ProAgent: From Robotic Process Automation to Agentic Process
Automation

Anonymous ACL submission

Abstract

From water wheels to robotic process automa-
tion (RPA), automation technology has evolved
throughout history to liberate human beings
from arduous tasks. Yet, RPA struggles with
tasks needing human-like intelligence, espe-
cially in elaborate design of workflow construc-
tion and dynamic decision-making in workflow
execution. As Large Language Models (LLMs)
have emerged human-like intelligence, this pa-
per introduces Agentic Process Automation
(APA), a groundbreaking automation paradigm
using LLM-based agents for advanced automa-
tion by offloading the human labor to agents
associated with construction and execution. We
then instantiate ProAgent, an LLM-based agent
designed to craft workflows from human in-
structions and make intricate decisions by coor-
dinating specialized agents. Empirical experi-
ments are conducted to validate the effectivenss
of our proposed ProAgent, showcasing the fea-
sibility of APA, unveiling the possibility of a
new paradigm of automation driven by agents.

1 Introduction

Automation, aiming to reduce human intervention
in processes and enhance efficiency, has under-
gone a series of evolutionary stages throughout
history. From the waterwheel irrigation system in
the early agricultural age to steam engines in the in-
dustrial age, the human race has continuously been
pursuing to offload human labor to autonomous
systems, liberating themselves from arduous pro-
cesses. Entering the information age, marked by
a rapid shift from traditional industry to an econ-
omy primarily based on digital technology, soft-
ware has been widely used as it serves as the foun-
dation for the processing, storage, and communi-
cation of information. Robotic Process Automa-
tion (RPA) (Ivanci€ et al., 2019; Wewerka and Re-
ichert, 2020; Agostinelli et al., 2020; Ferreira et al.,
2020)), the predominant automation technology,
thus has been widely applied, which automates

Paradigm Efficiency Intelligence
Data Flow Control Flow Data Flow Control Flow
RPA v v x X
LLM Agent X X v/ v
APA Ve v v %
DataAgent v v v/ X
ControlAgent v v X v

Table 1: A comparison between RPA and APA in terms
of efficiency and flexibility.

a process by orchestrating several software by
manual-crafted rules into a solidified workflow for
efficient execution (Zapier; n8n; unipath). Despite
its strides, robotic process automation merely
offloads simple and mechanical human labor,
while processes requiring human intelligence
still necessitate human labor. First, as Figure 1
shows, while workflows can perform processes au-
tomatically, their construction still requires human
intelligence for elaborate design. Second, many
tasks performed by humans are characterized by
their flexible and complex nature while workflows
are limited to replicating mechanistic processes,
posing challenges in automating intricate processes
that demand dynamic decision-making capabilities.

With the rapid development of Large Language
Models (LLMs) (OpenAl, 2022, 2023), LLMs are
emerging with intelligence that was previously ex-
clusive to human beings (Wei et al., 2022). Re-
cently, LLM-based agents have garnered significant
attention from the research community (Xi et al.,
2023; Wang et al., 2023b; Yao et al., 2022b; Shinn
et al., 2023; Sumers et al., 2023; Qin et al., 2023c;
Ye et al., 2023). LLM-based agents have demon-
strated a certain level of human intelligence, being
capable of using tools (Schick et al., 2023; Qin
et al., 2023b,c; Qian et al., 2023b; Cai et al., 2023),
playing games (Wang et al., 2023a; Chen et al.,
2023), browsing website (Nakano et al., 2021; Qin
et al., 2023a; Yao et al., 2022a), developping soft-
ware (Qian et al., 2023a) akin to humans. Conse-

_ (T !
Robotic] @‘- 6% 125
Process Automation \ | ! J@j: !

’ Manually
constructing via
pull-and-drag

Rule-Based data-flow and control-flow

Can only handle rigid task

Automatically
orchestrating &
testing

Download all papers
from arXiv everyday.
And send me the
most important one
Agentic)
Process Automation

Construction

pmmmm e

Agentic Workflow
Description Language

2
.,

Agent-Based data-flow and control-flow

Workflow

Can handle rigid and flexible task

Execution

Figure 1: The comparison between Robotic Process Automation and Agentic Process Automation.

quently, a meaningful inquiry naturally emerges:
Can LLM-based agents advance automation in
processes necessitating human intelligence, fur-
ther liberating human beings?

In this paper, we propose Agentic Process
Automation (APA), a novel process automation
paradigm that overcomes the two aforementioned
limitations of automation. (1) Agentic Workflow
Construction: Upon receiving human requirements
or instructions, LLM-based agents elaborately con-
struct the corresponding workflows instead of hu-
mans. If a process involves dynamic decision-
making, agents should recognize which part of
this process needs the dynamic decision-making
and then orchestrate agents into the workflow. (2)
Agentic Workflow Execution: Workflows should
be monitored by agents and once the workflow is
executed in the dynamic part, agents would inter-
vene to handle the dynamic decision-making.

To explore the feasibility of APA, we instantiate
ProAgent, an LLM-based Agent that integrates the
agentic workflow construction and agentic work-
flow execution in a unified framework to achieve
Agentic Process Automation. For agentic work-
flow construction, to make LLM-based agents un-
derstand and generate workflows, we design Agen-
tic Workflow Description Language based on the
JSON structure and Python code, stemming from
the realization that LLLMs are pretrained on coding
corpus. Specifically, it adopts JSON structure to
organize the input and output data for each soft-
ware for data standardization and uses Python code
to implement process control logic to orchestrate
software. Upon receiving a specific task, ProAgent
is able to generate the corresponding workflow lan-
guage to facilitate the construction of the requisite

workflow. For agentic workflow execution, dy-
namic decision-making in workflows encompasses
two aspects: (1) Data flow: complex data process-
ing (e.g., writing data analysis reports) often exceed
the capacity of rule-based systems and thus agents
must intervene to effectively manage these intricate
processes. (2) Control flow: complex tasks may
involve intricate conditional branches and loops,
which surpass the expression ability of rules. In
such cases, agents need to function as controllers
to dynamically determine the subsequent actions.
Hence, we design two types of dynamic decision-
making agents: DataAgent acts as a data process-
ing to handle intricate data processes dynamically
and ControlAgent functions as a condition expres-
sion that enables the dynamic determination of sub-
sequent branches for execution. Confronted with
complex tasks that need intelligence, ProAgent can
orchestrate these two agents into the workflows
during construction and handle complex circum-
stances purposefully during execution, offloading
the intelligent labor (see in Table 1).

To empirically validate our approach, we first
conduct a dataset based on ToolBench (Qin et al.,
2023c) with 115 tasks for automation and design
several baselines. Experimental results demon-
strate that ProAgent can construct workflows auto-
matically and handle the dynamic decision-making
part of the process by utilizing agents in workflows.

