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ABSTRACT

Accurate prediction of the interface residue-residue contacts between interacting
proteins is valuable for determining the structure and function of protein com-
plexes. Recent deep learning methods have drastically improved the accuracy of
predicting the interface contacts of protein complexes. However, existing meth-
ods rely on Multiple Sequence Alignments (MSA) features which pose limitations
on prediction accuracy, speed, and computational efficiency. Here, we propose a
transformer-powered deep learning method to predict the inter-protein residue-
residue contacts based on both single-sequence and structure-aware protein lan-
guage models (PLM), called DeepSSInter. Utilizing the intra-protein distance
and graph representations and the ESM2 and SaProt protein language models, we
are able to generate the structure-aware features for the protein receptor, ligand,
and complex. These structure-aware features are passed into the Resnet Inception
module and the Triangle-aware module to effectively produce the predicted inter-
protein contact map. Extensive experiments on both homo- and hetero-dimeric
complexes show that our DeepSSInter model significantly improves the perfor-
mance compared to previous state-of-the-art methods.

1 INTRODUCTION

Understanding the interactions between proteins is fundamental to deciphering the molecular mech-
anisms underlying cellular processes (Hu et al.| [2021; Wu et al., |2024b). Accurate prediction of the
interface residue-residue contacts of protein-protein interactions (PPI) allows for the determination
of the resulting protein complex structure (see Figure |l| for an example) (Gao et al, 2024), hav-
ing significant implications for understanding the protein complex’s biological function, increasing
the efficiency for drug discovery, and saving time and resources for experimental methods (Lin et
al.l |2024a). However, current methods still lack accuracy and efficiency when predicting the inter-
face contacts of protein complexes. Computational methods include more traditional methods such
as docking simulation (Yan et al.| [2020; [Yu et al.| [2024; |Wu et al.| [2024a; [Honorato et al., 2024)
and coevolutionary analysis (Ovchinnikov et al.,[2014), as well as more recent deep learning meth-
ods (Liu & Gongl 2019; Zeng et al., 2018; |Adhikari et al., 2018 |Quadir et al., |2021b; |Roy et al.,
2022; |Quadir et al.l |2021a}; [Yan and Huang| 2021) that can capture the complex patterns in protein
sequences and structures. However, the former lacks in scalability and generalizability across dif-
ferent types of protein complexes, especially heterodimers; while the latter still lacks in accuracy
and ability to fully leverage the structural context of proteins, which is crucial for accurate contact
prediction (Lin et al., 2024a).

Recent advances in deep learning have led to more sophisticated models for inter-protein contact
predictions such as DeeplInter(Lin et al., 2023)), DeepHomo2.0(Lin et al. [2022), GLINTER(Xie &
Xu, 2022), and CDPred (Guo et al., 2022), or direct prediction of protein complex structures like
RosettaFold (Baek et al} |2021) and AlphaFold-Multimer (AFM) (Evans et al.|, [2021)). However,
all current methods rely on input of the multiple sequence alignment information of proteins. Use
of MSA information can be beneficial, but there exist several drawbacks and challenges associated
with integrating MSA data into deep learning models. First, usage of MSA information brings high
computational complexity. MSA data can be very large, especially for long sequences and large
sequence databases. Preprocessing of MSA data, including generating the alignment and converting
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Figure 1: An example of the protein complex structure between CdiA-CT/Cdil from Y. kristensenii
33638 (PDB code: SE3E).

it into a usable format is time-consuming. Second, in order for the deep learning model to effectively
capture the features necessary for interface contact prediction, the input MSA information needs to
be of high quality. However, MSAs may contain gaps or insertion/deletions, which could lead
to noise in the model, leading to inaccurate predictions. Sequences with few homologs or from
underrepresented groups may also result in poorly constructed alignments or not exist altogether,
causing poor performance and lack of generalizability 2023). Third, it requires to pair
the MSA of each monomer proteins to construct the paired MSA for extracting the coevolutionary
features at the interface, which is still a great challenge in the field of protein structure prediction
(Bitbol et al., 2016} [Szurmant et al., 2018}, [Gueudré et al., 2016} [Ovchinnikov et al., 2014} Zeng ef|
2018; Bryant et al., 2022; |Chen et al.,[2023). Thus, improved methods are needed to overcome
these limitations.

In contrast to MSA-reliant methods, single sequence-based methods have also been developed to
predict protein monomer structures (Wang et al., [2022; [Chowdhury et al., 2022} [Fang et al. 2023}
Jing et all, 2024} [Lin et al}, 2024b). Single sequence-based methods utilize evolutionary informa-
tion extracted from protein language models (PLM) to effectively capture features. Unlike MSA
which requires high computational resources, single sequence-based methods are less computation-
ally intensive and are faster in speed. In addition, single sequence-based methods do not rely on
the availability of homologous sequences. This allows for prediction and design of novel or engi-
neered protein where MSA information is not applicable (Chowdhury et all 2022} [Watson et al
2023} [Ren et al.} 2024} [Shi et al., [2022)). Furthermore, single sequence-based methods may be bet-
ter at capturing the structural and interaction properties of dynamic or disordered regions
2024). These regions are often poorly aligned in MSAs, making single sequence-based meth-
ods favorable. The advantages of single sequence-based methods over MSA-reliant methods make
them more reliable, scalable, and robust. However, there still exists a lack of well-performing single
sequence-based methods for the interface contact prediction of protein complexes.

