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Abstract

Existing neural information retrieval (IR) models have often been studied in ho-
mogeneous and narrow settings, which has considerably limited insights into their
out-of-distribution (OOD) generalization capabilities. To address this, and to facili-
tate researchers to broadly evaluate the effectiveness of their models, we introduce
Benchmarking-IR (BEIR), a robust and heterogeneous evaluation benchmark for
information retrieval. We leverage a careful selection of 18 publicly available
datasets from diverse text retrieval tasks and domains and evaluate 10 state-of-the-
art retrieval systems including lexical, sparse, dense, late-interaction and re-ranking
architectures on the BEIR benchmark. Our results show BM25 is a robust baseline
and re-ranking and late-interaction based models on average achieve the best zero-
shot performances, however, at high computational costs. In contrast, dense and
sparse-retrieval models are computationally more efficient but often underperform
other approaches, highlighting the considerable room for improvement in their
generalization capabilities. We hope this framework allows us to better evaluate
and understand existing retrieval systems, and contributes to accelerating progress
towards more robust and generalizable systems in the future. BEIR is publicly
available at https://github.com/UKPLab/beir.

1 Introduction

Major natural language processing (NLP) problems rely on a practical and efficient retrieval com-
ponent as a first step to find relevant information. Challenging problems include open-domain
question-answering [8], claim-verification [58], duplicate question detection [77], and many more.
Traditionally, retrieval has been dominated by lexical approaches like TF-IDF or BM25 [53]. How-
ever, these approaches suffer from lexical gap [5] and are able to only retrieve documents containing
keywords present within the query. Further, lexical approaches treat queries and documents as
bag-of-words by not taking word ordering into consideration.

Recently, deep learning and in particular pre-trained Transformer models like BERT [12] have
become popular in information retrieval [75]. These neural retrieval systems can be used in many
fundamentally different ways to improve retrieval performance. We provide an brief overview of the
systems in Section 2.1. Many prior work train neural retrieval systems on large datasets like Natural
Questions (NQ) [32] (133k training examples) or MS MARCO [42] (533k training examples), which
both focus on passage retrieval given a question or short keyword-based query. In most prior work,
approaches are afterward evaluated on the same dataset, where significant performance gains over
lexical approaches like BM25 are demonstrated [48, 29, 43].

However, creating a large training corpus is often time-consuming and expensive and hence many
retrieval systems are applied in a zero-shot setup, with no available training data to train the system.
∗Contributions made prior to joining Amazon.
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Figure 1: An overview of the diverse tasks and datasets in BEIR benchmark.

So far, it is unclear how well existing trained neural models will perform for other text domains or
textual retrieval tasks. Even more important, it is unclear how well different approaches, like sparse
embeddings vs. dense embeddings, generalize to out-of-distribution data.

In this work, we present a novel robust and heterogeneous benchmark called BEIR (Benchmarking
IR), comprising of 18 retrieval datasets for comparison and evaluation of model generalization. Prior
retrieval benchmarks [17, 47] have issues of a comparatively narrow evaluation focusing either only
on a single task, like question-answering, or on a certain domain. In BEIR, we focus on Diversity, we
include nine different retrieval tasks: Fact checking, citation prediction, duplicate question retrieval,
argument retrieval, news retrieval, question answering, tweet retrieval, bio-medical IR, and entity
retrieval. Further, we include datasets from diverse text domains, datasets that cover broad topics (like
Wikipedia) and specialized topics (like COVID-19 publications), different text types (news articles vs.
Tweets), datasets of various sizes (3.6k - 15M documents), and datasets with different query lengths
(average query length between 3 and 192 words) and document lengths (average document length
between 11 and 635 words).

We use BEIR to evaluate ten diverse retrieval methods from five broad architectures: lexical, sparse,
dense, late interaction, and re-ranking. From our analysis, we find that no single approach consistently
outperforms other approaches on all datasets. Further, we notice that the in-domain performance of a
model does not correlate well with its generalization capabilities: models fine-tuned with identical
training data might generalize differently. In terms of efficiency, we find a trade-off between the
performances and the computational cost: computationally expensive models, like re-ranking models
and late interaction model perform the best. More efficient approaches e.g. based on dense or sparse
embeddings can substantially underperform traditional lexical models like BM25. Overall, BM25
remains a strong baseline for zero-shot text retrieval.

Finally, we notice that there can be a strong lexical bias present in datasets included within the
benchmark, likely as lexical models are pre-dominantly used during the annotation or creation of
datasets. This can give an unfair disadvantage to non-lexical approaches. We analyze this for the
TREC-COVID [63] dataset: We manually annotate the missing relevance judgements for the tested
systems and see a significant performance improvement for non-lexical approaches. Hence, future
work requires better unbiased datasets that allow a fair comparison for all types of retrieval systems.

