
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

EGALITARIAN GRADIENT DESCENT:
A SIMPLE APPROACH TO ACCELERATED GROKKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Grokking is the phenomenon whereby, unlike the training performance which
peaks very early on during training, the test/generalization performance of a model
stagnates over arbitrarily many epochs and then suddenly jumps to usually close
to perfect levels. In practice, it is desirable to reduce the length of such plateaus,
that is to make the learning process ”grok” faster. In this work, we provide new
insights into grokking. First, we show both empirically and theoretically that
grokking can be induced by asymmetric speeds of (stochastic) gradient descent,
along different principal (i.e singular directions) of the gradients. We then propose
a simple modification that normalizes the gradients so that dynamics along all the
principal directions evolves at exactly the same speed. Then, we establish that this
modified method, which we call egalitarian gradient descent (EGD) and can be
seen as a carefully modified form of natural gradient descent, groks much faster. In
fact, in some cases the stagnation is completely removed. Finally, we empirically
show that on classical arithmetic problems like modular addition and sparse parity
problem which this stagnation has been widely observed and intensively studied,
that our proposed method removes the plateaus.

1 INTRODUCTION

Neural networks sometimes exhibit a striking training dynamic known as grokking: after rapidly
driving the training error to (near) zero, test performance can linger near chance for a long period
before rising abruptly to near-perfect generalization—often without any change to the optimizer or
explicit early stopping (Power et al., 2022). Grokking has been observed across architectures and
tasks, from algorithmic problems such as modular arithmetic (Gromov, 2023; Doshi et al., 2024) and
formal languages to more naturalistic settings (Liu et al., 2023; Nanda et al., 2023). Yet despite a
rapidly growing body of empirical and mechanistic case studies, we still lack a principled account
of why the delay occurs, what structural features crystallize at the transition, and how to predict or
control it (see Section 2 for a detailed review of the existing literature).

In this work, we examine grokking through the lens of the dynamics of eigen-spectra of gradients
during optimization, and propose a simple modification of (stochastic) gradient descent which
provably reduces the length of the plateau without compromising the level of generalization of the
model at the end of training.

Contributions. Our main contributions can be summarized as follows.

– Egalitarian Gradient Descent (EGD). We propose a novel and simple method for accelerated
grokking and study its properties both theoretically and empirically. Our method operates
by modifying the gradients at each layer so that the principal directions (aka singular
directions) are conserved, but the speed of evolution of the dynamics along each of these
directions is the same. This stabilizes the training by reducing the effect of ill-conditioned
loss landscapes (where gradients vary significantly in magnitude across different principal
directions), leading to accelerated grokking.

– An Effective Theory. We develop a theory which shows that our proposed EGD method is
guaranteed to drastically grok, compared to vanilla methods such as (stochastic) gradient
descent. We also make formal links to natural gradient descent. In fact, we show that our

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

proposed method (which can be seen as a carefully modified version of natural gradient
descent) is a simplified version of Grokfast (which operates by low-pass filtering of the
gradients to boost weaker components). At a high-level, we also show that both methods
have the same inductive bias of making the scales of the dynamics of the evolution of the
parameters comparable along different important directions.

– Empirical Verification. We run extensive experiments on toy problems (binary classification
of anisotropic multivariate data) and arithmetic problems (sparse parity, modular addition,
etc.) and show that our proposed method typically groks immediately at the very beginning
of the learning curve.

102 103 104

Epoch

0.5

0.0

0.5

1.0

Ac
cu

ra
cy

Addition Modulo p = 79

Vanilla SGD
EGD (proposed method)
Column Normalization

102 103 104

Epoch

Addition Modulo p = 97

102 103 104

Epoch

Addition Modulo p = 127

Figure 1: Results on Modular Addition for different values of the modulus p. Solid lines correspond
to test accuracy and broken lines correspond to train accuracy. In all cases, our proposed EGD
(egalitarian gradient descent) method groks after only a few epochs, while vanilla (stochastic)
gradient descent stagnates for a long period before eventually grokking. We also include ”Column
Normalization”, a simplification of EGD which simply rescales the columns of gradient matrices
by dividing by their L2 norm. Even this simplification seems to grok much faster than the baseline,
vanilla (S)GD. Refer to Section 5 for details and to Appendix B for the hyper-parameters used.

102 103 104

Epoch

0.5

0.0

0.5

1.0

Ac
cu

ra
cy

Multiplication Modulo p = 79

Vanilla SGD
EGD (proposed method)
Column Normalization

102 103 104

Epoch

Multiplication Modulo p = 97

102 103 104

Epoch

Multiplication Modulo p = 127

Figure 2: Results on Modular Multiplication for different values of the modulus p. Solid lines
correspond to test accuracy and broken lines correspond to train accuracy. In all cases, our proposed
EGD method groks after only a few epochs, while all the other methods stagnate a long period before
eventually grokking. Refer to Section 5 for details and to Appendix B for the hyperparameters used.

