
ProAgent: From Robotic Process Automation to Agentic Process
Automation

Anonymous ACL submission

Abstract
From water wheels to robotic process automa-001
tion (RPA), automation technology has evolved002
throughout history to liberate human beings003
from arduous tasks. Yet, RPA struggles with004
tasks needing human-like intelligence, espe-005
cially in elaborate design of workflow construc-006
tion and dynamic decision-making in workflow007
execution. As Large Language Models (LLMs)008
have emerged human-like intelligence, this pa-009
per introduces Agentic Process Automation010
(APA), a groundbreaking automation paradigm011
using LLM-based agents for advanced automa-012
tion by offloading the human labor to agents013
associated with construction and execution. We014
then instantiate ProAgent, an LLM-based agent015
designed to craft workflows from human in-016
structions and make intricate decisions by coor-017
dinating specialized agents. Empirical experi-018
ments are conducted to validate the effectivenss019
of our proposed ProAgent, showcasing the fea-020
sibility of APA, unveiling the possibility of a021
new paradigm of automation driven by agents.022

1 Introduction023

Automation, aiming to reduce human intervention024

in processes and enhance efficiency, has under-025

gone a series of evolutionary stages throughout026

history. From the waterwheel irrigation system in027

the early agricultural age to steam engines in the in-028

dustrial age, the human race has continuously been029

pursuing to offload human labor to autonomous030

systems, liberating themselves from arduous pro-031

cesses. Entering the information age, marked by032

a rapid shift from traditional industry to an econ-033

omy primarily based on digital technology, soft-034

ware has been widely used as it serves as the foun-035

dation for the processing, storage, and communi-036

cation of information. Robotic Process Automa-037

tion (RPA) (Ivančić et al., 2019; Wewerka and Re-038

ichert, 2020; Agostinelli et al., 2020; Ferreira et al.,039

2020)), the predominant automation technology,040

thus has been widely applied, which automates041

Paradigm Efficiency Intelligence

Data Flow Control Flow Data Flow Control Flow

RPA ✓ ✓ ✗ ✗
LLM Agent ✗ ✗ ✓ ✓

APA ✓ ✓ ✓ ✓
DataAgent ✓ ✓ ✓ ✗
ControlAgent ✓ ✓ ✗ ✓

Table 1: A comparison between RPA and APA in terms
of efficiency and flexibility.

a process by orchestrating several software by 042

manual-crafted rules into a solidified workflow for 043

efficient execution (Zapier; n8n; unipath). Despite 044

its strides, robotic process automation merely 045

offloads simple and mechanical human labor, 046

while processes requiring human intelligence 047

still necessitate human labor. First, as Figure 1 048

shows, while workflows can perform processes au- 049

tomatically, their construction still requires human 050

intelligence for elaborate design. Second, many 051

tasks performed by humans are characterized by 052

their flexible and complex nature while workflows 053

are limited to replicating mechanistic processes, 054

posing challenges in automating intricate processes 055

that demand dynamic decision-making capabilities. 056

With the rapid development of Large Language 057

Models (LLMs) (OpenAI, 2022, 2023), LLMs are 058

emerging with intelligence that was previously ex- 059

clusive to human beings (Wei et al., 2022). Re- 060

cently, LLM-based agents have garnered significant 061

attention from the research community (Xi et al., 062

2023; Wang et al., 2023b; Yao et al., 2022b; Shinn 063

et al., 2023; Sumers et al., 2023; Qin et al., 2023c; 064

Ye et al., 2023). LLM-based agents have demon- 065

strated a certain level of human intelligence, being 066

capable of using tools (Schick et al., 2023; Qin 067

et al., 2023b,c; Qian et al., 2023b; Cai et al., 2023), 068

playing games (Wang et al., 2023a; Chen et al., 069

2023), browsing website (Nakano et al., 2021; Qin 070

et al., 2023a; Yao et al., 2022a), developping soft- 071

ware (Qian et al., 2023a) akin to humans. Conse- 072

1

Agent-Based data-flow and control-flow

ControlAgent

DataAgent

?

Automatically
orchestrating &

testing

Rule-Based data-flow and control-flow

Manually
constructing via

pull-and-drag

Construction Workflow Execution

Tasks

Can only handle rigid task

Can handle rigid and flexible task

Download all papers
from arXiv everyday.

And send me the
most important one

Download all papers
from arXiv everyday

Robotic
Process Automation

Agentic
Process Automation

Agentic Workflow
Description Language

Download all papers
from arXiv everyday.

And send me the
most important one

Figure 1: The comparison between Robotic Process Automation and Agentic Process Automation.