To address this need, we propose DeepSSlnter, a single sequence-based deep learning model for the
interface contact prediction of protein complexes. We utilize two protein language models (PLM) to
effectively capture evolutionary and structural patterns of input monomer proteins. Specifically, one
of the PLMs is ESM2, which takes in the monomer sequences of the proteins 2024b), and
the other is SaProt, which takes in the structure-aware sequence of the proteins generated with their
3D structure information 2023). Due to the input of structure-aware sequences into the
latter PLM, the resulting representations and attentions contain structural information of individual
proteins. Our model leverages this information to provide faster and more accurate predictions of
interface contacts. To validate the effectiveness of our method, we comprehensively evaluated our
model on diverse data sets of homodimeric and heterodimeric protein complexes. It is shown that
our model outperforms previous state-of-the-art methods, especially when predicting challenging
heterodimer complexes, establishing the effectiveness of our single-sequence and structure-aware
protein language model.

The main contributions of our model are summarized as follows:
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* We propose a transformer-based deep learning method for single-sequence inter-protein
contact prediction by effectively integrating both single-sequence and structure-aware pro-
tein language models.

* The model does not rely on the input of multiple sequence alignment (MSA) alignment,
allowing the model to be more computationally efficient with better or similar accuracy
compared to MSA-reliant methods.

* The model is powered by the ResNet-Inception module, which can efficiently capture the
long-range interaction between pairs of residues, and a geometric triangle-aware module,
which is able to consider the many-body effect in residue-residue interactions.

* Our method utilizes intra-protein information, graph representation, single-sequence, and
structure-aware features that can effectively capture evolutionary and structural patterns of
input individual proteins. As a result, the performance of our method significantly surpasses
stat-of-the-art prediction methods.

2 RELATED WORK

Currently, state-of-the-art methods for predicting the inter-protein residue-residue contacts of protein
complexes all require the MSA as input.

2.1 DEEPHOMO2.0

DeepHomo2.0 (Lin et al.}|[2022)) predicts the inter-protein contact probabilities of homodimeric com-
plexes by combining sequential 1D features and pairwise 2D features, passing them through convo-
lutional neural networks. The model achieves high accuracy by integrating evolutionary information,
residue-residue distance maps, and transformer-derived context. However, DeepHomo2.0 has lim-
ited generalizability to other types of protein-protein interactions such as heterodimers because the
model is specifically designed for homodimeric protein complexes.

2.2 GLINTER

GLINTER (Xie & Xu, [2022)) predicts the interface contact probabilities by using graph represen-
tations and MSA features through a graph convolutional network with an attention mechanism and
ResNet layers. GLINTER improves the accuracy and robustness in interface contact prediction of
protein complexes, but still faces challenges with computational complexity and protein dimer pre-
cision.

2.3 CDPRED

CDPred (Guo et al., [2022)) predicts inter-chain distance maps of protein complexes by passing fea-
tures into a model consisting of a deep residual network, a channel-wise attention mechanism, and
a spatial-wise attention mechanism. Despite its effectiveness, especially for homodimers, it faces
challenges on heterodimeric complexes or the cases with shallow MSAs.

2.4 DEEPINTER

Deeplnter (Lin et all [2023) predicts interface contact probabilities of protein complexes by in-
corporating a ResNet-Inception module and triangle-aware mechanism that can capture geometric
consistency and long-range interactions. This allows Deeplnter to provide more accurate and robust
contact predictions compared to existing methods. However, it lacks in still lacks in accuracy for
heterodimers and relies on high-quality MSA information.
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3 MODEL ARCHITECTURE

3.1 OVERVIEW OF DEEPSSINTER

Figure [2] shows the overall architecture of the DeepSSInter network and the flow of data through
the network. The architecture consists of four main components: 1) a geometric graph transformer
module (Morehead et al., 2021)) consisting of a graph neural network that generates protein sequence
representations, 2) two protein-language models (ESM2 and SaProt
) to generate protein sequence-aware and structure-aware sequence and attention representa-
tions, 3) a ResNet-Inception module [2023), and 4) a triangle-aware module consisting
of the triangle update, triangle self-attention, and transition layers 2023). Graph repre-
sentations of the individual proteins are passed into the geometric transformer module to generate
sequence representations of the proteins. The sequences of the individual proteins are passed into
the ESM2 and SaProt models to generate sequence and attention representations, for which those of
SaProt are structure-aware. In addition, the linked sequences of individual proteins are also passed
into ESM2 and SaProt to generate attention representations associated with the interface. Then, the
sequence representations, attention representations, and distance features, obtained by applying a
radial basis function on the locations of the residues within each protein, are respectively concate-
nated into sequence-aware features and passed into the ResNet-Inception module. The data is finally
passed into the triangle-aware module from the ResNet-Inception module. At the prediction time,
only one (for a homodimer case) or two (for a heterodimer case) monomer structures are needed as
input for the model. By default, DeepSSInter does crop the monomer structure during the inference.
However, for a very long protein, users may use a sliding window strategy (Appendix F). The output
is a contact map consisting of the pairwise probabilities between the amino acids of two proteins.
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Figure 2: The workflow of the DeepSSInter network.

