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Abstract

Dialog state tracking (DST) is a core compo-001
nent in task-oriented dialog systems. Existing002
state-of-the-art DST model incorporates insight003
and intuition from the human experience into004
design of supplementary labels, which greatly005
assisted the training process of turn-by-turn006
DST model. Though the turn-by-turn scheme007
and supplementary labels enabled satisfactory008
performance on the task, most of the DST mod-009
els of this fashion label or process the raw dia-010
logue data on the premise that the last turn dia-011
logue state is always correct, which is usually012
not the case. In this paper, we address the neg-013
ative impact resulted from the premise above014
as the avalanche phenomenon. After that, we015
propose JoDeM, a state-of-the-art DST model016
which can tackle the Avalanche phenomenon017
with two mechanisms. First mechanism is a018
jointly decision making method to extract key019
information from the dialogue. Second mecha-020
nism is a compare and contrast dialogue update021
technique to prevent error accumulation. Ex-022
ample study and graph analysis are presented023
to support our claim about the harmfulness of024
avalanche phenomenon. We also conduct quan-025
titative and qualitative experiments on the high026
quality MultiWOZ2.3 corpus dataset to demon-027
strate that the proposed model not only outper-028
forms the existing state-of-the-art methods, but029
also proves the validity of solving avalanche030
degradation problem.031

1 Introduction032

Goal-oriented dialog (GOD) systems, or Task-033

oriented dialogue (TOD) systems have recently at-034

tracted growing attention and significant progress035

has been made (Zhang et al., 2020; Neelakantan036

et al., 2019; Peng et al., 2020). Well-known com-037

mercial dialogue systems include the Apple Siri,038

Amazon Alexa, or Microsoft Cortana. In a com-039

plete GOD system, Dialog State Tracking (DST)040

serves as a cognitive and comprehending compo-041

nent, where it understands and extracts the user’s042

goal in a well-constructed manner. The user’s goal 043

is then provided to downstream for recommenda- 044

tion, booking, or other subsequent dialogue pol- 045

icy component to determine the system action and 046

response. Hence, as the backbone of a dialogue 047

system, it is crucial to have a DST module with ex- 048

ceptional performance to guarantee the base for the 049

performance of subsequent components (Takanobu 050

et al., 2020). 051

Since the blossom of the application of pre- 052

trained language model, the accuracy of DST mod- 053

els has increased tremendously. Especially, turn-by- 054

turn schematic DST models (Liao et al., 2021) with 055

insightful design of auxiliary labels and data struc- 056

ture have dominated the field, where most of the 057

among-the-best works are of this genre (Heck et al., 058

2020; Liao et al., 2020). However, this type of 059

models all suffer from a major flaw, the avalanche 060

phenomenon. The avalanche phenomenon is the 061

result of wrong premise during the labeling pro- 062

cess which will only occur in the DST models with 063

turn-by-turn scheme. 064

As oppose to the trending turn-by-turn scheme, 065

early multi-domain DST methods follow a dialog 066

history scheme. Model of this scheme takes the 067

whole or window-sized dialogue history as input. 068

It predicts slot value without explicitly discriminat- 069

ing over turns of utterances. Despite the benefits of 070

making prediction based on a more comprehensive 071

and complete data at once, dialog history scheme 072

has several drawbacks. The length of dialogues 073

is often too long for pre-trained language model 074

to process. More essentially, processing an en- 075

tire dialogue at once violates the instant update 076

nature of DST. Aligning with the need of instant 077

update, turn-by-turn scheme was proposed (Kim 078

et al., 2019). Models of this scheme input the di- 079

alogue state generated from the previous turn and 080

the most recent turn utterance and output the up- 081

dated dialogue state. The advantages of turn-by- 082

turn scheme resulted in great performance boost, 083
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in which most of the among-the-best works are of084