quently, a meaningful inquiry naturally emerges:073

Can LLM-based agents advance automation in074

processes necessitating human intelligence, fur-075

ther liberating human beings?076

In this paper, we propose Agentic Process077

Automation (APA), a novel process automation078

paradigm that overcomes the two aforementioned079

limitations of automation. (1) Agentic Workflow080

Construction: Upon receiving human requirements081

or instructions, LLM-based agents elaborately con-082

struct the corresponding workflows instead of hu-083

mans. If a process involves dynamic decision-084

making, agents should recognize which part of085

this process needs the dynamic decision-making086

and then orchestrate agents into the workflow. (2)087

Agentic Workflow Execution: Workflows should088

be monitored by agents and once the workflow is089

executed in the dynamic part, agents would inter-090

vene to handle the dynamic decision-making.091

To explore the feasibility of APA, we instantiate092

ProAgent, an LLM-based Agent that integrates the093

agentic workflow construction and agentic work-094

flow execution in a unified framework to achieve095

Agentic Process Automation. For agentic work-096

flow construction, to make LLM-based agents un-097

derstand and generate workflows, we design Agen-098

tic Workflow Description Language based on the099

JSON structure and Python code, stemming from100

the realization that LLMs are pretrained on coding101

corpus. Specifically, it adopts JSON structure to102

organize the input and output data for each soft-103

ware for data standardization and uses Python code104

to implement process control logic to orchestrate105

software. Upon receiving a specific task, ProAgent106

is able to generate the corresponding workflow lan-107

guage to facilitate the construction of the requisite108

workflow. For agentic workflow execution, dy- 109

namic decision-making in workflows encompasses 110

two aspects: (1) Data flow: complex data process- 111

ing (e.g., writing data analysis reports) often exceed 112

the capacity of rule-based systems and thus agents 113

must intervene to effectively manage these intricate 114

processes. (2) Control flow: complex tasks may 115

involve intricate conditional branches and loops, 116

which surpass the expression ability of rules. In 117

such cases, agents need to function as controllers 118

to dynamically determine the subsequent actions. 119

Hence, we design two types of dynamic decision- 120

making agents: DataAgent acts as a data process- 121

ing to handle intricate data processes dynamically 122

and ControlAgent functions as a condition expres- 123

sion that enables the dynamic determination of sub- 124

sequent branches for execution. Confronted with 125

complex tasks that need intelligence, ProAgent can 126

orchestrate these two agents into the workflows 127

during construction and handle complex circum- 128

stances purposefully during execution, offloading 129

the intelligent labor (see in Table 1). 130

To empirically validate our approach, we first 131

conduct a dataset based on ToolBench (Qin et al., 132

2023c) with 115 tasks for automation and design 133

several baselines. Experimental results demon- 134

strate that ProAgent can construct workflows auto- 135

matically and handle the dynamic decision-making 136

part of the process by utilizing agents in workflows. 137

Our contributions are threefold: (1) We pro- 138

pose Agentic Process Automation, a new process 139

automation paradigm that integrates LLM-based 140

agents to further offload the intelligent labor of hu- 141

mans. (2) We instantiate ProAgent, in which Agen- 142

tic Workflow Description Language is desgined 143

for LLM-based agents to construct workflows and 144

2

DataAgent and ControlAgent are orchestrated into145

workflows to handle the dynamic decision-making146

process part purposefully. (3) Experimental re-147

sults demonstrate the effectiveness and efficiency148

of ProAgent to validate the feasibility of Agentic149

Process Automation.150

2 Methodology151

Workflow is widely-used in RPA to solidify the pro-152

cess by a software invocation graph, where nodes153

represent a software operation and edges signify154

topology of the process of execution. To achieve155

the solidification, a data flow and a control flow156

are involved to within the workflow. Data flow de-157

scribes how data is passed and processed within a158

series of software and control flow describes the159

order of software to execute. In this section, we160

first introduce Agentic Workflow Description Lan-161

guage to express the data flow and control flow,162

and then we further detail how to integrate agents163

into workflows to bring flexibility into workflows.164

Finally, we detail the workflow construction and165

execution procedure about how ProAgent works.166

2.1 Agentic Workflow Description Language167

As workflow is a graph-based representation ap-168

proach for RPA to solidify the process, it is inadap-169

tive to LLMs to understand and generate workflows.170

Thus, we we elaborately design Agentic Workflow171

Description Language for LLM-agents to conve-172

niently solidify workflows based on the characteris-173

tics of coding pretraining. Specifically, as Figure 2174

shows, we adopt JSON structure to describe data175

flow and Python code to describe control flow.176

JSON Structure for Data Flow To solidify a177

workflow, the data format through software should178

be standardized to ensure the automatic data pro-179

cess, free from unnecessary agent interventions.180

We adapt the JSON structure to organize the in-181

put/output data of all actions in the workflow. As182

Figure 2 shows, the input data is formatted in a183

key-value-paired dictionary. Every data should be184

assigned a specific key, making it easy to parse and185

manipulate. When transferring data between differ-186

ent software, the JSON structure is convenient to187

index the specific data field. Only when the input188

and output of all software are strictly standardized,189

promoting consistency across different software of190

the workflow, thereby reducing the likelihood of191

data interpretation errors or discrepancies.192

Python Code for Control Flow For complex 193

tasks, the corresponding workflows usually in- 194

volve complex control logic, including conditional 195

branches, loops, or sub-workflow execution. Con- 196

ventional RPA methods commonly design graph- 197

based representations for human developers to de- 198

scribe the control flow (Zapier; n8n; unipath) but its 199

expression ability for complex workflow is limited 200

and it is also not suitable for LLM-based agents 201

to understand and generate. As Python program- 202

ming language supports complex control logic and 203

more importantly and it is learned by LLMs during 204

the pre-training phase, we use Python to describe 205

the control flow. As a high-level programming lan- 206

guage, Python offers a rich set of primitives and 207

features, providing greater expressive capability to 208

describe complex control logic. A workflow is com- 209

posed of a Python file, with each software operation 210

aligned to a Python function called action. The cor- 211

responding input/output data is mapped into the 212

parameters and return values of the function. Thus, 213

a series of actions (i.e., software) are described 214

as sequential function callings in Python. The if- 215

else statement and for/while statement in Python 216

can be used to implement complex logic control 217

flow. Finally, the workflow is encapsulated within 218

a main Python function (i.e., mainWorkflow). Fur- 219

thermore, as Python supports the nested function 220

calling, different workflows can also be composed 221

together by calling workflow function to construct 222

a complex workflow. During workflow execution, 223

we utilize a Python executor, starting from the main 224

workflow function (mainWorkflow) as the entry 225

point and execute each functions sequentially, ulti- 226

mately completing the entire workflow execution. 227

2.2 Agent-Integrated Workflow 228

As many real-world tasks with flexibility and com- 229

plexity nature involve dynamic decision-making 230

process, we devise DataAgent and ControlAgent 231

which can be orchestrated into workflows to handle 232

the dynamic part during execution. Figure 2 gives 233

the illustration. 234

DataAgent To achieve complex data process, we 235

devise DataAgent, which acts as an action that is 236

operated by an LLM-based agent. As Figure 2 237

shows, it supports inputting a task description and 238

then accomplishing this task autonomously based 239

on the intelligence of the agent. During execution, 240

this function initiates a ReACT-based agent (Yao 241

3

def action_0(task, input_data):
return DataAgent(
 task="natual language task description"
 input=input_data)

def action_1(input_data):
...

def action_2(input_data):
...

def logic_0(input_data):
return ControlAgent(
 rule="natural language route rule",
 options=[opt_0, opt_1],
 input=input_data)

def mainWorkflow(trigger_input):
if condition:

output = action_0(trigger_input)
else:

output = action_1(trigger_input)
new_output = []
for k, item in enumerate(output):

if logic_0(item) == opt_0:
new_output.append(action_2(item))

return new_output

Action 0

Action 1

Loop Action 2

No Op

Logic 0Branch

Agent Workflow Description Language Workflow

DataAgent

ControlAgent

Figure 2: Illustration of Agentic Workflow Description Language with DataAgent and ControlAgent.

et al., 2022b) to fulfill the task.242

output← DataAgent(task, input) (1)243

Although the function is actually operated by244

agents, its input/output data are still organized by245

JSON to make it can be orchestrated into existing246

workflows to connect with other actions. By incor-247

porating DataAgent, the workflow provides support248

for enhanced flexibility for data flow, enabling the249

handling of intricate data processing demands.250

ControlAgent In addition to serving as the ac-251

tion, agents can be further involved in the control252

flow to schedule the execution logic. We intro-253

duce ControlAgent into the control flow, allow-254

ing it to substitute a selection expression. As255

Figure 2 shows, ControlAgent contains a pre-256

generated judgment criterion based on natural lan-257

guage and several execution branch candidates.258

opt← ControlAgent(task, input, [opt1, · · · , optn])
(2)259

During execution, the agent can make a decision260

based on the input data to decide which branch will261

be executed subsequently, influencing the control262

flow of the workflow.263

2.3 Workflow Construction264

As the workflow is represented as JSON structure265

and Python code, the workflow construction is for-266

mulated as a code generation task. As Figure 3267

demonstrates, the workflow construction procedure268

contains four iterative operations:269

• action_define: It determines which action is270

selected to add into the workflow.271

• action_implement: It first transforms the ac- 272

tion into the Python function by determining 273

its input/output data format in JSON structure 274

and then implement the data process program in 275

Python code. 276

• workflow_implement: As workflows are repre- 277

sented as mainWorkflow functions, this opera- 278

tion refers to providing an implementation for it 279

to orchestrate the entire workflow. 280

• task_submit: It is used to denote the termina- 281

tion of the workflow construction. 282

In practice, we employ GPT-4 as the backbone 283

of ProAgent to generate the workflow language and 284

further incorporated several techniques to enhance 285

the workflow generation capabilities: 286

• Testing-on-Constructing (ToC): During the con- 287

struction, ProAgent tends to test each function 288

or entire workflow, which ensures the validation 289

of the constructed workflow before execution. 290

• Function Calling: The aforementioned four op- 291

erations are defined as function in GPT-4 to 292

use Function Calling to explicitly control the 293

whole construction procedure, benefiting con- 294

trollable generation. 295

• Chain-of-Thought (CoT): When implementing 296

each function, ProAgent requires to provide a 297

comment (explaining the purpose of this func- 298

tion) and a plan (indicating what the subsequent 299

operations should be done next), which aids in 300

enhancing the workflow code generation perfor- 301

mance. 302

4

Action Define

Comment: ...
Plan: ...

Not Implement Error

Testing-On-Constructing

Function Calling

Chain-of-Thought

def action_0(input_data):
"”"

comments: ...
plan: ...
"""
raise NotImplementedError

def mainWorkflow(trigger_input):
raise NotImplementedError

Action Implement

Comment: ...
Plan: ...

Not Implement Error

def action_0(input_data):
"""
comments: ...
plan: ...
""”

 params = {
 ”key_0”: int,
 }
 return tool(params,input_data)

def mainWorkflow(trigger_input):
raise NotImplementedError

Testing-On-Constructing

Chain-of-Thought

Function Calling

Action Define

Comment: ...
Plan: ...