2 RELATED WORK

Grokking—the phenomenon where models first overfit the training set and only much later un-
dergo a sharp jump in test accuracy—was first documented by Power et al. (2022). Subsequent
empirical studies broadened the scope beyond purely algorithmic datasets and analyzed conditions
under which grokking appears or disappears, e.g., via loss–norm tradeoffs, optimizer choice and
dataset/regularization choices (Liu et al., 2023; Nanda et al., 2023; Notsawo et al., 2025; Thilak et al.,
2022; Liu et al., 2022; Davies et al., 2023; Notsawo et al., 2023; Varma et al., 2023).

Plateau Phenomena and Singular Learning Theory. Long before grokking (Power et al., 2022),
prolonged training error plateaus were analyzed in information geometry and statistical–mechanics
treatments of neural nets. Plateaus arise near singular parameter regions—caused by permutation
symmetries and redundancies—where the Fisher information degenerates and gradient flow becomes

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

100 101 102 103 104

Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Parity(n=400,k=2) / ReLU NN(width=50)

Vanilla SGD
EGD (proposed method)
Column Normalization

100 101 102 103

Epoch

Parity(n=100,k=3) / ReLU NN(width=100)

100 101 102 103

Epoch

Parity(n=50,k=4) / ReLU NN(width=100)

Figure 3: Results on Sparse Parity Problem. Solid lines correspond to test accuracy and broken
lines correspond to train accuracy. All three plots show that our method (EGD) groks significantly
faster than other methods. Refer to Section 5 for details on the experimental setup and to Appendix B
for the hyperparameters used.

0.0 0.2 0.4 0.6 0.8 1.0
Eigenvalue ×10 4

0

10

20

30

40

50

Co
un

t

Histogram of eigenvalues of GGT
 Method: Vanilla GD

 Epoch 0, Train acc: 0.01, Test acc: 0.01

0.0 0.2 0.4 0.6 0.8 1.0
Eigenvalue ×10 5

0

20

40

60

80

100

120

Co
un

t

Histogram of eigenvalues of GGT
 Method: Vanilla GD

 Epoch 14999, Train acc: 1.0, Test acc: 1.0

Figure 4: Ill-conditioned Gradient Spectra causes delayed generalization. We consider the problem
of learning addition modulo 97 from data, with a two-layer ReLU neural network. At the start of
optimization through to the end, the gradient matrix G for the hidden layer has a poor condition
number. Here, we see that the largest singular-value (corresponding to a fast direction) is much
larger than the smallest (corresponding to slow directions). This causes the overall dynamics of
vanilla (S)GD to stall for arbitrarily long times, leading to delayed generalization (see Figure 1). Our
proposed method, EGT (egalitarian gradient descent) forces all the singular values of G to be equal.

extremely slow (Wei et al., 2008; Amari et al., 2018). Classical online-learning studies of multilayer
(soft-committee) networks likewise reported long transients and quantified their dependence on
teacher–student alignment (Saad & Solla, 1995). Singular learning theory gives a general account via
algebraic geometry, relating generalization behavior and marginal likelihood to model singularities
(Watanabe, 2009). More recently, statistical–mechanical analyses have shown how input-data spectra
modulate whether plateaus appear prominently at all (Yoshida & Okada, 2019). While these plateaus
need not coincide with delayed generalization as in grokking, the underlying mechanisms—degenerate
Fisher spectra, symmetry breaking, and slow modes—are highly relevant to grokking.

Grokking in Modular Arithmetic. A rich line of mechanistic interpretability work reverse-
engineers the circuits by which small transformers and MLPs implement modular addition. Notably,
Zhong et al. (2023) identify complementary algorithmic mechanisms (“clock” and “pizza”) and
circular embeddings that emerge at the grokking transition. Complementary analyses and constructive
solutions for modular addition are provided in Gromov (2023), while Doshi et al. (2024) extend
these insights to modular polynomials (e.g., multi-term addition and related arithmetic), showing that
trained networks converge toward these circuits near the onset of generalization.

Grokking as Kernel Escape. Another perspective sees grokking as a dynamical transition from a
lazy, kernel-like regime to a rich, feature-learning regime. Kumar et al. (2024); Walker et al. (2025)
formalize conditions under which such a transition yields delayed generalization without requiring
explicit regularization. For modular addition, Mohamadi et al. (2024) give a theoretical analysis
explaining why early kernel-regime learning cannot generalize under symmetry constraints, while
later training escapes the kernel and finds small-norm, generalizing solutions. Aligned with this

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

view, Varma et al. (2023) study grokking through the lens of circuit efficiency. This study shows
that networks quickly learn memorizing solutions which generalize poorly, and the circuits that
generalize well will take longer to form. When both circuits are formed, the generalizing circuits will
be dominant in generating outputs.

Training Stability and the Optimization Lens. An orthogonal view emphasizes numerical stability
and optimization dynamics as bottlenecks that can stall generalization; Prieto et al. (2025) argue
that operating near the edge of numerical stability can induce grokking-like delays and propose
remedies that restore or accelerate test performance. Similar to this perspective, Thilak et al. (2022)
identify a mechanism called ”Slingshot” in which cyclic phase transitions in adaptive optimizers
co-occur with grokking. The early spectral characteristics of learning curves have also been proposed
as predictors of grokking, reducing the need for long training (Notsawo et al., 2023). In a more
general study, Liu et al. (2022) develops an effective theory of representation learning, showing that
generalization emerges in a specific zone for the weights of a network called the ”Goldilocks Zone”.
Grokking occurs when the weights enter this region, which is a narrow phase between memorization
and confusion. In broader perspectives, grokking is linked to phenomena such as double descent and
emergent abilities (Huang et al., 2024; Davies et al., 2023), suggesting that delayed generalization is
caused by the competition between memorization and generalization circuits. These studies show that
both data and representation dependent dynamics play roles in the emergence of grokking phenomena.
As a result, grokking can be affected by architectural, optimization dynamics, and data-related
interventions.