this scheme. On top of the choice of better scheme,085

to achieve a superior performance, these state-of-086

the-art DST models made the best use of auxiliary087

labels.088

Basic input of turn-by-turn schematic DST mod-089

els are the current turn utterance and last turn dia-090

logue state, where the basic output is the updated091

current turn dialogue state. Using only basic out-092

put as golden training label inevitably leads to a093

sub-optimal result due to complexity of DST task.094

Mainstream DST systems typically incorporate sup-095

plemental labels to guide the model towards bet-096

ter performance. For example, Zhang et al. 2019;097

Heck et al. 2020 obtain key information from the098

dialogue span directly labels the starting and end-099

ing index of the key phrase for DST models to learn100

span detection.101

However, the high utilization of supplementary102

labels in turn-by-turn schematic models have in-103

duced a new obstacle in developing a more robust104

and high quality DST system. In practice, a train-105

ing instance, which is a turn of dialog in an entire106

dialogue for turn-by-turn systems, are randomly107

shuffled along with instance from other dialogues.108

For convenience and effective training, supplemen-109

tary labels are made under the assumption that the110

input previous turn dialogue state is correct. While111

in a considerable amount of cases, models have112

to make prediction under incorrect last turn dialog113

state. In those cases, the supplementary labels will114

also be incorrect themselves because they are also115

made under the false assumption. These facts add116

up to a poor robustness against noisy input, making117

the final performance way lower than expectation.118

To reflect this kind of characteristic where errors119

induce more errors, we name this phenomenon the120

avalanche phenomenon.121

In this paper, we propose JoDeM: Joint122

Decision Making DST system with a compare123

and contrast mechanism. As mentioned, there are124

two major issues that directly contribute to the exis-125

tence of the avalanche phenomenon, incorrect last126

turn dialogue state and inflexible training labels.127

To address the former issue where DST models128

often perform worse when the input last turn dia-129

logue state is incorrect, we simply exempt dialogue130

state from the data flow of DST model, and strictly131

update it in a compare and contrast fashion. In132

other words, the extraction of key information is133

accomplished by a series of fluent back propagat-134

able operations while the update process is not. 135

To tackle the later issue, JoDeM deploys a joint 136

decision making structure to successfully update 137

dialogue state in a more robust and flexible manner 138

despite the fact that training labels are fixed. 139

The JoDeM model contains eight modules 140

that divides the whole DST process into three 141

stages. The first stage contains a utterance encoder. 142

The second stage contains four parallel modules, 143

namely, a domain update, a slot gate, a slot type, 144

and a span detection module. The third stage con- 145

tains a dialogue state update module. As shown 146

in the figure, first, we use BERT as the pre-trained 147

language module to embed turn utterance. Then, a 148

parallel decision making procedure is adopted by 149

the four modules to extract key information from 150

the embedded utterance. At last, the dialogue state 151

update module designed to address the avalanche 152

phenomenon is applied to output the updated dia- 153

logue state. 154

After introducing related work and the details 155

of JoDeM, we conduct multiple standard and cus- 156

tomized evaluation and analysis in this paper to 157

show that not only JoDeM achieved a state-of-the- 158

art performance, but also the reason why it achieved 159

such robustness against the avalanche phenomenon. 160

In short, our contribution is twofold: 161

1. We bring up the attention to the avalanche 162

phenomenon, a previous uncharted territory 163

in dialogue state tracking task, and present 164

quantitative evidence to show its existence and 165

severity to the performance of DST systems. 166

2. We proposed a DST model to verify the fea- 167

sibility of a solution to address the avalanche 168

phenomenon, targeting straight to the roots of 169

the phenomenon. After that, we performed 170

quantitative and qualitative experiments to 171

show the validity of our work and that our 172

model has achieved a state-of-the-art perfor- 173

mance on the qualified MultiWOZ2.3 dataset. 174

2 Related Work 175

Depending on the inputs, existing DST models are 176

categorized to history-based and turn-by-turn based 177

(Liao et al., 2021). The former scheme takes the 178

whole or window-sized dialogue history as input to 179

recurrent neural networks or networks (Goel et al., 180

2019; Gao et al., 2019). For example, HJST con- 181

siders the full dialogue history using a hierarchical 182

RNN (Gao et al., 2019; Serban et al., 2015). Works 183
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such as Wu et al. 2019 treats the entire dialogue as184

