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ABSTRACT

Rate-encoded spiking neural networks (SNNs) are known to offer superior ad-
versarial robustness compared to direct-encoded SNNs but have relatively poor
generalization on clean input. While the latter offers good generalization on clean
input it suffers poor adversarial robustness under standard training. A key reason
for this behaviour is the input noise introduced by the rate encoding, which encodes
a pixel intensity with T independent Bernoulli samples. To improve the general-
ization of rate-encoded SNNs, we propose the signed rate encoding (SRATE) that
allows mean centering of the input and helps reduce the randomness introduced by
the encoding, resulting in improved clean accuracy. In contrast to rate encoding
where input restricted to [0, 1]d is encoded in {0, 1}d×T , the signed rate encoding
allows input in [−1, 1]d to be encoded with spikes in {−1, 0, 1}d×T , where positive
(negative) inputs are encoded with positive (negative) spikes. We further construct
efficient Sparse Encoding Attack (SEA) on standard and signed rate encoded input,
which performs l0-norm restricted adversarial attack in the discrete encoding space.
We prove the theoretical optimality of the attack under the first-order approximation
of the loss and compare it empirically with the existing attacks on the input space.
Adversarial training performed with SEA, under signed rate encoding, offers supe-
rior adversarial robustness to the existing attacks and itself. Experiments conducted
on standard datasets show the effectiveness of sign rate encoding in improving
accuracy across all settings including adversarial robustness.

1 INTRODUCTION

Spiking neurons emulate the salient features of the biological neurons by maintaining a membrane
potential that accumulates the weighted input spikes over time and sends output spikes whenever
the potential exceeds a predetermined threshold, followed by a reset in the potential (Gerstner et al.,
2014). A spike is represented by a single binary number, denoting its presence or absence. In contrast
to a continuous activation such as Sigmoid or ReLU, communication of information through spikes
simplifies the floating point vector inner product required between the weights and activations for
computation of input to a neuron, to the accumulation of weights selected by the presence of spikes.
Such computation can be efficiently implemented on neuromorphic hardware, obtaining significant
energy saving, as demonstrated in specialized neuromorphic hardware, such as Intel’s Loihi (Davies
et al., 2018), IBM’s TrueNorth (Akopyan et al., 2015) etc.

For static inputs such as images, SNN requires each pixel to be encoded by spikes of length T , where
T is known as network latency. The direct or constant encoding supplies the input ∈ Rd, as it is,
for T time steps and assumes that the first layer of the network works as an encoder, generating the
spikes. However, whether neuromorphic hardware can support floating point inputs is debatable.
Since there is no restriction in the input domain, direct encoding allows the normalization of the input,
helping in better training.

In rate encoding approach, the input x = (x1, x2, · · · , xd) ∈ [0, 1]d, has a domain restriction. To
encode a pixel xi ∈ [0, 1] it generates T independent Bernoulli spikes (z

(1)
i , z

(2)
i , · · · , z(T )

i ) ∈
{0, 1}T , treating xi as the bias, with z

(t)
i ∼ Ber(xi), so that, the rate of spikes 1

T

∑T
t=1 z

(t)
i

approximates xi. Due to the introduction of noise, rate encoding yields lower standard accuracy
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compared to direct encoding, moreover, because of the input domain restriction, it does not allow
normalization of the input. It is, however, empirically observed (Sharmin et al., 2020) and also
theoretically proved (Mukhoty et al., 2024a) that rate-encoded network offers robustness from
adversarial attacks, even without adversarial training. In contrast, direct encoded networks offer
no adversarial robustness without adversarial training. It makes rate-encoded networks relevant to
applications at the risk of adversarial attacks, as adversarial training for large datasets can sometimes
be computationally prohibitive.

For a little background, an adversarial attack (Goodfellow et al., 2014) is a test time attack that finds
minimal perturbation of the input in order to change the classifier output to an incorrect class. On
the other hand, to introduce robustness against adversarial attacks, adversarial training (Madry et al.,
2018) performs training with adversarially perturbed input but the correct label.

Intuitively, a key reason behind the robustness of rate-encoding is the obfuscation of the original
input through Bernoulli noise, which dilutes the effect of small adversarial perturbations of the input
space when encoding is performed. With increasing T , as the rate of spikes better approximates the
input, the clean accuracy improves, but at the same time, it reduces the robustness to adversarial
perturbations. A primary motivation for the present work is to reduce the randomness introduced
by the encoding for a fixed T , which should improve the standard accuracy but may cause a slight
compromise in robustness. We observe that the randomness introduced by rate encoding can be
reduced through mean-centering of the data, as the variance of a Bernoulli random variable is highest
when the bias is 0.5, and any reduction in the bias should result in a reduction in randomness.

Further, since adversarial perturbation in the input space must pass through the encoding space, from
that perspective of attack, an attack on the encoding space should be more effective if compared under
a transferable budget with input space attacks. From a model perspective, receiving adversarially
perturbed encoded input also makes realistic sense, as the encoder need not be a part of the model. For
example, Marchisio et al. (2021) demonstrates an adversarial attack on SNN by perturbing dynamic
vision sensor (DVS) images belonging to a discrete space. In literature, encoding attacks have been
also explored, for instance, Liang et al. (2021) presents a gradient-based adversarial attack on rate
encoding, which does not incorporate a sparsity budget but introduces uncontrolled sparsity through
a probabilistic sampling of a mask applied to the perturbations, where the mask probability is equal
to the coordinate-wise magnitude of the gradient.

Our Contributions:

• Rate encoding requires inputs x ∈ [0, 1]d for Bernoulli sampling, which cannot accom-
modate negative inputs that arise from mean-centering the data. We propose signed rate
encoding that allows rate encoding to work with both positive and negative inputs in [−1, 1]d

by generating signed spikes depending upon the sign of the input. We quantify the reduction
in randomness following mean-centering and demonstrate the effectiveness of signed rate
encoding in improving training and generalization performance.

• We introduce gradient-based l0-norm adversarial attack in the encoding space, dubbed
as Sparse Encoding Attack (SEA), that alters the encoded input under a given sparsity
budget and jointly optimizes the encoding restriction requiring the perturbed encoded input
belonging to {0, 1} or {−1, 0, 1} depending upon rate or signed rate encoding. Given the
gradient information and sparsity budget, we prove that SEA maximizes the loss function
under the first-order approximation of the loss. Further, to compare the l0-norm restricted
encoding attacks with l∞-norm restricted input space attacks, we compute expected l0-
budget given an l∞-budget (see section 4.3).

• We perform adversarial training of rate-encoded SNNs with SEA and other existing input
space attacks such as FGSM and PGD. The empirical performance on standard static image
datasets such as CIFAR-10, CIFAR-100, and SVHN reveals that SEA under signed rate
encoding offers significantly higher robust accuracy compared to the existing methods (see
Table 6).