Grokking beyond arithmetic and Delay Mitigation. Grokking is not limited to algorithmic tasks.
It has been observed in some computer vision and natural understanding tasks (Liu et al., 2023; Lee
et al., 2024). Also, structural grokking has been shown to occur in language models, where models
discover hierarchical sentence structures after extensive training (Murty et al., 2023; Zhu et al., 2024).
As more practical tasks exhibit grokking behavior, an important and interesting research question
is how we can reduce the delay between memorization and generalization. Practical interventions
have been shown to be effective to shorten or remove the grokking delay (Lee et al., 2024; Lyle
et al., 2025). Grokfast amplifies slow (low-frequency) gradient components via simple optimizer-side
filters, consistently accelerating grokking across tasks and architectures (Lee et al., 2024). In Section
4.2, we discuss the algorithmic and conceptual benefits of our proposed method over this Grokfast.

Also, accelerating grokking has shown to be beneficial in a practical scenario in which data distribu-
tions shift during training. To address this, Lyle et al. (2025) propose effective learning rate scaling
and re-warming as a method to trigger and accelerate feature-learning dynamics during training
which can both accelerate grokking and address the issue of primacy bias in continual learning. These
dynamics-aware methods complement representation-side interventions and regularization/norm-
control levers observed to modulate the phenomenon (Liu et al., 2023; Nanda et al., 2023).

3 WARM-UP: MOTIVATION FROM A SIMPLIFIED SETUP

We start with a simple analytically solvable example where the structure of the data (relative strength
of features, relative difficulty of training and test datasets) and optimization choices (learning rate,
size of initialization) interact to provably produce grokking curves with arbitrarily long plateaus.
The setting we consider here is directly motivated by the observations in Figure 4, where delayed
generalization in vanilla (S)GD is caused by ill-conditioned gradient matrices.

Data Distribution. Fix some small ε > 0 and let z = (z(1), z(2)) be centered Gaussian random

vector with covariance matrix Σ =

(
1 0
0 ε

)
. Let xtrain ∈ R2 be a folded version of z obtained by

conditioning on the event |z⊤e1| = |z(1)| ≥ s, where e1 = (1, 0) is the horizontal basis vector in R2.
Let xtest ∈ R2 be a folded version of z obtained by conditioning on the event (z⊤v)z(1) ≤ 0. Here,
v ∈ R2 is a fixed vector which makes an angle θ ∈ (0, π/2) with e1. This, the condition number of
the feature covariance matrix is 1/ε ≫ 1. This captures, albeit in a simplified manner, what is going
on in Figure 4.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3 2 1 0 1 2 3
Fast feature x(1)

0.4

0.2

0.0

0.2

0.4

Sl
ow

 F
ea

tu
re

 x
(2

)

Figure 5: A Toy Setup which Induces Stagnation
in Gradient Descent (GD). Training data points
correspond to circles and test data points corre-
spond to stars (middle region). The broken lines
correspond to the large margin of the training data
(their separation is 2s), while the solid line is the
ground-truth decision-boundary x(1) = 0. The
variance of the slow feature x(2) scales like ε ≪ 1.
GD would quickly find a linear model which per-
fectly separates the training data but will take a
time of order 1/ε to find the ground-truth model
which attains perfect test accuracy. See Figure 6.

The training data is (x1, y1), . . . , (xn, yn) where yi := sign(x
(1)
i), and the feature vectors xi’s are

iid copies of xtrain. Here, x(j)
i := x⊤

i ej is the 1 component of the ith datapoint xi. For the test data,
the feature vectors are iid copies of xtest instead. The larger the value of s, the easier it is to quickly
memorize the training data (perfect training accuracy). The situation is illustrated in Figure 5

Model. We consider a linear model x 7→ sign(x⊤ŵ), where the weights vector ŵ is obtained by
minimizing the quadratic loss function

ℓ(w) :=
1

n

n∑
i=1

(x⊤
i w − yi)

2 =
1

n
∥Xw − Y ∥2, (1)

where X ∈ Rn×d is the design matrix with rows x1, . . . , xn, and Y = (y1, . . . , yn) ∈ {±1}n is
response vector. We choose this loss function because it leads to tractable analysis while retaining the
same phenomenology we would get using the logistic loss function, for example.

3.1 VANILLA GRADIENT-DESCENT DYNAMICS

With step size η, the vanilla gradient-descent (GD) on the loss (1) gives the following recursion

w(k) = w(k − 1)− ηX⊤(Xw(k − 1)− Y)/n = Aw(k − 1) + b, (2)

with b := ηX⊤Y/n, A := I − ηΣ̂, Σ̂ := X⊤X/n. (3)

Here η > 0 is a sufficiently small stepsize / learning rate, k is the iteration (aka epoch), and Σ̂ is the
empirical covariance matrix. We can explicitly solve the above recursion to get (see the appendix)

w(k) = Akw(0) + (I −Ak)ŵols, (4)

where ŵols := X+Y = Σ̂−1X⊤Y/n is the ordinary least-squares solution. Thus, w(k) interpolates
between the initialization w(0) and the least-squares solution ŵols.