a concatenated sequence while using Bi-LSTM or185

RNN as an encoder. There are also works inputting186

the whole history or window-sized dialogue history187

into BERT such as Lee et al. 2019a. In order to188

overcome the limitations of history-based scheme189

mentioned in the introduction, turn-by-turn DST190

systems was developed. Typically, model of this191

scheme takes the previous turn dialogue state and192

the current turn utterance as input to generate new193

dialogue state (Chao and Lane, 2019; Ren et al.,194

2019; Heck et al., 2020).195

Basic label of the DST task is the correct di-196

alogue state at each turn, which is often insuffi-197

cient for the model to learn from effectively. The198

most common example of supplementary label is199

the starting index and ending index of the value200

phrase utilized in the span-based models (Zhang201

et al., 2019; Heck et al., 2020; Chen et al., 2020b).202

Kim et al. 2019, a turn-by-turn model designed a203

set of operation-based labels to guide the updat-204

ing process of dialogue state. Heck et al. 2020205

defined three copy strategy and labeled the original206

dialogue state tracking process with more refined207

information. These attempts have made significant208

result on the performance by incorporating human209

knowledge to the training process by applying sup-210

plementary labels. However, these labels are cre-211

ated under the assumption that the last dialogue212

state at every turn is flawless, while in reality it is213

usually not the case. The gap between ideal and re-214

ality creates a major drawback on the performance215

and robustness. In our JoDeM model, we not only216

design our supplementary label base on fine intu-217

ition, but also address the drawback resulted from218

the avalanche phenomenon.219

3 JoDeM: Joint Decision Making through220

Compare and Contrast221

The proposed JoDeM model in Figure 1 consists of222

eight components that are located in three different223

stages of the DST process. The first stage is the Ut-224

terance Encoder that encodes the basic inputs, i.e.,225

system and user utterance into vector embedding.226

After that, the utterance embedding is sent to the227

second stage, which is the Joint Decision Making228

stage. In this stage, key information is extracted229

from the utterance embedding by the following230

component, Domain Update, Slot Gate, Type Pre-231

diction, Span Detection and Co-ref Classification.232

At the last stage, compare and contrast mechanism233

is applied by the Dialogue State Update component 234

to update the dialogue state according to the key 235

information from the second stage and the previous 236

turn dialog state. 237

Before formally getting into the detail of the 238

JoDeM model, we first layout the necessary math- 239

ematical notations and proper definition for the 240

DST problem. We define a complete dialogue as 241

X = {(S1, U1) , ..., (ST , UT )}, which has T sets, 242

or turns of system and user utterance that are in a 243

sequential order. The dialogue states of an entire 244

dialogue which is a set of dialogue state from all T 245

turns is defined as DS = {DS1, ...,DST }, where 246

DSi is the dialogue state of the ith turn. Each turn’s 247

dialogue state is a set which takes multiple triplets 248

of format (domain, slot, value) as its elements. 249

To complete a DST task is equivalent to the follow- 250

ing statement: for any turn t, given the turn utter- 251

ance (St, Ut) and the last turn dialogue state DSt−1 252

as input, we should output DSt, which contains the 253

correct set of triplets (domain, slot, value). 254

3.1 Utterance Encoder 255

Utterance encoder is the cornerstone of all NLP 256

task including the DST task. At each turn t, we use 257

the pre-trained BERT (Devlin et al., 2018) as the 258

front-end encoder to encode the dialog utterance 259

(St, Ut) as 260

Rt = BERT([CLS]⊕ St ⊕ [SEP]⊕ Ut), (1) 261

where Rt is the embedding of utterance from 262

turn t. ⊕ is the concatenation operator. Spe- 263

cial token CLS is the starting token for BERT 264

and SEP is the separation token separating sys- 265

tem utterance St and user utterance Ut. The 266

embedding of utterance can also be denoted 267

as Rt = [rCLS
t , rS1

t , rS2
t , ..., rSEP

t , rU1
t , rU2

t , ...], 268

where rCLS
t is the vector representation of the en- 269

tire turn dialogue. The vector rit is the contextual 270

representations for the ith token in the utterance. 271

The dimension of the embedding is h, which is a 272

hyper-parameter of BERT. Above sentence embed- 273

ding is then utilized for joint decision making. 274

3.2 Joint Decision Making 275

The intuition behind the Joint Decision Mak- 276

ing stage is to break down and imitate the hu- 277

man reasoning process. Human beings com- 278

plete the DST task by solving the triplets of 279

(domain, slot, value) in a joint fashion, rather 280

than solving the elements in a triplet in an or- 281

der or individually. For example, one would not 282
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Figure 1: The architecture of the proposed JoDeM model comprised of three stages of eight components.

