
Inverse Language Modeling towards Robust and Grounded LLMs

Davide Gabrielli1, Simone Sestito1, Iacopo Masi1

1Sapienza University of Rome
gabrielli.d@di.uniroma1.it, sestito@di.uniroma1.it, masi@di.uniroma1.it

Abstract

Interpretability and robustness remain major challenges for
modern Large Language Models (LLMs), especially in set-
tings where conventional evaluation or auditing tools are lim-
ited. To address this, we propose Inverse Language Mod-
eling (ILM), a unified training framework that jointly en-
hances robustness to adversarial perturbations and enables a
novel form of gradient-based interpretability. Rather than re-
constructing exact input prompts, ILM encourages LLMs to
develop gradient-aligned internal representations that allow
the model to approximate plausible input patterns underlying
a given output. This approximate inversion provides a new
mechanism for analyzing model behavior, identifying poten-
tial triggers for unsafe generations, and providing a diagnos-
tic signal that may support future auditing workflows. Our re-
sults show that ILM can simultaneously improve robustness
and produce meaningful inversion signals, laying a founda-
tion for LLMs that are not only more resilient but also more
transparent and analyzable.

Code — https://github.com/davegabe/pag-llm/

Introduction
Large Language Models (LLMs) excel at natural language
tasks and reasoning. Today, a single foundation model can
handle a wide range of NLP tasks. However, LLMs are still
prone to hallucinations and remain sensitive to input vari-
ations, such as adversarial prompts. Recent work indicates
that even sensical perturbations (Zou et al. 2023; Melamed
et al. 2024) can trigger these issues, highlighting the poten-
tial for backdoors (Carlini et al. 2024). These risks become
particularly salient when LLMs are used in culturally diverse
communities, where ensuring consistent behavior with local
values and ethical expectations is essential.

These problems emphasize the need for adversarial train-
ing tools (AT) for LLMs. However, the literature on this
topic is not as dense as for deep classifiers, and yet the
security of LLMs to adversarial perturbations remains an
open challenge. Moreover, LLMs training is very costly, and
therefore applying AT could only worsen the issue. At the
same time, beyond robustness, there is a growing demand
for mechanisms that help interpret and control why a model

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustration of Inverse Language Modeling (ILM)
setup. Forward pass predicts next tokens, backward pass re-
constructs inputs from gradients.

x1 x2 x3

x2

x3

x4 x2 x3 x4

x1

x2

x3

Now Proposed
Autoregressive forward Autoregressive backward

p(x i |x1 , . . . , x i−1) p(x i−1 |∇x i−1 p(x i |x1 , . . . , x i−1))

produces certain responses, especially on ethically sensitive
or culturally situated topics.

Efficient solutions for AT for LLMs intercept a pressing
need (Xhonneux et al. 2024). In this work, we define ro-
bustness as reduced sensitivity to adversarially perturbed
prompts, and grounding as ensuring that LLMs “know what
they have been asked”, addressing evidence that they often
fail to represent their own knowledge faithfully (Melamed
et al. 2024; Bender et al. 2021).

In light of this, our objectives are twofold. The first cen-
ters on Robustness: we aim to study a new, fast, and effi-
cient adversarial training (AT) approach for LLMs, which
we call Inverse Language Modeling (ILM). ILM is inspired
by years of progress on robust classifiers and builds on
the principle that Perceptually Aligned Gradients (PAG) im-
ply robustness (Ganz, Kawar, and Elad 2023). While stan-
dard LLMs are trained in a forward-mode – where a trans-
former (Vaswani et al. 2017) predicts the continuation y of
a text prompt x under self-supervision1 – ILM extends this
paradigm in a backward direction (see Figure 1). Given an
output y (e.g., an answer), we investigate whether the LLM

1For clarity, we denote the text prompt as x, which corresponds
to the input token sequence x0, . . . ,xi−1, and the target sequence
y is the one-step left-shifted version of x.

can approximate the conditioning prompt x.
The second objective relates to Grounded LLMs and nat-

urally emerges from the first. By enabling inversion of an
output y, ILM provides a diagnostic signal that may sup-
port future auditing workflows. Rather than guaranteeing
exact prompt recovery, it offers a way to trace back poten-
tial prompt approximations that could have produced a ma-
licious or undesired output, thereby grounding the model’s
behavior in more transparent diagnostic evidence.

Importantly, ILM does not reverse the token sequence; it
recovers the input prompt by performing a gradient-based
alignment that is informed by both the output probabilities
of the model and the representations accumulated in each
layer during the forward pass.

Prior Work
Research on adversarial attacks against Large Language
Models (LLMs) has advanced significantly, particularly in
generating adversarial suffixes designed to bypass alignment
safeguards. Early techniques, such as HotFlip (Ebrahimi
et al. 2018) and Greedy Coordinate Gradient (GCG) (Zou
et al. 2023), focused on manipulating the input text or its
embedding gradients to induce undesirable behavior from
LLMs. GCG modifies token selections iteratively based on
gradient information. Subsequent enhancements, including
Probe Sampling (Zhao et al. 2024) and token similarity-
based heuristics (Li et al. 2024), have improved its effi-
ciency.

More recent methods include AutoDAN (Liu et al.
2024), which leverages genetic algorithms to produce flu-
ent and stealthy adversarial suffixes, and its successor Au-
toDAN Turbo (Liu et al. 2025), which coordinates multiple
LLMs for strategy development and attack evaluation. Ad-
vPrompter (Paulus et al. 2024) takes a different approach by
fine-tuning a model specifically to generate coherent adver-
sarial suffixes, allowing fast and automated jailbreaking.