3.2 NETWORK ARCHITECTURE AND PARAMETERS

The model takes in the graph representations, intra-protein distance matrices, sequences, and
structure-aware sequences (generated by foldseek (van Kempen et al.| 2024) for SaProt
[2023))) of two proteins as input (Figure2). The graph representations of two individual proteins are
passed through the geometric transformer to obtain two representations of dimensions L 4 x 128 and
Lp x 128 respectively, where L 4 is the length of protein A and L s is the length of protein B.

The intra-protein distance feature of individual proteins is represented by the Gaussian radial basis
function (RBF), which is calculated as follows.



Under review as a conference paper at ICLR 2025

d—dy 2
—)

p(d) = e

where d is the intra-protein distance. d,, is a hyperparameter representing the centers of 64 evenly
spaced Gaussian RBFs between 2 to 22 A with standard deviation o = 0.3125. The results are two
distance matrices of dimensions L4 X L4 x 64 and L X Lp x 64 for protein A and protein B
respectively.

The amino acid sequences of the two proteins are passed into the ESM2 protein language model
(specifically the esm2_t33_650M_URS50D model with 33 layers and 650 million parameters) to gen-
erate representation matrices of dimensions L 4 x 1280 and L x 1280, respectively, and attention
matrices of dimensions L 4 X L4 x 660 and L x L x 660, respectively, for protein A and protein
B. We also concatenate sequence A and sequence B and pass the resulting complex sequence into
the ESM2 model to get the representation and attention matrices of dimensions (L4 + Lg) x 1280
and (La + Lp) x (La + Lp) x 660 for the protein complex.

The structure-aware sequences generated with the foldseek algorithm of two proteins are passed into
the SaProt protein language model (specifically the SaProt_.650M_AF2 model trained with a dataset
of 40 million AlphaFold2 structures (Varadi et al.,2024)) to generate sequence-aware representation
and attention matrices. For protein A and protein B, the dimensions of the representation matrices
are L4 x 1280 and Lp x 1280, respectively, and the attention matrices are of dimensions L 4 X
L4 x660and Lp x Lp x 660, respectively. Similar to before, we also concatenate structure-aware
sequence A and structure-aware sequence B and pass the resulting complex sequence into the SaProt
model to get the structure-aware representation and attention matrix of dimensions (L 4+L ) x 1280
and (La + Lp) x (La + Lp) x 660 respectively for the protein complex.

We then concatenate the geometric transformer representations, ESM2 representations, and SaProt
representations of protein A and protein B to obtain 1D features for the two proteins. We also
concatenate the ESM?2 attention matrices, SaProt attention matrices, and RBF distance matrices of
protein A and protein B to obtain the 2D features for the two proteins. Finally, we concatenate the
ESM2 attention matrix and the SaProt attention matrix of the protein complex (protein A + protein
B) to obtain 2D features for the protein complex. The two 1D features of protein A and protein B, the
two 2D features of protein A and protein B, and the 2D features of the protein complex are passed
through linear layers performing dimensionality reduction to prevent overflow of GPU memory.
These features are then passed into the Resnet-Inception module. The ResNet-Inception module
outputs the receptor (protein A), ligand (protein B), and complex features (protein complex) of
dimensions L 4 XL 4 xd, Lp x Lpxd, and L 4 X L g xd, respectively, where d is a hyperparameter set
as 64. The receptor, ligand, and complex 2D structures are passed into the Triangle-aware module.
The model finally outputs the pairwise probabilities that the residue-residue contacts exist between
protein A and protein B.

3.3 IMPLEMENTATION OF TRAINING

DeepSSinter uses Focal Loss as the loss function for training, the same loss function as that used
for Deeplnter (Lin et al.l |2023). Compared to other classification loss functions such as standard
Cross-Entropy, Focal Loss is able to address the issue of class imbalance. In the case of interface
contact prediction, there is an extreme class imbalance between non-contacts and contacts, with the
number of non-contacts greatly outnumbering the number of contacts. Focal loss helps the model
focus on the minority class, the true contacts in this case. Focal loss also makes the model focus
more on difficult, misclassified examples, improving the model’s ability to generalize on challenging
test cases. Focal loss is defined by:

FocalLoss(p;) = —au(1 — pi)7 log(pye)

{ P ify=1
bt = .
1-p otherwise,

where y € 0,1 is the ground truth label. We use parameters of o; = 0.25 and v = 1.5 (Lin et al.,
2017).
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Our model is trained using PyTorch Lightning on one A100 GPU with 40G memory. We trained the
model with a learning rate of 0.001 and a weight decay of 0.01. Due to GPU memory limitations
of each module, especially the triangle self-attention module, we set a maximum sequence length
of 320 for each input protein. If the input protein has a length greater than 320, we use a window
of size 320 to scan the labels and find the windows that have the maximum number of inter-protein
contacts. From the windows with the most contacts, we randomly select a window and crop the
protein sequence and input features to match the window. For the ground truth labels of the interface
contacts, we consider two amino acids with a distance of < 8.0 A among their heavy atom pairs from
two proteins in the complex to be an interface contact.