Not Implement Error

def action_0(input_data):
...

def action_1(input_data):
 """
 comments: ...
 plan: ...
 ""”
 task = “help me to xxx”
 return DataAgent(task)

def mainWorkflow(trigger_input):
raise NotImplementedError

Testing-On-Constructing

Chain-of-Thought

Function Calling

Action 0

Action 1

Loop Action 2

No Op

Logic 0Branch

DataAgent

ControlAgent

Action 1

DataAgent

Action 0Action 0Action 0

Workflow Implement

Comment: ...
Plan: ...

Execution Success

def action_0(input_data): ...
def action_1(input_data): ...
def action_2(input_data): ...

def mainWorkflow(trigger_input):
 ""”
 comments: ...
 plan: ...
 ""”
 output = action_0(trigger_input)
 output = action_1(output)
 ...
 output = flow_logic(output)
 return output

Testing-On-Constructing

Chain-of-Thought

Function Calling

···

Figure 3: The Illustration of the workflow construction procedure of ProAgent.

2.4 Workflow Execution303

The workflow execution procedure is based on304

Python interpreter. Given a workflow language,305

once this workflow is triggered, its correspond-306

ing mainWorkflow function is selected as the entry307

point to begin the execution procedure. The exe-308

cution procedure follows the Python code execu-309

tion rule, i.e., executing according to the line order310

sequentially. Once the mainWorkflow function re-311

turns, the workflow execution is finished.312

3 Experiment313

3.1 Dataset Construction314

Item Value

Number of Instances 115
Number of Test Cases 1143
Average Number of Nodes 6.09
Number of Chain-only Tasks 10
Number of tasks with IF branch 97
Number of tasks with Loop 87
Number of tasks with IF& Loop 79

Table 2: Statistics of our constructed evaluation dataset.

To assess the efficacy of our proposed method,315

we undertook the construction of a series of eval-316

uative tasks, leveraging the ToolBench frame-317

work (Qin et al., 2023c). The dataset construction318

process was meticulously designed to unfold across319

three distinct phases. In the initial phase, our focus320

was centered on the generation of diverse topolog- 321

ical structures in a random manner, with the in- 322

tent of establishing a broad spectrum of workflow 323

topologies (Details can be seen in Appendix D). 324

At this juncture, the nodes within each topology 325

served as mere placeholders, devoid of specific 326

functionalities. Subsequently, the second phase 327

entailed the assignment of concrete tools to these 328

previously indeterminate nodes, thereby imbuing 329

the topological structures with distinct task-specific 330

functionalities. This was achieved by utilizing a 331

curated set of APIs, as identified and filtered by 332

the ToolBench framework, thereby ensuring the 333

applicability and relevance of the tools integrated 334

into the workflow structures. In a novel approach 335

to task description generation, akin to the multi- 336

tool paradigm espoused in ToolBench, we engaged 337

in the random selection of 10 tools. These were 338

then utilized as prompts for GPT-4 (OpenAI, 2023), 339

instructing the model to generate task descriptions 340

that were not only coherent but also aligned with 341

the predefined topological structure. This process 342

was complemented by the generation of 10 test case 343

inputs for each task description, with the output be- 344

ing derived through the application of ReAct (Yao 345

et al., 2022b). Following the generation of an initial 346

corpus of task descriptions, each accompanied by 347

10 test cases (including both inputs and outputs), 348

a meticulous manual annotation process was insti- 349

tuted. This phase was dedicated to the exclusion of 350

5

instances characterized by suboptimal quality, man-351

ifesting as either erroneous test cases or logically352

inconsistent task descriptions. Finally, the culmi-353

nation of this rigorous dataset construction process354

resulted in the compilation of 115 task descriptions355

accompanied by 1143 test cases in total, curated356

for evaluative purposes. For these test cases, we357

take one of them for each task as the construction358

auxiliary case which can be used to help construct359

workflows. The remaining cases are used for work-360

flow execution evaluation. The statistics of the361

dataset are presented in Table 2.362

3.2 Metric363

To evaluate the performance of our proposed ap-364

proach, we adopt three evaluation metrics: (1)365

Survival Rate measures if the workflow construc-366

tion/execution process can be finished successfully367

without considering the correctness of their results.368

Construction Survival Rate assesses the propor-369

tion of those tasks that can finish the workflow370

construction process without any errors. Execu-371

tion Survival Rate assesses the proportion of those372

tasks that can run their test cases with no errors373

without considering the correctness of their results.374

It can be further divided into 2 types: Loose is the375

ratio of test cases that can run without errors to the376

total number of all test cases. Strict is the ratio of377

tasks that can run all test cases to the total num-378

ber of all tasks. (2) ChatGPT Eval evaluates the379

similarity (a value between 1 and 5) between the380

executed tool invocation trace and the task descrip-381

tion based on GPT-3.5-turbo (prompts are shown382

in Appendix B.1).383

3.3 Baselines384

We compare our proposed method with the follow-385

ing methods: (1) ReAct (Yao et al., 2022b) accom-386

plish tasks on the fly by decomposing them into387

explicit intermediate steps. (2) Graph Workflow,388

instead of generating code-based workflow, we de-389

velop a variant of ProAgent which generates the390

graph to represent the workflow. Details described391

in Appendix A (3) ProAgent w/o DA & CA is a392

variant of ProAgent which orchestrates workflows393

without DataAgent and ControlAgent. (4) ProA-394

gent w/o ToC is a variant of ProAgent which does395

not utilize the construction auxiliary case when con-396

structing workflows, i.e., without the Testing-on-397

Constructing technique. All these baseline models398

together with our ProAgent are implemented based399

on GPT-4-Turbo and GPT-3.5-turbo.400

3.4 Main Results 401

The main results are shown in Table 3 and our 402

findings include: (1) ReAct, without employing 403

any workflow, achieved the lowest Survival Rate 404

and ChatGPT Eval, revealing a higher risk when 405

deployed in real-world settings. (2) Directly gener- 406

ating Graph Workflow, though more effective than 407

ReAct, still falls short compared to ProAgent. We 408

attribute it to that LLMs are pretrained on code cor- 409

pus so it is more capable of generating codes than 410

graphs. (3) ProAgent exhibited the best Survival 411

Rate and ChatGPT Eval, notably achieving 100% 412

Execution Survival Rate. ProAgent improved sta- 413

bility by interacting with construction auxiliary 414

cases to explore boundary conditions and incorpo- 415

rate handling logic. This validates the effectiveness 416

of our proposed ProAgent and proves the feasibility 417

of APA paradigm. 418

3.5 Efficiency Analysis 419

Then we quantified the utilization of OpenAI API 420

calls during both the workflow construction and 421

execution phases to test efficiency and cost. The 422

construction metric assesses the cost of generating 423

workflows, while the execution metric evaluates the 424

time consumption of executing workflows1, which 425

is vital in time-sensitive scenarios. Experimental 426

results are listed in Table 3. 427

API Cost Graph Workflow, by merely specifying 428

tool names but still requiring Agent intervention 429

for parameter alignment, has a similar runtime to 430

ReAct. We contend that Graph Workflow only 431

boosts the effectiveness, rather than efficiency. 432

ProAgent, despite requiring more time to generate 433

workflows, reduces the number of API calls dur- 434

ing execution due to its ability to align not only 435

tool names but also input parameters. It can com- 436

plete tasks with high quality in approximately 25% 437

of the costs, which is consistent with previous re- 438

search (Qian et al., 2024). In practical applications, 439

a balance must be struck based on the frequency of 440

use and sensitivity to delays in specific scenarios. 441

Cascade Model Given the independence of 442

workflow generation and execution, we also ex- 443

perimented with various model combinations for 444

generation and testing. Our observations suggest 445

that while GPT-3.5 generally underperforms com- 446

pared to GPT-4. When GPT-3.5 executes work- 447

1Assuming tool execution time significantly less than LLM
generation time, which is common in tool learning settings

6

Method
LLM Survival Rate

GPT Eval
API Call

Construction Execution Construction Execution (Loose) Execution (Strict) Construction Execution

ReAct
\ GPT-3.5 \ 0.84 0.53 3.03 \ 43.95
\ GPT-4 \ 0.88 0.71 3.11 \ 46.08

Graph Workflow
GPT-3.5 GPT-3.5 0.84 0.91 0.83 3.18 1.00 41.51
GPT-4 GPT-3.5 0.91 0.86 0.75 3.05 1.00 43.35
GPT-4 GPT-4 0.91 1.00 1.00 3.46 1.00 43.43

ProAgent GPT-4 GPT-4 0.91 1.00 1.00 3.70 16.63 11.64
- GPT-3.5 GPT-4 GPT-3.5 0.91 1.00 1.00 3.24 16.63 10.65
- w/o DA & CA GPT-4 GPT-4 0.56 1.00 1.00 3.16 28.77 \
- w/o ToC GPT-4 GPT-4 1.00 1.00 1.00 2.81 8.32 6.07

Table 3: Main results including Survival Rate, ChatGPT Eval, and API Call for workflow construction and execution.