On the defensive side, perplexity-based filtering (Alon
and Kamfonas 2023) has proven to be effective in identi-
fying adversarial suffixes by exploiting their typically high
perplexity. However, newer attacks are designed to bypass
such detection mechanisms by optimizing fluency and se-
mantic plausibility. In addition, work on language model in-
version (Morris et al. 2023) explores the recovery of origi-
nal prompts from output probabilities, similar to reconstruc-
tion techniques in computer vision. These findings have in-
formed strategies for generating adversarial prompts using
only output distributions.

Unlike prior work focused on suffix generation or lan-
guage inversion as an offensive tool, our research seeks to
understand and mitigate these vulnerabilities. In particular,
we study “evil twin” prompts as defined in Melamed et al.
(2024); Rakotonirina et al. (2024). Given a text prompt x
and the completion, y, we performed an optimization so that
given y, we find a new nonsensical x⋆ – the “evil twin”
– such that the loss L(x⋆,y;θ) ≪ L(x,y;θ), where L is
the next-token prediction loss of the LLM and θ are LLM’s
parameters. These x⋆ are syntactically implausible out-of-
distribution inputs that nevertheless lead to the same output,

as illustrated in Table 1. Despite producing identical con-
tinuations, x and x⋆ induce notably different entropy dis-
tributions. These prompts are also fragile – small changes
typically break the adversarial effect, highlighting a key vul-
nerability in LLM robustness and alignment.

To handle evil twin prompts, we propose Inverse Lan-
guage Modeling (ILM), a novel training framework that im-
proves LLM robustness. ILM enables both forward mod-
eling and partial inversion, encouraging the model to not
only generate fluent output but also remain sensitive to input
semantics.

Method
Preliminary Study on PAG on Text Classification
In this preliminary experiment, we investigate the applica-
tion of Perceptually Aligned Gradients (PAG) (Ganz, Kawar,
and Elad 2023) to sentence classification using hidden state
representations from the DistilBERT language model (Sanh
et al. 2019a). While PAG has been primarily explored in the
context of image classification, we adapt the methodology
to the hidden state space of a transformer model to explore
its effects on robustness and interpretability in NLP tasks.
The core idea of PAG is to encourage gradients to align with
semantically meaningful directions, and we hypothesize that
this can lead to more robust and interpretable text represen-
tations as well.

To prove our point, we ran a proof-of-concept ex-
periment using a classifier trained on top of the hidden
state associated with the [CLS] token, adopting the
distilbert-base-multilingual-cased (Sanh
et al. 2019b), on Amazon Review Multi dataset (Keung
et al. 2020). We considered 12 classes as the combination
of some languages (English, German, Spanish, and French)
and some review ratings (1, 3, and 5 stars).
PAG Application. To apply PAG, we modify the stan-
dard cross-entropy loss function with a regularization term
that encourages alignment between the input gradient and a
“proxy” ground-truth gradient. The modified loss function
for the classifier built on top of the frozen DistilBERT back-
bone is:

L = LCE(fθ(x), y) + λ LPAG(x) where

LPAG(x) =
1

C

C∑
y=1

1−
∇hfθ(x)

⊤
y g(x, y)

∥∇hfθ(x)y∥ ∥g(x, y)∥
(1)

where:
• x is the input sentence,
• y is the true class label,
• fθ(x) is the classifier that takes the DistilBERT hidden

state (h) as input and predicts the class,
• LCE is the cross-entropy loss,
• λ is a hyperparameter controlling the strength of the PAG

regularization,
• C is the number of classes,
• ∇hfθ(x)y is the gradient of the classifier’s output for

class y with respect to the hidden state h,

Input Output y Loss

x : Stevens recorded and produced the album at multiple locations in the United 5.3642
x⋆: Zo Certified Cities (. broadcastquartered Fitness Academy thirteen 5.1302

x : After the introduction of the Majors , The British Army was divided 11.2146
x⋆: REQU Apart British received reformsMilitaryestic Division The 7.1899

x : The founding director , Peggy Loar , left the University of California 7.2669
x⋆: tested UberERIC definitionCalifornia sustainability RutgersOL Jensen regarding 6.4402

x : Ruiz notes that writing also has the power to change the world 5.9135
x⋆: Report Global feminism agenda Representatives tell Sacredixties Trying 4.6041

Table 1: Original inputs x and adversarial examples x⋆ generated using the GCG method for the SmolLM-360M model. The
table shows how each original input and its corresponding adversarial example result in the same output, along with the loss
values calculated for the output token IDs. These examples show that LLMs can be manipulated into assigning lower loss to
nonsensical prompts than to the original, meaningful input – highlighting a vulnerability that ILM is designed to address.

attack→ APGD Square FGSM
Croce and Hein (2020) Croce and Hein (2020) Goodfellow, Shlens, and Szegedy (2015)

ε α
g(x) ↓ 1e-3 0.5 5e-3 1e-2

Baseline 36.5% 31.2% 36.3% 27.3% 8.9%
Identity 28.3% 25.0% 27.2% 25.7% 8.0%
PAG 48.1% 45.0% 49.3% 43.5% 25.7%

Table 2: Robustness of classifier models with PAG variants
under APGD, Square, and FGSM attacks. Higher percent-
ages indicate stronger robustness.