first determine the state of a (domain, slot) pair,283

then search for its value. Instead, the context re-284

garding different (domain, slot) pairs and their285

possible values within the utterance are consid-286

ered jointly so that comprehensive judgement on287

the state of different (domain, slot, value) triplets288

can be made. Bearing this intuition in mind, we289

propose the Joint Decision Making stage consisting290

of five parallel components that jointly solve all the291

(domain, slot, value) triplets in a dialogue state,292

covering every possible scenario.293

3.2.1 Domain Update294

We obtain the domain of turn t by updating it from295

the last turn t−1 domain. As shown in the dialogue296

example in Figure 2, the domain element of the dia-297

log state is highly correlated to its last turn domain.298

Generally, if the turn utterance doesn’t contain any299

trace of or sufficient domain information, the do-300

main from the last turn will still be in use by the301

continuity of the context. Therefore, we design the302

Domain Update component to obtain the turn do-303

main by taking the utterance representation rCLS
t304

as an input to detect new domain and the last turn305

domain as a bias. The probability distribution of306

the turn domain Dt over all possible domains D =307

{train, taxi, restaurant, hotel, attraction} is308

obtained by309

Dt = softmax(γ · (WDU · rCLS
t + bDU )) ∈ R5,

(2)310

where WDU and bDU are the trainable parameters311

of a standard linear transformation, respectively.312

Diagonal coefficient matrix γ = (diag(dt−1)+E)313

Figure 2: Example for the case when the turn domain is
entirely dependent on the last turn context

where E is the identity matrix , dt−1 is the normal- 314

ized resulted from the last turn domain Dt−1, and 315

diag(·) transforms vectors into diagonal matrices. 316

Due to the uniqueness of domain in each turn, the 317

class with the highest probability from Dt is the 318

turn domain. The design of the impact of last turn 319

domain is oriented to the following purpose: we 320

require the impact from the last turn play a dom- 321

inate role when there’s no new domain predicted. 322

At the same time, if there is new domain involved, 323

the influence of the last turn should be ignored. If 324

γ = diag(dt−1), any newly discovered domain 325

would be covered up by the scaling effect from 326

the last turn domain. Also, in order to diminish 327

the impact from the last turn when new domain is 328

predicted, we make the bias itself relevant to the 329

outcome of the linear transformation. Only when 330

there is no domain discovered, i.e., the outcome of 331

the linear part is equally distributed , will the bias 332

of diag(dt−1) dominate the result. 333

3.2.2 Slot Gate & Type Prediction 334

Our model is equipped with a Slot Gate and a Type 335

Prediction components for each slots. The Slot 336

Gate aims to determine whether a slot should be 337

updated, i.e., the output of a slot gate Gs is a bi- 338
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nary probability distribution. Inspired by Heck339