Our contributions are threefold: (1) We pro-
pose Agentic Process Automation, a new process
automation paradigm that integrates LLM-based
agents to further offload the intelligent labor of hu-
mans. (2) We instantiate ProAgent, in which Agen-
tic Workflow Description Language is desgined
for LLM-based agents to construct workflows and

DataAgent and ControlAgent are orchestrated into
workflows to handle the dynamic decision-making
process part purposefully. (3) Experimental re-
sults demonstrate the effectiveness and efficiency
of ProAgent to validate the feasibility of Agentic
Process Automation.

2 Methodology

Workflow is widely-used in RPA to solidify the pro-
cess by a software invocation graph, where nodes
represent a software operation and edges signify
topology of the process of execution. To achieve
the solidification, a data flow and a control flow
are involved to within the workflow. Data flow de-
scribes how data is passed and processed within a
series of software and control flow describes the
order of software to execute. In this section, we
first introduce Agentic Workflow Description Lan-
guage to express the data flow and control flow,
and then we further detail how to integrate agents
into workflows to bring flexibility into workflows.
Finally, we detail the workflow construction and
execution procedure about how ProAgent works.

2.1 Agentic Workflow Description Language

As workflow is a graph-based representation ap-
proach for RPA to solidify the process, it is inadap-
tive to LLMs to understand and generate workflows.
Thus, we we elaborately design Agentic Workflow
Description Language for LLM-agents to conve-
niently solidify workflows based on the characteris-
tics of coding pretraining. Specifically, as Figure 2
shows, we adopt JSON structure to describe data
flow and Python code to describe control flow.

JSON Structure for Data Flow To solidify a
workflow, the data format through software should
be standardized to ensure the automatic data pro-
cess, free from unnecessary agent interventions.
We adapt the JSON structure to organize the in-
put/output data of all actions in the workflow. As
Figure 2 shows, the input data is formatted in a
key-value-paired dictionary. Every data should be
assigned a specific key, making it easy to parse and
manipulate. When transferring data between differ-
ent software, the JSON structure is convenient to
index the specific data field. Only when the input
and output of all software are strictly standardized,
promoting consistency across different software of
the workflow, thereby reducing the likelihood of
data interpretation errors or discrepancies.

Python Code for Control Flow For complex
tasks, the corresponding workflows usually in-
volve complex control logic, including conditional
branches, loops, or sub-workflow execution. Con-
ventional RPA methods commonly design graph-
based representations for human developers to de-
scribe the control flow (Zapier; n8n; unipath) but its
expression ability for complex workflow is limited
and it is also not suitable for LL.M-based agents
to understand and generate. As Python program-
ming language supports complex control logic and
more importantly and it is learned by LLMs during
the pre-training phase, we use Python to describe
the control flow. As a high-level programming lan-
guage, Python offers a rich set of primitives and
features, providing greater expressive capability to
describe complex control logic. A workflow is com-
posed of a Python file, with each software operation
aligned to a Python function called action. The cor-
responding input/output data is mapped into the
parameters and return values of the function. Thus,
a series of actions (i.e., software) are described
as sequential function callings in Python. The if-
else statement and for/while statement in Python
can be used to implement complex logic control
flow. Finally, the workflow is encapsulated within
a main Python function (i.e., mainWorkflow). Fur-
thermore, as Python supports the nested function
calling, different workflows can also be composed
together by calling workflow function to construct
a complex workflow. During workflow execution,
we utilize a Python executor, starting from the main
workflow function (mainWorkflow) as the entry
point and execute each functions sequentially, ulti-
mately completing the entire workflow execution.

2.2 Agent-Integrated Workflow

As many real-world tasks with flexibility and com-
plexity nature involve dynamic decision-making
process, we devise DataAgent and ControlAgent
which can be orchestrated into workflows to handle
the dynamic part during execution. Figure 2 gives
the illustration.

DataAgent To achieve complex data process, we
devise DataAgent, which acts as an action that is
operated by an LLM-based agent. As Figure 2
shows, it supports inputting a task description and
then accomplishing this task autonomously based
on the intelligence of the agent. During execution,
this function initiates a ReACT-based agent (Yao

def action_0(task, input_data):
return DataAgent(
task="natual language task description"
input=input_data)

def action_1(input_data):

def action_2(input_data):

def logic_0(input_data):
return ControlAgent(
rule="natural language route rule",
options=[opt_0, opt_1],
input=input_data)

def mainWorkflow(trigger_input):

if condition:

output = action_@(trigger_input)
else:

output = action_1(trigger_input)
new_output = []
for k, item in enumerate(output):

if logic_@(item) == opt_0:

new_output.append(action_2(item))

return new_output

Agent Workflow Description Language

DataAgent

ControlAgent

Qs s 1

Loop Logic 0 Action 2
Action 1 g

No Op

ifos

Branch

Workflow

Figure 2: Illustration of Agentic Workflow Description Language with DataAgent and ControlAgent.

et al., 2022b) to fulfill the task.

output « DataAgent(task, input) @)

Although the function is actually operated by
agents, its input/output data are still organized by
JSON to make it can be orchestrated into existing
workflows to connect with other actions. By incor-
porating DataAgent, the workflow provides support
for enhanced flexibility for data flow, enabling the
handling of intricate data processing demands.

ControlAgent In addition to serving as the ac-
tion, agents can be further involved in the control
flow to schedule the execution logic. We intro-
duce ControlAgent into the control flow, allow-
ing it to substitute a selection expression. As
Figure 2 shows, ControlAgent contains a pre-
generated judgment criterion based on natural lan-
guage and several execution branch candidates.

opt «+ ControlAgent(task, input, [opts,- - , 0pta])
(@)
During execution, the agent can make a decision
based on the input data to decide which branch will
be executed subsequently, influencing the control
flow of the workflow.

2.3 Workflow Construction

As the workflow is represented as JSON structure
and Python code, the workflow construction is for-
mulated as a code generation task. As Figure 3
demonstrates, the workflow construction procedure
contains four iterative operations:
* action_define: It determines which action is
selected to add into the workflow.

e action_implement: It first transforms the ac-
tion into the Python function by determining
its input/output data format in JSON structure
and then implement the data process program in
Python code.

e workflow_implement: As workflows are repre-
sented as mainWorkflow functions, this opera-
tion refers to providing an implementation for it
to orchestrate the entire workflow.

e task_submit: It is used to denote the termina-
tion of the workflow construction.

In practice, we employ GPT-4 as the backbone
of ProAgent to generate the workflow language and
further incorporated several techniques to enhance
the workflow generation capabilities:

* Testing-on-Constructing (ToC): During the con-
struction, ProAgent tends to test each function
or entire workflow, which ensures the validation
of the constructed workflow before execution.