2 BACKGROUND

Neuronal Dynamics: The neurons of the SNN following the Leaky Integrate and Fire (LIF) model
(Gerstner et al., 2014) are governed by a differential equation similar to RC-parallel circuit, which
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after Euler forward discretization, given as:

u
(l)
i [t] = β(u

(l)
i [t− 1]− s

(l)
i [t− 1]uth) +

∑
j

wijs
(l−1)
j [t], (1)

s
(l)
i [t] = H(u

(l)
i [t]− uth) =

{
1 if u(l)

i [t] > uth

0 otherwise,
(2)

where, u(l)
i [t] denotes the membrane potential of the i-th neuron in l-th layer at the time step t ∈ [T ].

The potential recursively depends upon its residual potential from the previous time step with a leaky
factor β, 0 < β ≤ 1, and spikes s(l−1)

j [t] received from layer l−1 weighted by wij . When membrane

potential u(l)
i [t] exceeds a predetermined threshold uth, it generates a binary spike s

(l)
i [t] represented

by the Heaviside H , followed by a reset in the membrane potential at the next time step. The total
number of steps for which the network dynamics is executed is called the latency of the network,
denoted by T . The inputs to the network are supplied for T steps using some encoding technique
discussed earlier, and the network output is computed by taking the temporal average of the final
layer output over the latency period.

Surrogate Training: Let hθ : Rd → P(Y) denote a classifier parameterized by θ, which given input
xi returns the probabilities of the class labels in Y . Given training data (xi, yi) ∈ S, the network
minimizes the loss L over θ, computed w.r.t the true labels yi:

min
θ

1

|S|
∑

xi,yi∈S

L(hθ(xi), yi) (3)

We use direct training, where minimization is performed using gradient decent updates computed via
back-propagation through time (BPTT) (Wu et al., 2018). However, due to the Heaviside function
involved, which has zero gradient everywhere except at discontinuity, it is customary to use a
differentiable surrogate function in the backward pass and Heaviside in the forward. The surrogate
gradients can also be replaced with zeroth order derivative of the Heaviside (Mukhoty et al., 2024b).

Adversarial Examples: Given classifier hθ, an additive adversarial perturbation δx intends to alter
the predicted class for a given input x:

argmax
y

hθ(x)y ̸= argmax
y

hθ(x+ δx)y (4)

Solving the above task while minimizing a norm on δx is NP-hard, owing to the non-convexity of the
classifier hθ. Considering the white box attack scenario where the adversary can access the network
architecture and parameters, one tries to find a perturbation δx using the loss as a proxy objective
(Goodfellow et al., 2014),

arg max
∥δ∥≤ϵ

L(hθ(x+ δ), y) (5)

Since the loss is non-convex, it is common to work with its first-order approximation, L(hθ(x +
δ), y) ≃ L(hθ(x), y) + δT∇xL(hθ(x), y), in which case, the objective becomes:

δx := arg max
∥δ∥≤ϵ

δT∇xL(hθ(x), y) (6)

The Fast Sign Gradient Method (FGSM) (Goodfellow et al., 2014) solves the problem for l∞-norm
restriction on δ. The problem can also attempt to be solved over multiple FGSM steps, each followed
by projection operations Πϵ that enforce the norm restriction, known as Projected Gradient Descent
(PGD) (Madry et al., 2018):

δt+1 = Πϵ(δt + α sign(∇δL(hθ(x+ δt)), y)) (7)
As the perturbed image must satisfy x+ δt ∈ [0, 1]d, it requires an additional projection for the input
space. It is established that joint optimization of norm and the input space restriction is superior to the
sequential projections required to ensure them (Croce & Hein, 2021). Inspired by this, we perform a
joint optimization these objectives in the proposed l0-norm attack (see eqn. 14).

Adversarial Training: To train a classifier that performs reasonably well even under adversarial
perturbations, it was proposed (Madry et al., 2018) that the classifier be trained with perturbed input
x+ δx but with original label y.

min
θ

1

|S|
∑

x,y∈S

max
∥δ∥≤ϵ

L(hθ(x+ δ), y) (8)
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Though computationally more expensive than standard training due to inner maximization required
to find the perturbation, the objective forces classifier output to be invariant across the radius of
perturbation, introducing a bias that often leads to a drop in clean accuracy, but offers better robust
accuracy against the adversarial attack (Pang et al., 2022).

3 SIGNED RATE ENCODING

3.1 QUANTIFICATION OF RANDOMNESS

We start by quantifying the amount of randomness introduced by rate encoding (RATE). To this end,
we would like to measure how far on expectation two binary encodings can be when measured under
l0-norm. Consider an image input x ∈ [0, 1]d, encoded twice independently at a particular time step,
i.e., z, ẑ ∼ Ber(x), where, z, ẑ ∈ {0, 1}d. So that we have,

Ez,ẑ[∥z− ẑ∥0] =
d∑

i=1

Ezi,ẑi∼Ber(xi)[|zi − ẑi|] = 2

d∑
i=1

xi(1− xi) = 2 ⟨x, 1− x⟩ =: k1(x) (9)

The randomness k1(x) is proportional to the sum of the pixel variances, e.g., if every pixel has an
intensity of 0.5, two encodings at any particular time step t will vary on d

2 coordinates on expectation.
A natural question that follows is whether it is possible to reduce the randomness. We can reduce the
variance of the pixels if we push them towards boundaries 0 or 1, as the variance is highest at 0.5. A
standard way to do it is mean centering, making the pixels have 0 intensity on average. However, this
will require negative intensities to be encoded, a case not supported by rate encoding.

3.2 SIGNED RATE ENCODING VIA SIGNED BERNOULLI

We propose signed rate encoding (SRATE) to allow negative as well as positive pixel intensities,
xi ∈ [−1, 1], to be rate encoded. For this, whenever a pixel intensity is positive, we generate the
spikes in {0, 1} using Bernoulli sampling, while, if the intensity is negative, we generate spikes in
{0,−1}, treating the magnitude of the intensity as the bias of a negative Bernoulli variable.

zi = sBer(xi) :=

{
Ber(xi) if xi ≥ 0

−Ber(−xi) if xi < 0
(10)

so that, zi ∈ {−1, 0, 1}, with,

P(zi = 1) = xiI[xi ≥ 0] = x+
i , P(zi = −1) = −xiI[xi < 0] = x−

i

P(zi = 0) = 1− x+
i − x−

i = 1− |xi| (11)

The notation, x+
i , x

−
i , are respectively known as positive and negative part, both non-negative

quantities, denoting the magnitude of the number with either sign, but zero otherwise. Eqn. 11 uses
the identity |xi| = x+

i + x−
i for a compact representation. We refer to the random variable defined

as above (eqn. 10, 11) as signed Bernoulli (abbr. sBer) and the corresponding encoding as signed
rate encoding (SRATE). Given an input x ∈ [−1, 1]d, it generates the encoding in {−1, 0, 1}d×T by
sampling independently from the sBer distribution for T steps.