4 EXPERIMENTS

4.1 DATASETS

To train and test our model, we use the data sets of non-redundant protein dimeric complexes from
Deeplnter, which include 4100 homodimers and 2076 heterodimers (Lin et al., 2023). All the struc-
tures were downloaded from the Protein Data Bank (PDB; http://www.rcsb.org/pdb/)
(Berman et al., [2000) and subject to manual curation. In this study, we apply the geometric graph
transformer to process the protein structure and extract the structure representation and utilize the
ESM-2 to obtain sequence representation. Since some residues are missed in the experiment, and
to avoid the large gap between the full sequence and structures, we have removed some dimers
from the datasets used by Deeplnter. For training, the dataset consists of 3376 homodimeric protein
complexes and 1853 heterodimeric protein complexes. We use a validation set consisting of 287 ho-
modimeric protein complexes and 95 heterodimeric protein complexes. For testing, we use two test
sets of 289 homodimeric protein complexes, which is named Homodimer289, and 99 heterodimeric
protein complexes, which is called Heterodimer99.

4.2 EVALUATION ON HOMODIMERIC COMPLEXES

We evaluated our model on the 289 homodimeric protein complexes from the Homodimer289 test
set by measuring the mean top-k precision with k = 1, 10, 25, 50, L/10, L/5, L where L is the
length of the complex. We compared these metrics with five other state-of-the-art methods: Deep-
Inter, CDPred, DeepHomo2.0, GLINTER, and DeepHomo. The top-k precision is defined as the
percentage of correct contacts among the top k predicted contacts with highest probability. It can
be seen from Table || that DeepSSInter obtains high precisions of 83.4%, 81.6%, 80.7%, 79.8%,
80.7%, 79.8%, and 75.0% for top 1, top 10, top 25, top 50, top L/10, top L/5, and top L predicted
contacts, respectively, with experimental sequences and structures as input into the model. DeepSS-
Inter achieves the highest top-k precisions for all seven top-k precisions among the six methods. In
addition, DeepSSInter also obtains the best performance in terms of F1-score and AUC (Table[5).

Table 1: Comparison of the precisions (%) of DeepSSInter and five other methods on the Homod-
imer289 test set considering the top 1, 10, 25, 50, L/10, L/S, and L predicted contacts with the
experimental sequences and structures as input. The data of the other methods are taken from the
literature (Lin et al., [2023)).

Method Top 1 Top10  Top25 Top50 TopL/10 TopL/5 TopL
DeepSSInter 834 81.6 80.7 79.8 80.7 79.8 75.0
Deeplnter 80.3 78.5 77.8 77.0 77.9 77.1 71.3
CDPred 74.0 71.9 69.8 67.9 69.7 67.9 584
DeepHomo2.0  74.0 71.7 69.5 67.0 69.6 67.2 54.7
GLINTER 68.9 64.1 60.2 56.5 61.2 574 434
DeepHomo 61.6 57.3 54.0 50.4 54.9 52.0 39.1

In particular, compared to Deeplnter, the best-performing method out of the other five methods,
DeepSSinter achieves a 3~4% improvement for each top-k precision result. DeepSSInter uses ge-
ometric transformer representations and structure-aware PLM representations and attentions, while
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Deeplnter uses MSA, intra-protein distance, and coevolution information as features. The improve-
ment in precision indicates that the geometric transformer and structure-aware PLM representations
and attentions do a better job at capturing the relevant features important for predicting interface
contacts.

Compared with the other four methods (excluding Deeplnter), DeepSSInter also achieves improve-
ments of 9.4~16.6%, 9.4~20.3%, 14.5~31.6%, and 21.8~35.9% compared to CDPred, Deep-
Homo2.0, GLINTER, and DeepHomo, respectively. This indicates the superiority of DeepSSInter
and the effectiveness of DeepSSInter in accurately predicting the interface contacts of homodimeric
complexes.