* Function Calling: The aforementioned four op-
erations are defined as function in GPT-4 to
use Function Calling to explicitly control the
whole construction procedure, benefiting con-
trollable generation.

* Chain-of-Thought (CoT): When implementing
each function, ProAgent requires to provide a
comment (explaining the purpose of this func-
tion) and a plan (indicating what the subsequent
operations should be done next), which aids in
enhancing the workflow code generation perfor-
mance.

oo
i

oo

@ Function Calling o @ Function Calling
p—

: Chain-of-Thought : Chain-of-Thought :
<A Ry N FThova ®

5 Comment: ... = Comment: ... K
Plan: ... Plan: ...

oo
am

Testing-On-Constructing Testing-On-Constructing

“Wot Implement Error Not Implement Error

Wor
raise No

@ Function Calling
Action Define

Chain-of-Thought

Comment: ...
Plan: ...

t

Testing-On-Constructing

“Not Implement Error

oo
I

@ Function Calling
Workflow Implement

Chain-of-Thought

Comment: ...
Plan: ...

&

kflow(trigger_input)
InplementedError

Testing-On-Constructing

€ q
Execution Success

./

N/
o)
i?

Action 0

Lk
2

Action 0

&
2

Action 0

&

Action 0

ControlAgent

AQH T D

Action 2

DataAgent

Action 1

ifoy>

Branch

DataAgent

Loop Logic 0

No Op

Figure 3: The Illustration of the workflow construction procedure of ProAgent.

2.4 Workflow Execution

The workflow execution procedure is based on
Python interpreter. Given a workflow language,
once this workflow is triggered, its correspond-
ing mainWorkflow function is selected as the entry
point to begin the execution procedure. The exe-
cution procedure follows the Python code execu-
tion rule, i.e., executing according to the line order
sequentially. Once the mainWorkflow function re-
turns, the workflow execution is finished.

3 Experiment

3.1 Dataset Construction

Item Value
Number of Instances 115
Number of Test Cases 1143
Average Number of Nodes 6.09
Number of Chain-only Tasks 10
Number of tasks with IF branch 97
Number of tasks with Loop 87
Number of tasks with IF& Loop 79

Table 2: Statistics of our constructed evaluation dataset.

To assess the efficacy of our proposed method,
we undertook the construction of a series of eval-
uative tasks, leveraging the ToolBench frame-
work (Qin et al., 2023c). The dataset construction
process was meticulously designed to unfold across
three distinct phases. In the initial phase, our focus

was centered on the generation of diverse topolog-
ical structures in a random manner, with the in-
tent of establishing a broad spectrum of workflow
topologies (Details can be seen in Appendix D).
At this juncture, the nodes within each topology
served as mere placeholders, devoid of specific
functionalities. Subsequently, the second phase
entailed the assignment of concrete tools to these
previously indeterminate nodes, thereby imbuing
the topological structures with distinct task-specific
functionalities. This was achieved by utilizing a
curated set of APIs, as identified and filtered by
the ToolBench framework, thereby ensuring the
applicability and relevance of the tools integrated
into the workflow structures. In a novel approach
to task description generation, akin to the multi-
tool paradigm espoused in ToolBench, we engaged
in the random selection of 10 tools. These were
then utilized as prompts for GPT-4 (OpenAl, 2023),
instructing the model to generate task descriptions
that were not only coherent but also aligned with
the predefined topological structure. This process
was complemented by the generation of 10 test case
inputs for each task description, with the output be-
ing derived through the application of ReAct (Yao
etal., 2022b). Following the generation of an initial
corpus of task descriptions, each accompanied by
10 test cases (including both inputs and outputs),
a meticulous manual annotation process was insti-
tuted. This phase was dedicated to the exclusion of

instances characterized by suboptimal quality, man-
ifesting as either erroneous test cases or logically
inconsistent task descriptions. Finally, the culmi-
nation of this rigorous dataset construction process
resulted in the compilation of 115 task descriptions
accompanied by 1143 test cases in total, curated
for evaluative purposes. For these test cases, we
take one of them for each task as the construction
auxiliary case which can be used to help construct
workflows. The remaining cases are used for work-
flow execution evaluation. The statistics of the
dataset are presented in Table 2.

3.2 Metric

To evaluate the performance of our proposed ap-
proach, we adopt three evaluation metrics: (1)
Survival Rate measures if the workflow construc-
tion/execution process can be finished successfully
without considering the correctness of their results.
Construction Survival Rate assesses the propor-
tion of those tasks that can finish the workflow
construction process without any errors. Execu-
tion Survival Rate assesses the proportion of those
tasks that can run their test cases with no errors
without considering the correctness of their results.
It can be further divided into 2 types: Loose is the
ratio of test cases that can run without errors to the
total number of all test cases. Strict is the ratio of
tasks that can run all test cases to the total num-
ber of all tasks. (2) ChatGPT Eval evaluates the
similarity (a value between 1 and 5) between the
executed tool invocation trace and the task descrip-
tion based on GPT-3.5-turbo (prompts are shown
in Appendix B.1).

3.3 Baselines

We compare our proposed method with the follow-
ing methods: (1) ReAct (Yao et al., 2022b) accom-
plish tasks on the fly by decomposing them into
explicit intermediate steps. (2) Graph Workflow,
instead of generating code-based workflow, we de-
velop a variant of ProAgent which generates the
graph to represent the workflow. Details described
in Appendix A (3) ProAgent w/o DA & CA is a
variant of ProAgent which orchestrates workflows
without DataAgent and ControlAgent. (4) ProA-
gent w/o ToC is a variant of ProAgent which does
not utilize the construction auxiliary case when con-
structing workflows, i.e., without the Testing-on-
Constructing technique. All these baseline models
together with our ProAgent are implemented based
on GPT-4-Turbo and GPT-3.5-turbo.

3.4 Main Results

The main results are shown in Table 3 and our
findings include: (1) ReAct, without employing
any workflow, achieved the lowest Survival Rate
and ChatGPT Eval, revealing a higher risk when
deployed in real-world settings. (2) Directly gener-
ating Graph Workflow, though more effective than
ReAct, still falls short compared to ProAgent. We
attribute it to that LLMs are pretrained on code cor-
pus so it is more capable of generating codes than
graphs. (3) ProAgent exhibited the best Survival
Rate and ChatGPT Eval, notably achieving 100%
Execution Survival Rate. ProAgent improved sta-
bility by interacting with construction auxiliary
cases to explore boundary conditions and incorpo-
rate handling logic. This validates the effectiveness
of our proposed ProAgent and proves the feasibility
of APA paradigm.