We quantify the randomness introduced by signed rate encoding similar to eqn. 9. Given x ∈ [−1, 1]d,
we compute the expected l0-norm distance of two independent signed Bernoulli encoding z, ẑ ∼
sBer(x), at a fixed time step t with, z, ẑ ∈ {−1, 0, 1}d.

Ez,ẑ∼sBer(x)[∥z− ẑ∥0] =
d∑

i=1

Ezi,ẑi∼sBer(xi)[∥zi − ẑi∥0] =
d∑

i=1

P(zi ̸= ẑi) =

d∑
i=1

(1− P(zi = ẑi))

=

d∑
i=1

(1− P(zi = 1, ẑi = 1)− P(zi = −1, ẑi = −1)− P(zi = 0, ẑi = 0))

=

d∑
i=1

(
1− (x+

i )
2 − (x−

i )
2 − (1− |xi|)2

)
=

d∑
i=1

(
1− |xi|2 − (1− |xi|)2

)
= 2⟨|x| ,1− |x|⟩ =: k2(x) (12)
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x
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

|x| (1− |x|)

0.25

0.5

Figure 1: Signed Bernoulli reducing randomness
after mean-centering of CIFAR-10 dataset.

Note that eqn. 12 goes back gracefully to eqn.
9, with inputs restricted to [0, 1].

Denoting the empirical mean as µ =
1
n

∑n
i=1 xi ∈ [0, 1]d, we compute the factor,

k3(x) :=
k1(x)

k2(x− µ)
(13)

which, represents the factor by which the ran-
domness reduces following mean centering of a
particular input x.

Tab. 1 reports the quantities k1, k2 and k3 after
taking the average on the training set of multiple standard datasets, along with channel-wise average
pixel intensities. The SVHN dataset shows the highest reduction in randomness, followed by
ImageNet-100, CIFAR-10 and CIFAR-100. For CIFAR-100, although avg. k2(x− µ) is higher than
avg. k1(x), we still obtain a reduction in randomness, as reported by avg. k3(x). Fig. 1 attempts to
illustrate the possible reduction in randomness due to the mean centering of a dataset, with shaded
areas highlighting the standard deviation of pixel intensities before and after the centering.

Characterizing Randomness Reduction: We note that the reduction in randomness offered by
SRATE is a data-dependent result; such a reduction may not always happen. Tab. 5 shows that the rate
of spikes in the input layer has a significant reduction in SRATE compared to RATE, which is possible
when |xi − µ| < xi for most xi ∈ [0, 1], which also implies a reduction in randomness as the function
x(1− x) is an increasing function in the region [0, 0.5]. Observe, |xi − µ| < xi ⇐⇒ 0 < µ < 2xi.
As µ ≥ 0 is true for xi ∈ [0, 1], the condition fails only when µ > 2xi or, xi > 0.5, thus, xi ∈ [µ2 , 0.5]
guarantees randomness reduction. However, there can be a reduction even outside this.

CIFAR-10 CIFAR-100 SVHN ImageNet-100

d 32× 32× 3 32× 32× 3 32× 32× 3 224× 224× 3
avg. pixel (0.425, 0.415, 0.384) (0.439, 0.418, 0.378) (0.378, 0.384, 0.410) (0.458, 0.450, 0.389)
avg. k1(x) 994.18 953.09 1106.59 54701.22

avg. k2(x− µ) 942.39 964.14 830.33 43998.53
avg. k3(x) 1.11 1.05 1.44 1.366

Table 1: Dataset statistics and their randomness reduction factor (k3) due to signed rate encoding.

4 SEA: SPARSE ENCODING ATTACKS

4.1 ADVERSARIAL ATTACK ON RATE ENCODING

It is natural for an SNN classifier to receive encoded inputs, thus creating a possibility of an adversarial
attack on the encoded input. Let us consider the classifier hθ : {0, 1}d×T → P(Y), that receives
rate-encoded input z = [z(1), z(2), · · · , z(T )], with z(t) ∈ {0, 1}d and produces probabilities for
individual classes. To construct an untargeted attack on the encoding z ∈ {0, 1}d×T , we may want to
restrict the changes to at most k coordinates in a frame z(t) ∈ {0, 1}d. Thus, we would like to solve
the following optimization problem, following the first-order approximation of the loss function as
described in eqn. 6.

δ∗ := argmax
δ:∀t ∥δ(t)∥0≤k,z(t)+δ(t)∈{0,1}d

⟨δ,∇zL(hθ(z+ δ), y)⟩ (14)

where δ = [δ(1), δ(2), . . . , δ(T )], and the restriction z(t) + δ(t) ∈ {0, 1}d implies that δ(t) ∈
{−1, 0, 1}d. Since the optimization problem is over a finite and non-empty feasible set, it must attain
a global maximum. However, the argument on which it attains the maxima may not be unique, and
we would like to find one of them and call it δ∗. But first, let us solve the problem without the sparsity
constraint.

δ̂ := argmax
δ:∀t z(t)+δ(t)∈{0,1}d

⟨δ,∇zL(hθ(z+ δ), y)⟩ (15)
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sign(gi) -1 -1 1 1 0 0
zi 0 1 0 1 0 1

δ̂i 0 -1 1 0 0 0

Table 2: δ̂i + zi ∈ {0, 1}

sign(gi) -1 -1 -1 1 1 1 0 0 0
zi -1 0 1 -1 0 1 -1 0 1

δ̂i 0 -1 -2 2 1 0 0 0 0

Table 3: δ̂i + zi ∈ {−1, 0, 1}

As the objective is linear in δ, the solution of the problem can be given coordinate-wise. With the
renaming g := ∇zL ∈ Rd×T , the solution is given as:

δ̂
(t)
i =


1 g

(t)
i > 0, z

(t)
i = 0

−1 g
(t)
i < 0, z

(t)
i = 1

0 otherwise

= sign(g
(t)
i )(I[g(t)i ≥ 0](1− z

(t)
i ) + (1− I[g(t)i ≥ 0])z

(t)
i ) (16)

Table 2, elaborates the solution by observing that once we fix z
(t)
i and g

(t)
i , the choice of δ̂(t)i that

maximizes the quantity δ̂
(t)
i g

(t)
i while respecting the constraint z(t)i + δ

(t)
i ∈ {0, 1} is straightforward.