• g(x, y) is the “proxy” ground-truth gradient for y.
“Proxy” Ground-Truth Gradient. We define the “proxy”
ground-truth gradient (PAG variant) as the difference be-
tween the hidden state of the input sentence hx and the hid-
den state of a randomly sampled sentence uy from the same
class y:

g(x, y) = uy − hx. (2)
This encourages the model to learn hidden state represen-

tations where the gradient points in the direction of other
examples from the same class.

Another variant for this g(·) function, named Identity,
has been tested and compared. This one forced the model
to reconstruct the input via the received gradients as:

g(x, y) = x. (3)
The baseline is the model trained with the same architec-

ture and hyperparameters but λ = 0, to exclude LPAG.
Evaluation. According to the results in Table 2, the
strongest model in robustness is the one trained with the
full PAG loss with Equation 2, which forces the model to
make the gradients on the input point towards the direction
of the predicted class. These models have been attacked by
APGD, Square (Croce and Hein 2020), and FGSM (Good-
fellow, Shlens, and Szegedy 2015).

Inverse Language Modeling
Our procedure takes inspiration from robust classifiers that
have Perceptually Aligned Gradients (PAG) (Ganz, Kawar,
and Elad 2023; Mirza et al. 2024) over the input space.

ILM is non-iterative and just requires double backpropaga-
tion (Drucker and Le Cun 1992), which can be easily imple-
mented with current autograd tools.

ILM performs the following: instead of training the LLM
to only maximize p(y|x), we also invert it and from the out-
put y, we aim to reconstruct the input x. This procedure is
not simply a mere double forward pass with the original text
and its reverse. Instead, we first impose a loss for p(y|x),
yet instead of updating the weights, we also receive gradi-
ents over input tokens ∇xL(x,y;θ) requiring them to pre-
dict some tokens in x, depending on the exact model vari-
ant among the ones discussed later. This focus on bidirec-
tional understanding during pretraining is key to improving
the model’s overall language comprehension.

From the gradients flow outlined in Figure 2, it is possible
to see that the influence of a single token affects only the
future hidden states in the forward pass, while it influences
every other token during the backward pass. This means that
in the gradients received on the input tokens are affected by
the entire sequence.

We will use ILM at training time, while at test time we
exploit the GCG algorithm to find, given an original text
prompt x and the completion y, a new nonsensical x⋆ such
that the loss L(x⋆,y;θ)≪ L(x,y;θ), where L is the next-
token prediction loss of the LLM and θ are LLM’s param-
eters. We prove there exists a nonsensical prompt x⋆ that
“connects” better to y (lower loss) than the natural x.

The standard formulation of Perceptually Aligned Gra-
dients (PAG), as typically applied in image classification –
Equation 1 – is not directly transferable to Large Language
Models (LLMs). This is primarily due to the fundamental
differences in the nature of the input data. Images are repre-
sented as tensors with continuous values, inherently contain-
ing class-discriminative information within a single sample.
In contrast, sequence data processed by LLMs relies on the
entire sequence context for prediction, not isolated elements.
Furthermore, the input tokens are initially represented as
one-hot vectors, which do not encode semantic information.

Calculating gradients with respect to these input tokens
poses significant challenges:

y1

h2,1

h1,1

e1

y2

h2,2

h1,2

e2

y3

h2,3

h1,3

e3

y4

h2,4

h1,4

e4

Unchanged
Forward

Unchanged
Backward

Changed
Forward

Changed
Backward

Figure 2: Gradient influence diagram in an LLM changing
only token e3. In the forward pass, only future hidden states
are affected. In the backward pass, the change propagates to
every embedding token.

• Gradients with respect to individual input tokens lack the
crucial context of the entire sentence, analogous to a sin-
gle pixel being insufficient to determine an image’s class.

• The vast vocabulary size of LLMs (hundreds of thou-
sands of tokens) renders the class-iterative PAG loss
computationally infeasible due to the sheer number of
classes, exacerbating the entropy in the classification
task.

Consequently, our approach deviates from the standard
PAG for classifiers. We opt to focus solely on the gradients
with respect to the actual input tokens and, furthermore, we
intend to classify the actual tokens, as in Figure 1, rather than
employing the cosine distance for gradient direction, aiming
to leverage this for LLM inversion as well.

For this experiments, the architecture of our model is a
small decoder-only transformer, with Weight Tying (Press
and Wolf 2017; Inan, Khosravi, and Socher 2017) enabled,
with 3 hidden layers and an hidden layers vector size set to
640.

The dataset used is TinyStories (Eldan and Li 2023) with
a tokenizer trained from scratch using the standard Byte-Pair
Encoding (Gage 1994), in order to have a flexible vocabulary
size, to eventually have experiments of different complexi-
ties and entropy in the next token classification. Specifically,
we used a vocabulary of 2048 possible tokens. Also, the
dataset samples include an overlap of 25% between the orig-
inal sentences. This overlap increases variability in sentence
starts, providing the model with more diverse context pat-
terns and better approximating realistic sentence-completion
scenarios. The finally constructed dataset 2 has been up-
loaded to HuggingFace for reproducibility.

