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Abstract

We present SPLATT3RFUSION, a feed-forward neural
network that, given a set of unposed and uncalibrated im-
ages, directly reconstructs a compact and high-quality 3D
Gaussian Splat representation of a scene. Unlike prior
pixel-aligned feed-forward methods that typically predict
one 3D Gaussian primitive per pixel in each image — pro-
ducing severe redundancy, duplication, and ghosting on
one physical surface — our approach efficiently fuses points
in 3D space through a multi-scale octree structure, yield-
ing a compact and coherent representation. Built upon
VGGT, a foundation model for pose-free 3D geometry pre-
diction, SPLATT3RFUSION introduces a Gaussian predic-
tion branch that infers primitive parameters using only pho-
tometric supervision. We also introduce the ability to con-
trol the number of 3D Gaussians generated at test-time, al-
lowing for a controllable tradeoff between PSNR and the
number of 3D Gaussian primitives used. The model is ef-
ficient, reducing both memory usage and rendering cost,
while achieving state-of-the-art results on RealEstatelOk
and ScanNet++.

1. Introduction

We consider the problem of reconstructing photorealistic
3D scenes from a set of uncalibrated images using a feed
forward neural network. Recent advancements in 3D re-
construction and NVS have been propelled by encoding 3D
scenes using differentiable representations [24, 38, 49, 50].
While these methods have demonstrated impressive geom-
etry and visual fidelity, they are far from being accessible to
casual users, due to reliance on computationally intensive,
per-scene optimization. Typically, they require dense input
images and the corresponding camera parameters to recon-
struct a scene, and take minutes or even hours to converge,
posing significant barriers to real-world deployment.
Recent feed-forward 3D reconstructors directly predict
3D reconstructions from sparse images [5-10, 12, 22, 54,
55, 60, 65, 66, 70, 78]. Among these approaches, a grow-
ing number adopt 3D Gaussians [24] as their representa-
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Figure 1. SPLATT3RFUSION is a feed-forward model that re-
moves redundant 3D points produced by direct pixel-aligned pred-
ication. It constructs a multi-scale octree to spatially merge points
using cosine similarity of learned features, and then outputs a com-
pact, deduplicated set of 3D Gaussians from the fused representa-
tions. We highlight the reduction of ‘ghosting’ on a wall, where
regular feed-forward models predict multiple layers of points rep-
resenting one physical surface, our method merges these points
together into a physically coherent representation of the scene.

tion [5, 8, 9, 54, 55, 66, 78]. These methods typically
regress pixel-aligned Gaussian parameters for every pixel in
each input image. However, this one-Gaussian-primitive-
per-pixel strategy leads to significant redundancy, particu-
larly when reconstruction is performed from images with
large overlapping regions. When a 3D point is observed
across multiple views, current methods redundantly pre-
dict multiple duplicate and inconsistent Gaussians for the
same physical point, violating the principle that each Gaus-
sian primitive should uniquely represent its own spatial ex-
tent. This not only increases memory and rendering costs,
but also degrades the geometry for the heavily covisible re-
gions, especially as the number of input views increases.

Several methods have emerged to tackle the non-pixel-
aligned 3D reconstruction from sparse views. DIG3D [64]
and Gamba [48] use transformer- and Mamba-based archi-
tectures, respectively, where tokens are used as queries to



reason about 3D Gaussians. However, they are limited to
object-level examples. For scenes, Gaussian Graph Net-
works (GGN) [75] reduce redundancy by establishing pixel
correspondences across views, followed by feature fusion
via weighted averaging. Very recently, concurrent work
such as EVolSplat [37] and SplatVoxel [62] use voxel grids
to realize non-pixel-aligned 3D reconstruction. However,
the former does not explicitly fuse duplicated points, while
the latter uses predicted opacity to merge the splat features,
which does not consider the semantic attributes, and also re-
quires a voxel grid aligned with the position and resolution
of the target camera. Most importantly, (1) they still require
accurate camera poses as input, which are difficult to obtain
in sparse, in-the-wild settings; (2) they use uniform voxel
grids, which prohibit different levels of detail in different
regions of the scene; and (3) they do not allow for control
over how many 3D Gaussian primitives are generated at in-
ference time.