Define constants m1 ∈ (0, 1), m2 ∈ (1,∞), α ∈ R, and β ∈ (0, 1) by

m1 := E[|x⊤
i e1|] = φ(s)/Q(s), m2 := E[|x⊤

i e1|2] = 1 + sm1, α := 1− ηm2, β := 1− ηε, (5)

where φ is the pdf of the standard Gaussian distribution, and Q := 1− Φ is its survival function. Let
the initialization be w(0) = u = (u1, u2), and define the following dynamical quantities

µk := αku1 + (1− αk)
m1

m2
, νk := βku2, Lk :=

√
µ2
k + εν2k . (6)

The evolution of the test error is given analytically by the following result.
Theorem 1. For large n, it holds w.h.p that: for any iteration k ≥ 1,

E(w(k)) ≃ min(1, arccos(rk)/ arccos(r)), with r := ρ/γ, rk := µk/Lk, (7)

where ρ := cos θ, γ :=
√

ρ2 + ε · (1− ρ2), Lk :=
√
µ2
k + εν2k . (8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

100 101 102 103 104

Epoch (k)

0

25

50

75

100

Ac
cu

ra
cy

Vanilla GD

log2 ()
0
2

4
6

100 101 102 103 104

Epoch (k)

EGD

Figure 6: Grokking on the Toy Problem. Solid lines correspond to experimental results, while
broken lines correspond to our theory (Theorem 1). The initialization is w(0) is such that ∥w(0)∥ = ζ .
Thus, the scalar ζ > 0 controls the size of the initialization. Left. As predicted by Theorem 1 and
Corollary 1, large initialization leads to delayed generalization in vanilla GD, i.e. long plateaus
(of length k∗ ≍ 1/ε) of stagnation in the test performance, while small initialization attenuates
it (k∗ ≍ log 1/(τε), where τ ∝ ζ). Note that for this problem, the ratio 1/ε ≫ 1 represents the
condition number of the covariance matrix of the features. Right. Our proposed EGD (egalitarian
gradient descent) method groks immediately: the generalization error jumps to a perfect value after
only a few iterations. Moreover, EGD appears to be completely insensitive to the scaling of the
initialization, which is a desirable property in real-world optimization.

Theorem 1 reveals that: the test error plateaus at value 100%, until k is sufficiently large that rk
decreases below r, at which point the error starts decreasing at the rate arccos(rk)/ arccos(r).

We have the following important corollary.
Corollary 1. (A) Large Initialization. If |u2| is large in the sense that τ := |u2|| tan θ|m2 > m1,
then the plateau length of the test error (the time to grok) is of order k∗ ≍ log τ

ηε ≍ 1
ε .

(B) Small Initialization. If |u2| is small, then the plateau length is of order k∗ ≍ 1
η log 1

τε ≍ log 1
ε .

Corollary 1 shows that a model trained via vanilla gradient-decent will quickly converge to a decision-
boundary which memorizes the training data (100% training accuracy, very poor test accuracy), but
it will take a long time of order 1/ε or log 1/ε (depending on the size of initialization) before it
converges to the true decision-boundary (Theorem 1), and only then does the test error abruptly
increase to 100%. This result can be extended to vanilla stochastic gradient descent (SGD).

The Issue with Vanilla Gradient Descent. One can show that for large sample size (n → ∞), the
empirical covariance matrix Σ̂ which modulates the dynamics (2) has the following approximation.

Σ̂ ≃
(
m2 0
0 ε

)
,

Where m2 is as defined in (5). Since m2 is a fixed positive constant, the condition number of the RHS
is of order 1/ε. This controls the rate at which the GD iterates w(k) converge to the least-squares
solution via (4), which is in fact optimal (perfect test accuracy) here since we are in the infinite
sample regime). Therefore,

Insight #1. Grokking for this toy problem is therefore sole due to a delayed convergence
least-squares solution caused by ill-conditioned gradients.

3.2 ACCELERATED GROKKING VIA A MODIFIED GRADIENT SCHEME

Consider the following modified dynamics, which will later form the basis for our proposed method:

w(k) = w(k − 1)− ηΣ̂−1X⊤(Xw(k − 1)− Y)/n, (9)

with Σ̂ := X⊤X/n as before. Expanding the above equation, the dynamics become

w(k) = w(k − 1)− ηΣ̂−1((X⊤X/n)w(k − 1))−X⊤Y/n)

= w(k − 1)− (ηw(k − 1)− ηΣ̂−1X⊤Y/n) = aw(k − 1) + ηŵols,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

with a := 1− η. What has happened is that the inverse FIM has killed the ill-conditioned Σ̂ matrix
which was multiplicatively damping the iterates. Solving the above recurrence gives

w(k) = akw(0) + (

k−1∑
j=0

aj)ηŵols = akw(0) +
1− ak

1− a
ηŵols = akw(0) + (1− ak)ŵols. (10)