Task Subset SR(Cons) SR(Exec) ChatGPT Eval

1-3 nodes 0.92 1.00 4.48
4-6 nodes 0.91 1.00 3.69
7-10 nodes 0.85 1.00 3.46

w/o IF & Loop 0.90 1.00 4.89
w/ IF 0.99 1.00 4.31
w/ Loop 0.98 1.00 3.39
w/ IF & Loop 0.84 1.00 3.66

Table 4: ProAgent performance with different task split
types. Upper: Split by node number in § 3.1. lower:
Split by whether the topology contains IF or Loop.

flows generated by GPT-4, it achieves compa-448

rable (even superior) results to GPT-4 without449

workflow, highlighting the significance of APA in450

enhancing model performance, reducing costs.451

3.6 Impact of Task Complexity452

We are also interested in what tasks ProAgent can453

and can’t perform and we conduct two experiments454

to study how the task complexity influences the455

performance of ProAgent.456

We first divide the tasks into three groups accord-457

ing to the number of nodes in their corresponding458

topology, as we generate tasks based on the ran-459

domly sampled topology (see in § 3.1). Then, we460

calculate the Survival Rate and ChatGPT Eval for461

each group. Table 4 gives the results. We observe462

obvious performance degradation when the number463

of nodes increases, which reveals the challenge of464

ProAgent to handle larger workflows.465

We further divide the tasks into four categories466

according to whether the workflow topology con-467

tains IF or Loop structure: 1)Tasks w/o any468

IF/Loop, 2)Tasks w/ IF, 3)Tasks w/ Loop, 4)Tasks469

w/ IF & Loop. We also calculate the Survival Rate470

and ChatGPT Eval for each category and experi-471

mental results are listed in Table 4. We find that472

ProAgent can effectively solve tasks with IF struc-473

ture and tend to struggle when facing tasks with474

Loop structure. We attribute it to that ProAgent 475

cannot fully understand the instruction involving 476

the loop structure. That is the instruction may not 477

explicitly express the loop structure. Notably, Re- 478

gardless of the variations in task complexity, ProA- 479

gent maintained an execution accuracy of 100%, 480

demonstrating its stability in generating validated 481

workflow. 482

3.7 Ablation Study 483

Finally, we run the ablation study (results are 484

shown in Table 3) to validate the effectiveness of 485

critical components in ProAgent. The results are 486

shown in table 3 (1) - w/o DA & CA: We remove 487

DataAgent and ControlAgent from ProAgent and 488

re-run this variant on the constructed dataset and 489

observe the decrease of ChatGPT Eval. Such a phe- 490

nomenon validates the effectiveness of the DataA- 491

gent and ControlAgent to enhance the ProAgent to 492

handle complex tasks. Notably, with APA work- 493

flow, the performance nears ReAct even with- 494

out LLM runtime. (2) - w/o ToC: As ProAgent 495

will utilize the Testing-on-Constructing technique 496

during the workflow construction procedure, we 497

remove the construction auxiliary cases and gen- 498

erate workflows without testing. It is obvious that 499

without test cases, though ProAgent can generate 500

semantically valid APA python code, the perfor- 501

mance drops very significantly, which verifies the 502

necessity of test cases. 503

4 Related Work 504

Robotic Process Automation Robotic process 505

automation (RPA) (Ivančić et al., 2019; Hofmann 506

et al., 2020; Tiwari et al., 2008; Scheer et al., 2004), 507

as the fashion automation paradigm, primarily em- 508

ploys software robots to either automate access to 509

software APIs or simulate user GUI interactions to 510

accomplish tasks through multiple software. Un- 511

like traditional automation techniques, RPA emu- 512

7

lates the way humans use software, directly tap-513

ping into existing software assets without the need514

for transformation or additional investment. Thus,515

RPA has gained substantial attention in recent years516

as an effective technology for automating repetitive517

and rule-based tasks typically performed by human518

workers (Zapier; n8n; unipath). RPA is primarily519

designed to automate repetitive tasks using prede-520

fined rules and workflow templates, which need521

heavy human labor to design and implement work-522

flows. Still, due to the workflows being driven by523

manual-crafted rules, it struggles to handle those524

complex tasks that need dynamic decision-making.525

Recently, there has been a growing interest526

in integrating RPA with AI technique, leading527

to various terminologies and definitions. For in-528

stance, Intelligent Process Automation (IPA) (Fer-529

reira et al., 2020; Chakraborti et al., 2020b) and530

Cognitive Automation (or RPA 4.0) (Lacity and531

Willcocks, 2018), aim to amalgamate AI techniques532

in the phases of RPA, e.g., data format transfor-533

mation (Leno et al., 2020), workflow optimiza-534

tion (Chakraborti et al., 2020a), conversational as-535

sistant (Moiseeva et al., 2020), demonstration-to-536

process translation (Li et al., 2019), etc. However,537

these work still utilizes traditional deep learning538

technique (e.g., RNN (Han et al., 2020)) or even539

machine learning technique (e.g., Monte Carlo Tree540

Search (Chen, 2020)) into RPA. More importantly,541

they just utilize AI technique into some specific542

fragments of RPA (e.g., data format transforma-543

tion (Leno et al., 2020)). In contrast, our work544

Agentic Process Automation takes the lead to in-545

tegrate the most intelligent AI model, large lan-546

guage models, into RPA. Thus, it is the inaugural547

exploration into agentic techniques in both the gen-548

eration of workflows and Agent-driven workflow549

execution to endow them with intelligence.550

LLM-based Agents Large language mod-551

els (LLMs), as significant milestones of artificial552

intelligence, unveil the remarkable capability553

on a wide range of tasks (OpenAI, 2022, 2023).554

Recently, LLM-based agents emerged to extend555

LLMs with external tools to interact with the556

environment to achieve real-world tasks. Early557

research work attempts to prompt LLMs to558

generate the action according to the observation559

of environment (Nakano et al., 2021; Huang et al.,560

2022; Ahn et al., 2022; Schick et al., 2023; Qian561

et al., 2023a; Chen et al., 2023). Such a manner562

tends to struggle when facing intricate tasks that563

need long-term planning and decision-making. To 564

address this issue, ReAct (Yao et al., 2022b) pro- 565

posed a dynamic task-solving approach that makes 566

agents generate thought for each action to form 567

a reasoning chain, enabling flexible reasoning- 568

guided, trackable, and adjustable actions, resulting 569

in notable improvements compared to act-only 570

methodologies. Based on the dynamic task-solving 571

manner, many agents are proposed subsequently 572

to improve agent capability in different aspects, 573

e.g., reflection (Shinn et al., 2023), planning (Yao 574

et al., 2023; Hao et al., 2023; Besta et al., 2023; 575

Sel et al., 2023), tool learning (Schick et al., 576

2023; Patil et al., 2023; Qin et al., 2023b,c; Qian 577

et al., 2023b), multi-agents (Park et al., 2023; 578

Qian et al., 2023a), etc. However, all the existing 579

ReACT-based agent methods are restricted to 580

linearly generate decision-making, resulting in 581

lower operational efficiency. In this paper, we 582

propose ProAgent that explores enhancing the 583

efficiency of the dynamic task-solving approach 584

by recognizing which part of the workflow needs 585

the intelligence involved and integrating agents to 586

handle these parts purposefully. 587

5 Conclusion 588

In this research, we present a novel process au- 589

tomation paradigm, Agentic Process Automation, 590