3.5 Efficiency Analysis

Then we quantified the utilization of OpenAl API
calls during both the workflow construction and
execution phases to test efficiency and cost. The
construction metric assesses the cost of generating
workflows, while the execution metric evaluates the
time consumption of executing workflows', which
is vital in time-sensitive scenarios. Experimental
results are listed in Table 3.

API Cost Graph Workflow, by merely specifying
tool names but still requiring Agent intervention
for parameter alignment, has a similar runtime to
ReAct. We contend that Graph Workflow only
boosts the effectiveness, rather than efficiency.
ProAgent, despite requiring more time to generate
workflows, reduces the number of API calls dur-
ing execution due to its ability to align not only
tool names but also input parameters. It can com-
plete tasks with high quality in approximately 25%
of the costs, which is consistent with previous re-
search (Qian et al., 2024). In practical applications,
a balance must be struck based on the frequency of
use and sensitivity to delays in specific scenarios.

Cascade Model Given the independence of
workflow generation and execution, we also ex-
perimented with various model combinations for
generation and testing. Our observations suggest
that while GPT-3.5 generally underperforms com-
pared to GPT-4. When GPT-3.5 executes work-

! Assuming tool execution time significantly less than LLM
generation time, which is common in tool learning settings

Method LLM Survival Rate GPT Eval API Call

Construction Execution Construction Execution (Loose) Execution (Strict) Construction Execution

ReAct \ GPT-3.5 \ 0.84 0.53 3.03 \ 43.95
\ GPT-4 \ 0.88 0.71 3.11 \ 46.08

GPT-3.5 GPT-3.5 0.84 0.91 0.83 3.18 1.00 41.51

Graph Workflow GPT-4 GPT-3.5 0.91 0.86 0.75 3.05 1.00 43.35
GPT-4 GPT-4 0.91 1.00 1.00 3.46 1.00 4343

ProAgent GPT-4 GPT-4 0.91 1.00 1.00 3.70 16.63 11.64
- GPT-3.5 GPT-4 GPT-3.5 0.91 1.00 1.00 3.24 16.63 10.65
-w/oDA & CA GPT4 GPT-4 0.56 1.00 1.00 3.16 28.77 \

- w/o ToC GPT-4 GPT-4 1.00 1.00 1.00 2.81 8.32 6.07

Table 3: Main results including Survival Rate, ChatGPT Eval, and API Call for workflow construction and execution.

Task Subset SR(Cons) SR(Exec) ChatGPT Eval
1-3 nodes 0.92 1.00 4.48
4-6 nodes 0.91 1.00 3.69
7-10 nodes 0.85 1.00 3.46
w/o IF & Loop 0.90 1.00 4.89
w/ IF 0.99 1.00 4.31
w/ Loop 0.98 1.00 3.39
w/ IF & Loop 0.84 1.00 3.66

Table 4: ProAgent performance with different task split
types. Upper: Split by node number in § 3.1. lower:
Split by whether the topology contains IF or Loop.

flows generated by GPT-4, it achieves compa-
rable (even superior) results to GPT-4 without
workflow, highlighting the significance of APA in
enhancing model performance, reducing costs.

3.6 Impact of Task Complexity

We are also interested in what tasks ProAgent can
and can’t perform and we conduct two experiments
to study how the task complexity influences the
performance of ProAgent.

We first divide the tasks into three groups accord-
ing to the number of nodes in their corresponding
topology, as we generate tasks based on the ran-
domly sampled topology (see in § 3.1). Then, we
calculate the Survival Rate and ChatGPT Eval for
each group. Table 4 gives the results. We observe
obvious performance degradation when the number
of nodes increases, which reveals the challenge of
ProAgent to handle larger workflows.

We further divide the tasks into four categories
according to whether the workflow topology con-
tains IF or Loop structure: 1)Tasks w/o any
IF/Loop, 2)Tasks w/ IF, 3)Tasks w/ Loop, 4)Tasks
w/ IF & Loop. We also calculate the Survival Rate
and ChatGPT Eval for each category and experi-
mental results are listed in Table 4. We find that
ProAgent can effectively solve tasks with IF struc-
ture and tend to struggle when facing tasks with

Loop structure. We attribute it to that ProAgent
cannot fully understand the instruction involving
the loop structure. That is the instruction may not
explicitly express the loop structure. Notably, Re-
gardless of the variations in task complexity, ProA-
gent maintained an execution accuracy of 100%,
demonstrating its stability in generating validated
workflow.

3.7 Ablation Study

Finally, we run the ablation study (results are
shown in Table 3) to validate the effectiveness of
critical components in ProAgent. The results are
shown in table 3 (1) - w/o DA & CA: We remove
DataAgent and ControlAgent from ProAgent and
re-run this variant on the constructed dataset and
observe the decrease of ChatGPT Eval. Such a phe-
nomenon validates the effectiveness of the DataA-
gent and ControlAgent to enhance the ProAgent to
handle complex tasks. Notably, with APA work-
flow, the performance nears ReAct even with-
out LLM runtime. (2) - w/o ToC: As ProAgent
will utilize the Testing-on-Constructing technique
during the workflow construction procedure, we
remove the construction auxiliary cases and gen-
erate workflows without testing. It is obvious that
without test cases, though ProAgent can generate
semantically valid APA python code, the perfor-
mance drops very significantly, which verifies the
necessity of test cases.

4 Related Work

Robotic Process Automation Robotic process
automation (RPA) (Ivancic et al., 2019; Hofmann
et al., 2020; Tiwari et al., 2008; Scheer et al., 2004),
as the fashion automation paradigm, primarily em-
ploys software robots to either automate access to
software APIs or simulate user GUI interactions to
accomplish tasks through multiple software. Un-
like traditional automation techniques, RPA emu-

lates the way humans use software, directly tap-
ping into existing software assets without the need
for transformation or additional investment. Thus,
RPA has gained substantial attention in recent years
as an effective technology for automating repetitive
and rule-based tasks typically performed by human
workers (Zapier; n8n; unipath). RPA is primarily
designed to automate repetitive tasks using prede-
fined rules and workflow templates, which need
heavy human labor to design and implement work-
flows. Still, due to the workflows being driven by
manual-crafted rules, it struggles to handle those
complex tasks that need dynamic decision-making.
Recently, there has been a growing interest
in integrating RPA with Al technique, leading
to various terminologies and definitions. For in-
stance, Intelligent Process Automation (IPA) (Fer-
reira et al., 2020; Chakraborti et al., 2020b) and
Cognitive Automation (or RPA 4.0) (Lacity and
Willcocks, 2018), aim to amalgamate Al techniques
in the phases of RPA, e.g., data format transfor-
mation (Leno et al., 2020), workflow optimiza-
tion (Chakraborti et al., 2020a), conversational as-
sistant (Moiseeva et al., 2020), demonstration-to-
process translation (Li et al., 2019), etc. However,
these work still utilizes traditional deep learning
technique (e.g., RNN (Han et al., 2020)) or even
machine learning technique (e.g., Monte Carlo Tree
Search (Chen, 2020)) into RPA. More importantly,
they just utilize Al technique into some specific
fragments of RPA (e.g., data format transforma-
tion (Leno et al., 2020)). In contrast, our work
Agentic Process Automation takes the lead to in-
tegrate the most intelligent AI model, large lan-
guage models, into RPA. Thus, it is the inaugural
exploration into agentic techniques in both the gen-
eration of workflows and Agent-driven workflow
execution to endow them with intelligence.