The backward prediction strategy shares a common logic
across all model variants, which can be formalized as fol-
lows. Given the cross-entropy loss between predicted tokens

2https://huggingface.co/datasets/DaveGabe/TinyStoriesV2
cleaned-voc2048-seq256-overlap25

x e Language Model
Forward pass

hL,N
LM

Head
logitsY

ytrue

𝐿

logitsX ∇e𝐿
LM

Head

𝐿

Language Model
Backpropagation

Figure 3: Parallelism between last hidden states and embed-
ding gradients: both can be mapped through LM head to to-
ken predictions.

and their ground truth, we compute the gradient with respect
to the embedding vectors. To handle different variants con-
sistently, we define a mapping ϕ(ei,∇eiLCE) that specifies
how the gradient is interpreted for classification. Then, the
output of ϕ(. . .) is normalized and used with the LM Head
weight matrix to get a probability distribution over the vo-
cabulary. The general backward prediction for any token can
then be written as:

LCE = CE(ytrue,ypred)

gi = LayerNorm(ϕ(ei,∇eiLCE))

zi = WLM head gi

ŷi = softmax(zi)

(4)

This formulation highlights a very nice parallelism be-
tween the forward and backward mode, which is summa-
rized in Figure 3: the gradients vector on the embeddings of
a specific token is used in the same way as the last hidden
state that will conduct to a prediction of the next token. In-
deed, replacing ∇eiLCE with the last hidden state will give
us exactly the standard forward pass of an LLM. This is pos-
sible because the dimensionality of the last hidden state and
the one of the embedding vector is the same.

The final loss used to train these models is obtained by
the addition of the inverse LM prediction loss, where we
observed λ = 2.0 to be a good hyperparameter:

L = LCE(ytrue,ypred)︸ ︷︷ ︸
Forward: from the input x, encode y

+ λ LCE(x, ŷ)︸ ︷︷ ︸
Backward: from y, decode back x

(5)

Model Variants
We evaluate four training strategies, each differing in how
gradients are used for inversion:
Baseline. The model is trained only with the standard for-
ward Cross-Entropy loss.
Identity. During training, the model is required to recon-
struct every input token directly from its corresponding gra-
dient:

p(xi | ∇eiLCE(fθ(x),y)), ∀i ∈ [1, N]. (6)

BERT-like. A subset of tokens is masked in the input se-
quence, and the model must predict them from the embed-
ding gradients – analogous to the BERT (Devlin et al. 2019)
training scheme, but applied in the backward pass.

Inv-First. Only the first token of the sentence is recon-
structed from its gradient, by predicting

p(x0 | ∇e0LCE(fθ([PAD] ∥x1:N),y)). (7)

Each strategy comes in two approaches, depending on the
implementation of the ϕ(. . .) function mentioned in Equa-
tion 4. When we consider gradients as directions, we clas-
sify on ei − ∇ei

LCE , thus by imposing ϕ(ei,∇ei
LCE) =

ei − ∇eiLCE . On the other hand, the case where we use
the gradients as pure values is simpler: ϕ(ei,∇eiLCE) =
∇eiLCE , discarding the input embedding value.

Experimental Evaluation
We evaluated the performance of these models from a
twofold perspective: their ability to invert a part of text,
given the continuation but not what comes before; their ro-
bustness against GCG attack. These aspects are equally im-
portant to develop robust and grounded LLMs.

Inversion Procedure
The evaluation relies on three complementary measures, all
tailored to the inverse generation setting. Validation loss and
validation accuracy are computed under the same conditions
as training, serving as baseline indicators of model fit and
predictive performance. In addition, we report Inverse LM
accuracy, which measures the ability of a model to recon-
struct a masked token xi from its gradients, given the re-
maining context. This provides a direct assessment of the
backward prediction mechanism.

Formally, for an input sequence x = (x1, . . . ,xN), the
i-th token is replaced with a placeholder, yielding x′ =
(<|pad|>,xi+1, . . . ,xN), with targets shifted as y′ =
(xi+1, . . . ,xN). The cross-entropy loss LCE(x

′,y′; θ) pro-
duces gradients with respect to the masked embedding ∇ei ,
which are transformed via the backward prediction rule
(Equation 4) into a distribution ŷi. Inverse LM accuracy
is then computed by comparing argmax ŷi against the
ground-truth token xi.

Inversion Evaluation
To assess inversion capabilities, we extend the task beyond
single-token recovery and instead invert multiple tokens au-
toregressively. The procedure follows a beam-search strat-
egy, as detailed in Algorithm 1, where candidate prefixes are
iteratively expanded and filtered by perplexity until a coher-
ent reconstruction emerges.

In the evaluation process, we considered only the combi-
nation of initialization strategy and model variant used in the
specific training process. This means that the Identity
has the unknown token initialized using the simple bigram,
while other variants have it set to <|pad|>, since they re-
flect the same initialization strategy used during training. Of
course, we cannot initialize the Identity model during
inversion with the real token, as in training, because we do
not know it yet. However, the best approximation we can do
is to use a bigram model, which is pretty simple but also
powerful to help the model invert better than starting from a

Algorithm 1: Autoregressive Inversion Evaluation with
Beam Search
Require: Input sample x of length n, beam size b, split po-

sition k
Ensure: Inverted prefix xinv

1: xp ← x0:k ▷ Original prefix (hidden)
2: xs ← xk:n ▷ Visible suffix
3: X← {xs} ▷ Initialize beam set with suffix only
4: while inverted prefix not sufficiently long do
5: for each sequence x′ ∈ X do
6: Compute top-b tokens for the previous position
7: Extend x′ with each candidate token
8: end for
9: X← top-b sequences with lowest perplexity

10: end while
11: return xinv ← argminx′∈X Perplexity(x′)

totally random token or using a fixed <|pad|> because it
has never observed it during training.