et al. 2020 and Kim et al. 2019, we summarize340

the possible updates into the following four types341

{U, S,C,N}. U and S indicates that the value of342

the slot should be found in the span of user utter-343

ance Ut and system utterance St respectively. C in-344

dicates that the value of the slot has a co-reference345

relationship with a certain (domain, slot) pair in346

the last turn dialogue state. N means that the user347

intend to delete the existing value of the correspond-348

ing slot in the dialogue state without providing any349

alternative value.350

To make the above prediction for each slots, we351

first employ the multi-head attention mechanism352

(Vaswani et al., 2017) to calculate the attended con-353

text vector hs
t between Rt and the user utterance354

embedding Ru
t at t as355

hs
t = MultiHeadAtte(Q,K,V), (3)356

where Q is the embedding of the entire utterance357

embedding, Rt, K and V are the embedding of358

the user utterance embedding Ru
t = [rU1

t , rU2
t , ...].359

The reason to apply the multi-head attention mech-360

anism is that the confirmation from a user is the361

essence of dialog state update, no matter the type362

of update. Therefore, the relationship between the363

entire utterance and the user utterance is needed.364

After obtaining the attended embedding of the365

entire utterance, for each slot s, slot gates and type366

predictions are made by two parallel trainable lin-367

ear layer classification,368

θg
s = softmax((Wg

s · hsCLS

t + bg
s)) ∈ R2, (4)369

370

θv
s = softmax((Wv

s · hsCLS

t + bv
s)) ∈ R4. (5)371

3.2.3 Span Detection & Co-Ref Classification372

Span detection and co-ref classification are373

equipped to solve the possible value for each slots.374

Span detection is utilized for the slots whose375

values are found in the utterance. The attended ut-376

terance embedding is separated into two parts, the377

attended vector for user hus
t and the attended vec-378

tor for system hsst . A slot specific span detection379

layer performs a user/system specific span detec-380

tion on the attended context vector hus
t and system381

context vector hsst separately to obtain the span382

of potential values in the utterance to update. The383

expression of the process, using span detection on384

the user utterance as an example, is385

[αs,u
t,i ,β

s,u
t,i ] = (Wspan

s · hus
t,i + bspan

s ) ∈ R2386

387
P start,u
t,s = argmax(αs

t ) 388
389

P end,u
t,s = argmax(βs

t ) 390

i is the index of a token in the attended context of 391

user utterance, P start,u
t,s is the starting position of 392

span in the user utterance Ut for slot s in turn t and 393

P end,u
t,s is the corresponding ending position. 394

Co-ref classification is utilized for the slots 395

whose value should be filled via co-referencing 396

with a known value in the last turn dialog state. We 397

simply take hsCLS

t which is the attended context 398

embedding of the representation token for the entire 399

utterance and perform a linear layer classification, 400

θc
s = (Wc

s · hsCLS

t + bc
s) ∈ R31, (6) 401

where the output θc
s is a probability distribution 402

on all possible thirty (domain, slot) pairs and one 403

none class. 404

3.3 Dialogue State Update 405

Dialogue State Update is the key part of any turn- 406

by-turn schematic DST systems, which is the proce- 407

dure where the avalanche phenomenon originated 408

from. We mentioned that the conflict between in- 409

correct last turn dialogue state and the supplemen- 410

tary labels which are based on the correct last dia- 411

log state is the main contributor to the avalanche 412

phenomenon. Therefore, we exclude the dialogue 413

state updating process from the forward and back- 414

ward propagation of data processing flow, by up- 415

dating the dialogue state by carefully comparing 416

and contrasting through the information that we 417

obtained from the previous Joint Decision Making 418

stage. At last, to achieve better robustness of the 419

model, we apply a trick in the training process. The 420

overall dialogue state update procedure is shown in 421

Algorithm 1. 422

First, we specify the domain by the result of 423

the Domain Update component Dt. Second, we 424

determine whether to update a slot within the do- 425

main through the Slot Gate result θg
s . If it equals 426

to 1, that is, θg
s = 1, we move on to the next 427

step. In the third step, we go through the slots 428

with θg
s = 1 and determine their corresponding 429

values according to their Type Prediction θv
s . For 430

the slots whose θv
s = U or θv

s = S, we obtain their 431

values by getting the corresponding span from the 432

user or system utterance. The span is determined 433

by the corresponding starting and ending index 434

P start,u
s ,P end,u

s ,P start,s
s ,P end,s

s . If θv
s = C, the 435
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Algorithm 1: DS Update
Input: θg

s ,θv
s ,θc

s,
P start,u
s ,P end,u

s ,P start,s
s ,P end,s

s ,
Dt,DSt−1

Output: DSt
1 Specify the turn Domain via (Dt)
2 for each slots s in the turn Domain do
3 if θg

s then
4 if θv

s = U then
5 v ← Ut[P

start,u
s :P end,u

s ]
6 else if θv

s = S then
7 v ← St[P

start,s
s :P end,s

s ]
8 end
9 else if θv

s = C then
10 v ← DSt−1[θ

c
s]

11 end
12 else if θv

s = N then
13 v ← none
14 end
15 end
16 if DSt {Dt, s} ≠ v then
17 DSt {Dt, s} ← v
18 else
19 if Training then
20 θg