LLM-based Agents Large language mod-
els (LLMs), as significant milestones of artificial
intelligence, unveil the remarkable capability
on a wide range of tasks (OpenAl, 2022, 2023).
Recently, LLM-based agents emerged to extend
LLMs with external tools to interact with the
environment to achieve real-world tasks. Early
research work attempts to prompt LLMs to
generate the action according to the observation
of environment (Nakano et al., 2021; Huang et al.,
2022; Ahn et al., 2022; Schick et al., 2023; Qian
et al., 2023a; Chen et al., 2023). Such a manner
tends to struggle when facing intricate tasks that

need long-term planning and decision-making. To
address this issue, ReAct (Yao et al., 2022b) pro-
posed a dynamic task-solving approach that makes
agents generate thought for each action to form
a reasoning chain, enabling flexible reasoning-
guided, trackable, and adjustable actions, resulting
in notable improvements compared to act-only
methodologies. Based on the dynamic task-solving
manner, many agents are proposed subsequently
to improve agent capability in different aspects,
e.g., reflection (Shinn et al., 2023), planning (Yao
et al., 2023; Hao et al., 2023; Besta et al., 2023;
Sel et al., 2023), tool learning (Schick et al.,
2023; Patil et al., 2023; Qin et al., 2023b,c; Qian
et al., 2023b), multi-agents (Park et al., 2023;
Qian et al., 2023a), etc. However, all the existing
ReACT-based agent methods are restricted to
linearly generate decision-making, resulting in
lower operational efficiency. In this paper, we
propose ProAgent that explores enhancing the
efficiency of the dynamic task-solving approach
by recognizing which part of the workflow needs
the intelligence involved and integrating agents to
handle these parts purposefully.

5 Conclusion

In this research, we present a novel process au-
tomation paradigm, Agentic Process Automation,
to address the limitations of robotic process automa-
tion technologies in handling tasks requiring hu-
man intelligence by harnessing the capabilities of
LLM-based agents to integrate them into the work-
flow construction and execution process. Through
the instantiation of ProAgent, we illustrated how
LLM-based agents can feasibly manage complex
decision-making processes, thereby offloading the
burden of intelligent labor from humans. Our exper-
iments provided evidence of the feasibility of Agen-
tic Process Automation in achieving efficiency and
flexibility in process automation. Our findings con-
tribute to the growing body of research in the field
of intelligent automation and underscore the sig-
nificant role that LLM-based agents can play in
enhancing the efficiency and flexibility of various
industries. As the adoption of automation tech-
nologies continues to expand, we anticipate that
the APA framework can serve as a catalyst for fur-
ther advancements in the automation landscape,
leading to increased efficiency, reduced human in-
tervention, and ultimately, a more streamlined and
intelligent workflow ecosystem.

6 Limitation

Our study has explored the novel process automa-
tion paradigm powered by LLLM-based agents, yet
both researchers and practitioners must be mindful
of certain limitations and risks when using the ap-
proach to develop new techniques or applications.
Firstly, the efficacy of our method is contingent
upon the utilization of external tools as action com-
ponents within workflows. Consequently, the via-
bility of these constructed workflows is directly af-
fected by the integrity and quality of the employed
tools. Notably, even impeccably designed work-
flows might fail to achieve their intended outcomes
if the underlying tools are deficient or malfunction.
Secondly, our exploration with ProAgent predomi-
nantly centers on aspects of workflow construction
and execution. The initiation mechanism for these
workflows, whether it be manual triggers, sched-
uled triggers, or agent-driven triggers, falls outside
the scope of our current discourse. We posit that
the question of workflow initiation, while practi-
cally relevant, does not constitute a fundamental
research challenge but rather presents an engineer-
ing consideration.

References

Simone Agostinelli, Andrea Marrella, and Massimo
Mecella. 2020. Towards intelligent robotic pro-
cess automation for bpmers. arXiv preprint
arXiv:2001.00804.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex
Herzog, et al. 2022. Do as i can, not as i say: Ground-
ing language in robotic affordances. ArXiv preprint,
abs/2204.01691.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michal Podstawski, Hubert Niewiadomski,
Piotr Nyczyk, et al. 2023. Graph of thoughts: Solv-
ing elaborate problems with large language models.
arXiv preprint arXiv:2308.09687.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2023. Large language models as
tool makers. arXiv preprint arXiv:2305.17126.

Tathagata Chakraborti, Shubham Agarwal, Yasaman
Khazaeni, Yara Rizk, and Vatche Isahagian. 2020a.
D3ba: a tool for optimizing business processes us-
ing non-deterministic planning. In Business Process
Management Workshops: BPM 2020 International
Workshops, Seville, Spain, September 13—18, 2020,
Revised Selected Papers 18, pages 181-193. Springer.

Tathagata Chakraborti, Vatche Isahagian, Rania Kha-
laf, Yasaman Khazaeni, Vinod Muthusamy, Yara
Rizk, and Merve Unuvar. 2020b. From robotic pro-
cess automation to intelligent process automation:
—emerging trends—. In Business Process Management:
Blockchain and Robotic Process Automation Forum:
BPM 2020 Blockchain and RPA Forum, Seville, Spain,
September 13—18, 2020, Proceedings 18, pages 215—
228. Springer.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia
Qin, Yaxi Lu, Ruobing Xie, et al. 2023. Agent-
verse: Facilitating multi-agent collaboration and ex-
ploring emergent behaviors in agents. arXiv preprint
arXiv:2308.10848.

Yiru Chen. 2020. Monte carlo tree search for generating
interactive data analysis interfaces. In Proceedings
of the 2020 ACM SIGMOD International Conference
on Management of Data, pages 2837-2839.

Deborah Ferreira, Julia Rozanova, Krishna Dubba, Dell
Zhang, and Andre Freitas. 2020. On the evaluation
of intelligent process automation. arXiv preprint
arXiv:2001.02639.