Not all proteins have existing experimental structures available. Therefore, we further tested our
model using the predicted monomer protein structures by AlphaFold2 (Jumber et al., 2021} as input
to investigate the robustness of our method. We also used the Homodimer289 test set, but instead
of inputting the experimental protein sequences and structure, we input the AlphaFold2-predicted
structures generated using only the sequences of the proteins. The resulting precisions are shown
in Table Q As we can see, DeepSSlInter achieves top-k precisions of 71.6%, 69.2%, 68.9%, 68.2%,
68.6%, 68.1%, and 62.9% for k = 1, 10, 25, 50, L/10, L/5, and L predicted contacts, respectively. In
addition, DeepSSInter also achieves the overall best performance when considering both F1-score
and AUC (Table [6). Compared with the precisions obtained by inputting experimental sequences
and structures, the precisions obtained by inputting AlphaFold2-predicted structures are lower in
general. This decrease in performance may be due to the fact that the model is trained on a training
set consisting of experimental sequences and structures, thus it would perform better in predicting
protein interface contacts for experimental sequences and structures. Nevertheless, DeepSSlInter still
achieves the highest top-k precisions for every k value among all six methods. This demonstrates
the robustness of DeepSSInter, which is able to achieve high precisions even when the input data is
changed to AlphaFold2-predicted structures instead of experimental structures.

In addition to inter-protein contact prediction approaches, methods have also been developed for
direct prediction of protein complex structures using MSA like AlphaFold-Multimer (Evans et al.|
2021), PLM like ESM-Fold (Lin et al.| [2024b)) and Uni-Fold MuSSe (Zhu et al.} [2023)), and docking
like HDOCK (Yan et al.| [2020). Therefore, we have also evaluated these complex structure predic-
tion methods. As shown in Table 2} DeepSSInter also outperforms three typical methods including
HDOCKIite (ab initio docking version of HDOCK), ESM-FOLD, and AlphaFold-Multimer (AFM)
w/o MSA in predicting inter-protein contacts of homodimers.

Table 2: Comparison of the precisions (%) of DeepSSInter and five other methods on the Homod-
imer289 test set considering the top 1, 10, 25, 50, L/10, L/5, and L predicted contacts with the full
sequences and AlphaFold2-predicted structures as input. The data of the other methods are taken
from the literature (Lin et al., [2023)).

Method Topl Topl1l0 Top25 Top50 TopL/10 TopL/5 TopL
DeepSSInter 71.6 69.2 68.9 68.2 68.6 68.1 62.9
Deeplnter 69.2 66.9 66.8 65.7 66.7 65.9 59.0
CDPred 68.5 67.5 66.6 64.5 66.8 64.7 54.6
DeepHomo2.0 62.6 62.1 60.4 58.1 60.8 58.2 46.9
GLINTER 60.6 56.5 54.1 50.9 54.5 51.5 39.1
DeepHomo 55.7 50.1 46.8 44.2 48.0 44.8 33.7
HDOCKlIite 63.1 62.7 62.4 62.2 62.7 62.4 58.9
ESMFold 59.7 60.1 60.0 59.8 60.1 60.1 56.7
AFM w/o MSA 123 12.7 124 12.7 12.5 12.7 11.6

4.3 EVALUATION ON HETERODIMERIC COMPLEXES

We further evaluated our model on the more difficult heterodimeric protein complexes. Compared
to homodimeric complexes, prediction methods struggle to accurately predict the structure of het-
erodimeric complexes. We tested our model on the Heterodimer99 test set consisting of 99 het-
erodimeric protein complexes and measured the top-k precisions with k = 1, 10, 25, 50, L/10, L/5, L
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where L is the length of the protein complex. We compared these metrics with three other methods:
Deeplnter, CDPred, and GLINTER. We can see from Table[3|that DeepSSInter achieves top-k preci-
sions of 59.6%, 50.0%, 48.8%, 45.7%, 50.8%, 48.8%, and 41.9% for k values of 1, 10, 25, 50, L/10,
L/5, and L, respectively, for experimental sequences and structures as input into the model. DeepSS-
Inter also obtains significantly higher top-k precisions for all seven top-k precisions among the four
methods. In addition, DeepSSInter also achieves the overall best performance when considering
both F1-score and AUC (Table[7).

Table 3: Comparison of the precisions (%) of DeepSSInter and three other methods on the Het-
erodimer99 test set considering the top 1, 10, 25, 50, L/10, L/5, and L predicted contacts with the
experimental sequences and structures as input. The data of the other methods are taken from the
literature (Lin et al. [2023)).

Method Top 1 Top 10  Top 25 Top50 TopL/10  TopL/5 Top L
DeepSSInter  59.6 50.0 48.8 45.7 50.8 48.8 41.9
Deeplnter 45.5 46.1 447 43.7 44.9 44.4 40.0
CDPred 39.8 354 33.1 30.4 352 333 26.5
GLINTER 374 33.0 28.9 26.1 323 29.0 22.2

We can see from Table [3] that out of the other three methods, Deeplnter is the best-performing.
Compared with Deeplnter, DeepSSInter performs significantly better, achieving a 1.9-14.1% im-
provement for top-k precisions. This improvement suggests that DeepSSInter’s structure-aware fea-
tures are able to better capture patterns that are relevant to interface contact prediction not only for
homodimeric complexes, but also for heterodimeric complexes.