With BEIR, we take an important step towards a single and unified benchmark to evaluate the zero-shot
capabilities of retrieval systems. It allows to study when and why certain approaches perform well,
and hopefully steers innovation to more robust retrieval systems. We release BEIR and an integration
of diverse retrieval systems and datasets in a well-documented, easy to use and extensible open-source
package. BEIR is model-agnostic, welcomes methods of all kinds, and also allows easy integration of
new tasks and datasets. More details are available at https://github.com/UKPLab/beir.

2 Related Work and Background
To our knowledge, BEIR is the first broad, zero-shot information retrieval benchmark. Existing works
[17, 47] do not evaluate retrieval in a zero-shot setting in depth, they either focus over a single task,
small corpora or on a certain domain. This setting hinders for investigation of model generalization
across diverse set of domains and task types. MultiReQA [17] consists of eight Question-Answering
(QA) datasets and evaluates sentence-level answer retrieval given a question. It only tests a single
task and five out of eight datasets are from Wikipedia. Further, MultiReQA evaluates retrieval over
rather small corpora: six out of eight tasks have less than 100k candidate sentences, which benefits
dense retrieval over lexical as previously shown [52]. KILT [47] consists of five knowledge-intensive
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tasks including a total of eleven datasets. The tasks involve retrieval, but it is not the primary task.
Further, KILT retrieves documents only from Wikipedia.

2.1 Neural Retrieval
Information retrieval is the process of searching and returning relevant documents for a query from
a collection. In our paper, we focus on text retrieval and use document as a cover term for text of
any length in the given collection and query for the user input, which can be of any length as well.
Traditionally, lexical approaches like TF-IDF and BM25 [53] have dominated textual information
retrieval. Recently, there is a strong interest in using neural networks to improve or replace these
lexical approaches. In this section, we highlight a few neural-based approaches and we refer the
reader to Lin et al. [75] for a recent survey in neural retrieval.

Retriever-based Lexical approaches suffer from the lexical gap [5]. To overcome this, earlier
techniques proposed to improve lexical retrieval systems with neural networks. Sparse methods such
as docT5query [45] identified document expansion terms using a sequence-to-sequence model that
generated possible queries for which the given document would be relevant. DeepCT [11] on the
other hand used a BERT [12] model to learn relevant term weights in a document and generated a
pseudo-document representation. Both methods still rely on BM25 for the remaining parts. Similarly,
SPARTA [78] learned token-level contextualized representations with BERT and converted the
document into an efficient inverse index. More recently, dense retrieval approaches were proposed.
They are capable of capturing semantic matches and try to overcome the (potential) lexical gap.
Dense retrievers map queries and documents in a shared, dense vector space [16]. This allowed the
document representation to be pre-computed and indexed. A bi-encoder neural architecture based on
pre-trained Transformers has shown strong performance for various open-domain question-answering
tasks [17, 29, 33, 40]. This dense approach was recently extended by hybrid lexical-dense approaches
which aims to combine the strengths of both approaches [15, 55, 39]. Another parallel line of
work proposed an unsupervised domain-adaption approach [33, 40] for training dense retrievers
by generating synthetic queries on a target domain. Lastly, ColBERT [30] (Contextualized late
interaction over BERT) computes multiple contextualized embeddings on a token level for queries
and documents and uses an maximum-similarity function for retrieving relevant documents.

Re-ranking-based Neural re-ranking approaches use the output of a first-stage retrieval system,
often BM25, and re-ranks the documents to create a better comparison of the retrieved documents.
Significant improvement in performance was achieved with the cross-attention mechanism of BERT
[43]. However, at a disadvantage of a high computational overhead [51].

3 The BEIR Benchmark
BEIR aims to provide a one-stop zero-shot evaluation benchmark for all diverse retrieval tasks. To
construct a comprehensive evaluation benchmark, the selection methodology is crucial to collect
tasks and datasets with desired properties. For BEIR, the methodology is motivated by the following
three factors: (i) Diverse tasks: Information retrieval is a versatile task and the lengths of queries and
indexed documents can differ between tasks. Sometimes, queries are short, like a keyword, while in
other cases, they can be long like a news article. Similarly, indexed documents can sometimes be long,
and for other tasks, short like a tweet. (ii) Diverse domains: Retrieval systems should be evaluated
in various types of domains. From broad ones like News or Wikipedia, to highly specialized ones
such as scientific publications in one particular field. Hence, we include domains which provide a
representation of real-world problems and are diverse ranging from generic to specialized. (iii) Task
difficulties: Our benchmark is challenging and the difficulty of a task included has to be sufficient.
If a task is easily solved by any algorithm, it will not be useful to compare various models used
for evaluation. We evaluated several tasks based on existing literature and selected popular tasks
which we believe are recently developed, challenging and are not yet fully solved with existing
approaches. (iv) Diverse annotation strategies: Creating retrieval datasets are inherently complex
and are subject to annotation biases (see Section 6 for details), which hinders a fair comparison of
approaches. To reduce the impact of such biases, we selected datasets which have been created in
many different ways: Some where annotated by crowd-workers, others by experts, and others are
based on the feedback from large online communities.