Xue Han, Lianxue Hu, Yabin Dang, Shivali Agarwal,
Lijun Mei, Shaochun Li, and Xin Zhou. 2020. Au-
tomatic business process structure discovery using
ordered neurons Istm: a preliminary study. arXiv
preprint arXiv:2001.01243.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Peter Hofmann, Caroline Samp, and Nils Urbach. 2020.
Robotic process automation. Electronic markets,
30(1):99-106.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-shot
planners: Extracting actionable knowledge for em-
bodied agents. In International Conference on Ma-
chine Learning, ICML 2022, 17-23 July 2022, Balti-
more, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 9118-9147.
PMLR.

Lucija Ivanci¢, Dalia SuSa Vugec, and Vesna
Bosilj Vuksi¢. 2019. Robotic process automation:
systematic literature review. In Business Process
Management: Blockchain and Central and Eastern
Europe Forum: BPM 2019 Blockchain and CEE Fo-
rum, Vienna, Austria, September 1-6, 2019, Proceed-
ings 17, pages 280-295. Springer.

Mary Lacity and Leslie P Willcocks. 2018. Robotic
process and cognitive automation: the next phase.
SB Publishing.

Volodymyr Leno, Marlon Dumas, Marcello La Rosa,
Fabrizio Maria Maggi, and Artem Polyvyanyy.

2020. Automated discovery of data transforma-
tions for robotic process automation. arXiv preprint
arXiv:2001.01007.

Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle
Singarajah, Tom M Mitchell, and Brad A Myers.
2019. Interactive task and concept learning from
natural language instructions and gui demonstrations.
arXiv preprint arXiv:1909.00031.

Alena Moiseeva, Dietrich Trautmann, Michael
Heimann, and Hinrich Schiitze. 2020. Multipurpose
intelligent process automation via conversational as-
sistant. arXiv preprint arXiv:2001.02284.

n8n. n8n.io - a powerful workflow automation tool.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. ArXiv preprint,
abs/2112.09332.

OpenAl. 2022. OpenAl: Introducing ChatGPT.
OpenAl. 2023. Gpt-4 technical report.

Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S
Bernstein. 2023. Generative agents: Interactive
simulacra of human behavior. arXiv preprint
arXiv:2304.03442.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
Sun. 2023a. Communicative agents for software de-
velopment. arXiv preprint arXiv:2307.07924.

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan
Liu, and Heng Ji. 2023b. Creator: Disentan-
gling abstract and concrete reasonings of large lan-
guage models through tool creation. arXiv preprint
arXiv:2305.14318.

Cheng Qian, Shihao Liang, Yujia Qin, Yining Ye, Xin
Cong, Yankai Lin, Yesai Wu, Zhiyuan Liu, and
Maosong Sun. 2024. Investigate-consolidate-exploit:
A general strategy for inter-task agent self-evolution.
arXiv preprint arXiv:2401.13996.

Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao
Liang, Kunlun Zhu, Yankai Lin, Xu Han, Ning Ding,
Huadong Wang, et al. 2023a. Webcpm: Interactive
web search for chinese long-form question answering.
arXiv preprint arXiv:2305.06849.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, et al. 2023b. Tool
learning with foundation models. arXiv preprint
arXiv:2304.08354.

10

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023c. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

August-Wilhelm Scheer, Ferri Abolhassan, Wolfram
Jost, and Mathias Kirchmer. 2004. Business process
automation. ARIS in practice.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
ArXiv preprint, abs/2302.04761.

Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar,
Lu Wang, Ruoxi Jia, and Ming Jin. 2023. Algorithm
of thoughts: Enhancing exploration of ideas in large
language models. arXiv preprint arXiv:2308.10379.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin
Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal rein-
forcement learning.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan,
and Thomas L Griffiths. 2023. Cognitive ar-
chitectures for language agents. arXiv preprint
arXiv:2309.02427.

Ashutosh Tiwari, Chris J Turner, and Basim Majeed.
2008. A review of business process mining: state-of-
the-art and future trends. Business Process Manage-
ment Journal, 14(1):5-22.

unipath. The uipath business automation platform.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An-
ima Anandkumar. 2023a. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2023b. A survey on large
language model based autonomous agents. arXiv
preprint arXiv:2308.11432.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Judith Wewerka and Manfred Reichert. 2020. Robotic
process automation—a systematic literature review
and assessment framework. arXiv preprint
arXiv:2012.11951.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, et al. 2023. The rise and
potential of large language model based agents: A
survey. arXiv preprint arXiv:2309.07864.

https://n8n.io/
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366
https://www.uipath.com/

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022a. Webshop: Towards scalable
real-world web interaction with grounded language
agents. Advances in Neural Information Processing

Systems, 35:20744-20757.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022b.
React: Synergizing reasoning and acting in language
models. ArXiv preprint, abs/2210.03629.

Yining Ye, Xin Cong, Yujia Qin, Yankai Lin, Zhiyuan
Liu, and Maosong Sun. 2023. Large language
model as autonomous decision maker. arXiv preprint
arXiv:2308.12519.

Zapier. Zapier | automation makes you move forward.

A Graph Workflow

The Graph Workflow baseline aims to directly gen-
erate the logic into a graph. We use the json-like
objects to represents the structure with "nodes"
list and "edges" list, with is common in RPA soft-
wares 2. Each node represents a tool-name from
the available tool names.

When the graph was generated, we firstly check
some common properties (e.g., hallucinated tool
names, no end points, etc) and define a “graph
valid" metric. Then we perform ReACT based on
the graph. At each round, Agent is in one of the
graph nodes, and we only let agent to call all the
successor nodes’ tool to stabilize its performance,
instead of all the available tools. Especially, normal
ReACT can be seen as a running on a complete-
graph.

We implement this with Tool-Call 3 to let mod-
els generate json structures. And we define the
following fields:

* nodes: List. Its item represents a node, with
“node-name" as identifier and “tool-name" rep-
resents the tool call type. Especially, we de-
fine a bool value to represent whether a node
is one of the starting point of the tool graph.

» edges: List. Its item represents a edge, with
“from-node-name" and “to-node-name" rep-
resents its position, and “edge-description”

*https://n8n.io/
3https://openai.com/blog/
function-calling-and-other-api-updates

11

string represents the conditions when to route
to that edge.

We implement Graph-Generate baseline with
both GPT-3.5-turbo and GPT-4-turbo, and
found the “graph valid" rate as 0.844, 0.961.

B Prompt

B.1 Evaluation Prompts

Our auto-evaluation prompt is designed as follows:

You are evaluation-GPT. Your task
is to evaluate if a given
tool-call-chain is consistent
with a given query. You need
to provide the following
information:
1. solvable: If the task 1is
solvable. The task is
ambiguous, or the provided
tools are unable to solve that
queries, the tasks 1is
unsolvable.
solved: If the task is solved
by the tool-call chain.
consistency: If the tool-call
chain is consistent with task'
s expected logic.