s ,θv
s ,θc

s,
P start,u
s ,P end,u

s ,P start,s
s ,P end,s

s

←GoldenLabel
21 end
22 end
23 end

values of the slots will be determined by the co-436

refered (domain, slot) pairs θc
s from the last turn437

dialogue state. At last, for slots with θv
s = N ,438

we simply delete the values that were stored pre-439

viously. Finally, in the last step, we perform the440

update by comparing and contrasting new triplets441

(domain, slot, value) and the ones in the last dia-442

logue state.443

As mentioned above, we perform a special op-444

eration at this stage during the training process.445

During training, if the potential value is equal to446

the last turn dialogue state, we set all the output447

from the forward propagation to the golden label.448

Thus, preventing the back propagation process to449

alter the trainable parameters in the model. This450

operation can enable the model to develop the abil-451

ity to self-correct, resulting in a better performance.452

More details can be found in the example study in453

the appendix.454

4 Experiment 455

4.1 Dataset 456

We evaluate our model on the public dataset: Mul- 457

tiWOZ2.3, which is a fully-labeled task-oriented 458

corpora comprised of human-human written con- 459

versation. It contains 8439 multi-turn dialogues 460

with dialogue having 6.84 turns on average. The 461

difference between the MultiWOZ2.3 dataset and 462

the previous versions of MultiWOZ dataset is 463

that MultiWOZ2.3 has a cleaner and more accu- 464

rate annotation as opposed to the noisier annota- 465

tion of the previous MultiWOZ versions (Zhou 466

and Small, 2019a; Han et al., 2020; Zang et al., 467

2020). Following previous work, only five domains, 468

(restaurant, hotel, attraction, taxi, train) are 469

employed in out experiments. 470

4.2 Training Configuration 471

We use the pre-trained BERT-based-uncased model 472

as the utterance encoder in our model, which has 473

12 hidden layers with 768 units. The limitation of 474

the maximum sequence length isn’t problematic, 475

therefore setting length l = 256 would suffice. 476

In our experiments, Adam optimizer is utilized, 477

whose learning rate linearly decreases from 5e− 5. 478

We have trained the model with 25 epochs. 479

4.3 DST result 480

Both standard metrics and customized evaluation 481

are carried out to compare our model and the 482

state-of-the-art models. Standard metrics include 483

Joint accuracy and Domain-Slot accuracy. Joint 484

accuracy is the accuracy of the prediction of di- 485

alogue states. It requires that all of the thirty 486

(domain, slot, value) triplets in the dialogue state 487

to be predicted and updated correctly. Only when 488

the turn output Dialogue State is completely correct 489

will JA = 1. In other cases, JA = 0, which is 490

likely to happen when the input last turn dialogue 491

state is wrong in the first place because models 492

of turn-by-turn scheme typically can’t self-correct. 493

Domain-Slot accuracy is the accuracy of all the la- 494

bels for each Domain-Slot pair in a turn. In the case 495

of the JoDeM model, labels of a Domain-Slot pair 496

includes the turn Domain, Dt, the slot gate for the 497

slot θg
s , the type prediction of the slot θv

s , the co- 498

ref classification of the slot θc
s, and all the index of 499

span detection of the slot P start,u
s ,P end,u

s ,P start,s
s , 500

and P end,s
s . There are thirty Domain-Slot pairs in 501

total. It’s apparent that JA is a much demanding 502
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criterion to achieve and is also the most crucial503

metric to evaluate a dialogue state tracking system.504

We make a thorough comparison over our model505

with the following state-of-the-art models from506

both schemes including TRADE (Wu et al., 2019),507

DS-DST (Zhang et al., 2019), IL-DST (Zhang508

et al., 2021), SUMBT (Lee et al., 2019a), PIN509

(Chen et al., 2020b), SOM-DST (Kim et al., 2019),510

COMER (Ren et al., 2019),DSTQA (Zhou and511

Small, 2019b), NA-DST (Le et al., 2020), TEN512

(Chen et al., 2020a), ReDST (Liao et al., 2020),513

ReInf (Liao et al., 2021), CSFN-DST (Zhu et al.,514

2020a), SAVN (Wang et al., 2020b), TripPy (Heck515

et al., 2020), SimpleTod (Hosseini-Asl et al., 2020),516

and STAR (Ye et al., 2021).517

The first two columns of Table 1 are the results518

of standard metrics. The turn-by-turn schematic519

DST models have shown significant performance520

improvement over the dialog-history scheme in521

both Joint accuracy and Domain-Slot accuracy. By522

enhancing the accuracy at the turn level, turn-by-523

turn schematic DST models are able to gain a much524

higher joint accuracy at the end. Our model, the525

JoDeM DST model, despite having a Domain-Slot526

accuracy among the best, has achieve a state-of-the-527

art performance boost on the joint accuracy metric.528

This indicates that our model has a high robustness529

against the avalanche phenomenon, which resulted530

in a better overall performance.531

Figure 3: The correlation of joint accuracy and
avalanche coefficient of various DST systems

Customized evaluation is designed to better eval-532

uate and compare the robustness of different DST533

systems against the avalanche phenomenon. For534

quantification, we introduce a novel avalanche co-535

efficient, α, which is calculated as α =
l̄
√
p̄j
¯pds

, where536

l̄, p̄j and p̄ds are the mean length of dialogues, Joint537

accuracy and Domain-Slot accuracy respectively.538

Model J Acc D-S Acc A Coeff
TRADE 49.2 96.94 0.932
DS-DST 55.2 97.67 0.941
IL-DST 58.3 98.50 0.940
SUMBT 52.6 91.02 1.0023
PIN 54.8 97.13 0.945
SOM-DST 55.0 97.93 0.938
COMER 50.5 95.48 0.950
DSTQA 52.1 97.15 0.938
NA-DST 51.7 95.42 0.954
TEN 47.3 94.93 0.947
ReDST 64.0 98.36 0.954
ReInf 59.5 98.21 0.945
CSFN-DST 54.8 97.39 0.942
SAVN 57.6 97.86 0.944
TripPy 63.2 98.63 0.949
SimpleTod 52.0 97.60 0.933
STAR 58.4 97.95 0.945
JoDeM 74.9 98.07 0.979

Table 1: Joint accuracy, slot accuracy and avalanche
coefficient on the test sets of MultiWOZ2.3.