Lemma 1. The solution δ̂ defined as per eqn. 16 is an optimal solution to the optimization problem
in eqn. 15.

z1

z2

(0, 0)

z+ δ∗ = (0, 1)

(1, 0)

z = (1, 1)

∇L(z)

Figure 2: Sparse Encoding Attack on
rate encoding for a given time-step, with
d=2 and k=1

We give the proof in the supplementary section A.1.

With δ̂ present in hand, it is not difficult to find δ∗. To
maximize the inner product ⟨δ̂,g⟩ under a sparsity budget,
we would like to choose the top k no-zero coordinates
of δ̂(t), according to the magnitude δ̂

(t)
i g

(t)
i . We define a

permutation π specific to the time step t such that, i < j

implies δ̂
(t)
πi g

(t)
πi ≥ δ̂

(t)
πj g

(t)
πj , for i, j ∈ [1, 2, · · · , d]. δ∗(t)

keeps the top k coordinates of δ̂(t) with respect to π and
sets the rest to zero:

δ∗(t)πi
=

{
δ̂
(t)
πi if i ≤ k

0 otherwise
(17)

Lemma 2. δ∗ obtained as per eqn. 17 is a maximizer of
the optimization problem of eqn. 14.

Time Complexity: To implement the operation in eqn. 17 one needs to find the indices of top-k
elements of an array which holds the elements [δ̂(t)1 g

(t)
1 , · · · , δ̂(t)d g

(t)
d ]. It can be implemented with a

partitioning algorithm with the time complexity of O(d+ k), making the attack as efficient as other
gradient-based attacks.

Highlighting the sparse nature of the attack on the encoding, we name it Sparse Encoding Attack or
SEA. Fig. 2 gives a visual example of the attack, where we intend to perform a 1-sparse perturbation
at the point z = (1, 1) on which the gradient is assumed to be (−0.5, 1). Although the gradient has
the largest component in the direction of z2, any positive progress in that direction is not possible due
to the violation of the feasibility condition. But, in the direction of z1, a change is possible, and SEA
gives us δ∗ = (−1, 0). Next, we construct the same attack adapted to signed rate encoding.

4.2 SPARSE ENCODING ATTACK ON SIGNED RATE ENCODING

To construct sparse encoding attack on signed rate encoding, we change the encoding space to
{−1, 0, 1}d, fixing a time step t, so that eqn. 14 is reformulated as:

δ∗ := argmax
δ:∀t ∥δ(t)∥0≤k,z(t)+δ(t)∈{−1,0,1}d

⟨δ,∇zL(hθ(z+ δ), y)⟩ (18)
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The feasibility constraint ensures that, δ(t) ∈ {−2,−1, 0, 1, 2}d. Similar to rate encoding, we first
construct a coordinate-wise solution to the problem without the sparsity restriction, similar to eqn. 16
and given by Tab. 3. It is can be compactly expressed as:

δ̂
(t)
i = sign(g

(t)
i )− z

(t)
i

∣∣sign(gti)∣∣ (19)

Given δ̂, δ∗ can be obtained following the definition of eqn. 17. The optimality of the solution can be
proven by a similar argument as presented in Theorem 2.

4.3 COMPARISON OF SEA WITH INPUT SPACE ATTACKS

To compare input space attacks with encoding attacks, given any adversarial perturbation δx in input
space, we need to know the change in sparsity it may cause in the encoding space. To quantify this
for rate encoding, we consider a corrupted input vector x̂ = x+ δx with ∥δx∥ ≤ ϵ, x̂ ∈ [0, 1]d, and
find E[∥z− ẑ∥0], with the assumption, z ∼ Ber(x) and ẑ ∼ Ber(x̂).

k̂1(x, δx) = Ez,ẑ[∥z− ẑ∥0] =
d∑

i=1

E[|zi − ẑi|] =
d∑

i=1

(1− xi)x̂i + xi(1− x̂i)

=

d∑
i=1

(1− xi)(xi + δi) + xi(1− xi − δi) = 2⟨x, 1− x⟩+ ⟨δx, 1− 2x⟩ (20)

The expression for k̂1(x, δx) reduces to k1(x) (see eqn. 9) as we set δx = 0. Thus, the quantity
k :=

∣∣∣k̂1(x, δx)− k1(x)
∣∣∣ = |⟨δx, 1− 2x⟩| gives the expected sparsity change on the encoding of x

due to input perturbation δx. Fig. 4(d) plots this quantity averaged over the training dataset, where δx
are found for each x by FGSM/PGD attack, under different values of ϵ shown in the x-axis. It can
observed from the figure, that for an l∞ attack of radius ϵ = 8

255 , the expected change in sparsity is
k = 10. Thus, it is fair to compare a ϵ = 8

255 FGSM/PGD attacks with SEA at k = 10, under the rate
encoding. See Tab. 6 for such a comparison.

For computation of the sparsity budget for SRATE, we obtain:

k̂2(x, δx) = Ez∼sBer(x),ẑ∼sBer(x̂)[∥z− ẑ∥0]
= ∥x∥1 + ⟨1− |x| , |x+ δ|⟩ − ⟨x+, (x+ δ)+⟩ − ⟨x−, (x+ δ)−⟩ (21)

where, the derivation is given in appendix section A.2. k̂2(x, δx) also reduces to k2(x) with δx = 0.
Thus, giving effective sparsity of the SEA attack, as k =

∣∣∣k̂2(x, δx)− k2(x)
∣∣∣, as plotted in Fig. 4(d).

5 EXPERIMENTS

Our experiments attempt to cover two aspects: first, the improvement in generalization by signed rate
encoding over standard rate encoding, and secondly, the effectiveness of sparse encoding attack, as an
attack and adversarial training. We use standard datasets such as CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009), SVHN (Netzer et al., 2011) and Imagenet-100 (Deng et al., 2009) for comparing the
algorithms. Following recent work we use the standard VGGSNN (Deng et al., 2022) architecture
based on VGG-11 having the configuration (64C3-128C3-AP2-256C3-256C3-AP2-512C3-512C3-
AP2-512C3-512C3-AP2-FC) for all datasets, except for Imagenet-100 where we use SEW-Resnet-34
(Fang et al., 2021).

Competitors: We compare with standard l∞-norm based input space attacks such as FGSM
(Goodfellow et al., 2014) and PGD (Madry et al., 2018). Implementation of the input space attacks
requires back-propagation of gradient through the stochasticity of Ber/ sBer. We use the straight-
through estimator (Bengio et al., 2013), as demonstrated for input space attacks with rate encoding
(Mukhoty et al., 2024a).