In order to make this final evaluation on inversion as com-
plete as possible, we introduced several new metrics: they
allow us to better comprehend the obtained results and have
a better understanding of the model training strategies ap-
plied. When we refer to a third-party model, we are using
meta-llama/Llama-3.2-1B. 3

• Rec (token recall) refers to the fraction of unique
tokens from the reference sequence that were correctly
generated by the model. A higher recall value means the
model captured more of the words from the reference

• Prec (token precision) refers to the fraction of
unique tokens in the generated sequence that are present
in the reference. A higher precision value indicates the
model didn’t introduce many irrelevant or “hallucinated”
words

• F1 (token f1) refers to the harmonic mean of preci-
sion and recall. It provides a single score that balances
the trade-off between the two. A high F1 score indicates
a good balance of both generating relevant tokens and
avoiding irrelevant ones

• Acc (positional accuracy) refers to the exact to-
ken match at each position in the generated sequence
compared to the reference: unlike the token-based met-
rics above, this one is sensitive to token order

• OPP (original prefix perplexity) measures
the perplexity of the original prefix text alone, using the
third-party model. This should serve as an indication of
“how natural” the prefix text is. This metric will be the
same for all models, since it does not depend on the
model, but only on the data to be predicted.

• FPP (full predicted perplexity) measures the
perplexity of the predicted prefix text, concatenated with
the suffix, using the third-party model. This should serve
as an indication of “how grounded” the generated prefix
is with the suffix
3https://huggingface.co/meta-llama/Llama-3.2-1B

Grad. Rec ↑ Prec ↑ F1 ↑ Acc ↑
Baseline 20.9% 18.8% 19.7% 2.4%

Inv-First 11.3% 10.1% 10.7% 1.7%
Bert-like Val. 2.9% 2.7% 2.8% 0.3%
Identity 0.7% 0.7% 0.7% 0.1%

Inv-First 13.3% 12.0% 12.6% 2.4%
Bert-like Dir. 0.1% 0.1% 0.1% 0.1%
Identity 22.5% 20.2% 21.2% 2.5%

Table 3: Inversion evaluation on token-level metrics (Recall,
Precision, F1, Accuracy). Higher values mean better recov-
ery of original tokens.

Grad. OPP FPP ↓ PPP ↓ SS ↑
Baseline 37.83 8.34 112.82 0.28

Inv-First 37.83 10.21 1576.23 0.25
Bert-like Val. 37.83 11.54 5501.86 0.17
Identity 37.83 13.88 14658.58 0.12

Inv-First 37.83 9.77 1012.80 0.30
Bert-like Dir. 37.83 11.05 563.26 0.11
Identity 37.83 8.34 106.31 0.30

Table 4: Sentence-level inversion metrics: OPP (original pre-
fix perplexity), PPP (predicted prefix), FPP (full predicted),
SS (semantic similarity).

• PPP (predicted prefix perplexity) measures
the perplexity of the predicted prefix text alone, using the
third-party model. This should serve as an indication of
“how natural” the generated text is

• SS (semantic similarity) refers to the semantic
meaning of the generated text compared to the ground-
truth, regardless of the specific words used. It computes
the cosine similarity between the embedding of the two
sentences, obtained by an external model 4

Note that FPP shows much less variance between the
tested models, because it computes the perplexity of the en-
tire sentence, which is the concatenation of the predicted
prefix and the given suffix from the dataset. Since the lat-
ter is much longer than the former, the values of FPP tend to
be pretty low. However, we are interested in the difference
between the models. Also, it is clearly visible that PPP is
one order of magnitude larger in the models that predict the
previous token using the gradient vector, without summing it
up first with the embedding of the input token they’re invert-
ing on, used as the initialization value. This clearly demon-
strates the intuition for which using gradients as directions
would have made the model hold much better.

Robustness Against GCG
We evaluate robustness using the success rate of Greedy
Coordinate Gradient (GCG) attacks (Zou et al. 2023). This

4https://huggingface.co/sentence-transformers/all-MiniLM-
L6-v2

Grad. GCG GCG Average Steps
Success Rate ↓ (mean ± stddev)

Baseline 95.9% 277 ± 148

Identity 88.1% 274 ± 145
Bert-like Val. 0.8% 249 ± 148
Inv-First 85.0% 320 ± 134

Identity 82.8% 284 ± 141
Bert-like Dir. 85.5% 287 ± 143
Inv-First 89.3% 313 ± 134

Table 5: Success rates of GCG adversarial prompts against
ILM variants. Lower values indicate stronger robustness.

benchmark aligns naturally with the objectives of our train-
ing procedure: our ultimate goal is to produce LLMs that are
more grounded, ensuring that their responses are faithful to
and informed by the prompts they receive. The procedure to
evaluate the models follows these rules, which are repeated
for 30% randomly picked samples from the test set, but con-
sistently chosen for all the model variants.