Compared with the other two methods (excluding Deeplnter), DeepSSInter also achieves improve-
ments of 14.6-19.8% and 17.0-22.2% compared to CDPred and GLINTER, respectively. Therefore,
we can see that DeepSSlnter is also able to improve the interface prediction accuracies for the
challenging heterodimeric protein complexes compared to the other methods. Especially, the great
improvement of DeepSSInter on the top-1 precision compared with other methods, will be of great
benefit on the predictions of protein complex structures by the protein docking algorithms.

Similar to the homodimer evaluations, we also tested our model on AlphaFold2-predicted het-
erodimeric protein structures as input to investigate the robustness of our method. We used the
same Heterodimer99 test set, but instead of using experimental sequences and structures as input,
we used the full-length sequences and AlphaFold2-predicted structures. It is noted that only 95 com-
plexes are tested here because AlphaFold2 failed on two complexes and also two other complexes
contain non-standard amino acids. The precisions of the four models when inputting AlphaFold2-
predicted structures are shown Table[d] It can be seen from the table that DeepSSInter achieves top-k
precisions of 34.7%, 32.4%, 31.3%, 30.4%, 32.2%, 31.5%, and 27.3% for k values of 1, 10, 25, 50,
L/10, L/5, and L respectively. In addition, DeepSSInter also achieves the best performance in terms
of Fl-score and AUC (Table[8). When comparing top L precisions of the four models, we can see
that DeepSSlnter, with top L precision of 27.3%, performs better than CDPred and Glinter, which
obtain top L precisions of 22.8% and 19.3% respectively. Again, DeepSSInter outperforms three
typical structure prediction methods including HDOCKIite, ESM-FOLD, and AlphaFold-Multimer
w/0 MSA in predicting inter-protein contacts of heterodimers (Table ).

Interestingly, DeepSSInter performs worse than DeeplInter with the top L precisions of 27.3% versus
29.4%. This indicates that DeepSSInter still lacks in some robustness compared to Deeplnter, but
is more robust than CDPred and GLINTER in general. The reason of the lack in performance
on AlphaFold2-predicted structures compared to Deeplnter may be the information loss in single-
sequence protein language models. Especially for heterodimeric complexes for which the prediction
of structure is already more difficult, passing the full-length sequence of the heterodimer complex
into the protein models may lead to features that have some discrepancy, causing lower prediction
precision. In such cases, paired MSA for Deeplnter may better capture the coevolutionary features
than single-sequence protein language models like ESM for DeepSSInter. However, it should also
be noted that DeepSSInter is much faster and more scalable than Deeplnter because DeepSSInter
does not rely on the input of MSA. Therefore, DeepSSInter still owns an overall benefit compared
with Deeplnter by weighing their speed and accuracy.
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Table 4: Comparison of the precisions (%) of DeepSSInter and three other methods on the Het-
erodimer99 test set considering the top 1, 10, 25, 50, L/10, L/5, and L predicted contacts with the
full sequences and AlphaFold2-predicted structures as input. The data of the other methods are

taken from the literature 2023).

Method Topl Topl0 Top25 Top50 TopL/10 TopL/S5 TopL
DeepSSinter 34.7 324 31.3 30.4 322 31.5 27.3
Deeplnter 42.1 374 35.5 33.8 36.4 35.3 294
CDPred 34.7 32.0 29.8 27.0 322 304 22.8
GLINTER 35.8 27.5 25.3 23.0 27.0 24.8 19.3
HDOCKlIite 25.8 252 24.7 24.6 25.1 25.0 24.0
ESMFold 27.3 29.4 29.9 29.7 30.4 30.2 28.0
AFM w/o MSA 7.5 7.4 7.5 8.0 7.2 7.1 7.5

4.4  APPLICATION TO REALISTIC CASP-CAPRI COMPLEXES

To evaluate DeepSSlnter in real applications, we also tested DeepSSInter on an additional test set
of realistic CASP_CAPRI complexes [2023)). As shown in Appendix C, DeepSSInter also
outperforms the other methods for top L predicted contacts (Tables [0] and [I0)), demonstrating the
accuracy and robustness of DeepSSInter.

4.5 ABLATION STUDY

To investigate the effect of each component within the model architecture and verify their effective-
ness, we conducted ablation studies on DeepSSInter. We trained five new models by removing the
geometric transformer module (no_gt), ESM2 module (no_.ESM), SaProt module (no_SaProt), both
the geometric transformer and ESM2 modules (no_gt_ESM), and both the geometric transformer
and SaProt modules (no_gt_SaProt), respectively. All of the five ablation models are trained with the
same hyperparameters as the baseline model.
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Figure 3: The performance for the ablation models versus the baseline model for several top numbers
of predicted contacts on the Homodimer289 test set with experimental structures as input.

When testing the ablation models on the Homodimer289 test set, we can see from Figure[3|that no_gt
slightly improves precisions, while all other ablation models (no_.ESM, no_SaProt, no_gt_ESM, and
no_gt_SaProt) have lower precisions than the baseline model. When testing the ablation models
on the Heterodimer99 test set, we can see from Figure [ that all ablation models (no_gt, no_ESM,
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no_SaProt, no_gt_ ESM, and no_gt_SaProt) have lower precisions than the baseline model. Similar
trends can be observed in terms of F1-score and AUC of different ablation models (Tables [TT] and
[[2), and also shown in their contact maps (Figure ).
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Figure 4: The performance for the ablation models versus the baseline model for several top numbers
of predicted contacts on the Heterodimer99 test set with experimental structures as input.