In total, we include 18 English zero-shot evaluation datasets from 9 heterogeneous retrieval tasks. As
the majority of the evaluated approaches are trained on the MS MARCO [42] dataset, we also report
performances on this dataset, but don’t include the outcome in our zero-shot comparison. We would
like to refer the reader to Appendix C where we motivate each one of the 9 retrieval tasks and 18
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Split (→) Train Dev Test Avg. Word Lengths

Task (↓) Domain (↓) Dataset (↓) Title Relevancy #Pairs #Query #Query #Corpus Avg. D / Q Query Document

Passage-Retrieval Misc. MS MARCO [42] 7 Binary 532,761 —- 6,980 8,841,823 1.1 5.96 55.98

Bio-Medical Bio-Medical TREC-COVID [63] 3 3-level —- —- 50 171,332 493.5 10.60 160.77
Information Bio-Medical NFCorpus [7] 3 3-level 110,575 324 323 3,633 38.2 3.30 232.26
Retrieval (IR) Bio-Medical BioASQ [59] 3 Binary 32,916 —- 500 14,914,602 4.7 8.05 202.61

Question Wikipedia NQ [32] 3 Binary 132,803 —- 3,452 2,681,468 1.2 9.16 78.88
Answering Wikipedia HotpotQA [74] 3 Binary 170,000 5,447 7,405 5,233,329 2.0 17.61 46.30
(QA) Finance FiQA-2018 [41] 7 Binary 14,166 500 648 57,638 2.6 10.77 132.32

Tweet-Retrieval Twitter Signal-1M (RT) [57] 7 3-level —- —- 97 2,866,316 19.6 9.30 13.93

News News TREC-NEWS [56] 3 5-level —- —- 57 594,977 19.6 11.14 634.79
Retrieval News Robust04 [62] 7 3-level —- —- 249 528,155 69.9 15.27 466.40

Argument Misc. ArguAna [65] 3 Binary —- —- 1,406 8,674 1.0 192.98 166.80
Retrieval Misc. Touché-2020 [6] 3 3-level —- —- 49 382,545 19.0 6.55 292.37

Duplicate-Question StackEx. CQADupStack [23] 3 Binary —- —- 13,145 457,199 1.4 8.59 129.09
Retrieval Quora Quora 7 Binary —- 5,000 10,000 522,931 1.6 9.53 11.44

Entity-Retrieval Wikipedia DBPedia [19] 3 3-level —- 67 400 4,635,922 38.2 5.39 49.68

Citation-Prediction Scientific SCIDOCS [9] 3 Binary —- —- 1,000 25,657 4.9 9.38 176.19

Wikipedia FEVER [58] 3 Binary 140,085 6,666 6,666 5,416,568 1.2 8.13 84.76
Fact Checking Wikipedia Climate-FEVER [13] 3 Binary —- —- 1,535 5,416,593 3.0 20.13 84.76

Scientific SciFact [66] 3 Binary 920 —- 300 5,183 1.1 12.37 213.63

Table 1: Statistics of datasets in BEIR benchmark. Few datasets contain documents without titles. Relevancy
indicates the query-document relation: binary (relevant, non-relevant) or graded into sub-levels. Avg. D/Q
indicates the average relevant documents per query.

datasets in depth. Examples for each dataset are listed in Table 8. We additionally provide dataset
licenses in Appendix D, and links to the datasets in Table 5.

Table 1 summarizes the statistics of the datasets provided in BEIR. A majority of datasets contain
binary relevancy judgements, i.e. relevant or non-relevant, and a few contain fine-grained relevancy
judgements. Some datasets contain few relevant documents for a query (< 2), while other datasets
like TREC-COVID [63] can contain up to even 500 relevant documents for a query. Only 8 out of 19
datasets (including MS MARCO) have training data denoting the practical importance for zero-shot
retrieval benchmarking. All datasets except ArguAna [65] have short queries (either a single sentence
or 2-3 keywords). Figure 1 shows an overview of the tasks and datasets in the BEIR benchmark.

Information Retrieval (IR) is ubiquitous, there are lots of datasets available within each task and
further even more tasks with retrieval. However, it is not feasible to include all datasets within the
benchmark for evaluation. We tried to cover a balanced mixture of a wide range of tasks and datasets
and paid importance not to overweight a specific task like question-answering. Future datasets can
easily be integrated in BEIR, and existing models can be evaluated on any new dataset quickly. The
BEIR website will host an actively maintained leaderboard2 with all datasets and models.

3.1 Dataset and Diversity Analysis

The datasets present in BEIR are selected from diverse domains ranging from Wikipedia, scientific
publications, Twitter, news, to online user communities, and many more. To measure the diversity in
domains, we compute the domain overlap between the pairwise datasets using a pairwise weighted
Jaccard similarity [24] score on unigram word overlap between all dataset pairs. For more details
on the theoretical formulation of the similarity score, please refer to Appendix E. Figure 2 shows a
heatmap denoting the pairwise weighted jaccard scores and the clustered force-directed placement
diagram. Nodes (or datasets) close in this graph have a high word overlap, while nodes far away in
the graph have a low overlap. From Figure 2, we observe a rather low weighted Jaccard word overlap
across different domains, indicating that BEIR is a challenging benchmark where approaches must
generalize well to diverse out-of-distribution domains.