In this paper, we take a further step towards removing
the need for camera poses, and enabling spatially and se-
mantically coherent fusion of physical 3D. We do so by
introducing SPLATT3RFUSION, a pose-free, feed-forward
method for in-the-wild 3D reconstruction and novel view
synthesis that avoids redundant 3D Gaussian primitives by
merging points in 3D space using a predicted, multi-scale
octree representation of the 3D scene. SPLATT3RFUSION
predicts non-pixel-aligned 3D Gaussian Splats in a single
forward pass from a sparse set of uncalibrated images.

At the core of SPLATT3RFUSION is a multi-scale 3D
octree structure, designed to spatially group and merge 3D
points that represent the same physical point in space. To
this end, we build upon VGGT [59], a recent pose-free feed-
forward 3D reconstructor that predicts 3D pointmaps from
multi-view images. Specifically, we first lift 2D pixels to
3D points using VGGT’s DPT module. Then, instead of
directly using these points to form 3D Gaussian Splats, we
introduce a novel 3D point fusion module that merges 3D
points in an octree structure. At each octree cell, we merge
points whose feature vectors are sufficiently similar, pro-
ducing a single 3D Gaussian primitive that represents the
entire cell. This process is performed hierarchically from
coarse to fine levels of the octree, allowing points to be
merged at different scales depending on their spatial dis-
tribution and feature similarity.

While existing pose-free, feed-forward methods con-
struct 3D Gaussian Splats by taking the union of several
per-image 3D Gaussian Splats, by fusing points in 3D space
we are able to have each 3D Gaussian primitive be more ge-
ometrically meaningful as the unique representation of its
own spatial extent in a scene-aware manner. In addition, by
controlling the threshold used to merge points at test-time,
we can control the number of 3D Gaussian primitives gen-
erated, while maintaining dynamic allocation of 3D Gaus-

sians throughout the scene. We observe that we can match
the performance of NoPoSplat [68] using only 25% of the
3D Gaussian primitives on RealEstate10k [79], and match
the performance of Splatt3R [51] on ScanNet++ [69] using
only 15.5% of the primitives.

2. Related Work

2.1. Novel View Synthesis

3D Novel View Synthesis (NVS) has been widely studied
in computer vision and graphics [1, 15, 28]. Recent ad-
vances in neural rendering have been driven by Neural Ra-
diance Fields (NeRFs) [38], which represent scenes as con-
tinuous volumetric radiance fields parameterized by neural
networks trained on densely collected image sets [3, 38, 39].
More recently, 3D Gaussian Splatting (3DGS) [24] has
greatly increased the training and rendering speed of radi-
ance fields by training a set of 3D Gaussian primitives to
represent the radiance of each point in space, and rendering
them through an efficient rasterization process. However,
these methods typically require slow, per-scene optimiza-
tion, making them less practical for real-world applications.

To address this, generalizable NVS pipelines haven been
developed, which infer 3D representations directly from
multi-view images [6, 10, 21, 22, 29, 32, 33,47, 52, 53, 60,
63, 65, 70, 78]. By training on large scale datasets, these
methods have evolved to work with sparse image sets [8, 9,
31, 34, 41] and even stereo image pairs [5, 12, 26, 79], sig-
nificantly reducing the number of reference images required
to obtain a radiance field for novel view synthesis.

Recent methods, such as pixelSplat [5], MVSplat [8],
MVSplat360 [9], Splatter Image [54], Flash3D [54] and
DepthSplat [66] use a set of 3D Gaussian primitives placed
along camera rays explicitly calculated from known cam-
era parameters. However, they assume the availability of
camera intrinsics and extrinsics for each image at testing
time, which limits their applicability to in-the-wild photo
pairs. To address this, several methods aim to perform
generalizable, feed-forward reconstruction without camera
poses, including Splatt3R [51], NoPoSplat [68], Large Spa-
tial Model [13] and GGRt [29]. However these methods
predict redundant, overlapping 3D Gaussian primitives due
to predicting one primitive for each pixel in each image.
In contrast, we seek to reduce the number of 3D Gaussian
primitives in the scene by fusing point predictions together.