The ablation experiments on the Homodimer289 and Heterodimer99 test sets demonstrate the im-
portance of integrating ESM2 and SaProt protein language models. Overall, SaProt is the most
impacting factor, following by GT (geometric transformer) and ESM. This can be understood be-
cause SaProt is built on ESM and may implicitly include the features of ESM [2023).
The phenomenon that the geometric transformer slightly decreases the performance for homod-
imers is possibly due to the interplay between the graph and distance representations of monomer
structures. Compared with distance representation, graph representation is normally less precise but
more robust against structural errors. As such, geometric transformer may not help the model for
high-accuracy homodimer cases that are determined by co-evolutions, but would play a significant
role for medium or low-accurate heterodimer cases that are largely determined by structural features.
How to balance the structure representations from graph transformer and SaProt protein language
model remains an important topic in the future development of DeepSSInter.

5 CONCLUSION

We have proposed a sequence and structure-aware protein language-based deep learning model to
effectively predict the interface contacts for protein-protein interactions, named DeepSSInter. Com-
pared with state-of-the-other methods such as Deeplnter, DeepHomo2.0, GLINTER, CDPred, and
DeepHomo, our DeepSSInter model achieves the best performance for all precision metrics on di-
verse test sets of homodimeric and heterodimeric protein complexes, respectively, when utilizing
experimental protein structures as input. On average, our DeepSSInter method achieves a top L/5
prediction of 79.8% on the homodimeric complexes, compared with 77.1% for Deeplnter, 67.9%
for CDPred, 67.2% for DeepHome2.0, 57.4% for GLINTER, and 52.0% for DeepHomo, respec-
tively. On the heterodimeric complexes, DeepSSInter obtains a top L/5 precision of 48.8%, which is
significantly higher than 44.4% for Deeplnter, 33.3% for CDPred, and 29.0% for GLINTER, respec-
tively. In addition, our model also performs well on AlphaFold2-predicted structures, showing its
robustness on predicted structures. Despite DeepSSInter’s high precision and robustness, there still
exist some limitations in the model, such as the difficulty in predicting the inter-protein contacts of
heterodimers with AlphaFold2-predicted structure. However, our model shows the effectiveness of
using protein language models and structure-aware features in improving the accuracy of predicting
the interface contacts of protein complexes.
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A COMPARISON OF DEEPSSINTER WITH OTHER METHODS IN TERMS OF
F1-SCORE AND AUC ON THE HOMODIMER289 TEST SET.

Table 5: Comparison of DeepSSInter with other methods in terms of F1-score and AUC (area under
the ROC) of contact prediction on the Homodimer289 test set with the experimental sequences and
structures as input.

Method F1-score AUC

DeepSSinter 0.5993 0.9718
Deeplnter 0.4618 0.9716
CDPred 0.3574 0.9467
GLINTER 0.2762 0.8927
DeepHomo2 0.2440 0.9413
DeepHomo 0.0669 0.9185

Table 6: Comparison of DeepSSInter with other methods in terms of F1-score and AUC (area un-
der the ROC) of contact prediction on the Homodimer289 test set with the AlphaFold2-predicted
structures as input.

Method F1-score AUC

DeepSSinter 0.4879 0.9268
Deeplnter 0.3822 0.9294
CDPred 0.3728 0.9187
GLINTER 0.2532 0.8781
DeepHomo2 0.1963 0.9030
DeepHomo 0.0470 0.8886
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B COMPARISON OF DEEPSSINTER WITH OTHER METHODS IN TERMS OF
F1-SCORE AND AUC ON THE HETERODIMER99 TEST SET.

Table 7: Comparison of DeepSSInter with other methods in terms of F1-score and AUC (area under
the ROC) of contact prediction on the Heterodimer99 test set with the experimental sequences and
structures as input.

Method Fl1-score AUC

DeepSSInter 0.2259 0.8914
Deeplnter 0.1832 0.8960
CDPred 0.0691 0.8267
GLINTER 0.0834 0.8148

Table 8: Comparison of DeepSSInter with other methods in terms of F1-score and AUC (area un-
der the ROC) of contact prediction on the Heterodimer99 test set with the AlphaFold2-predicted
structures as input.

Method F1-score AUC

DeepSSInter 0.1479 0.8355
Deeplnter 0.1229 0.8035
CDPred 0.0540 0.7715
GLINTER 0.0857 0.8071
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C COMPARISON OF DEEPSSINTER WITH OTHER METHODS ON
CASP-CAPRI COMPLEXES

Table 9: Comparison of the precisions (%) of DeepSSInter and other methods on the CASP-CAPRI
test set of 27 complexes considering the top 1, 10, 25, 50, L/10, L/5, and L predicted contacts with
the experimental sequences and structures as input. The data of the other methods are taken from
the literature (Lin et al., 2023)).