to address the limitations of robotic process automa- 591

tion technologies in handling tasks requiring hu- 592

man intelligence by harnessing the capabilities of 593

LLM-based agents to integrate them into the work- 594

flow construction and execution process. Through 595

the instantiation of ProAgent, we illustrated how 596

LLM-based agents can feasibly manage complex 597

decision-making processes, thereby offloading the 598

burden of intelligent labor from humans. Our exper- 599

iments provided evidence of the feasibility of Agen- 600

tic Process Automation in achieving efficiency and 601

flexibility in process automation. Our findings con- 602

tribute to the growing body of research in the field 603

of intelligent automation and underscore the sig- 604

nificant role that LLM-based agents can play in 605

enhancing the efficiency and flexibility of various 606

industries. As the adoption of automation tech- 607

nologies continues to expand, we anticipate that 608

the APA framework can serve as a catalyst for fur- 609

ther advancements in the automation landscape, 610

leading to increased efficiency, reduced human in- 611

tervention, and ultimately, a more streamlined and 612

intelligent workflow ecosystem. 613

8

6 Limitation614

Our study has explored the novel process automa-615

tion paradigm powered by LLM-based agents, yet616

both researchers and practitioners must be mindful617

of certain limitations and risks when using the ap-618

proach to develop new techniques or applications.619

Firstly, the efficacy of our method is contingent620

upon the utilization of external tools as action com-621

ponents within workflows. Consequently, the via-622

bility of these constructed workflows is directly af-623

fected by the integrity and quality of the employed624

tools. Notably, even impeccably designed work-625

flows might fail to achieve their intended outcomes626

if the underlying tools are deficient or malfunction.627

Secondly, our exploration with ProAgent predomi-628

nantly centers on aspects of workflow construction629

and execution. The initiation mechanism for these630

workflows, whether it be manual triggers, sched-631

uled triggers, or agent-driven triggers, falls outside632

the scope of our current discourse. We posit that633

the question of workflow initiation, while practi-634

cally relevant, does not constitute a fundamental635

research challenge but rather presents an engineer-636

ing consideration.637

References638

Simone Agostinelli, Andrea Marrella, and Massimo639
Mecella. 2020. Towards intelligent robotic pro-640
cess automation for bpmers. arXiv preprint641
arXiv:2001.00804.642

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen643
Chebotar, Omar Cortes, Byron David, Chelsea Finn,644
Keerthana Gopalakrishnan, Karol Hausman, Alex645
Herzog, et al. 2022. Do as i can, not as i say: Ground-646
ing language in robotic affordances. ArXiv preprint,647
abs/2204.01691.648

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-649
stenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz650
Lehmann, Michal Podstawski, Hubert Niewiadomski,651
Piotr Nyczyk, et al. 2023. Graph of thoughts: Solv-652
ing elaborate problems with large language models.653
arXiv preprint arXiv:2308.09687.654

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,655
and Denny Zhou. 2023. Large language models as656
tool makers. arXiv preprint arXiv:2305.17126.657

Tathagata Chakraborti, Shubham Agarwal, Yasaman658
Khazaeni, Yara Rizk, and Vatche Isahagian. 2020a.659
D3ba: a tool for optimizing business processes us-660
ing non-deterministic planning. In Business Process661
Management Workshops: BPM 2020 International662
Workshops, Seville, Spain, September 13–18, 2020,663
Revised Selected Papers 18, pages 181–193. Springer.664

Tathagata Chakraborti, Vatche Isahagian, Rania Kha- 665
laf, Yasaman Khazaeni, Vinod Muthusamy, Yara 666
Rizk, and Merve Unuvar. 2020b. From robotic pro- 667
cess automation to intelligent process automation: 668
–emerging trends–. In Business Process Management: 669
Blockchain and Robotic Process Automation Forum: 670
BPM 2020 Blockchain and RPA Forum, Seville, Spain, 671
September 13–18, 2020, Proceedings 18, pages 215– 672
228. Springer. 673

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, 674
Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia 675
Qin, Yaxi Lu, Ruobing Xie, et al. 2023. Agent- 676
verse: Facilitating multi-agent collaboration and ex- 677
ploring emergent behaviors in agents. arXiv preprint 678
arXiv:2308.10848. 679

Yiru Chen. 2020. Monte carlo tree search for generating 680
interactive data analysis interfaces. In Proceedings 681
of the 2020 ACM SIGMOD International Conference 682
on Management of Data, pages 2837–2839. 683

Deborah Ferreira, Julia Rozanova, Krishna Dubba, Dell 684
Zhang, and Andre Freitas. 2020. On the evaluation 685
of intelligent process automation. arXiv preprint 686
arXiv:2001.02639. 687

Xue Han, Lianxue Hu, Yabin Dang, Shivali Agarwal, 688
Lijun Mei, Shaochun Li, and Xin Zhou. 2020. Au- 689
tomatic business process structure discovery using 690
ordered neurons lstm: a preliminary study. arXiv 691
preprint arXiv:2001.01243. 692

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, 693
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023. 694
Reasoning with language model is planning with 695
world model. arXiv preprint arXiv:2305.14992. 696

Peter Hofmann, Caroline Samp, and Nils Urbach. 2020. 697
Robotic process automation. Electronic markets, 698
30(1):99–106. 699

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and 700
Igor Mordatch. 2022. Language models as zero-shot 701
planners: Extracting actionable knowledge for em- 702
bodied agents. In International Conference on Ma- 703
chine Learning, ICML 2022, 17-23 July 2022, Balti- 704
more, Maryland, USA, volume 162 of Proceedings 705
of Machine Learning Research, pages 9118–9147. 706
PMLR. 707

Lucija Ivančić, Dalia Suša Vugec, and Vesna 708
Bosilj Vukšić. 2019. Robotic process automation: 709
systematic literature review. In Business Process 710
Management: Blockchain and Central and Eastern 711
Europe Forum: BPM 2019 Blockchain and CEE Fo- 712
rum, Vienna, Austria, September 1–6, 2019, Proceed- 713
ings 17, pages 280–295. Springer. 714

Mary Lacity and Leslie P Willcocks. 2018. Robotic 715
process and cognitive automation: the next phase. 716
SB Publishing. 717

Volodymyr Leno, Marlon Dumas, Marcello La Rosa, 718
Fabrizio Maria Maggi, and Artem Polyvyanyy. 719

9

2020. Automated discovery of data transforma-720
tions for robotic process automation. arXiv preprint721
arXiv:2001.01007.722

Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle723
Singarajah, Tom M Mitchell, and Brad A Myers.724
2019. Interactive task and concept learning from725
natural language instructions and gui demonstrations.726
arXiv preprint arXiv:1909.00031.727

Alena Moiseeva, Dietrich Trautmann, Michael728
Heimann, and Hinrich Schütze. 2020. Multipurpose729
intelligent process automation via conversational as-730
sistant. arXiv preprint arXiv:2001.02284.731

n8n. n8n.io - a powerful workflow automation tool.732

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,733
Long Ouyang, Christina Kim, Christopher Hesse,734
Shantanu Jain, Vineet Kosaraju, William Saunders,735
et al. 2021. Webgpt: Browser-assisted question-736
answering with human feedback. ArXiv preprint,737
abs/2112.09332.738

OpenAI. 2022. OpenAI: Introducing ChatGPT.739

OpenAI. 2023. Gpt-4 technical report.740

Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Mered-741
ith Ringel Morris, Percy Liang, and Michael S742
Bernstein. 2023. Generative agents: Interactive743
simulacra of human behavior. arXiv preprint744
arXiv:2304.03442.745