2.2. Non-pixel-Aligned 3D Gaussian Splatting

A dynamic number of 3D Gaussian primitives are used to
represent a scene in original 3DGS representations [24, 25],
which split or merge 3D Gaussians using non-differentiable
heuristics during per-scene optimization to better fit the
scene geometry and appearance. However, they are not ap-
plicable to feed-forward methods [5, 8, 54], which directly
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Figure 2. Method overview. We encode the uncalibrated images using VGGT’s pretrained encoder, which we freeze during training.
In addition to VGGT’s prediction head for point clouds/depths and camera poses, we introduce a ‘Gaussian Feature Head’ that predicts
feature vectors for downstream 3D Gaussian primitive prediction. These features are merged using an octree structure, and the resultant

merged points and features are rendered as a 3D Gaussian Splat.

predict a fixed set of 3D gaussian primitives for per-pixel in
each image.

To address this, Gaussian Graph Networks [75] builds
a graph structure over per-pixel primitives to merge Gaus-
sians by applying weighted averaging of features based on
pixel correspondences. More closely related to our work,
SplatVoxel [62] and EVolSplat [37] use voxel grids to merge
3D points before decoding 3D Gaussian primitives. The for-
mer focuses on dynamic scenes, using predicted opacities
to merge splat features within each voxel, while the latter
uses sparse CNNSs to process voxel features. However, these
methods still require known camera poses as input, which
are difficult to obtain in sparse, in-the-wild settings. In addi-
tion, they use uniform voxel grids, which prohibit different
levels of detail in different regions of the scene. Instead,
we introduce a multi-scale octree structure based on feature
similarity to dynamically merge 3D points in a scene-aware
manner, without requiring camera poses as input.

We also note that voxel-based fusion of point primitives
has been explored in the context of online 3D reconstruc-
tion and SLAM, such as being used to help encode trun-
cated signed distance fields (TSDFs) [40, 42, 44], or im-
plicit neural features which can be decoded into a TSDF
using a learned neural network [30]. Unlike these meth-
ods, which focus on online reconstruction, we focus on us-
ing a static octree with dynamic spatial resolution to reduce
the number of point primitives, and therefore 3D Gaussian
primitives, in the final scene.

2.3. Pose-Free Feed-Forward 3D Reconstruction

Traditionally, the stereo reconstruction task involves a se-
quence of steps. Starting with keypoint detection and fea-
ture matching [11, 16, 35, 57], camera parameters estima-
tion [36, 45, 77], establishing dense correspondences [2,
4,20, 23, 71, 72], and triangulation of 3D points [17-19].
However, these methods rely on explicit correspondences,
making them prone to failure when the overlap between im-

ages is limited, or when the input images are sparse.

Recently, DUSt3R [61] and MASt3R [27] addressed this
challenge by learning to predict point maps for a pair of
uncalibrated stereo images in one coordinate system. Sev-
eral follow-up works aim to increase the number of images
which can be used in a single feed-forward pass of the net-
work [56, 67], or use memory mechanisms to avoid the ex-
pensive global alignment used by the original DUSt3R pa-
per [58]. VGGT [59] achieves state-of-the-art results by in-
creasing the size of the model and length of training, while
alternating frame-wise and global attention. They also ob-
serve performance benefits by directly predicting 3D cam-
era poses and depth maps, and creating 3D point clouds
through unprojection.

These methods have achieved promising 3D reconstruc-
tion results even when there is little or no overlap between
the images. While the raw point maps are sufficiently accu-
rate for several downstream applications like pose estima-
tion, they are not designed to be directly rendered. In con-
trast, our method augments VGGT to predict 3D Gaussian
primitives, enabling fast and photo-realistic novel view syn-
thesis, while avoiding the redundant, per-pixel points pre-
dicted by these feed-forward methods.