Method Topl Topl0 Top25 Top50 TopL/10 TopL/5 TopL
DeepSSInter  63.0 65.9 64.9 64.7 65.3 64.3 64.3
Deeplnter 74.1 71.1 714 69.6 71.0 69.3 61.7
CDPred 66.7 67.8 64.1 63.0 65.1 62.9 51.6
GLINTER 70.4 64.8 63.0 60.4 62.4 59.0 45.6
DeepHomo2  70.4 64.8 63.0 60.4 62.4 59.0 45.6
DeepHomo 55.6 50.7 46.4 43.6 44.5 43.0 30.7

Table 10: Comparison of the precisions (%) of DeepSSInter and other methods on the CASP-CAPRI
test set of 27 complexes considering the top 1, 10, 25, 50, L/10, L/5, and L predicted contacts with
the AlphaFold2-predicted structures as input. The data of the other methods are taken from the
literature (Lin et al. [2023)).

Method Topl Topl0 Top25 Top50 TopL/10 TopL/5 TopL
DeepSSInter  63.0 66.3 65.3 65.0 65.9 65.3 65.3
Deeplnter 66.7 63.7 63.3 62.7 64.5 63.4 55.9
CDPred - 65.7 - - 63.1 60.9 49.0
GLINTER 63.0 62.2 58.7 54.1 58.5 534 35.6
DeepHomo2  70.4 63.7 59.1 56.4 58.1 55.6 424
DeepHomo 59.3 53.7 47.4 44.6 46.1 43.8 29.4
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D ABLATION EXPERIMENTS IN TERMS OF F1-SCORE AND AUC.

Table 11: The performance for the ablation models versus the baseline model in terms of F1-score
and AUC (area under the ROC) of contact prediction on the Homodimer289 test set with the exper-
imental sequences and structures as input.

Method F1-score AUC

baseline 0.5993 0.9718
no_gt 0.6078 0.9707
no_esm 0.5935 0.9706
no_saport 0.5423 0.9566
no_gt_esm 0.5950 0.9725
no_gt_saprot 0.5558 0.9602

Table 12: The performance for the ablation models versus the baseline model in terms of F1-score
and AUC (area under the ROC) of contact prediction on the Heterodimer99 test set with the experi-
mental sequences and structures as input.

Method F1-score AUC

baseline 0.2259 0.8914
no_gt 0.1824 0.8726
no_esm 0.1923 0.8868
no_saport 0.1413 0.8240
no_gt_esm 0.1783 0.8855
no_gt_saprot 0.1376 0.8109
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E CONTACT MAPS PREDICTED BY THE BASELINE AND ABLATION MODELS
OF DEEPSSINTER.

baseline no_esm no_saprot

150

no_gt esm no_gt saprot Ground Truth
e —

Figure 5: Contact maps predicted by the baseline and ablation models of DeepSSInter on an example
complex (PDB code: 2WAG). The baseline model gives a topL precision of 88.5%, compared with
56.7% for no_gt, 73.3% for no_esm, 40.6% for no_saprot, 69.6% for no_gt_esm , and 39.2% for
no_gt_saprot.
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F How TO USE DEEPSSINTER AT THE PREDICTION TIME.

At the prediction time, only one (for a homodimer case) or two (for a heterodimer case) monomer
structures are needed as input for DeepSSlnter. By default, DeepSSInter does not crop the protein
structure and use the full sequence to predict residue-residue contacts during the inference. For the
best performance of DeepSSlnter, it is not recommended that users crop the protein structures at
the prediction time. If a very long protein (e.g. > 5000aa) causes an overflow of GPU memory
at the prediction time, users may run DeepSSInter on CPU. Nevertheless, if users really need to
crop a protein due to memory and/or speed reason at the prediction time, they may use a sliding
window strategy. In such cases, it is recommended to use a window size as long as allowed by
users’ computer or choose a window size that have an opportunity to cover more interface residues
during sliding. As shown in Figure[d] if a cropped structure can cover more interface residues, the top
predicted contact tends to have a higher contact probability, which may be used to guide the choice
of a window size. Moreover, if a cropped structure can cover more interface residues, DeepSSInter
also tends to have a higher precision in contact prediction (Figure[7). There results demonstrate the
feasibility of using a sliding window strategy for very long proteins at the prediction time.
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Figure 6: The top 1 score (i.e. the contact probability of the top predicted contact by DeepSS-
Inter) versus the interface residue ratio of a cropped structure on nine homodimer examples. For
demonstration purpose, the widow size is here set to 200 aa. For each case, 20 protein structures are
cropped from the full-length monomer by evenly sliding the window.
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Figure 7: The top 100 precision of contact prediction by DeepSSInter versus the interface residue
ratio of a cropped structure on nine homodimer examples. For demonstration purpose, the widow
size is here set to 200 aa. For each case, 20 protein structures are cropped from the full-length
monomer by evenly sliding the window.
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