Training: Complementary to standard training on clean data (CLEAN) and additive Gaussian Noise
(GN), we perform adversarial training with FGSM, PGD and SEA attacks. The training and test
attack radii for each attack are supplied in Tab.10, along with complete details on the training hyper-
parameters. Since both attack and adversarially trained models have the same name, we denote the
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Figure 3: We compare the performance of rate encoding (RATE) and signed rate encoding (SRATE)
on CIFAR-10. It can be observed that a significant improvement in training is offered by SRATE,
and it is reflected consistently across the training loss, training accuracy and test accuracy. A similar
observation can be made on adversarial training with SEA.

attacks with small cases, while the models are highlighted in the capital within the figures and Tab.6.
We use the Back Propagation Through Time (BPTT) (Wu et al., 2018) algorithm for finding gradients
for adversarial attack and model parameters. A comparison of BPTT with BPTR (Back Propagation
Through Rate) Ding et al. (2022) supplied in Tab. 11, shows the BPTT attack to be superior, except
in two cases, where BPTR performs better in the CIFAR-100 dataset.

5.1 SIGNED RATE ENCODING VS RATE ENCODING:

T RATE SRATE Diff.

4 78.79 82.05 3.26
6 82.22 84.41 2.19
8 83.41 85.41 2.00
10 84.21 86.34 2.13

Table 4: Comparison of clean test accu-
racy on different latencies for CIFAR-10,
shows improvement offered by signed
rate encoding over rate encoding.

We compare the training loss, training accuracy and test
accuracy at the end of each training epoch as offered by
SRATE and RATE in three datasets. Fig.3 reveals that the
loss converges much faster in SRATE compared to RATE,
in CIFAR-10. Also evident from the figure, the advantage
in training is reflected in test accuracies, where SRATE is
found to offer higher accuracy than RATE, consistently
after each epoch. A similar trend can be found for adver-
sarial training, as depicted under the SEA attack. Figures
for CIFAR-100 and SVHN datasets are supplied in the
appendix (see Fig. 5), which show approximately similar
results.

Dataset Encoding Input Avg.
CIFAR-10 RATE 0.48 0.053

SRATE 0.22 0.061
SVHN RATE 0.46 0.058

SRATE 0.20 0.062
CIFAR-100 RATE 0.48 0.082

SRATE 0.23 0.085
ImageNet-100 RATE 0.43 0.083

SRATE 0.22 0.084

Table 5: Rate of spikes in the input layer
shows a significant reduction in SRATE,
while it slightly increases the average
spiking activity in the network. Detailed
results are provided in Tab. 9

To see the exact improvement in standard accuracies on
different datasets, we need to compare the columns repre-
sented by CLEAN in Tab 6 and rows represented by clean.
Such comparison shows that SRATE offers 3.26%, 4.18%
and 3.76% higher standard / clean accuracy for CIFAR-10,
100 and SVHN than RATE. Improvement in generalization
is also reported for ImageNet-100, where test accuracy is
improved by 1%, as reported in Tab. 7.

The advantages of SRATE over RATE, is also reflected
when compared under different training latencies, as
shown in Tab. 4 reporting clean test accuracy for CIFAR-
10 dataset.

Comparison of Sparsity: We compute the layer-wise
spiking rate of the neurons, where the number of spikes
in a neuron is normalized by latency T and averaged over
the neurons in the layer. Tab. 5 compares the statistics for
RATE and SRATE at inference time on different datasets with their respective networks (SEWResNet
for Imagenet-100, VGGSNN for others) for CLEAN models. We can observe that spikes in the input
layer have reduced significantly in SRATE due to mean centering. Further, the spike rate averaged
over all neurons in the network remains comparable or slightly higher for SRATE.

8
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(a) SEA attack vs. k

2 4 6 8 16 32 64
* 255

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

CLEAN(RATE)
CLEAN(sRATE)
FGSM(RATE)
FGSM(sRATE)
PGD(RATE)
PGD(sRATE)
SEA(RATE)
SEA(sRATE)

(b) FGSM attack vs. ϵ
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(c) PGD attack vs. ϵ
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Figure 4: We fix the adv. trained models (highlighted by the legends) of CIFAR-10 dataset from Tab.
6 and perform sensitivity study on attack strength by varying (a) k in SEA, (b) ϵ in FGSM and (c)
ϵ in PGD. Observe, (i) SRATE models offering higher robustness than corresponding RATE model
and (ii) adv. training with SEA and SRATE offering much higher robustness under SEA attack and
comparable robustness against other attacks. Please refer to Tab. 13 for exact numbers in the plots.

5.2 EFFECTIVENESS OF SPARSE ENCODING ATTACKS

Tab. 6 shows application of SEA on RATE and SRATE, both as an attack and with adversarial training.
The sparsity budget k = 10 for SEA in RATE is found to be comparable with l∞-attack radius of
8

255 , as shown in Fig.4(d) and discussed in section 4.3. For each of the T frames, SEA is allowed
to change at most k pixels out of d, for a reference, in CIFAR-10, with d = 32 × 32 × 3 = 3072,
where k = 10 amount to changing only 0.326% of pixels per frame. Observe that the SEA has a
comparable performance to FGSM attack, even with k = 10, and significantly beats all attacks with
the budget k = 20.

T=4 ImageNet-100

Attack RATE SRATE
clean 71.22 72.22

gn 71.38 72.06
fgsm 22.54 21.76
pgd 11.04 11.62

sea, k=10 67.06 65.4
sea, k=20 64.64 61.44

Table 7: Comparison of signed rate en-
coding with rate encoding trained on
clean data, on ImageNet-100.

The columns of Tab. 6 compare different adversarial train-
ing algorithms, under the mentioned attacks. It can be
observed that adv. training with SEA under SRATE, of-
fers higher robust accuracy compared to other models and
across the attacks, as highlighted in the last column. To
explain, why SEA under RATE, is not as good, one may
refer to Fig. 4 (d) and Tab. 14, which shows that the
equivalent sparsity for ϵ = 8

255 is 10 for RATE, while it is
4 in SRATE. We perform adversarial training with SEA
at k = 5 for both RATE and SRATE, possibly causing
SEA model under RATE to perform worse under attacks
of magnitude equivalent to 10.

We consider the adversarially trained models of CIFAR-10 from Tab. 6 and perform sensitivity
studies on attack strength by varying k in SEA and ϵ in FGSM and PGD. We can observe SRATE
models offering higher robustness than corresponding RATE models and adv. training with SEA and
SRATE offering much higher robustness under SEA attack and comparable robustness against other
attacks.