3.2 BEIR Software and Framework

The BEIR software3 provides an is an easy to use Python framework (pip install beir) for model
evaluation. It contains extensive wrappers to replicate experiments and evaluate models from well-
known repositories including Sentence-Transformers [51], Transformers [70], Anserini [72], DPR
[29], Elasticsearch, ColBERT [30], and Universal Sentence Encoder [73]. This makes the software
useful for both academia and industry. The software also provides you with all IR-based metrics
from Precision, Recall, MAP (Mean Average Precision), MRR (Mean Reciprocal Rate) to nDCG

2BEIR Leaderboard: https://tinyurl.com/beir-leaderboard
3BEIR Code & documentation: https://github.com/UKPLab/beir
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Figure 2: Domain overlap across each pairwise dataset in the BEIR benchmark. Heatmap (left) shows the
pairwise weighted jaccard similarity scores between BEIR datasets. 2D representation (right) using a force-
directed placement algorithm with NetworkX [18]. We color and mark datasets differently for different domains.

(Normalised Cumulative Discount Gain) for any top-k hits. One can use the BEIR benchmark for
evaluating existing models on new retrieval datasets and for evaluating new models on the included
datasets.

Datasets are often scattered online and are provided in various file-formats, making the evaluation of
models on various datasets difficult. BEIR introduces a standard format (corpus, queries and qrels)
and converts existing datasets in this easy universal data format, allowing to evaluate faster on an
increasing number of datasets.

3.3 Evaluation Metric

Depending upon the nature and requirements of real-world applications, retrieval tasks can be either
be precision or recall focused. To obtain comparable results across models and datasets in BEIR, we
argue that it is important to leverage a single evaluation metric that can be computed comparably
across all tasks. Decision support metrics such as Precision and Recall which are both rank unaware
are not suitable. Binary rank-aware metrics such as MRR (Mean Reciprocal Rate) and MAP (Mean
Average Precision) fail to evaluate tasks with graded relevance judgements. We find that Normalised
Cumulative Discount Gain (nDCG@k) provides a good balance suitable for both tasks involving
binary and graded relevance judgements. We refer the reader to Wang et al. [69] for understanding
the theoretical advantages of the metric. For our experiments, we utilize the Python interface of the
official TREC evaluation tool [61] and compute nDCG@10 for all datasets.

4 Experimental Setup

We use BEIR to compare diverse, recent, state-of-the-art retrieval architectures with a focus on
transformer-based neural approaches. We evaluate on publicly available pre-trained checkpoints,
which we provide in Table 6. Due to the length limitations of transformer-based networks, we use
only the first 512 word pieces within all documents in our experiments across all neural architectures.

We group the models based on their architecture: (i) lexical, (ii) sparse, (iii) dense, (iv) late-interaction,
and (v) re-ranking. Besides the included models, the BEIR benchmark is model agnostic and in future
different model configurations can be easily incorporated within the benchmark.

(i) Lexical Retrieval: (a) BM25 [53] is a commonly-used bag-of-words retrieval function based on
token-matching between two high-dimensional sparse vectors with TF-IDF token weights. We use
Anserini [34] with the default Lucene parameters (k=0.9 and b=0.4). We index the title (if available)
and passage as separate fields for documents. In our leaderboard, we also tested Elasticsearch BM25
and Anserini + RM3 expansion, but found Anserini BM25 to perform the best.

5



(ii) Sparse Retrieval: (a) DeepCT [11] uses a bert-base-uncased model trained on MS MARCO to
learn the term weight frequencies (tf). It generates a pseudo-document with keywords multiplied
with the learnt term-frequencies. We use the original setup of Dai and Callan [11] in combination
with BM25 with default Anserini parameters which we empirically found to perform better over
the tuned MS MARCO parameters. (b) SPARTA [78] computes similarity scores between the
non-contextualized query embeddings from BERT with the contextualized document embeddings.
These scores can be pre-computed for a given document, which results in a 30k dimensional sparse
vector. As the original implementation is not publicly available, we re-implemented the approach.
We fine-tune a DistilBERT [54] model on the MS MARCO dataset and use sparse-vectors with 2,000
non-zero entries. (c) DocT5query [44] is a popular document expansion technique using a T5 (base)
[50] model trained on MS MARCO to generate synthetic queries and append them to the original
document for lexical search. We replicate the setup of Nogueira and Lin [44] and generate 40 queries
for each document and use BM25 with default Anserini parameters.