Algorithm 2: Single-Sentence GCG Attack

Require: Expected continuation string y to be attacked,
length of the attack prefix n, number of iterations T

Ensure: Best attack prefix x⋆ with loss LGCG
1: x⋆ ← random one-hot tokens matrix of size |V | × n
2: step← 0 ▷ Iteration counter
3: d← 0 ▷ Loss non-decrease counter
4: Lold ←∞ ▷ Last loss found
5: while step < T and d < 10 do
6: Compute a batch of candidate prefixes X running

one step of GCG
7: x⋆ ← arg minx∈XLCE(x,y,θ)
8: LGCG ← LCE(x

⋆,y,θ) ▷ Take the min loss so far
9: if LGCG < Lold then

10: Lold ← LGCG
11: d← 0
12: else
13: d← d+ 1
14: end if
15: step← step+ 1
16: end while
17: return LGCG

From the results observable in Table 5, we can notice that
the majority of the variants have an improvement in robust-
ness against GCG attacks. Looking at the specific variant
that was flagged as the best one in the inversion task in the
previous chapter, which is Identity (grad. direction), it al-
lowed a reduction in the success rate of more than 13%.
This improvement can be attributed to the model’s abil-
ity to better condition the continuation of a sentence with
the actual prompt it was given as input (also referred to as
“grounded”), which may lead to a more robust model. How-
ever, there is the specific case of Bert-like (grad. value),
which corresponds to the model variant that imitates BERT

in the backward pass, masking some tokens and letting the
model predict them directly, classifying on the received gra-
dient on the PAD token. This model scores an incredibly low
GCG success rate, making us suppose that it may actually
strongly go in the direction of adversarially robust models,
at least on the gradient-based white-box GCG attack. Given
the huge difference between the baseline and this variant,
the experiments have been repeated from the initial training
phase, but they gave us the same results as in the first run
of the pipeline. For sure, this aspect will require a deeper
investigation.

50 100 150 200 250 300 350 400 450 500
GCG Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Inv-First (val)
Inv-First (dir)
Bert-like (val)
Bert-like (dir)
Identity (val)
Identity (dir)
Baseline

Figure 4: GCG Success Rate varying according to the num-
ber of iterations performed.

In our experiments, we also studied the correlation be-
tween the number of GCG algorithm maximum allowed it-
erations and the success rate of the attack, always computed
as the number of tokens that match between the LLM’s re-
sponses to the original input x and the attack input x′, while
keeping all other hyperparameters, like the search window
width, unaltered. Interestingly, in Figure 4 some lines actu-
ally cross each other when increasing the number of GCG it-
erations: this may indicate that some variants are more effec-
tive at different values of the GCG iterations. For instance,
Inv-First (grad. direction), represented as the orange line, is
better than Bert-like (grad. direction), represented as the red
line, when the number of allowed iterations is pretty low;
however, at the end of the plot, at the maximum number of
iterations tested, their effectiveness is the opposite. That be-
ing said, this phenomenon is not dramatic and makes only
slight changes in the final results reported in the previously
discussed table.

To have a better understanding of the GCG results listed in
the previous table, we measured the following other metrics,
always considering the subset of successful GCG attacks:

• Original CE loss. The cross-entropy loss on the unper-
turbed input, LCE(fθ(x0, . . . ,xN),y0, . . . ,yM) where
lower values indicate that y is a natural continuation of
x.

• Attack CE loss. The cross-entropy loss on the adversar-
ially perturbed input, LCE(fθ(x

′
0, . . . ,x

′
N),y0, . . . ,yM)

where higher values are desirable, since a low loss would

Grad. Original X Attack X’ Delta KL
CE-loss ↓ CE-loss ↓ CE-loss ↓ Divergence ↑

Baseline 13.28 10.97 2.31 2.19

Identity 12.77 11.21 1.56 2.23
Bert-like Val. 13.26 10.25 3.01 54.19
Inv-First 11.09 9.72 1.37 2.44

Identity 12.58 11.12 1.46 2.47
Bert-like Dir. 11.49 10.34 1.15 2.23
Inv-First 11.21 9.81 1.40 2.44

Table 6: Evaluation of the best attack input found using
GCG.

mean that y also appears natural given x′, which is pre-
cisely the vulnerability GCG exploits.

• KL divergence. The divergence between the output
distributions of the original and perturbed inputs:
KL

(
fθ(x0, . . . ,xN), fθ(x

′
0, . . . ,x

′
N)

)
. This measures

how much the perturbation alters the probability distri-
butions of the model’s predictions.

In all previous mathematical formulation, note that
fθ(x0, ...,xN) is the function which runs the LLM under
attack and returns the logits that correspond to the predic-
tion of the y output, not the ones that predict parts of the
input prompt x itself, as it would be wrong to consider for
our analysis.

From the metrics in Table 6, we observe that robust vari-
ants, such as Identity (grad. direction), not only exhibit a
substantially lower attack success rate (ASR) compared to
the baseline, but also display a smaller increase in Cross-
Entropy loss when the attack succeeds. Recall that this delta
quantifies the extent to which the model is “fooled” by the
attack, defined as the difference between the loss on the orig-
inal, human-readable input and the loss on the adversarially
generated sequence. A higher delta indicates greater suscep-
tibility, as the model interprets the attack sequence as be-
ing more strongly aligned with the target continuation y. Fi-
nally, the KL-divergence allows us to observe how much
the output distributions returned by the LLM differ between
x and x′. The more different they are, the better the model
can discriminate between them, recognizing that they are ac-
tually two distinct and different pieces of input.