9
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T=4 CIFAR-10, Rate Encoding CIFAR-10, Signed Rate Encoding

ATTACK CLEAN GN FGSM PGD SEA CLEAN GN FGSM PGD SEA

clean 78.79 78.87 75.54 77.07 75.3 82.05 82.01 78.51 79.78 79.06
gn 79.23 78.58 75.92 77.51 75.12 82.13 81.83 78.26 79.7 78.01
fgsm 44.83 44.35 53.93 53.16 42.31 44.3 43.59 55.1 53.81 56.58
pgd 38.87 38.41 49.68 48.83 37.19 36.88 37.03 50.21 48.47 51.87
sea, k=10 44.31 43.89 47.37 46.94 55.33 39.61 39.94 49.05 48.07 80.18
sea, k=20 28.74 28.15 34.67 34.52 43.16 29.06 29.23 40.36 38.75 75.77
Avg 52.46 52.04 56.19 56.34 54.74 52.34 52.27 58.58 58.10 70.25

T=4 SVHN, Rate Encoding SVHN, Signed Rate Encoding

clean 85.66 85.84 85.87 86.04 85.01 89.44 89.59 89.64 89.87 83.98
gn 85.44 85.73 85.97 85.65 85.01 89.14 89.38 89.44 89.53 81.93
fgsm 44.09 44.15 50.26 48.33 41.94 43.37 44.06 49.94 48.23 67.57
pgd 38.82 38.77 45.03 43.31 35.82 35.46 35.43 42.45 40.53 65.76
sea, k=10 37.81 37.61 38.13 37.89 54.06 34.62 35.10 35.26 35.13 92.27
sea, k=20 21.46 21.75 22.36 22.63 32.66 23.55 23.72 24.93 24.97 87.21
Avg 52.21 52.31 54.60 53.98 55.75 52.60 52.88 55.28 54.71 79.79

T=4 CIFAR-100, Rate Encoding CIFAR-100, Signed Rate Encoding

clean 50.56 50.75 46.58 47.07 46.67 54.74 54.51 49.59 51.74 50.35
gn 50.03 51 46.41 46.72 46.15 54.6 54.06 49.64 51.93 49.69
fgsm 22.21 21.92 28.45 30.27∗ 20.53 22.33 22.11 30.81 29.7 31.38
pgd 18.53 18.6 26.08 27.79∗ 17.99 18.44 18.78 28.22 27.04 27.08
sea, k=10 25.84 26.47 26.91 30.28 30.58 21.4 21.81 28.04 27.85 58.53
sea, k=20 16.39 16.2 18.66 22.37 22.03 12.87 13.56 20.63 20.49 54.66
Avg 30.59 30.82 32.18 34.08 30.66 30.73 30.81 34.49 34.79 45.28

Table 6: A comparison of adversarially trained models (in columns) and attacks (in rows), with
‘CLEAN’ and ‘clean’ respectively denoting standard training and standard accuracy. The ‘Avg.’ row
shows the average of accuracies in that column. A column-wise comparison between RATE and
SRATE reveals improvement in standard accuracy and occasional compromise in robust accuracy,
anticipated due to reduction in randomness. However, adv. training with SEA attack under SRATE,
offers superior robust accuracy across all attacks. [ * obtained by BPTR, see Tab. 11 for BPTT vs. BPTR.]

6 CONCLUSION

Rate encoding is a standard communication model of neurons that was discovered very early in
neuroscience (Gerstner et al., 2014). In the computational model of spiking neurons, it plays an
important due to their biological plausibility and robustness properties. In the present work, we
explore novel aspects of rate encoding, by quantifying their randomness and consequently trying to
reduce it, which leads to the signed rate coding. The signed rate encoding seems to have a biological
plausibility due to their similarity with the excitatory and inhibitory neurotransmitters that help the
generation and suppression of spikes. The proposed technique offers better convergence in training
and improves clean generalization. Further, our proposed computationally efficient and theoretically
supported sparse adversarial attacks in the encoding space, show the vulnerability of such network
if the attacker has access to the encoded input. Finally, adversarial training with encoding attack
combined with signed rate encoding offers superior adversarial robustness which is demonstrated by
thorough empirical findings across three standard datasets.
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A.1 PROOF OF LEMMAS

Lemma 1. The solution δ̂ defined as per eqn. 16 is an optimal solution to the optimization problem
in eqn. 15.

Proof. We will give a proof by contradiction. Let us assume, that given any z ∈ {0, 1}d×T there
exists, δ̃ such that z+ δ̃ ∈ {0, 1}d×T with ⟨δ̃,g⟩ > ⟨δ̂,g⟩. Now,

⟨δ̃,g⟩ > ⟨δ̂,g⟩ ⇐⇒
T∑

t=1

d∑
i=1

(δ̃i
(t)

− δ̂i
(t)
)g

(t)
i > 0

=⇒ ∃(t, i) : [[g(t)i > 0, δ̃
(t)
i > δ̂

(t)
i ] or [g(t)i < 0, δ̃

(t)
i < δ̂

(t)
i ]]

In the rest of the proof, we omit the notation for time-step t, assuming it is understood.

If gi > 0, δ̃i > δ̂i, we have,

zi = 0 =⇒ δ̂i = 1 =⇒ δ̃i > 1 =⇒ δ̃i + zi > 1 =⇒ δ̃i + zi /∈ {0, 1}
zi = 1 =⇒ δ̂i = 0 =⇒ δ̃i > 0 =⇒ δ̃i + zi > 1 =⇒ δ̃i + zi /∈ {0, 1}

If gi < 0, δ̃i < δ̂i, we have,

zi = 0 =⇒ δ̂i = 0 =⇒ δ̃i < 0 =⇒ δ̃i + zi < 0 =⇒ δ̃i + zi /∈ {0, 1}
zi = 1 =⇒ δ̂i = −1 =⇒ δ̃i < −1 =⇒ δ̃i + zi < 0 =⇒ δ̃i + zi /∈ {0, 1}

As under all cases, we reach a contradiction and prove that no such δ̃ can exist.

Lemma 2. δ∗ obtained as per eqn. 17 is a maximizer of the optimization problem of eqn. 14.

Proof. From Lemma 1 we know, that for a given g
(t)
i , there exists no δ̃

(t)
i , such that, δ̃(t)i g

(t)
i >

δ̂
(t)
i g

(t)
i . Thus, for each coordinate i, we know that, δ̂(t)i is an optimal choice. Let’s assume there is

another k-sparse vector, chosen from δ̂(t) according to π̃ such that,
k∑

i=1

δ̂
(t)
π̃i

g
π̃
(t)
i

>

k∑
i=1

δ̂(t)πi
g(t)πi

However, this is impossible as π represents the sorting, δ̂(t)π1 g
(t)
π1 ≥ δ̂

(t)
π2 g

(t)
π2 ≥ · · · ≥ δ̂

(t)
πd g

(t)
πd . Thus,

δ∗(t) given by eqn. 17 is indeed an optimal solution. As the argument holds for any time-step t, δ∗ is
an optimal solution.