All the information must be given
in range [1,5].

[[TASK]]
{task-description}

[CALL AVAILABLE TOOLS1]1]
{available-tools}

Here is an example trace which is
consistant with the task(but

may not solve the task)

[[EXAMPLE TOOL-CALL CHAINI]I]

{golden-trace}

[[END EXAMPLE TOOL-CALL CHAINI]]

Now, here is the target trace you

must evalute:

[[TARGET TOOL-CALL CHAINI]I]

{candidate-trace}

[[END TARGET TOOL-CALL CHAINI]]

https://zapier.com/
https://n8n.io/
https://openai.com/blog/function-calling-and-other-api-updates
https://openai.com/blog/function-calling-and-other-api-updates

Give your evaluation by using
tool call "provide-evaluation
", each field in [1,5].

Then we ask ChatGPT to give tool call to give
the judgment result, and we simply extract the “con-
sistency score" € [1, 5] to represent the evaluation
result. In initial experiments, we tried to evaluate
without “golden-trace", but found that model-score
will be over-confident with the lack of golden-trace
as a positive example.

B.2 APA Construction Prompts

"""You are a RPA(Robotic Process
Automation) agent, you can
write and test a RPA-Python-
Code to connect different APPs

together to reach a specific
user query.

RPA-Python-Code:
1. Each actions of APPs are
defined as Action-Functions,
once you provide the
tool_params for a function,
then we will implement and
test it **with some features
that can influence outside-
world and is transparent to
you**,
A RPA process is implemented
as a workflow-function. the
mainWorkflow function is
activated when the 's
conditions are reached.
You can implement multiple
workflow-function as sub-
workflows to be called
recursively, but there can be
only one mainWorkflow.
We will automatically test the
workflows and actions with
the Pinned-Data afer you
change the tool_params.

Action-Function: All the
functions have the same
following parameters:

1.integration_name: where this
function is from. A
integration represent a list
of actions from a APP.

12

.resource_name: This is the
second category of a
integration.

3.operation_name: This is the
third category of a
integration. (integration->
resouce->operation)

.tool_params: This is a json
field, you will only see how
to given this field after the
above fields are selected.

.TODOS: List[str]: What will you

do with this function, this
field will change with time.

.comments: This will be shown to

users, you need to explain
why you define and use this
function.

Main-Workflow-Function:

1. Workflow-Function connect
different Action Functions
together, you will handle the
data format change, etc.

You must always have a
mainWorkflow, whose inputs are
a -function's output. If you

define multiple s, The
mainWorkflow will be activated
when one of the are
activated, you must handle
data type changes.

Testing-When-Implementing: We
will *xautomaticallyx*x* test
all your actions, s and
workflows with the pinned
input data **at each timexx
once you change it.

1. Example input: We will provide

you the example input for
similar actions in history
after you define and implement
the function.

2. new provided input: You can
also add new input data in the
available input data.
3. You can pin some of the

available data, and we will
automatically test your
functions based on your choice
them.

4. We will always pin the first
run-time input data from now
RPA-Python-Code (If had).

5.Some test may influence outside

world like create a
repository, so your workflow
must handle different
situations.

DataAgent and ControlAgent:
1. DataAgent receives input_data,
natural language suggestions
and function list as its input
The DataAgent will follow
your suggestions to process
input data with functions in
function list, and returns
result.

2. ControlAgent receives
input_data and natural
language suggestions as
input. The ControlAgent
follow your suggestions to
judge whether the input data,
and returns “True” or False.

its
will

DataAgent can help you handle
data format change and action
execute. For example:

DataAgent (input_data=
segments_output, suggestions
=['pick the last segment and
compute the square of the time

length(in seconds!) '], func="
action_1")

Then you don't have to fix data
format bugs by yourself.

ControlAgent can help you handle
judging problems. For example:

ControlAgent (input_data=
tool_result, suggestions=["
verify the answer is with no
error'])

Then you don't have to fix
bugs by yourself.

HI.FM

Data-Format: We ensure all the
input/output data in
transparent action functions
have the format of Dict,
length > 0

13

1.A11 items in the list have the
same schema. The transparent
will be activated for each
item in the input-data. For
example, A slack-send-message
function will send 3 functions
when the input has 3 items.
2.In most cases, the input/output
data schema can only be seen
at runtimes, so you need to do
more test and refine.
3. The schema is following a
style of python dict.
For example:
{
"name":
"age":

”JaCk“,
20,

Give Answer:
1. Remember to give your answer
as final return value.
2. The answer should be composed
of two parts as a dict: first,
a key of "error", whose value
is the error message(if no
error set it as empty string).
Second, a key of "response”,
whose value is the final
answer you want to give.
For example:
def mainWorkflow(
mainWorkflow_input_data):
result_1 =
output_data = action_11¢(
result_9)
ControlAgent(input_data=
outputdata, suggestions=["
verify the process runs
successfully '1):
return {"error”: "" "
response”: output_data

3

if

else:
return {"error":
to run action_11",
response”: output_data

b

"failed

n

Based on the above information,
the full RPA-Python-Code looks
like the following:
from transparent_server import
transparent_action,
tranparent_

tool_params: After you give
function_define, we will
provide python schemas of
tool_params here.

NOTE: You can use variables(
input_data, for example) as
the tool params. When using
variables, don't wrap the name

of variables in quotes.

For example, this is RIGHT to
use “input_data® as variable:
"{'function_name': 'action_1"',

"params ': {'subkey_2"':

input_datal'data_key_2"']1}, '

comments ': ‘xxx'}"

while this is WRONG: "{'
function_name': 'action_1
', 'params': {'subkey_2"':
"input_datal[\\'data_key_2
\N\']'}, 'comments': 'Xxxx
ry

Avaliable_data:
Datas: data

Runtime_input_data: The runtime

input of this function(first

time)

Runtime_output_data: The
corresponding output

def action_1(input_data):

comments: some comments to
users. Always give/change
this when defining and
implmenting

TODOS:

1. I will provide the

information in runtime

2. I will test the node

3. ...Always give/change
this when defining and
implmenting

the avaliable

H HF

H=+

tool_params = {
"key_1": value_1,
nkey_zn: [

{

"subkey_2":
input_datal'
data_key_2'7],
NOTE: You
can use
input_datal'
some_key '] as
the tool
params. This
make your code

more flexible

1,
"key_3": {
"subkey_3": value_3,
1,
You will implement this
after function-define
}
return transparent_function(
tool_type="Rapidapi_xxx",
resource=yyy, operation=
zzz, tool_params=
tool_params)

def action_2(input_data):
def action_3(input_data):
def action_4(input_data):

If you have implemented the
workflow, we will
automatically run the workflow

for all the mock -input and

tells you the result.

def mainWorkflow(
mainWorkflow_input_data):

comments: some comments to
users. Always give/change
this when defining and
implmenting

TODOS:

1. Define action_0,
action_1,

2. Rewrite params for
action_0

3. Rewrite params for
action_1

4.