The troublesome dependence on ε has now completely disappeared from the picture. Moreover,
we see that the convergence to ŵols is now much faster than with the vanilla dynamics (4), namely
w(k) = Akw(0)+ (I −Ak)ŵols, where A := I − ηΣ̂. Thus, in (10) an isotropic matrix aI (spectral
radius = a = 1− η, a fixed positive constant less than 1 for any stepsize η ∈ (0, 1)) replaces

A = I − ηΣ̂ ≃
(
1− ηm2 0

0 1− ηε

)
which has spectral radius = 1− ηϵ ≈ 1, in (4). Therefore, under the modified gradient descent update
rule (9), the iterates w(k) converge to ŵols at an exponential rate which is independent of ε. This
leads to grokking after just a few iterations, as seen in Figure 6.

Insight #2. The modified GD update rule (9) induces the desirable normalizing effect whereby
the optimization dynamics has exactly the same speed along all principal directions.

4 PROPOSED METHOD: EGALITARIAN GRADIENT DESCENT

Motivated by the insights from Section 3.2, we now consider a general non-linear model (neural
network, etc.) on a general problem and let G be the gradient matrix for an arbitrary layer. Thus, G
has shape m× p, where m is the fan-out and p is the fan-in width for that layer. For example, if the
layer is the hidden layer in a two-layer feedforward full-connected neural network, then m is the
number of hidden neurons and p is the input-dimension. Consider the following transformation of
the gradient matrix G:

(EGD) G̃ := F−1/2G = (GG⊤)−1/2G, (11)

where (GG⊤)−1/2 denotes the matrix square root of the inverse of the GG⊤. We call this
transformation egalitarian gradient descent (EGD), a name that will become clear shortly.

Observe that the above transformation leaves the left and right singular-vectors of G unchanged but
makes all the singular-values equal. Indeed, consider the singular-value decomposition (SVD) of G:

G = USV ⊤ =
∑
j

sjujv
⊤
j , (12)

where U = (uj)j and V = (vj)j contain the left and right singular-vectors (aka principal directions)
of G, and S = diag(s1, s2, . . .) contains its singular-values. Then, (GG⊤)−1/2 = US−1U⊤ and so

G̃ = (GG⊤)−1/2G = US−1U⊤USV ⊤ = US−1SV ⊤ = UV ⊤,

which has the same left and right singular-vectors as G but singular-values all equal to 1. This means
that all through the optimization process, no principal direction will evolve faster/slower than another.
This justifies the name EGD (egalitarian gradient descent) given to (11), and we shall show that it
drastically accelerates grokking.
Remark 1. Note that in formula (11), we have implicitly assumed that G has full-rank. In case of
rank deficiency (which will happen if m > p for example), we simply replace (GG⊤)−1 and S−1 by
their Moore-Penrose pseudo-inverses.

Practical Considerations. The gradient G̃ = UV ⊤ for our proposed EGD method is obtained by
performing SVD on the original gradient matrix G. This is the main computational cost incurred by
our method. In practice, we turn off EGD and switch it for vanilla (S)GD once we detect grokking has
occured1. Moreover, experiments suggest that the SVD does not have to be precise, and randomized
approximations thereof work just fine.

1This is detected by monitoring validation loss.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

4.1 CONNECTION TO NATURAL GRADIENT DESCENT

The empirical Fisher information matrix (FIM) for any layer with gradient matrix G is given by
F = GG⊤, the same matrix which appears in (11). It is then easy to see that

1

m
∥G̃∥2F =

1

m
tr[G̃⊤FG̃] =

1

m
tr[(GG⊤)−1/2G⊤GG⊤G(GG⊤)−1/2] =

1

m
tr I = 1.

Thus, the Fisher-norm of the modified gradient matrix G is constant of motion of the dynamics
induced by our proposed transformation (11). Note however that our EGD proposed method is not
equivalent to natural gradient descent (NGD) (Amari, 1998; Pascanu & Bengio, 2013; Ollivier et al.,
2017), which would correspond to Ḡ := F−1G = (GG⊤)−1G. Notwithstanding, the two methods
are linked like so

G̃︸︷︷︸
EGD

= F︸︷︷︸
FIM

1/2 Ḡ︸︷︷︸
NGD

. (13)

Therefore, our proposed EGD corresponds to a whitened version of NGD. The effect of this whitening
is precisely to equalize the singular-values of the gradient matrix, leading to accelerated grokking.

4.2 COMPARISON WITH GRADIENT-FILTERING (GROKFAST)

The Grokfast method proposed by Lee et al. (2024) for inducing fast grokking goes as follows. Each
row of the gradient matrix G is replaced by g + F (g), where F (g) is a low-pass filtered version of g,
computed by aggregating with a large buffer of the past history of gradients. This has the desirable
effect of boosting the low-frequency components of the gradient, and attenuating the high-frequency
components thereof.