A.2 COMPARISON OF BUDGET FOR SIGNED RATE ENCODING

Ez∼sBer(x),ẑ∼sBer(x̂)[∥z− ẑ∥0]

=

d∑
i=1

Ezi,ẑi [∥zi − ẑi∥0] =
d∑

i=1

P(zi ̸= ẑi) =

d∑
i=1

(1− P(zi = ẑi))

=

d∑
i=1

(1− P(zi = 1, ẑi = 1)− P(zi = −1, ẑi = −1)− P(zi = 0, ẑi = 0))

=

d∑
i=1

(1− x+
i (xi + δi)

+ − x−
i (xi + δi)

− − (1− |xi|)(1− |xi + δi|))

=

d∑
i=1

(−x+
i (xi + δi)

+ − x−
i (xi + δi)

− + |xi|+ (1− |xi|) |xi + δi|)

= ∥x∥1 + ⟨1− |x| , |x+ δ|⟩ − ⟨x+, (x+ δ)+⟩ − ⟨x−, (x+ δ)−⟩ (22)
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T=4, m=10 CIFAR-10, Rate Encoding CIFAR-10, Signed Rate Encoding

ATTACK CLEAN GN FGSM PGD SEA CLEAN GN FGSM PGD SEA

clean 84.1 83.4 79.36 81.6 79.02 85.51 85.3 81.37 83.41 82.7
gn 83.61 83.38 79.4 81.43 79.15 85.25 85.2 81.41 83.38 82.62
fgsm 40.06 39.84 49.19 50.39 40.89 40.43 40.43 51.76 49.37 51.91
pgd 33.27 32.88 43.96 43.72 34.03 32.96 33.12 45.17 43.3 45.17
sea, k=10 50.47 49.79 51.46 53.29 60.18 45.63 45.69 55.14 53.51 85.67
sea, k=20 35.97 35.86 40.16 41.22 49.06 35.83 35.59 46.89 44.95 81.77
Avg 54.58 54.19 57.26 58.61 57.06 54.27 54.22 60.29 59.65 71.64

T=4, m=10 SVHN, Rate Encoding SVHN, Signed Rate Encoding

clean 91.98 92.07 91.84 92.12 90.60 93.41 93.58 93.40 93.42 90.89
gn 91.93 91.998 91.77 91.89 90.63 93.32 93.42 93.33 93.43 89.94
fgsm 44.58 44.9 50.29 48.11 41.81 44.00 43.87 49.85 48.16 71.72
pgd 34.96 34.58 40.60 38.25 31.86 33.20 32.65 39.37 37.42 66.04
sea, k=10 49.2 49.29 49.80 49.34 63.76 44.54 45.22 44.61 45.29 96.21
sea, k=20 31.58 31.68 31.52 31.28 40.05 33.29 33.88 32.22 33.60 93.14
Avg 57.37 57.42 59.30 58.50 59.79 56.96 57.10 58.80 58.55 84.66

T=4, m=10 CIFAR-100, Rate Encoding CIFAR-100, Signed Rate Encoding

clean 55.09 55.33 50.15 50.2 49.93 58.17 58.53 53.19 55.18 55.16
gn 55.08 55.01 50.66 50.22 49.51 58.29 58.39 53.37 54.8 54.7
fgsm 26.47 26.69 29.83 33.35* 25.3 26.61 26.82 32.37 33.23 31.78
pgd 18.47 18.66 24.79 28.09* 18.66 18.55 18.79 27.55 27.03 25.16
sea, k=10 34.4 34.76 32.25 34.63 33.91 31.96 31.76 34.19 35.15 64.73
sea, k=20 27.2 27.35 27.51 29.85 28.9 24.52 24.65 30.01 30.45 61.45
Avg 36.12 36.30 35.87 39.16 34.37 36.35 36.49 38.45 39.31 48.83

Table 8: Inference performed using aggregation of model output with respect to input noise with
m = 10, the attacks are updated accordingly. Similar to Tab.6, the results show improvement offered
by SRATE, along with effectiveness SEA method in adversarial training.
* obtained by BPTR, as the it is lower than BPTT.

A.3 ADDITIONAL RESULTS FROM REBUTTAL

To further strengthen the study, we include results for the aggregated model (Sitawarin et al., 2022;
Mukhoty et al., 2024a). Let zi = [z

(1)
i , z

(2)
i , · · · , z(T )

i ], where , s.t. z
(t)
i ∼ Ber(x) with z

(t)
i ∈

{0, 1}d. We report the test results using, 1
m

∑m
i=1 h(zi), with m = 10, approximating the smooth

classifier, Ez∼Ber(x)[h(z)]. The existing results reported earlier stands for m = 1.

The adversarial attacks are performed using the loss function, over the aggregated classifier. For
fgsm and pgd attack, now there is a additional aggregation over m, that follows the back-propagation
pipeline. While for SEA, the encoding space becomes {0, 1}d×T×m, where we have zi ∈ {0, 1}d×T ,
δi ∈ {−1, 0, 1}d×T , and similar sparsity restrictions ∥δ(t)i ∥ ≤ k.

Results reported in Table 8 shows improvement clean accuracies when compared to 6 (uses m = 1),
and attacks becoming stronger reducing robust accuracies in some cases. Despite aggregation
improving attack strengths, SEA with SRATE offers superior robustness.

Dataset Encoding Input L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
CIFAR-10 RATE 0.480 0.116 0.075 0.026 0.023 0.015 0.009 0.013 0.025 0.036 0.023

SRATE 0.220 0.155 0.089 0.026 0.026 0.016 0.008 0.013 0.028 0.041 0.025
CIFAR-100 RATE 0.480 0.151 0.139 0.049 0.051 0.035 0.021 0.036 0.059 0.043 0.066

SRATE 0.230 0.167 0.161 0.048 0.049 0.033 0.020 0.035 0.060 0.047 0.070
SVHN RATE 0.460 0.163 0.054 0.021 0.018 0.009 0.003 0.007 0.025 0.038 0.027

SRATE 0.200 0.184 0.070 0.021 0.018 0.012 0.004 0.009 0.028 0.042 0.031

Table 9: Table reports the layer-wise spiking rate of the neurons for different datasets on VGGSNN
architecture. It can be observed that SRATE offers lower average sparsity.
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Figure 5: Comparison between rate encoding and signed rate encoding over training epochs reporting
training loss, training accuracy and test accuracy for CIFAR-100 (top) and SVHN (bottom).

A.4 TRAINING DETAILS

We list the specific hyper-parameters used to train our models in Tab. 10.