(iii) Dense Retrieval: (a) DPR [29] is a two-tower bi-encoder trained with a single BM25 hard
negative and in-batch negatives. We found the open-sourced Multi model to perform better over the
single NQ model in our setting. The Multi-DPR model is a bert-base-uncased model trained on four
QA datasets (including titles): NQ [32], TriviaQA [28], WebQuestions [4] and CuratedTREC [3].
(b) ANCE [71] is a bi-encoder constructing hard negatives from an Approximate Nearest Neighbor
(ANN) index of the corpus, which in parallel updates to select hard negative training instances during
fine-tuning of the model. We use the publicly available RoBERTa [38] model trained on MS MARCO
[42] for 600K steps for our experiments. (c) TAS-B [21] is a bi-encoder trained with Balanced
Topic Aware Sampling using dual supervision from a cross-encoder and a ColBERT model. The
model was trained with a combination of both a pairwise Margin-MSE [22] loss and an in-batch
negative loss function. We use the publicly available DistilBERT [54] model for our experiments.
(d) GenQ: is an unsupervised domain-adaption approach for dense retrieval models by training on
synthetically generated data. First, we fine-tune a T5 (base) [50] model on MS MARCO for 2 epochs.
Then, for a target dataset we generate 5 queries for each document using a combination of top-k and
nucleus-sampling (top-k: 25; top-p: 0.95). Due to resource constraints, we cap the maximum number
of target documents in each dataset to 100K. For retrieval, we continue to fine-tune the TAS-B model
using in-batch negatives on the synthetic queries and document pair data. Note, GenQ creates an
independent model for each task.

(iv) Late-Interaction: (a) ColBERT [30] encodes and represents the query and passage into a bag
of multiple contextualized token embeddings. The late-interactions are aggregated with sum of the
max-pooling query term and a dot-product across all passage terms. We use the ColBERT model
as a dense-retriever (end-to-end retrieval as defined [30]): first top-k candidates are retrieved using
ANN with faiss [27] (faiss depth = 100) and ColBERT re-ranks by computing the late aggregated
interactions. We train a bert-base-uncased model, with maximum sequence length of 300 on the MS
MARCO dataset for 300K steps.

(v) Re-ranking model: (a) BM25 + CE [68] reranks the top-100 retrieved hits from a first-stage
BM25 (Anserini) model. We evaluated 14 different cross-attentional re-ranking models that are
publicly available on the HuggingFace model hub and found that a 6-layer, 384-h MiniLM [68]
cross-encoder model offers the best performance on MS MARCO. The model was trained on MS
MARCO using a knowledge distillation setup with an ensemble of three teacher models: BERT-base,
BERT-large, and ALBERT-large models following the setup in Hofstätter et al. [22].

Training Setup: The models included for zero-shot evaluation were originally trained differently.
DocT5query and DeepCT were trained for document expansion and term re-weighting. Cross encoder
(MiniLM) and SPARTA were both trained with ranking data. All dense retrieval models (DPR, ANCE,
and TAS-B) and ColBERT [30] were trained with a mixture: ranking data and random in-batch
negatives. Another vital difference lies in hard negatives, few models are trained on better optimized
hard negatives whereas others using simpler hard negatives, which may suggest an unfair comparison.
DPR was trained using the mined BM25 hard negatives, ColBERT with the original MS MARCO
[42] provided hard negatives, ANCE with mined approximate hard negatives, whereas TAS-B used
a cross-model distillation from a cross-encoder and a ColBERT model together with BM25 hard
negatives.
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Model (→) Lexical Sparse Dense Late-Interaction Re-ranking

Dataset (↓) BM25 DeepCT SPARTA docT5query DPR ANCE TAS-B GenQ ColBERT BM25+CE

MS MARCO 0.228 0.296‡ 0.351‡ 0.338‡ 0.177 0.388‡ 0.408‡ 0.408‡ 0.425‡ 0.413‡

TREC-COVID 0.656 0.406 0.538 0.713 0.332 0.654 0.481 0.619 0.677 0.757
BioASQ 0.465 0.407 0.351 0.431 0.127 0.306 0.383 0.398 0.474 0.523
NFCorpus 0.325 0.283 0.301 0.328 0.189 0.237 0.319 0.319 0.305 0.350

NQ 0.329 0.188 0.398 0.399 0.474‡ 0.446 0.463 0.358 0.524 0.533
HotpotQA 0.603 0.503 0.492 0.580 0.391 0.456 0.584 0.534 0.593 0.707
FiQA-2018 0.236 0.191 0.198 0.291 0.112 0.295 0.300 0.308 0.317 0.347

Signal-1M (RT) 0.330 0.269 0.252 0.307 0.155 0.249 0.289 0.281 0.274 0.338

TREC-NEWS 0.398 0.220 0.258 0.420 0.161 0.382 0.377 0.396 0.393 0.431
Robust04 0.408 0.287 0.276 0.437 0.252 0.392 0.427 0.362 0.391 0.475