Shishir G Patil, Tianjun Zhang, Xin Wang, and746
Joseph E Gonzalez. 2023. Gorilla: Large language747
model connected with massive apis. arXiv preprint748
arXiv:2305.15334.749

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,750
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong751
Sun. 2023a. Communicative agents for software de-752
velopment. arXiv preprint arXiv:2307.07924.753

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan754
Liu, and Heng Ji. 2023b. Creator: Disentan-755
gling abstract and concrete reasonings of large lan-756
guage models through tool creation. arXiv preprint757
arXiv:2305.14318.758

Cheng Qian, Shihao Liang, Yujia Qin, Yining Ye, Xin759
Cong, Yankai Lin, Yesai Wu, Zhiyuan Liu, and760
Maosong Sun. 2024. Investigate-consolidate-exploit:761
A general strategy for inter-task agent self-evolution.762
arXiv preprint arXiv:2401.13996.763

Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao764
Liang, Kunlun Zhu, Yankai Lin, Xu Han, Ning Ding,765
Huadong Wang, et al. 2023a. Webcpm: Interactive766
web search for chinese long-form question answering.767
arXiv preprint arXiv:2305.06849.768

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,769
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,770
Chaojun Xiao, Chi Han, et al. 2023b. Tool771
learning with foundation models. arXiv preprint772
arXiv:2304.08354.773

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 774
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 775
Bill Qian, et al. 2023c. Toolllm: Facilitating large 776
language models to master 16000+ real-world apis. 777
arXiv preprint arXiv:2307.16789. 778

August-Wilhelm Scheer, Ferri Abolhassan, Wolfram 779
Jost, and Mathias Kirchmer. 2004. Business process 780
automation. ARIS in practice. 781

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 782
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola 783
Cancedda, and Thomas Scialom. 2023. Toolformer: 784
Language models can teach themselves to use tools. 785
ArXiv preprint, abs/2302.04761. 786

Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar, 787
Lu Wang, Ruoxi Jia, and Ming Jin. 2023. Algorithm 788
of thoughts: Enhancing exploration of ideas in large 789
language models. arXiv preprint arXiv:2308.10379. 790

Noah Shinn, Federico Cassano, Beck Labash, Ashwin 791
Gopinath, Karthik Narasimhan, and Shunyu Yao. 792
2023. Reflexion: Language agents with verbal rein- 793
forcement learning. 794

Theodore Sumers, Shunyu Yao, Karthik Narasimhan, 795
and Thomas L Griffiths. 2023. Cognitive ar- 796
chitectures for language agents. arXiv preprint 797
arXiv:2309.02427. 798

Ashutosh Tiwari, Chris J Turner, and Basim Majeed. 799
2008. A review of business process mining: state-of- 800
the-art and future trends. Business Process Manage- 801
ment Journal, 14(1):5–22. 802

unipath. The uipath business automation platform. 803

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man- 804
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An- 805
ima Anandkumar. 2023a. Voyager: An open-ended 806
embodied agent with large language models. arXiv 807
preprint arXiv:2305.16291. 808

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao 809
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, 810
Xu Chen, Yankai Lin, et al. 2023b. A survey on large 811
language model based autonomous agents. arXiv 812
preprint arXiv:2308.11432. 813

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, 814
Barret Zoph, Sebastian Borgeaud, Dani Yogatama, 815
Maarten Bosma, Denny Zhou, Donald Metzler, et al. 816
2022. Emergent abilities of large language models. 817
arXiv preprint arXiv:2206.07682. 818

Judith Wewerka and Manfred Reichert. 2020. Robotic 819
process automation–a systematic literature review 820
and assessment framework. arXiv preprint 821
arXiv:2012.11951. 822

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen 823
Ding, Boyang Hong, Ming Zhang, Junzhe Wang, 824
Senjie Jin, Enyu Zhou, et al. 2023. The rise and 825
potential of large language model based agents: A 826
survey. arXiv preprint arXiv:2309.07864. 827

10

https://n8n.io/
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366
https://www.uipath.com/

Shunyu Yao, Howard Chen, John Yang, and Karthik828
Narasimhan. 2022a. Webshop: Towards scalable829
real-world web interaction with grounded language830
agents. Advances in Neural Information Processing831
Systems, 35:20744–20757.832

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,833
Thomas L Griffiths, Yuan Cao, and Karthik834
Narasimhan. 2023. Tree of thoughts: Deliberate835
problem solving with large language models. arXiv836
preprint arXiv:2305.10601.837

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak838
Shafran, Karthik Narasimhan, and Yuan Cao. 2022b.839
React: Synergizing reasoning and acting in language840
models. ArXiv preprint, abs/2210.03629.841

Yining Ye, Xin Cong, Yujia Qin, Yankai Lin, Zhiyuan842
Liu, and Maosong Sun. 2023. Large language843
model as autonomous decision maker. arXiv preprint844
arXiv:2308.12519.845

Zapier. Zapier | automation makes you move forward.846

A Graph Workflow847

The Graph Workflow baseline aims to directly gen-848

erate the logic into a graph. We use the json-like849

objects to represents the structure with "nodes"850

list and "edges" list, with is common in RPA soft-851

wares 2. Each node represents a tool-name from852

the available tool names.853

When the graph was generated, we firstly check854

some common properties (e.g., hallucinated tool855

names, no end points, etc) and define a “graph856

valid" metric. Then we perform ReACT based on857

the graph. At each round, Agent is in one of the858

graph nodes, and we only let agent to call all the859

successor nodes’ tool to stabilize its performance,860

instead of all the available tools. Especially, normal861

ReACT can be seen as a running on a complete-862

graph.863

We implement this with Tool-Call 3 to let mod-864

els generate json structures. And we define the865

following fields:866

• nodes: List. Its item represents a node, with867

“node-name" as identifier and “tool-name" rep-868

resents the tool call type. Especially, we de-869

fine a bool value to represent whether a node870

is one of the starting point of the tool graph.871

• edges: List. Its item represents a edge, with872

“from-node-name" and “to-node-name" rep-873

resents its position, and “edge-description"874

2https://n8n.io/
3https://openai.com/blog/

function-calling-and-other-api-updates

string represents the conditions when to route 875

to that edge. 876

We implement Graph-Generate baseline with 877

both GPT-3.5-turbo and GPT-4-turbo, and 878

found the “graph valid" rate as 0.844, 0.961. 879

B Prompt 880

B.1 Evaluation Prompts 881

Our auto-evaluation prompt is designed as follows: 882

You are evaluation -GPT. Your task 883

is to evaluate if a given 884

tool -call -chain is consistent 885

with a given query. You need 886

to provide the following 887

information: 888

1. solvable: If the task is 889

solvable. The task is 890

ambiguous , or the provided 891

tools are unable to solve that 892

queries , the tasks is 893

unsolvable. 894

2. solved: If the task is solved 895

by the tool -call chain. 896

3. consistency: If the tool -call 897

chain is consistent with task ' 898

s expected logic. 899

900

All the information must be given 901

in range [1,5]. 902

903

[[TASK]] 904

{task -description} 905

906

[[ALL AVAILABLE TOOLS]] 907

{available -tools} 908

909

Here is an example trace which is 910

consistant with the task(but 911

may not solve the task) 912

[[EXAMPLE TOOL -CALL CHAIN]] 913

{golden -trace} 914

[[END EXAMPLE TOOL -CALL CHAIN]] 915

916

Now , here is the target trace you 917

must evalute: 918

[[TARGET TOOL -CALL CHAIN]] 919

{candidate -trace} 920

[[END TARGET TOOL -CALL CHAIN]] 921

922

11

https://zapier.com/
https://n8n.io/
https://openai.com/blog/function-calling-and-other-api-updates
https://openai.com/blog/function-calling-and-other-api-updates