Table 10: Training and testing hyper-parameters

CIFAR-10/100 ImageNet-100 SVHN
Number epochs 200 200 200
Mini batch size 128 128 128
T 4,6,8,10∗ 4 4
LIF: β 0.5 0.5 0.5
LIF: u0 0 0 0
LIF: uth 1 1 1
Learning Rate 0.1 0.1 0.1
GN/FGSM/PGD (train): ϵ 8/255 na 2/255
GN/FGSM/PGD (test): ϵ 8/255 8/255 8/255
PGD (train): η 2/255 na 1/255
PGD (test): η 2/255 2/255 2/255
PGD (test) Iteration 8 8 8
PGD (train) Iteration 4 na 2
SEA (train): k 5 na 2
SEA (test): k 10, 20 10, 20 10, 20
Optimizer: SGD with momentum: 0.9, weight decay: 5× 10−4, rate Scheduler: cosine annealing

A.5 SOFTWARE

The following is a list of the main libraries used in this work:

• Numpy (Harris et al., 2020)
• Pytorch (Paszke et al., 2019)
• Matplotlib (Hunter, 2007)
• Pandas (Reback et al., 2020)

We thank the creators and contributors of these open-source libraries for their contributions.
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T=4 CIFAR-10, Rate Encoding (RATE) CIFAR-10, Signed Rate Encoding (SRATE)

ATTACK CLEAN GN FGSM PGD SEA CLEAN GN FGSM PGD SEA

fgsm-bptt 44.83 44.35 53.93 53.16 42.31 44.3 43.59 55.1 53.81 56.58
fgsm-bptr 58.52 57.69 66.8 63.45 59.97 55.3 54.89 61.95 60.87 64.28

pgd-bptt 38.87 38.41 49.68 48.83 37.19 36.88 37.03 50.21 48.47 51.87
pgd-bptr 54.89 53.69 65.15 60.46 57.05 48.97 50.04 58.73 57.39 60.51

T=4 SVHN, Rate Encoding (RATE) SVHN, Signed Rate Encoding (SRATE)

fgsm-bptt 44.09 44.15 50.26 48.33 41.94 43.37 44.06 49.94 48.23 67.57
fgsm-bptr 61.37 59.01 64.11 62.57 59.11 60.31 59.58 67.01 65.55 72.47

pgd-bptt 38.82 38.77 45.03 43.31 35.82 35.46 35.43 42.45 40.53 65.76
pgd-bptr 60.61 57.66 62.79 61.56 57.06 55.58 54.99 64.92 62.31 71.76

T=4 CIFAR-100, Rate Encoding (RATE) CIFAR-100, Signed Rate Encoding (SRATE)

fgsm-bptt 22.21 21.92 28.45 37.88 20.53 22.33 22.11 30.81 29.7 31.38
fgsm-bptr 27.82 28.16 32.53 30.27 28.02 26.81 28.61 33.67 33.9 34.92

pgd-bptt 18.53 18.6 26.08 35.93 17.99 18.44 18.78 28.22 27.04 27.08
pgd-bptr 25.16 24.92 30.45 27.79 25.13 23.78 24.96 30.64 31.75 32

Table 11: Comparison between BPTT and BPTR attack shows BPTT offers stronger attack in all
cases except for CIFAR-100, where in PGD - adversarial training, BPTR constructs a stronger attack
than BPTT, highlighted in bold.

T=6 T=8 T=10
CLEAN RATE SRATE RATE SRATE RATE SRATE

clean 82.22 84.41 83.41 85.41 84.21 86.34
gn 81.3 84.14 83.47 85.42 83.76 85.65
fgsm 42.87 42.3 41.37 41.58 39.89 39.81
pgd 35.42 33.46 32.94 32.38 30.73 30.2
sea, k=10 46.28 42.38 48 43.06 47.54 44.05
sea, k=20 31.61 30.79 33.02 31.39 33.31 32.97

Table 12: Improvement in standard accuracy offered by signed rate encoding across different latency,
as observed in training CLEAN model on CIFAR-10 dataset.
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k CLEAN FGSM PGD SEA CLEAN FGSM PGD SEA

2 69.6 67.53 68.18 70.23 66.78 67.43 67.81 79.99
4 61.29 60.77 61.14 65.78 56.63 60.45 60.27 81.03
6 54.89 55.55 55.51 61.75 49.23 55.92 55.32 81.21
8 48.64 50.54 51.01 58.19 44.08 52.61 51.44 80.97
16 33.54 38.39 38.51 47.75 32.3 42.9 41.56 77.6
32 19.88 26.17 26.27 33.75 22.99 35.61 33.91 69.31
64 11.64 16.93 17.98 20.74 17.03 29.58 27.83 53.26

ϵ ∗ 255 CLEAN FGSM PGD SEA CLEAN FGSM PGD SEA

2 71.67 71.19 72.15 68.16 73.86 73.09 74.44 74.51
4 63.27 65.53 66.29 60 64.41 67.78 67.95 68.72
6 53.66 59.42 60.03 51.47 54.09 60.99 60.41 62.23
8 44.6 53.67 53.63 42.04 44.33 55.01 53.81 56.01
16 16.8 32.7 30.83 16.72 20.04 35.32 32.25 33.7
32 3.33 10.66 12.38 4.27 8.75 18.85 17.26 13.85
64 4.94 8.48 9.42 5.16 7.88 14.32 13.45 10.23

ϵ ∗ 255 CLEAN FGSM PGD SEA CLEAN FGSM PGD SEA

2 70.98 70.15 70.78 66.88 72.75 72.21 73.3 73.06
4 59.36 62.21 63.11 56.52 59.9 64.53 63.99 64.67
6 47.7 55.53 55.14 45.76 46.51 56.77 54.96 56.84
8 38.33 49.17 48.76 36.94 36.74 51.01 48.47 50.82
16 23.85 39.11 38.04 22.74 22.56 39.45 36.42 40.34
32 17.04 33.03 31.23 16.99 17.6 34.05 30.7 33.31
64 10.93 25.04 24.04 11.99 12.55 25.93 23.6 23.03

Table 13: Corresponding to figure 4(a), (b) and (c) comparing different models from Tab. 6 under
SEA (top), FGSM (middle) and PGD (bottom) attacks for different attack radius. Adversarial
training with SEA under SRATE is found to offer the highest robustness across different attacks.

ϵ 2
255

4
255

6
255

8
255

16
255

32
255

64
255

fgsm (RATE) 2.33 4.75 7.24 9.8 20.62 45.69 111.59
pgd (RATE) 2.38 4.93 7.44 9.79 17.09 27.82 54.01

fgsm (SRATE) 0.72 1.54 2.58 3.95 13.6 52.67 195.98
pgd (SRATE) 0.71 1.49 2.27 3.04 6.19 19.39 70.72

Table 14: sea budget k comparable to ϵ obtained by finding δ through fgsm and pgd attack performed
on CLEAN (RATE) and CLEAN (SRATE) models, as reported in Fig.4(d).
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