ArguAna 0.315 0.309 0.279 0.349 0.175 0.415 0.429 0.493 0.233 0.311
Touché-2020 0.367 0.156 0.175 0.347 0.131 0.240 0.162 0.182 0.202 0.271

CQADupStack 0.299 0.268 0.257 0.325 0.153 0.296 0.314 0.347 0.350 0.370
Quora 0.789 0.691 0.630 0.802 0.248 0.852 0.835 0.830 0.854 0.825

DBPedia 0.313 0.177 0.314 0.331 0.263 0.281 0.384 0.328 0.392 0.409

SCIDOCS 0.158 0.124 0.126 0.162 0.077 0.122 0.149 0.143 0.145 0.166

FEVER 0.753 0.353 0.596 0.714 0.562 0.669 0.700 0.669 0.771 0.819
Climate-FEVER 0.213 0.066 0.082 0.201 0.148 0.198 0.228 0.175 0.184 0.253
SciFact 0.665 0.630 0.582 0.675 0.318 0.507 0.643 0.644 0.671 0.688

Avg. Performance vs. BM25 - 27.9% - 20.3% + 1.6% - 47.7% - 7.4% - 2.8% - 3.6% + 2.5% + 11%

Table 2: In-domain and zero-shot performances on BEIR benchmark. All scores denote nDCG@10. The best
score on a given dataset is marked in bold, and the second best is underlined. Corresponding Recall@100
performances can be found in Table 9. ‡ indicates the in-domain performances.

5 Results and Analysis

In this section, we evaluate and analyze how retrieval models perform on the BEIR benchmark. Table
2 reports the results of all evaluated systems on the selected benchmark datasets. As a baseline, we
compare our retrieval systems against BM25. Figure 3 shows, on how many datasets a respective
model is able to perform better or worse than BM25.

1. In-domain performance is not a good indicator for out-of-domain generalization. We observe
BM25 heavily underperforms neural approaches by 7-18 points on in-domain MS MARCO. However,
BEIR reveals it to be a strong baseline for generalization and generally outperforming many other,
more complex approaches. This stresses the point, that retrieval methods must be evaluated on a
broad range of datasets.

2. Term-weighting fails, document expansion captures out-of-domain keyword vocabulary.
DeepCT and SPARTA both use a transformer network to learn term weighting. While both methods
perform well in-domain on MS MARCO, they completely fail to generalize well by under performing
BM25 on nearly all datasets. In contrast, document expansion based docT5query is able to add new
relevant keywords to a document and performs strong on the BEIR datasets. It outperforms BM25 on
11/18 datasets while providing a competitive performance on the remaining datasets.

3. Dense retrieval models with issues for out-of-distribution data. Dense retrieval models (esp.
ANCE and TAS-B), that map queries and documents independently to vector spaces, perform
strongly on certain datasets, while on many other datasets perform significantly worse than BM25.
For example, dense retrievers are observed to underperform on datasets with a large domain shift
compared from what they have been trained on, like in BioASQ, or task-shifts like in Touché-2020.
DPR, the only non-MSMARCO trained dataset overall performs the worst in generalization on the
benchmark.

4. Re-ranking and Late-Interaction models generalize well to out-of-distribution data. The
cross-attentional re-ranking model (BM25+CE) performs the best and is able to outperform BM25
on almost all (16/18) datasets. It only fails on ArguAna and Touché-2020, two retrieval tasks that
are extremely different to the MS MARCO training dataset. The late-interaction model ColBERT
computes token embeddings independently for the query and document, and scores (query, document)-
pairs by a cross-attentional like MaxSim operation. It performs a bit weaker than the cross-attentional
re-ranking model, but is still able to outperform BM25 on 9/18 datasets. It appears that cross-attention
and cross-attentional like operations are important for a good out-of-distribution generalization.

7



BM25
+CE

docT5-
query

ColBERT TAS-B GenQ ANCE SPARTA DPR DeepCT
-20

-10

BM25

10

20 16
12

9 8 6 4 2 1 0
-2

-6
-9 -10 -12 -14 -16 -17 -18
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BM25+CE and sparse model: docT5query outperform
BM25 on more than half the BEIR evaluation datasets.
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Figure 4: Distribution plots [20] for top-10 retrieved
document lengths (in words) using TAS-B (blue, top)
or ANCE (orange, bottom). TAS-B has a preference
towards shorter documents in BEIR.

5. Strong training losses for dense retrieval leads to better out-of-distribution performances.
TAS-B provides the best zero-shot generalization performance among its dense counterparts. It
outperforms ANCE on 14/18 and DPR on 17/18 datasets respectively. We speculate that the reason lies
in a strong training setup in combination of both in-domain batch negatives and Margin-MSE losses
for the TAS-B model. This training loss function (with strong ensemble teachers in a Knowledge
Distillation setup) shows strong generalization performances.