With fixed dialogues, the avalanche coefficient is 539

model relevant only, which means it is an intrinsic 540

parameter to DST systems. 541

From the definition, we deduce that higher the 542

avalanche coefficient, the less a model suffers from 543

the avalanche phenomenon. The avalanche coef- 544

ficient of a DST model equals 1 when the model 545

doesn’t suffer from the avalanche phenomenon. As 546

shown in Figure 3, despite the poor joint accuracy 547

performance, dialogue history scheme based mod- 548

els has an avalanche coefficient higher than 1. Our 549

model, among with other turn-by-turn schematic 550

DST models, has an avalanche coefficient lower 551

than 1, but way closer to 1 than the current state- 552

of-the-art models, resulting in a much better over- 553

all Joint accuracy performance. This proves that 554

addressing the avalanche is crucial for obtaining 555

higher Joint accuracy in DST models. 556

4.4 Component Analysis 557

In order to dig deeper into the black box of the Jo- 558

DeM model, we carry out detailed analysis to show 559

the sufficiency and necessity of different compo- 560

nents in the JoDeM model and how our design is 561

aligned with our intuition. 562

To examine the Domain Update component, 563

we conduct two sets of control experiments with 564

unique variation on the original Domain Update 565
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Original Training Testing
JoDeM with γ = E with γ = E

97.75 91.93 73.94

Table 2: Domain Accuracy Analysis with Different Set-
tings of the JoDeM Model.

Original Variation Variation
JoDeM One Two
74.9 67.3 41.3

Table 3: Joint accuracy comparison on the JoDeM
model with different usage setting of the multi-head
attention mechanism