Now, let cj := g⊤uj be the jth component of g measured in the eigen-basis for G⊤G. From (12),

(GG⊤)−1/2g =
∑
j

(cj/sj)uj . (14)

This down-weights the components of g aligned with large sj—the “high-frequency” directions—so
our EGD update inherits the filtering inductive bias of Grokfast (Lee et al., 2024) as a by-product.
Crucially, unlike Grokfast, EGD equalizes the optimization speed across principal directions, yielding
isotropic progress in the eigenspace. It also enjoys the following important properties.

• Memory. In contrast to Grokfast (Lee et al., 2024), which maintains a large buffer of past
gradients, our proposed EGD method incurs no additional memory overhead beyond the
current gradient (and, if used, a running spectral estimate).

• Simple and Hyperparameter-free. EGD introduces no extra tuning knobs. It therefore
avoids the task-dependent, time-consuming hyperparameter sweeps that are important for
Grokfast. The formula for EGD (11) is a lightweight, drop-in modification of (stochastic)
gradient descent with a closed-form, per-step rescaling in the principal basis; it requires no
schedulers, no momentum variants, and no buffering.

• Theoretical foundations. EGD comes with a spectral analysis guaranteeing equalized per-
mode convergence rates and, consequently, an accelerated exit from the test-error plateau
(i.e., faster grokking). By comparison, Grokfast is a heuristic frequency filter without such
guarantees.

5 EXPERIMENTAL VALIDATION

5.1 SPARSE PARITY PROBLEM

This is a well-known hard problem in statistical learning theory (Barak et al., 2022). Also, recent
works have shown that this problem induces grokking in (stochastic) gradient descent (Merrill
et al., 2023). An instance Parity(n, k) of this problem is as follows. n and k are positive integers
with k ≤ n. A random k-element subset S of [n] is drawn once and for all, and then N iid
samples (x1, y1), . . . , (xN , yN) are generated, where the xi are iid uniform n-bit strings, and each

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

yi corresponds to the XOR of the bits of xi restricted to the secret subset S, i.e yi := (−1)
∑

j∈S xij .
The accuracy of a model f : {0, 1}n → {−1, 1} is counting the proportion of points in a large held
out test dataset (generated from the same distribution) have the true labels correctly predicted.

For the model, we consider a two-layer ReLU network f(x) = sign(v⊤σ(Wx)) trained by optimizing
hinge loss and weight decay with using different optimization strategies, on the parity problem with
different values of n and k: (n, k) ∈ {(400, 2), (100, 3), (50, 4)}. The batch size is set to 32. For
reproducibility, information about low-level details like learning rate, amount of weight decay, etc. is
provided in Appendix B. We compare different optimization strategies: vanilla (stochastic) GD, our
proposed method EGD (11) (applied only on the gradient matrix G for the hidden layer weights W),
and an even simplified version of EGD where we replace each column of G.

The results are shown in Figure 3. As predicted by our theory, EGD groks very early on in the
optimization process (typically after only a few epochs). In contrast, vanilla (S)GD goes through an
arbitrarily long plateau of stagnation of the test error before eventually grokking.

5.2 MODULAR ARITHMETIC

Another family of problems that exhibits grokking behavior is modular arithmetic. This class of
problems has extensively been studied in vast array of papers on grokking (Power et al., 2022; Liu
et al., 2023; Lee et al., 2024; Mohamadi et al., 2024; Nanda et al., 2023; Notsawo et al., 2023; Zhong
et al., 2023; Gromov, 2023; Doshi et al., 2024; Prieto et al., 2025). To formally define this class
of problems, an instance Mod(p, o) is defined by a prime modulus p and an operation o ∈ {+,×}
over Zp. Training data consists of N i.i.d. samples (xi, yi), which are a fraction of all p2 possible
combinations. Here xi = (ai, bi) is drawn uniformly from {0, 1, ..., p} × {0, 1, ..., p}, and the label
is calculated as

yi = (ai o bi) mod p.

We train a two-layer ReLU network with cross-entropy loss and weight decay, using the same setup
as in the sparse parity experiments. The complete set of hyperparameters is provided in Appendix B.
Similar to sparse parity, we compare vanilla (stochastic) GD, our proposed method EGD (11), and a
simplified column-wise variant of EGD.

As shown in Figures 1 and 2, EGD groks considerably earlier than other methods, achieving high
accuracy after only a few epochs in both modular addition and multiplication tasks.

6 CONCLUDING REMARKS

We studied grokking through the lens of gradient eigen-spectral dynamics and proposed Equalitarian
Gradient Descent (EGD), a simple, hyperparameter-free modification of stochastic gradient descent
that equalizes optimization speed across principal directions. By down-weighting high-frequency
components while preserving progress on slow, symmetry-aligned modes, EGD provides a principled,
spectrum-aware update that consistently shortens the test-accuracy plateau without degrading final
performance. Beyond empirical gains, our analysis clarifies how progress along low-frequency, task-
aligned directions governs the timing of the generalization jump, and it yields compact diagnostics
that relate early gradient spectra to later test improvement. The method is optimizer agnostic, easy to
integrate into existing training loops, and introduces no additional tuning knobs.