6. TAS-B model prefers to retrieve documents with shorter lengths. TAS-B underperforms
ANCE on two datasets: TREC-COVID by 17.3 points and Touché-2020 by 7.8 points. We observed
that these models retrieve documents with vastly different lengths as shown in Figure 4. On TREC-
COVID, TAS-B retrieves documents with a median length of mere 10 words versus ANCE with 160
words. Similarly on Touché-2020, 14 words vs. 89 words with TAS-B and ANCE respectively. As
discussed in Appendix G, this preference for shorter or longer documents is due to the used loss
function.

7. Does domain adaptation help improve generalization of dense-retrievers? We evaluated
GenQ, which further fine-tunes the TAS-B model on synthetic query data. It outperforms the TAS-B
model on specialized domains like scientific publications, finance or StackExchange. On broader and
more generic domains, like Wikipedia, it performs weaker than the original TAS-B model.

5.1 Efficiency: Retrieval Latency and Index Sizes
Models need to potentially compare a single query against millions of documents at inference, hence,
a high computational speed for retrieving results in real-time is desired. Besides speed, index sizes
are vital and are often stored entirely in memory. We randomly sample 1 million documents from
DBPedia [19] and evaluate latency. For dense models, we use exact search, while for ColBERT we
follow the original setup [30] and use approximate nearest neighbor search. Performances on CPU
were measured with an 8 core Intel Xeon Platinum 8168 CPU @ 2.70GHz and on GPU using a single
Nvidia Tesla V100, CUDA 11.0.

DBPedia [19] (1 Million) Retrieval Latency Index

Rank Model Dim. GPU CPU Size

(1) BM25+CE – 450ms 6100ms 0.4GB
(2) ColBERT 128 350ms – 20GB
(3) docT5query – – 30ms 0.4GB
(4) BM25 – – 20ms 0.4GB
(5) TAS-B 768 14ms 125ms 3GB
(6) GenQ 768 14ms 125ms 3GB
(7) ANCE 768 20ms 275ms 3GB
(8) SPARTA 2000 – 20ms 12GB
(9) DeepCT – – 25ms 0.4GB
(10) DPR 768 19ms 230ms 3GB

Table 3: Estimated average retrieval latency and
index sizes for a single query in DBPedia [19].
Ranked from best to worst on zero-shot BEIR.
Lower the latency or memory is desired.

Tradeoff between performance and retrieval la-
tency The best out-of-distribution generalization
performances by re-ranking top-100 BM25 docu-
ments and with late-interaction models come at the
cost of high latency (> 350 ms), being slowest at
inference. In contrast, dense retrievers are 20-30x
faster (< 20ms) compared to the re-ranking models
and follow a low-latency pattern. On CPU, the sparse
models dominate in terms of speed (20-25ms).

Tradeoff between performance and index sizes
Lexical, re-ranking and dense methods have the small-
est index sizes (< 3GB) to store 1M documents from
DBPedia. SPARTA requires the second largest index
to store a 30k dim sparse vector while ColBERT re-
quires the largest index as it stores multiple 128 dim
dense vectors for a single document. Index sizes are especially relevant when document sizes scale
higher: ColBERT requires ~900GB to store the BioASQ (~15M documents) index, whereas BM25
only requires 18GB.
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Model (→) BM25 DeepCT SPARTA docT5query DPR ANCE TAS-B ColBERT BM25+CE

Hole@10 (in %) 6.4% 19.4% 12.4% 2.8% 30.6% 14.4% 31.8% 12.4% 1.6%

nDCG@10 performances before and after manual annotation on TREC-COVID [63]

Original (w/ holes) 0.656 0.406 0.538 0.713 0.332 0.654 0.481 0.677 0.757

Annotated (w/o holes) 0.668 0.472 0.624 0.714 0.445 0.735 0.555 0.735 0.760

Table 4: Hole@10 analysis on TREC-COVID. Annotated scores show improvement in performances after
removing holes@10 (documents in top-10 hits unseen by annotators) across each model.

6 Impact of Annotation Selection Bias
Creating a perfectly unbiased evaluation dataset for retrieval is inherently complex and is subject to
multiple biases induced by the: (i) annotation guidelines, (ii) annotation setup, and by the (iii) human
annotators. Further, it is impossible to manually annotate the relevance for all (query, document)-pairs.
Instead, existing retrieval methods are used to get a pool of candidate documents which are then
marked for their relevance. All other unseen documents are assumed to be irrelevant. This is a source
for selection bias [36]: A new retrieval system might retrieve vastly different results than the system
used for the annotation. These hits are automatically assumed to be irrelevant.

Many BEIR datasets are found to be subject to a lexical bias, i.e. a lexical based retrieval system like
TF-IDF or BM25 has been used to retrieve the candidates for annotation. For example, in BioASQ,
candidates have been retrieved for annotation via term-matching with boosting tags [59]. Creation of
Signal-1M (RT) involved retrieving tweets for a query with 7 out of these 8 techniques relying upon
lexical term-matching signals [57]. Such a lexical bias disfavours approaches that don’t rely on lexical
matching, like dense retrieval methods, as retrieved hits without lexical overlap are automatically
assumed to be irrelevant, even though the hits might be relevant for a query.

