 0.06 50045 0.02 49579 0.53

✓ 0.03 0.35 0.61 30 0.13 8309 0.92
0.01 0.04 0.06 49695 0.02 49280 0.54

Other methods, such as BoxEL [31], define a volume-based scor-

ing function as:

𝑠 (𝐶 ⊑ 𝐷) = −Vol(𝐶 ⊓ 𝐷)
Vol(𝐶) .
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G Other comparison results
The comparison results for other normalized axioms of the form

𝐴 ⊑ 𝐵, 𝐴 ⊑ ∃𝑟 .𝐵, and ∃𝑟 .𝐵 ⊑ 𝐴 are shown in Tables 11, 12, and

13. We use the ELEM and ELEM++ results from [17], as the error

discussed in the previous section affects only the test set, not the

training or evaluation sets. These results show that non-EL++-
closed methods outperform in predicting normalized axioms. This

is expected, as they are not constrained by the need to embed

complex concepts, allowing better performance in capturing the

semantics of normalized axioms.

The results of the ablation study for GO and ANATOMY are

presented in Tables 14 and 15. It is evident that employing both

Semantic Enhancement and Intersection Enhancement yields the

best performance in both ontologies.

Furthermore, the impact of Semantic Enhancement and Inter-

section Enhancement varies between predicting Complex Axioms

and Normalized Axioms. For instance, when predicting Normalized

Axioms in GO, the AUC ranges from 74 to 82, whereas for Complex

Axioms, it ranges from 62 to 95. This suggests a more pronounced

effect on the latter task.

Overall, Semantic Enhancement generally improves model per-

formance. However, the influence of Intersection Enhancement

is relatively minor. In some cases, such as in the ANATOMY On-

tology without Semantic Enhancement, it may slightly decrease

performance.
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