Limitations and Future Work. Our proposed EGD method is lightweight and straightforward to
deploy. The following directions aim to make it even more efficient at larger scales and longer runs.
We will explore optional low-cost spectral surrogates, including random projections and sketching
to compress gradient information, randomized SVD or Lanczos methods to approximate the top k
directions, Nyström and block-diagonal layerwise approximations, and streaming or online PCA to
maintain running spectral estimates with minimal overhead. We also plan to study plug and play
combinations with adaptive optimizers and weight decay, behavior under nonstationary data and
curriculum schedules, and broader benchmarks beyond algorithmic tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

Shun-ichi Amari, Tomoko Ozeki, Ryo Karakida, Yuki Yoshida, and Masato Okada. Dynamics of
learning in mlp: Natural gradient and singularity revisited. Neural Computation, 30(1):1–33, 2018.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hidden
progress in deep learning: Sgd learns parities near the computational limit. Advances in Neural
Information Processing Systems, 35:21750–21764, 2022.

Xander Davies, Lauro Langosco, and David Krueger. Unifying grokking and double descent. arXiv
preprint arXiv:2303.06173, 2023.

Darshil Doshi, Tianyu He, Aritra Das, and Andrey Gromov. Grokking modular polynomials. 2024.
URL https://arxiv.org/abs/2406.03495.

Andrey Gromov. Grokking modular arithmetic. 2023. URL https://arxiv.org/abs/2301.
02679.

Yufei Huang, Shengding Hu, Xu Han, Zhiyuan Liu, and Maosong Sun. Unified view of grokking,
double descent and emergent abilities: A perspective from circuits competition. arXiv preprint
arXiv:2402.15175, 2024.

Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking as the transi-
tion from lazy to rich training dynamics. In International Conference on Learning Representations
(ICLR), 2024.

Jaerin Lee, Bong Gyun Kang, Kihoon Kim, and Kyoung Mu Lee. Grokfast: Accelerated grokking
by amplifying slow gradients. 2024. URL https://arxiv.org/abs/2405.20233. v2, 5
Jun 2024.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. Advances in
Neural Information Processing Systems, 35, 2022.

Ziming Liu, Eric J. Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data. In
International Conference on Learning Representations (ICLR), 2023. URL https://arxiv.
org/abs/2210.01117. Spotlight.

Clare Lyle, Gharda Sokar, Razvan Pascanu, and Andras Gyorgy. What can grokking teach us about
learning under nonstationarity? arXiv preprint arXiv:2507.20057, 2025.

William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as competition
of sparse and dense subnetworks. arXiv preprint arXiv:2303.11873, 2023.

Mohamad Amin Mohamadi, Zhiyuan Li, Lei Wu, and Danica J. Sutherland. Why do you grok?
a theoretical analysis on grokking modular addition. In International Conference on Machine
Learning (ICML), 2024.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher D Manning. Grokking of
hierarchical structure in vanilla transformers. In The 61st Annual Meeting Of The Association For
Computational Linguistics, 2023.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. 2023. URL https://arxiv.org/abs/2301.
05217. v3, 19 Oct 2023.

Pascal Notsawo, Hattie Zhou, Mohammad Pezeshki, Irina Rish, Guillaume Dumas, et al. Predicting
grokking long before it happens: A look into the loss landscape of models which grok. arXiv
preprint arXiv:2306.13253, 2023.

Pascal Notsawo, Guillaume Dumas, and Guillaume Rabusseau. Grokking beyond the euclidean norm
of model parameters. In International Conference on Machine Learning (ICML), 2025.

10

https://arxiv.org/abs/2406.03495
https://arxiv.org/abs/2301.02679
https://arxiv.org/abs/2301.02679
https://arxiv.org/abs/2405.20233
https://arxiv.org/abs/2210.01117
https://arxiv.org/abs/2210.01117
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Yann Ollivier, Ludovic Arnold, Anne Auger, and Nikolaus Hansen. Information-geometric opti-
mization algorithms: A unifying picture via invariance principles. Journal of Machine Learning
Research, 18(18):1–65, 2017.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: General-
ization beyond overfitting on small algorithmic datasets. 2022. URL https://arxiv.org/
abs/2201.02177.

Lucas Prieto, Melih Barsbey, Pedro A. M. Mediano, and Tolga Birdal. Grokking at the edge of
numerical stability. 2025. URL https://arxiv.org/abs/2501.04697.

David Saad and Sara A Solla. On-line learning in soft committee machines. Physical Review E, 52
(4):4225, 1995.

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The
slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon.
arXiv preprint arXiv:2206.04817, 2022.

Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explaining
grokking through circuit efficiency. arXiv preprint arXiv:2309.02390, 2023.

Thomas Walker, Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Grokalign:
Geometric characterisation and acceleration of grokking. arXiv preprint arxiv:2506.12284, 2025.

Sumio Watanabe. Algebraic geometry and statistical learning theory, volume 25. Cambridge
university press, 2009.

Haikun Wei, Jun Zhang, Florent Cousseau, Tomoko Ozeki, and Shun-ichi Amari. Dynamics of
learning near singularities in layered networks. Neural Comput., 20(3), 2008.

Yuki Yoshida and Masato Okada. Data-dependence of plateau phenomenon in learning with neural
network—statistical mechanical analysis. Advances in Neural Information Processing Systems, 32,
2019.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories
in mechanistic explanation of neural networks. In Advances in Neural Information Processing
Systems (NeurIPS), 2023. URL https://proceedings.neurips.cc/.