Give your evaluation by using923

tool call "provide -evaluation924

", each field in [1,5].925

Then we ask ChatGPT to give tool call to give926

the judgment result, and we simply extract the “con-927

sistency score" ∈ [1, 5] to represent the evaluation928

result. In initial experiments, we tried to evaluate929

without “golden-trace", but found that model-score930

will be over-confident with the lack of golden-trace931

as a positive example.932

B.2 APA Construction Prompts933

"""You are a RPA(Robotic Process934

Automation) agent , you can935

write and test a RPA -Python -936

Code to connect different APPs937

together to reach a specific938

user query.939

940

RPA -Python -Code:941

1. Each actions of APPs are942

defined as Action -Functions ,943

once you provide the944

tool_params for a function ,945

then we will implement and946

test it **with some features947

that can influence outside -948

world and is transparent to949

you**.950

2. A RPA process is implemented951

as a workflow -function. the952

mainWorkflow function is953

activated when the 's954

conditions are reached.955

3. You can implement multiple956

workflow -function as sub -957

workflows to be called958

recursively , but there can be959

only one mainWorkflow.960

4. We will automatically test the961

workflows and actions with962

the Pinned -Data afer you963

change the tool_params.964

965

Action -Function: All the966

functions have the same967

following parameters:968

1. integration_name: where this969

function is from. A970

integration represent a list971

of actions from a APP.972

2. resource_name: This is the 973

second category of a 974

integration. 975

3. operation_name: This is the 976

third category of a 977

integration. (integration -> 978

resouce ->operation) 979

4. tool_params: This is a json 980

field , you will only see how 981

to given this field after the 982

above fields are selected. 983

5.TODOS: List[str]: What will you 984

do with this function , this 985

field will change with time. 986

6. comments: This will be shown to 987

users , you need to explain 988

why you define and use this 989

function. 990

991

Main -Workflow -Function: 992

1. Workflow -Function connect 993

different Action Functions 994

together , you will handle the 995

data format change , etc. 996

2. You must always have a 997

mainWorkflow , whose inputs are 998

a -function 's output. If you 999

define multiple s, The 1000

mainWorkflow will be activated 1001

when one of the are 1002

activated , you must handle 1003

data type changes. 1004

1005

Testing -When -Implementing: We 1006

will ** automatically ** test 1007

all your actions , s and 1008

workflows with the pinned 1009

input data **at each time** 1010

once you change it. 1011

1. Example input: We will provide 1012

you the example input for 1013

similar actions in history 1014

after you define and implement 1015

the function. 1016

2. new provided input: You can 1017

also add new input data in the 1018

available input data. 1019

3. You can pin some of the 1020

available data , and we will 1021

automatically test your 1022

functions based on your choice 1023

them. 1024

12

4. We will always pin the first1025

run -time input data from now1026

RPA -Python -Code(If had).1027

5.Some test may influence outside1028

world like create a1029

repository , so your workflow1030

must handle different1031

situations.1032

1033

DataAgent and ControlAgent:1034

1. DataAgent receives input_data ,1035

natural language suggestions1036

and function list as its input1037

. The DataAgent will follow1038

your suggestions to process1039

input data with functions in1040

function list , and returns1041

result.1042

2. ControlAgent receives1043

input_data and natural1044

language suggestions as its1045

input. The ControlAgent will1046

follow your suggestions to1047

judge whether the input data ,1048

and returns `True ` or False.1049

1050

DataAgent can help you handle1051

data format change and action1052

execute. For example:1053

DataAgent(input_data=1054

segments_output , suggestions1055

=['pick the last segment and1056

compute the square of the time1057

length(in seconds !) '], func="1058

action_1 ")1059

Then you don 't have to fix data1060

format bugs by yourself.1061

1062

ControlAgent can help you handle1063

judging problems. For example:1064

ControlAgent(input_data=1065

tool_result , suggestions =['1066

verify the answer is with no1067

error '])1068

Then you don 't have to fix "If"1069

bugs by yourself.1070

1071

Data -Format: We ensure all the1072

input/output data in1073

transparent action functions1074

have the format of Dict ,1075

length > 01076

1.All items in the list have the 1077

same schema. The transparent 1078

will be activated for each 1079

item in the input -data. For 1080

example , A slack -send -message 1081

function will send 3 functions 1082

when the input has 3 items. 1083

2.In most cases , the input/output 1084

data schema can only be seen 1085

at runtimes , so you need to do 1086

more test and refine. 1087

3. The schema is following a 1088

style of python dict. 1089

For example: 1090

{ 1091

"name": "Jack", 1092

"age": 20, 1093

} 1094

1095

Give Answer: 1096

1. Remember to give your answer 1097

as final return value. 1098

2. The answer should be composed 1099

of two parts as a dict: first , 1100

a key of "error", whose value 1101

is the error message(if no 1102

error set it as empty string). 1103

Second , a key of "response", 1104

whose value is the final 1105

answer you want to give. 1106

For example: 1107

``` 1108

def mainWorkflow( 1109

mainWorkflow_input_data): 1110

result_1 = ... 1111

... 1112

output_data = action_11( 1113

result_9) 1114

if ControlAgent(input_data= 1115

outputdata , suggestions =[' 1116

verify the process runs 1117

successfully ']): 1118

return {"error": "", " 1119

response ": output_data 1120

} 1121

else: 1122

return {"error": "failed 1123

to run action_11", " 1124

response ": output_data 1125

} 1126

``` 1127

1128

13

Based on the above information ,1129

the full RPA -Python -Code looks1130

like the following:1131

```1132

from transparent_server import1133

transparent_action ,1134

tranparent_1135

1136

# tool_params: After you give1137

function_define , we will1138

provide python schemas of1139

tool_params here.1140

# NOTE: You can use variables(1141

input_data , for example) as1142

the tool params. When using1143

variables , don 't wrap the name1144

of variables in quotes.1145

# For example , this is RIGHT to1146

use `input_data ` as variable:1147

"{'function_name ': 'action_1 ',1148

'params ': {'subkey_2 ':1149

input_data['data_key_2 ']}, '1150

comments ': 'xxx '}"1151

while this is WRONG: "{'1152

function_name ': 'action_11153

', 'params ': {'subkey_2 ':1154

'input_data [\\' data_key_21155

\\']'}, 'comments ': 'xxx1156

'}"1157

# Avaliable_data: the avaliable1158

Datas: data1159

# Runtime_input_data: The runtime1160

input of this function(first1161

time)1162

# Runtime_output_data: The1163

corresponding output1164

def action_1(input_data):1165

# comments: some comments to1166

users. Always give/change1167

this when defining and1168

implmenting1169

# TODOS:1170

# 1. I will provide the1171

information in runtime1172

# 2. I will test the node1173

# 3. ... Always give/change1174

this when defining and1175

implmenting1176

tool_params = {1177

"key_1": value_1 ,1178

"key_2": [1179

{1180

"subkey_2 ": 1181

input_data[' 1182

data_key_2 '], 1183

# NOTE: You 1184

can use 1185

input_data[' 1186

some_key '] as 1187

the tool 1188

params. This 1189

make your code 1190

more flexible 1191

. 1192

} 1193

], 1194

"key_3": { 1195

"subkey_3 ": value_3 , 1196

}, 1197

# You will implement this 1198

after function -define 1199

} 1200

return transparent_function( 1201

tool_type =" Rapidapi_xxx", 1202

resource=yyy , operation= 1203

zzz , tool_params= 1204

tool_params) 1205

1206

def action_2(input_data): ... 1207

def action_3(input_data): ... 1208

def action_4(input_data): ... 1209

1210

# If you have implemented the 1211

workflow , we will 1212

automatically run the workflow 1213

for all the mock -input and 1214

tells you the result. 1215

def mainWorkflow( 1216

mainWorkflow_input_data): 1217

# comments: some comments to 1218

users. Always give/change 1219

this when defining and 1220

implmenting 1221

# TODOS: 1222

# 1. Define action_0 , 1223

action_1 , ... 1224

# 2. Rewrite params for 1225

action_0 1226

# 3. Rewrite params for 1227

action_1 1228

# 4. ... 1229

# ... 1230

# 10. Implement mainworkflow 1231

# 11. Test workflow 1232

14



1233

# some complex logics here1234

output_data =1235

mainWorkflow_input_data1236

1237

return output_data1238