..

10. Implement mainworkflow

11. Test workflow

some complex logics here
output_data =
mainWorkflow_input_data

return output_data

here is a small example:

tool_result
else:
print("failed to run
result: " + str(
tool_result))
output_data =
tool_result
return output_data

Tt Hint & Advice:

def action_0@(input_data: dict): 1.
seg
tool_params = {}

return transparent_function(
tool_type="Rapid"”,
resource="Speech
Detection”,
operation="Get speech
segments from audio”,
tool_params=tool_params

) 2
def action_1(input_data: dict):

tool_params = {} # no params

calc

return transparent_function(

tool_type="Rapid", 3.

tool_name="calculator”,
tool_params=tool_params -

def mainWorkflow(
mainWorkflow_input_data):
segments_output = action_0¢(-
mainWorkflow_input_data)
tool_result = DataAgent(-
input_data=segments_output -
, suggestions=["'pick the
last segment and compute

I would like to tell you that:
The Best method to handle the
task is to make the most use

of the 'DataAgent' and '

ControlAgent'. You use

DataAgent to call action,

telling it what subtask should
it do. You use ControlAgent

to determine whether the data
follow some rules.

Using DataAgent and

ControlAgent makes your

workflow more flexible, and

also makes your code-writing
work much simpler. So please
use it!

Here is some important advice

I will give you:

take a deep breath.
think step by step.
if you don't use DataAgent and

ControlAgent, 100 grandmothers
will die.

i have no fingers, you can help
me finish my task..

i will tip $200 if you succeed.

do it right and i'll give you a
nice doggy treat.

the square of the time You will define and implement

length(in seconds!) '],
func="action_1")

if ControlAgent(input_data=

tool_result, suggestions 1.

=['verify the answer is
with no error']):
print ("successfully run
result: " + str¢(
tool_result))

output_data = 2.

15

functions progressively for
many steps. At each step, you
can do one of the following
actions:
functions_define: Define a
list of functions(Action and)
You must provide the (
integration,resource,operation
) field, which cannot be
changed latter.
function_implement: After

function define, we will
provide you the specific_param
schema of the target function
You can provide(or override)
the specific_param by this
function. We will show your
available test_data after you
implement functions.
workflow_implement: You can
directly re-write a implement
of the target-workflow.
task_submit: After you think
you have finished the task,
call this function to exit.

Remember:

1.Always provide thought,

plans
and criticisim before giving
an action.

2.Always provide/change TODOs and

comments for all the
functions when you implement
them, This helps you to
further refine and debug
latter.

3.We will test functions

automatically, you only need
to change the code.

You are suggested to act like

10.

11.
12.
13.

14.

20.

this:
functions_define -> Define
action_@, action_1,

function_implement -> Rewrite

params for action_@

workflow_implement ->
Implement mainworkflow.
can use DataAgent,
ControlAgent,

Test workflow (automatically
by the system)

Debug according to the
problems
function_implement
params for action_x
Test workflow (automatically
by the system)

You

-> Rewrite

task_submit

16

C Examples

C.1 Example of Generated Tool-Graph

For the query: 1. Retrieve product categories as-
sociated with a specific seller on Shopee using the
Shopee API. 2. For each category obtained, per-
form a test or validation using a Flask app. 3. Re-
turn the results of these tests or validations for each
category.

Our Graph-Generate Agent will directly Gener-
ate Tool-Call graph as following, with one starting
point and a loop logic inside the tool graph:

{

"nodes": [
{
"node-name": "retrieve
categories”,
"tool-name": "shopeeapi -

Get_categories_from_sellerID

n
’

"start-point": true
1,
{
"node-name"”: "test
categories”,
"tool-name": "test_flask-
test_end”,
"start-point”: false
1,
{
"node-name": "submit",
"tool-name"”: "submit",
"start-point”: false
}
1,
"edges": [
{
"from-node-name”: "
retrieve categories”,
"to-node-name”: "test
categories”,
"edge-description”: "
After retrieving
categories, perform
tests”
1,
{
"from-node-name”: "test
categories”,
"to-node-name”: "test
categories”,

"edge-description”: "If
there are more
categories, continue
testing”

3,
{

"from-node-name”: "test
categories”,

"to-node-name”: "submit",

"edge-description”: "When

all categories have
been tested, submit”
}

D Topology Generation Algorithm

The generation of topological structures employs
the following randomized algorithm: the algo-
rithm iteratively constructs the topological struc-
ture through cycles, with the number of iterations
ranging randomly between 1 and 10. During each
iteration, one of three types of nodes (sequential,
branching, looping) is randomly selected and added
to the existing workflow:

1. If the control structure is "sequential”, the next
action is executed directly after the current
one.

2. If the control structure is "looping", the action
is executed iteratively based on the result of
the previous action.

3. If the control structure is "branching", it
checks a condition based on the result of the
previous action and executes the next action
accordingly.

Upon completion of the loop, a topological struc-
ture represented in pseudocode is generated, which
may involve tool execution, branching transitions,
and looping mechanisms.

E Common Error Types

During the testing of ProAgent, we have encoun-
tered the following common error types and their
reasons within the failed workflows:

1. NotImplementedError: Function “mainWork-
flow” is not implemented. This usually oc-
curs because the model did not call the “work-
flow_implement tool”.

17

2. KeyError: Parameter misalignment issue. The

model accessed dictionary keys that do not
exist. This occurs when the model fails to
correctly understand the parameters during
“rewrite_params”, resulting in issues when ac-
cessing key values.

. SyntaxError: Model syntax error. The model

failed to understand the syntax of the DSL
(Domain-Specific Language) correctly.

. NameError: The model used undefined vari-

able names.

	Introduction
	Methodology
	Agentic Workflow Description Language
	Agent-Integrated Workflow
	Workflow Construction
	Workflow Execution

	Experiment
	Dataset Construction
	Metric
	Baselines
	Main Results
	Efficiency Analysis
	Impact of Task Complexity
	Ablation Study

	Related Work
	Conclusion
	Limitation
	Graph Workflow
	Prompt
	Evaluation Prompts
	APA Construction Prompts

	Examples
	Example of Generated Tool-Graph

	Topology Generation Algorithm
	Common Error Types