Xuekai Zhu, Yao Fu, Bowen Zhou, and Zhouhan Lin. Critical data size of language models from a
grokking perspective. arXiv preprint arXiv:2401.10463, 2024.

11

https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2501.04697
https://proceedings.neurips.cc/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

A PROOFS

A.1 ANALYTIC THEORY FOR THE TOY PROBLEM

Proof of Theorem 1. First observe that the vanilla gradient descent dynamics can be expanded as
follows

w(k) = w(k − 1)− ηX⊤(Xw(k − 1)− Y)/n = Aw(k − 1) + b

= A2w(k − 2) +Ab+ b = . . . = Akw(0) + (Ak−1 + . . .+A+ I)b

= Akw(0) + (I −Ak)(I −A)−1b = Akw(0) + (I −Ak)η−1Σ̂−1b

= Akw(0) + (I −Ak)ŵols.

Now, for z ∼ N (0,Σ) and z0 := Σ−1/2z ∼ N (0, I), we can write

Etest(ŵ(k)) = P((z⊤e1)(z⊤ŵ(k)) ≤ 0 | (z⊤e1)(z⊤v) ≤ 0)

= P((z⊤0 ē1)(z
⊤
0
¯̂w(k)) ≤ 0 | (z⊤0 ē1)(z

⊤
0 v̄) ≤ 0)

=
arccos(re1,v) + arccos(rŵ(k),e1)− arccos(rŵ(k),v)

2 arccos(re1,v)

=
1

2

(
1−

arccos(rŵ(k),v)− arccos(rŵ(k),e1)

arccos(re1,v)

)
,

where w̄ := Σ1/2w and rw,v := w̄⊤v̄/(∥w̄∥∥v̄∥) is the cosine of the angle between w and v, relative
to the inner-product structure induced by Σ. The third line in the above display is a direct application
of standard orthant probability formulae for bi-variate Gaussian random variables.

Note that ē1 = e1, and so re1,v = cos(θ)/∥v∥ = ρ/γ =: r. The result then follows upon invoking
Lemma 2 to estimate rŵ(k),v and rŵ(k),e1 .

Proof of Corollary 1 (Grokking Profile of Vanilla GD). We know that
µk = αku1 + (1− αk)m1/m2 = αk(u1 −m1/m2) +m1/m2 ≍ m1/m2,

provided u1 = O(1). We get

rk = µk/Lk ≍ 1√
1 + (βku2m2/m1)2ε

.

Thus, the condition rk ≤ r reduces to (βk∗u2m2/m1)
2ε ≍ 1/r2 − 1 = ε · (1− ρ2)/ρ2, i.e

k∗ ≍ log (|u2|| tan θ|m2/m1)

log 1/β
≍ 1

ηε
log τ,

as claimed. Note that we have used the fact that log 1/β = − log(1− ηε) ≍ ηε, for small ε.

The case of small |u2| follows a similar argument to analyze the growth rate of arccos(rk) and
ultimately get k∗ ≍ (1/η) log 1

τε .

A.2 IMPORTANT LEMMAS

The following lemma are easily proved proved via the law of large numbers.
Lemma 1. For large n, we have the deterministic approximations

Σ̂ ≃
(
m2 0
0 ε

)
,

1

n
X⊤Y ≃

(
m1

0

)
, ŵols ≃

(
m1/m2

0

)
, (15)

where the notation ”≃” ignores fluctuations of order OP(n
−1/2) in spectral or L2 norm.

The following lemma is a direct consequence of the previous via equation (4).
Lemma 2. For any deterministic vector v ∈ R2, it holds that

Ak ≃
(
αk 0
0 βk

)
, w(k) ≃

(
µk

νk

)
, w(k)⊤Σw(k) ≃ L2

k, w(k)⊤Σv ≃ µkv1 + ενkv2,

(16)

where the notation ”≃” ignores fluctuations of order OP(n
−1/2).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

B HYPERPARAMETERS FOR EXPERIMENTS IN SECTION 5

Hyperparameters used in different tasks are listed in Table 1. In this table, n is the number of input
bits for the subset parity task, DR is data ratio which shows what fraction of all possible combinations
have been used as the training set, LR is the learning rate, WD is weight decay, and BS is batch size.
In all of the cases ReLU have been used as the activation function.

Table 1: Hyperparameters for Different Tasks

Task Setting n DR Width LR WD BS

Subset Parity
k = 2 400

NA
50 0.01 10−3

32k = 3 100 100 0.042 10−2

k = 4 50 100 0.023 10−2

Modular Add./Mult.
p = 79

NA 0.5 512 0.7 10−4 512p = 97

p = 127

13

	Introduction
	Related Work
	warm-up: Motivation from a Simplified Setup
	Vanilla Gradient-Descent Dynamics
	Accelerated Grokking via a Modified Gradient Scheme

	Proposed Method: Egalitarian Gradient Descent
	Connection to Natural Gradient Descent
	Comparison with Gradient-Filtering (Grokfast)

	Experimental Validation
	Sparse Parity Problem
	Modular Arithmetic

	Concluding Remarks
	Proofs
	Analytic Theory for the Toy Problem
	Important Lemmas

	Hyperparameters for Experiments in Section 5