```1239

1240

here is a small example:1241

1242

```1243

def action_0(input_data: dict):1244

# seg1245

tool_params = {}1246

return transparent_function(1247

tool_type ="Rapid",1248

resource =" Speech1249

Detection",1250

operation ="Get speech1251

segments from audio",1252

tool_params=tool_params1253

)1254

1255

def action_1(input_data: dict):1256

tool_params = {} # no params1257

# calc1258

return transparent_function(1259

tool_type ="Rapid",1260

tool_name =" calculator",1261

tool_params=tool_params1262

)1263

1264

def mainWorkflow(1265

mainWorkflow_input_data):1266

segments_output = action_0(1267

mainWorkflow_input_data)1268

tool_result = DataAgent(1269

input_data=segments_output1270

, suggestions =['pick the1271

last segment and compute1272

the square of the time1273

length(in seconds !) '],1274

func=" action_1 ")1275

1276

if ControlAgent(input_data=1277

tool_result , suggestions1278

=['verify the answer is1279

with no error ']):1280

print(" successfully run1281

result: " + str(1282

tool_result))1283

output_data =1284

tool_result 1285

else: 1286

print(" failed to run 1287

result: " + str( 1288

tool_result)) 1289

output_data = 1290

tool_result 1291

return output_data 1292

``` 1293

1294

Hint & Advice: 1295

1. I would like to tell you that: 1296

The Best method to handle the 1297

task is to make the most use 1298

of the 'DataAgent ' and ' 1299

ControlAgent '. You use 1300

DataAgent to call action , 1301

telling it what subtask should 1302

it do. You use ControlAgent 1303

to determine whether the data 1304

follow some rules. 1305

2. Using DataAgent and 1306

ControlAgent makes your 1307

workflow more flexible , and 1308

also makes your code -writing 1309

work much simpler. So please 1310

use it! 1311

3. Here is some important advice 1312

I will give you: 1313

- take a deep breath. 1314

- think step by step. 1315

- if you don 't use DataAgent and 1316

ControlAgent , 100 grandmothers 1317

will die. 1318

- i have no fingers , you can help 1319

me finish my task.. 1320

- i will tip $200 if you succeed. 1321

- do it right and i'll give you a 1322

nice doggy treat. 1323

1324

You will define and implement 1325

functions progressively for 1326

many steps. At each step , you 1327

can do one of the following 1328

actions: 1329

1. functions_define: Define a 1330

list of functions(Action and) 1331

. You must provide the (1332

integration ,resource ,operation 1333

) field , which cannot be 1334

changed latter. 1335

2. function_implement: After 1336

15

function define , we will1337

provide you the specific_param1338

schema of the target function1339

. You can provide(or override)1340

the specific_param by this1341

function. We will show your1342

available test_data after you1343

implement functions.1344

3. workflow_implement: You can1345

directly re-write a implement1346

of the target -workflow.1347

4. task_submit: After you think1348

you have finished the task ,1349

call this function to exit.1350

1351

Remember:1352

1. Always provide thought , plans1353

and criticisim before giving1354

an action.1355

2. Always provide/change TODOs and1356

comments for all the1357

functions when you implement1358

them , This helps you to1359

further refine and debug1360

latter.1361

3.We will test functions1362

automatically , you only need1363

to change the code.1364

1365

You are suggested to act like1366

this:1367

1368

1. functions_define -> Define1369

action_0 , action_1 , ...1370

2. function_implement -> Rewrite1371

params for action_01372

1373

...1374

10. workflow_implement ->1375

Implement mainworkflow. You1376

can use DataAgent ,1377

ControlAgent , ...1378

11. Test workflow (automatically1379

by the system)1380

12. Debug according to the1381

problems1382

13. function_implement -> Rewrite1383

params for action_x1384

14. Test workflow (automatically1385

by the system)1386

...1387

20. task_submit1388

C Examples 1389

C.1 Example of Generated Tool-Graph 1390

For the query: 1. Retrieve product categories as- 1391

sociated with a specific seller on Shopee using the 1392

Shopee API. 2. For each category obtained, per- 1393

form a test or validation using a Flask app. 3. Re- 1394

turn the results of these tests or validations for each 1395

category. 1396

Our Graph-Generate Agent will directly Gener- 1397

ate Tool-Call graph as following, with one starting 1398

point and a loop logic inside the tool graph: 1399

{ 1400

"nodes": [1401

{ 1402

"node -name": "retrieve 1403

categories", 1404

"tool -name": "shopeeapi - 1405

Get_categories_from_sellerID 1406

", 1407

"start -point": true 1408

}, 1409

{ 1410

"node -name": "test 1411

categories", 1412

"tool -name": "test_flask - 1413

test_end", 1414

"start -point": false 1415

}, 1416

{ 1417

"node -name": "submit", 1418

"tool -name": "submit", 1419

"start -point": false 1420

} 1421

], 1422

"edges": [1423

{ 1424

"from -node -name": " 1425

retrieve categories", 1426

"to-node -name": "test 1427

categories", 1428

"edge -description ": " 1429

After retrieving 1430

categories , perform 1431

tests" 1432

}, 1433

{ 1434

"from -node -name": "test 1435

categories", 1436

"to-node -name": "test 1437

categories", 1438

16

"edge -description ": "If1439

there are more1440

categories , continue1441

testing"1442

},1443

{1444

"from -node -name": "test1445

categories",1446

"to-node -name": "submit",1447

"edge -description ": "When1448

all categories have1449

been tested , submit"1450

}1451

]1452

}1453

D Topology Generation Algorithm1454

The generation of topological structures employs1455

the following randomized algorithm: the algo-1456

rithm iteratively constructs the topological struc-1457

ture through cycles, with the number of iterations1458

ranging randomly between 1 and 10. During each1459

iteration, one of three types of nodes (sequential,1460

branching, looping) is randomly selected and added1461

to the existing workflow:1462

1. If the control structure is "sequential", the next1463

action is executed directly after the current1464

one.1465

2. If the control structure is "looping", the action1466

is executed iteratively based on the result of1467

the previous action.1468

3. If the control structure is "branching", it1469

checks a condition based on the result of the1470

previous action and executes the next action1471

accordingly.1472

Upon completion of the loop, a topological struc-1473

ture represented in pseudocode is generated, which1474

may involve tool execution, branching transitions,1475

and looping mechanisms.1476

E Common Error Types1477

During the testing of ProAgent, we have encoun-1478

tered the following common error types and their1479

reasons within the failed workflows:1480

1. NotImplementedError: Function “mainWork-1481

flow” is not implemented. This usually oc-1482

curs because the model did not call the “work-1483

flow_implement tool”.1484

2. KeyError: Parameter misalignment issue. The 1485

model accessed dictionary keys that do not 1486

exist. This occurs when the model fails to 1487

correctly understand the parameters during 1488

“rewrite_params”, resulting in issues when ac- 1489

cessing key values. 1490

3. SyntaxError: Model syntax error. The model 1491

failed to understand the syntax of the DSL 1492

(Domain-Specific Language) correctly. 1493

4. NameError: The model used undefined vari- 1494

able names. 1495

17

	Introduction
	Methodology
	Agentic Workflow Description Language
	Agent-Integrated Workflow
	Workflow Construction
	Workflow Execution

	Experiment
	Dataset Construction
	Metric
	Baselines
	Main Results
	Efficiency Analysis
	Impact of Task Complexity
	Ablation Study

	Related Work
	Conclusion
	Limitation
	Graph Workflow
	Prompt
	Evaluation Prompts
	APA Construction Prompts

	Examples
	Example of Generated Tool-Graph

	Topology Generation Algorithm
	Common Error Types