In order to study the impact of this particular type of bias, we conducted a study on the recent
TREC-COVID dataset. TREC-COVID used a pooling method [35, 37] to reduce the impact of the
aforementioned bias: The annotation set was constructed by using the search results from the various
systems participating in the challenge. Table 4 shows the Hole@10 rate [71] for the tested systems,
i.e., how many top-10 hits is each system retrieving that have not been seen by annotators.

The results reveal large differences between approaches: Lexical approaches like BM25 and
docT5query have a rather low Hole@10 value of 6.4% and 2.8%, indicating that the annotation pool
contained the top-hits from lexical retrieval systems. In contrast, dense retrieval systems like ANCE
and TAS-B have a much higher Hole@10 of 14.4% and 31.8%, indicating that a large fraction of hits
found by these systems have not been judged by annotators. Next, we manually added for all systems,
the missing annotation (or holes) following the original annotation guidelines. During annotation, we
were unaware of the system who retrieved the missing annotation to avoid a preference bias. In total,
we annotated 980 query-document pairs in TREC-COVID. We then re-computed nDCG@10 for all
systems with this additional annotations.

As shown in Table 4, we observe that lexical approaches improves only slightly, e.g. for docT5query
just from 0.713 to 0.714 after adding the missing relevance judgements. In contrast, for the dense
retrieval system ANCE, the performance improves from 0.654 (slightly below BM25) to 0.735, which
is 6.7 points above the BM25 performance. Similar improvements are noticed in ColBERT (5.8
points). Even though many systems contributed to the TREC-COVID annotation pool, the annotation
pool is still biased towards lexical approaches.

7 Conclusions and Future Work
In this work, we presented BEIR: a heterogeneous benchmark for information retrieval. We provided
a broader selection of target tasks ranging from narrow expert domains to open domain datasets. We
included nine different retrieval tasks spanning 18 diverse datasets.

By open-sourcing BEIR, with a standardized data format and easy-to-adapt code examples for many
different retrieval strategies, we take an important steps towards a unified benchmark to evaluate the
zero-shot capabilities of retrieval systems. It hopefully steers innovation towards more robust retrieval
systems and to new insights which retrieval architectures perform well across tasks and domains.

We studied the effectiveness of ten different retrieval models and demonstrate that in-domain perfor-
mance cannot predict how well an approach will generalize in a zero-shot setup. Many approaches
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that outperform BM25 in an in-domain evaluation on MS MARCO, perform poorly on the BEIR
datasets. Cross-attentional re-ranking, late-interaction ColBERT, and the document expansion tech-
nique docT5query performed overall well across the evaluated tasks.

Our study of the annotation selection bias highlights the challenge of evaluating new models on
existing datasets: Even though TREC-COVID is based on the predictions from many systems,
contributed by a diverse set of teams, we found largely different Hole@10 rates for the tested systems,
negatively affecting non-lexical approaches. Better datasets that use diverse pooling strategies are
needed for a fair evaluation of retrieval approaches. By integrating a large number of diverse retrieval
systems into BEIR, creating such diverse pools becomes significantly simplified.

8 Limitations of the BEIR Benchmark
Even though we cover a wide range of tasks and domains in BEIR, no benchmark is perfect and has
its limitations. Making those explicit is a critical point in understanding the results on the benchmark
and, for future work, to propose even better benchmarks.

1. Multilingual Tasks: Although we aim for a diverse retrieval evaluation benchmark, due to the
limited availability of multilingual retrieval datasets, all datasets covered in the BEIR benchmark
are currently English. It is worthwhile to add more multilingual datasets [2, 76] (in consideration
of the selection criteria) as a next step for the benchmark. Future work could include multi- and
cross-lingual tasks and models.

2. Long Document Retrieval: Most of our tasks have average document lengths up-to a few hundred
words roughly equivalent to a few paragraphs. Including tasks that require the retrieval of longer
documents would be highly relevant. However, as transformer-based approaches often have a length
limit of 512 word pieces, a fundamental different setup would be required to compare approaches.

3. Multi-factor Search: Until now, we focused on pure textual search in BEIR. In many real-world
applications, further signals are used to estimate the relevancy of documents, such as PageRank
[46], recency [14], authority score [31] or user-interactions such as click-through rates [49]. The
integration of such signals in the tested approaches is often not straight-forward and is an interesting
direction for research.

4. Multi-field Retrieval: Retrieval can often be performed over multiple fields. For example, for
scientific publication we have the title, the abstract, the document body, the authors list, and the
journal name. So far we focused only on datasets that have one or two fields.

5. Task-specific Models: In our benchmark, we focus on evaluating models that are able to generalize
well for a broad range of retrieval tasks. Naturally in real-world, for some few tasks or domains,
specialized models are available which can easily outperform generic models as they focus and
perform well on a single task, lets say on question-answering. Such task-specific models do not
necessarily need to generalize across all diverse tasks.
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