To have a complete evaluation, we adopt a similar ap-
proach to the one we used during inversion: using a third-
party model to compute some other statistics lets us abstract
away from the biases in our LLMs. Here, since the perplex-
ity of the attack prefix is computed with a third-party inde-
pendent model, it can easily return the real naturalness of
the generated prefix, instead of being influenced by the at-
tack itself and wrongly reporting that it will be even more
natural than the human prefix. Remember that we are con-
sidering only the successful attacks, ignoring the ones that
have failed, since they are not useful to understand the qual-
ity of the attacks. Also, because of that, the results involving
the bert-like variant using gradients as values will have
a much smaller number of samples that participate in these
metrics.

Grad. Original X Attack X’ Semantic
Perplexity Perplexity ↓ Similarity ↑

Baseline 44.14 17344.04 0.13

Identity 43.98 8322.25 0.18
Bert-like Val. 40.37 11817.21 0.11
Inv-First 44.81 9431.09 0.16

Identity 44.71 10929.21 0.15
Bert-like Dir. 44.74 10611.09 0.13
Inv-First 43.50 12344.85 0.13

Table 7: Evaluation of the attack input prefix against the
original input prefix for successful GCG attacks.

Grad. Perplexity ↓ CE Loss ↓
Baseline 4.83 1.58

Identity 5.07 1.63
Bert-like Val. 5.79 1.76
Inv-First 8.41 2.13

Identity 5.08 1.62
Bert-like Dir. 5.42 1.69
Inv-First 6.82 1.92

Table 8: Quantitative forward mode evaluation.

Forward Mode Evaluation
Finally, we tested that these models are still functioning
properly in forward mode, without experiencing perfor-
mance degradation. Checking out the perplexity during
training and validation, it has been observed that the per-
formance of the custom models with the regularization term
on the gradients∇eLCE does not penalize the model’s ability
to speak fluently during the standard usage in forward mode.
This outcome is noteworthy, as adversarial training in liter-
ature often necessitates additional parameters or extended
training to achieve comparable forward-mode performance,
since part of the model’s capacity is effectively devoted to
satisfying the adversarial objective. In Table 8 we can ob-
serve that the worst model is Inv-First (grad. value). This
relatively high perplexity value is also confirmed in the qual-
itative examples in the tables below, where the sentences are
by far the ones that make less sense and seem more confused
and repetitive.

Conclusions and Future Work
In conclusion, this paper introduces Inverse Language Mod-
eling (ILM) as a novel framework designed to simultane-

Grad. Completion for “One day,”
Baseline a little boy named Tim wanted to travel to a far mountain. He asked his dad for a raft,

Identity a little girl named Lucy went to the park with her mom. Lucy liked to play on the swings
Bert-like Val. a little boy was walking in the park. He noticed a big, shiny object in the park.
Inv-First they pinch. They find gold. They take pictures of stars.

Identity a little girl named Amy was playing outside. She saw a big tree and thought it was a toy.
Bert-like Dir. a little girl named Lucy was playing in the garden. She saw a shiny ring on a branch.
Inv-First hey went to the beach with his mom. He saw something shiny and strange inside.

Table 9: Example completion for the given prompt, in for-
ward mode.

ously address two critical challenges in Large Language
Models: robustness and grounding. Our experiments demon-
strate ILM’s potential to enhance LLMs’ resilience against
input perturbations, a key step towards mitigating vulner-
abilities to adversarial attacks. Furthermore, ILM offers a
pathway to improved grounding, enabling LLMs to better
correlate their outputs with the input prompts and thereby
facilitating the identification of potentially problematic in-
put triggers. Crucially, this inversion ability opens the door
to examining which normative assumptions or ethical priors
the model implicitly relies on. For instance, when an LLM
answers a controversial or value-laden question, ILM allows
us to approximate the “implicit prompt” or internal fram-
ing that the model is using. This makes ILM a promising
tool not only for robustness but also for value transparency
– providing a lightweight way to inspect how an LLM in-
ternally justifies its answers, and opening a research path
toward value transparency that may eventually help commu-
nities detect misalignment with local ethical norms or social
expectations.

There are several promising avenues for future research.
While ILM is introduced within the context of pre-training,
an interesting direction would be to explore its application
in the fine-tuning stage. Specifically, one could investi-
gate how the principles of inverse modeling can be incorpo-
rated into the fine-tuning process to improve the robustness
and generalization of LLMs on downstream tasks. Addition-
ally, research could explore the potential benefits of com-
bining ILM with instruction tuning, to further align LLM
behavior with human preferences and instructions. Future
work should evaluate ILM on larger-scale LLMs, including
Llama-3.2-7B, and even bigger models, to rigorously assess
its scalability and effectiveness as model capacity increases.

Acknowledgements
This work was supported by projects PNRR MUR
PE0000013FAIR under the MUR National Recovery and
Resilience Plan funded by the European Union - NextGener-
ationEU and PRIN 2022 project 20227YET9B “AdVVent”
CUP code B53D23012830006. It was also partially sup-
ported by Sapienza research projects “Prebunking”, “Ada-
gio”, and “Risk and Resilience factors in disadvantaged
young people: a multi-method study in ecological and vir-
tual environments”. Computing was supported by CINECA
cluster under projects Ge-Di HP10CRPUVC, EHPC-DEV-
2025D06-096 and the Sapienza Computer Science Depart-
ment cluster.

Ethics and Impact Statement
The advancement of LLMs carries potential ethical implica-
tions, especially in the era of agents. Our investigation into
this phenomenon contributes to a better understanding of
how LLMs work and, thus, ultimately, to make them safer
and more predictable. We believe that the publication of our
research will promote a broader discussion on the respon-
sible development of LLMs and contribute to the develop-
ment of better defense mechanisms, as similar progress has
already been made in the field of deep classifiers.