component.566

Variation one: We set the diagonal coefficient567

matrix in 2 to γ = E during the training process.568

This setting means that the component learns to569

obtain the turn domain without utilizing any last570

turn information.571

Variation two: Similarly but different from572

the variation one, we set the diagonal coefficient573

matrix in 2 to γ = E only during the testing pro-574

cess. This setting means that the model is trained575

given the last turn domain but being denied that576

information while performing on the test set.577

The results from the original JoDeM model and578

the two variation are presented in Table 2. The met-579

ric we investigate is domain accuracy, which is the580

accuracy of the prediction of the turn domain. As581

you can see, the first column, which is the original582

JoDeM model, has the highest domain accuracy.583

The second column corresponds to variation one,584

which is the one with γ = E during training pro-585

cess. We can see that although a model can predict586

the turn domain solely using the turn utterance587

information, but the performance is sub-par com-588

pared to the one with last turn domain. The third589

column is the one with γ = E during testing only,590

whose decline of the domain accuracy is massive.591

The significance of this set of control experiment592

is to demonstrate that the last turn domain plays a593

key role or is relied heavily in the prediction of the594

turn domain.595

Next, we focus on the question which is the pur-596

pose of the extra multi-head attention layer before597

applying the slot gate, type prediction, span de-598

tection and co-ref classification components. The599

intuition behind utilizing multi-head attention layer600

between user utterance embedding and the entire601

dialogue embedding is that any update from the602

dialogue state is based on the consent of user. For 603

example, the system may recommend a piece of 604

information about a restaurant, but whether that 605

information should be inserted into the dialogue 606

state is up to whether the user takes the advice. To 607

fairly evaluate, we train two control JoDeM models 608

under two variation respectively. The metric we 609

investigate is the joint accuracy. 610

Variation one: Instead of attending the user 611

utterance embedding to the entire turn utterance 612

embedding, we apply two multi-head self-attention 613

layers on user and system utterance separately. The 614

purpose of this variation is to examine and explore 615

exactly what kind of attended relationship is the 616

crux to dialogue state tracking. 617

Variation two: We discard the multi-head at- 618

tention layer entirely, the input sequence for the 619

slot gate, type prediction, span detection and co-ref 620

classification components is the direct embedding 621

of the pre-trained BERT. The goal of this variation 622

is to examine the necessity of applying attention 623

mechanism in the first place. 624

The results are shown in Table 3. Apparently, 625

applying an additional attention layer is not only 626

necessary but also crucial for the performance for 627

dialogue state tracking. This observation is consis- 628

tent with respect to other previous analytical work 629

on dialogue state tracking. Furthermore, apply- 630

ing a multi-head cross-attention layer has the edge 631

over a self-attention layer. This indicates that learn- 632

ing the relationship between the user utterance and 633

the whole utterance is important in dialogue state 634

tracking, which aligns with our intuition and the 635

interactive nature of dialogue itself. 636

5 Conclusion 637

We proposed a novel, robust DST model Jo- 638

DeM to address the rarely discussed problem, the 639

Avalanche phenomenon. We showed that the trend- 640

ing topnotch DST systems all suffer from the 641

Avalanche phenomenon with quantitative results 642

and evidence. By multiple control experiments, 643

we demonstrated how the overall structure and 644

different techniques served the performance and 645

robustness of the JoDeM model. We achieved a 646

state-of-the-art performance on Joint accuracy and 647

the criterion we design for measuring the impact 648

of the Avalanche phenomenon. Finally, through 649

the success of JoDeM, we show that the Avalanche 650

phenomenon is worth solving and that there is more 651

potential in this perspective for the DST task. 652
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A Appendix:Example Study 843

To inspect the actual effect the JoDeM model have 844

on the update prediction of dialogue states, we 845

provide two examples to demonstrate the strength 846

of the JoDeM model. 847

A.1 Example One 848

The first example is presented in Figure 4. It not 849

only serves as a demonstration of the actual oper- 850

ation of JoDeM, but also can show the robustness 851

of the joint decision making technique. First, the 852

domain of the turn is obtained, which is Hotel. Af- 853

ter domain is specified, the updating procedure will 854

strictly be limited in the domain. As shown in the 855

figure, after the domain is obtained, the focus shifts 856

to slot information. According to the Slot Gate, 857

slots Price range, Name, Area is altered from the 858

context. After that, the value of the slot is extracted 859

from the utterance according to the Type Prediction 860

and Span Detection. As you can see, although Slot 861

gate and Type Prediction made a false judgment 862

on Area, it didn’t lead to a wrongful update. The 863
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Figure 4: Example on Robustness of Joint Decision
Making

reason for that is that the corresponding Span De-864

tection detected that the starting and ending index865

are appointed to the [CLS] token, which means no866

information is detected. Only when all the compo-867

nents have made wrongful decision will they result868

in a wrongful update, which is the reason why Joint869

Decision Making is a robust way to extract infor-870

mation in a DST system.871

A.2 Example Two872

The second example is presented in Figure 5. It873

shows that the JoDeM model can self-correct to a874

certain extend and why too many supplementary875

labels might be problematic. We focus on the Des-876

tination slot in the Train domain. As shown in877

the figure, the value of Destination is incorrect in878

the predicted last turn dialogue state. But it was879

rectified in this turn. If the predicted last turn di-880

alogue state was correct, the correct operation at881

this turn is that Slot gate wouldn’t have predicted882

the altering of the slot, which is aligned with the883

supplementary labels we have tagged. Therefore884

it would appear that the JoDeM model didn’t get885

all the predictions right, but it enhanced the perfor-886

mance at the end. This ability of the JoDeM model887

takes credit from the trick we applied during the888

training process, which is setting the predicted val-889

ues to the GoldenLabel when DSt {Dt, s} = v.890

Had the system follow the operation of the correct891

labels, it wouldn’t be able to right the wrongs from892

the past turns.893

B Appendix:Responsible NLP Research894

CheckList895

B.1 Limitations and Risks896

Although our work is evaluate on a public and897

high quality dataset, as we summarized in the ab-898

Figure 5: Example on self-correcting of JoDeM

stract and introduction, the dialogue state tracking 899

task in real world application is far more compli- 900

cated. Therefore there is both limitation and risks 901

on whether our model can perform well in applica- 902

tion. 903

B.2 Use of scientific artifacts 904

The only scientific artifact our work applied is the 905

dataset MultiWoz2.3 which is specifically designed 906

for dialogue state tracking and publicly accessible. 907

The content of the dataset doesn’t contain any infor- 908

mation that names or uniquely identifies individual 909

people or offensive content.The dataset is about 910

information regarding assorted places in Britain. 911

The proportion of train/dev/test set is 8/1/1. 912

B.3 Computational Experiments 913

In our experiment, 8 GPU is used to train our 914

model, which has 222M parameters. One train- 915

ing epoch takes 21 minutes. Any setting of hy- 916

perparameter, including the existing package of 917

pretrained language bert model, is presented in 918

the experiment section. Our result, as well as the 919

compared result from other works, is the mean of 920

multiple independent identically distributed tests. 921
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