References
Alon, G.; and Kamfonas, M. 2023. Detecting Language
Model Attacks with Perplexity. arXiv:2308.14132.
Bender, E. M.; Gebru, T.; McMillan-Major, A.; and
Shmitchell, S. 2021. On the dangers of stochastic parrots:
Can language models be too big? In ACM conference on
fairness, accountability, and transparency.
Carlini, N.; Jagielski, M.; Choquette-Choo, C. A.; Paleka,
D.; Pearce, W.; Anderson, H.; Terzis, A.; Thomas, K.; and
Tramèr, F. 2024. Poisoning web-scale training datasets is
practical. In IEEE Symposium on Security and Privacy (SP).
Croce, F.; and Hein, M. 2020. Reliable evaluation of adver-
sarial robustness with an ensemble of diverse parameter-free
attacks. In ICML.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Burstein, J.; Doran, C.; and
Solorio, T., eds., Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), 4171–4186. Minneapolis, Min-
nesota: Association for Computational Linguistics.
Drucker, H.; and Le Cun, Y. 1992. Improving generalization
performance using double backpropagation. IEEE Transac-
tions on Neural Networks, 3(6): 991–997.
Ebrahimi, J.; Rao, A.; Lowd, D.; and Dou, D. 2018. Hot-
Flip: White-Box Adversarial Examples for Text Classifica-
tion. arXiv:1712.06751.
Eldan, R.; and Li, Y. 2023. TinyStories: How Small Can
Language Models Be and Still Speak Coherent English?
arXiv:2305.07759.
Gage, P. 1994. A new algorithm for data compression. The
C Users Journal, 12(2): 23–38.
Ganz, R.; Kawar, B.; and Elad, M. 2023. Do Perceptually
Aligned Gradients Imply Robustness? In ICML.
Goodfellow, I.; Shlens, J.; and Szegedy, C. 2015. Explaining
and Harnessing Adversarial Examples. In ICLR.
Inan, H.; Khosravi, K.; and Socher, R. 2017. Tying Word
Vectors and Word Classifiers: A Loss Framework for Lan-
guage Modeling. In ICLR.
Keung, P.; Lu, Y.; Szarvas, G.; and Smith, N. A. 2020. The
Multilingual Amazon Reviews Corpus. In EMNLP.
Li, X.; Li, Z.; Li, Q.; Lee, B.; Cui, J.; and Hu, X.
2024. Faster-GCG: Efficient Discrete Optimization Jail-
break Attacks against Aligned Large Language Models.
arXiv:2410.15362.
Liu, X.; Li, P.; Suh, G. E.; Vorobeychik, Y.; Mao, Z.; Jha, S.;
McDaniel, P.; Sun, H.; Li, B.; and Xiao, C. 2025. AutoDAN-
Turbo: A Lifelong Agent for Strategy Self-Exploration to
Jailbreak LLMs. In The Thirteenth International Conference
on Learning Representations.
Liu, X.; Xu, N.; Chen, M.; and Xiao, C. 2024. AutoDAN:
Generating Stealthy Jailbreak Prompts on Aligned Large
Language Models. arXiv:2310.04451.

Melamed, R.; McCabe, L.; Wakhare, T.; Kim, Y.; Huang,
H. H.; and Boix-Adserà, E. 2024. Prompts have evil twins.
In EMNLP.
Mirza, M. H.; Briglia, M. R.; Beadini, S.; and Masi, I. 2024.
Shedding More Light on Robust Classifiers under the lens
of Energy-based Models. In ECCV.
Morris, J. X.; Zhao, W.; Chiu, J. T.; Shmatikov, V.; and Rush,
A. M. 2023. Language Model Inversion. arXiv:2311.13647.
Paulus, A.; Zharmagambetov, A.; Guo, C.; Amos, B.; and
Tian, Y. 2024. AdvPrompter: Fast Adaptive Adversarial
Prompting for LLMs. arXiv:2404.16873.
Press, O.; and Wolf, L. 2017. Using the Output Embedding
to Improve Language Models. In ACL.
Rakotonirina, N. C.; Kervadec, C.; Franzon, F.; and Ba-
roni, M. 2024. Evil twins are not that evil: Qualitative
insights into machine-generated prompts. arXiv preprint
arXiv:2412.08127.
Sanh, V.; Debut, L.; Chaumond, J.; and Wolf, T. 2019a. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter. In NeurIPS.
Sanh, V.; Debut, L.; Chaumond, J.; and Wolf, T. 2019b. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter. ArXiv, abs/1910.01108.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. NeurIPS, 30.
Xhonneux, S.; Sordoni, A.; Günnemann, S.; Gidel, G.; and
Schwinn, L. 2024. Efficient Adversarial Training in LLMs
with Continuous Attacks. In NeurIPS.
Zhao, Y.; Zheng, W.; Cai, T.; Do, X. L.; Kawaguchi, K.;
Goyal, A.; and Shieh, M. 2024. Accelerating Greedy Coor-
dinate Gradient and General Prompt Optimization via Probe
Sampling. arXiv:2403.01251.
Zou, A.; Wang, Z.; Carlini, N.; Nasr, M.; Kolter, J. Z.; and
Fredrikson, M. 2023. Universal and transferable adver-
sarial attacks on aligned language models. arXiv preprint
arXiv:2307.15043.