3. Method

Given a set of n uncalibrated images Z = {I' €
REXWX3Y, 1 . ny»our goal is to learn a mapping fg from
the images Z to 3D Gaussian parameters:

fo AT iepn, oy = {155 25,05, 85) Y et1,my, (D

where p; € R3 is the mean position of the j-th Gaussian
primitive, 3; € R3*3 is its covariance matrix, a; € R is
the opacity, and S; € R3*? are the parameters of its view-
dependent color model (here parameterized using d-degree
spherical harmonics), and fg is parameterized by learnable
weights 6. Like other works, we reparameterize the covari-
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ance matrix with a rotation quaternion ¢ € R* and scale
s € R3 to ensure positive semi-definite covariance matri-
ces. Unlike most existing methods [5, 8, 54] that predict
one Gaussian primitive per pixel in each image, resulting
in significant redundancy, we aim to produce a compact
set of m non-pixel-aligned Gaussian primitives by merg-
ing points in 3D space using a multi-scale octree structure,
where m < n x H x W.

We achieve this by adding a new DPT head [46], that
we refer to as the ‘Gaussian Feature Head’, to a pretrained
VGGT model [59]. These 3D points from VGGT are first
merged together in an octree, with the level of subdivi-
sion determined by the cosine similarity between ‘match-
ing features’ that we additionally predict for octree level se-
lection. The points in each cell are merged by taking the
mean of their 3D positions, and their Gaussian feature vec-
tors. Finally, after merging points together, we use a two-
layer MLP to predict the attributes required to form a 3D
Gaussian primitive at each merged point. We provide an
overview in Fig. 2.

3.1. Background: Feed-Forward 3D Gaussians

Given a set of n images, generalizable 3D-GS methods [5,
8, 13, 51, 54, 55, 68] predict a set of pixel-aligned 3D
Gaussian primitives. In particular, for each pixel u =
(uz,uy, 1), the parameterized Gaussian primitive is pre-
dicted with its opacity «, offsets A, covariance X (ex-
pressed as rotation and scale), the parameters of the colour
model S, and either a position = or depth d. The location
of each Gaussian is then either calculated from the depth as
n = K lud + A, where K is the camera intrinsics, or
calculated from the predicted position as g = = + A. For
multiple input images, the final set of Gaussian primitives
is obtained by taking the union of all per-image Gaussian
primitives. However, these methods typically predict one
3D Gaussian primitive for each pixel, causing redundancy
and overlap. Our method performs an octree-based post-
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Figure 3. Our method predicts and supervises features at multiple levels of an octree structure. Here, we show the renderings obtained by
converting the features at each level of the octree into 3D Gaussians, as well as the layer selection performed by our matching process, and
the resulting composite 3D Gaussian Splat.
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processing step to merge point predictions based on feature
similarity.

3.2. Adapting VGGT for Novel View Synthesis

Given a set of uncalibrated images Z, VGGT [59] encodes
these images using a DINOv2 model [43], then uses a trans-
former decoder alternating between frame-wise and global
attention between these images. VGGT has two prediction
heads, a Dense Prediction Transformer (DPT) head [46] for
predicting depth maps D, point maps X, and another head
for predicting camera poses. We introduce a third head,
which we refer to as the ‘Gaussian Feature Head’, that runs
in parallel to the existing two heads. This head is also a
DPT network, but trained to predict a K x Dg-dimensional
feature vector for each pixel in each input image, where K
is the number of octree levels, and D¢ is the dimension of
the Gaussian feature vector at each level. However, unlike
existing works that predict 3D Gaussian parameters directly
from these features, we use these features for octree-based
point fusion first, which is discussed in detail in Sec. 3.3.
Later, after fusion in the octree, these Gaussian feature vec-
tors are fed into an MLP that predicts covariances (parame-
terized by rotation quaternions ¢ € R* and scales s € R?),
spherical harmonics (S € R3*?) and opacities (o € R)
for each fused point. Additionally, we predict an offset
(A € R3) for each fused point, and parameterize the mean
of the Gaussian primitive as 4 = x + A. This allows us
to construct a complete Gaussian primitive for each fused
point in the final scene.

To reduce the computational cost, we freeze all the pa-
rameters of the pretrained VGGT model, and only train
the Gaussian Feature Head and the final MLP. Follow-
ing [5, 54, 55], we use different activation functions for each
Gaussian parameter type: normalization for quaternions,
exponential activations for scales and offsets, and sigmoid
activations for opacities. Additionally, to aid in the learn-
ing of high-frequency color, we follow other works [13]



Algorithm 1 Adaptive Octree Algorithm

Require: Points P € RV*3, per-layer features Fr € RN*EXD hormalized matching features Fiy € RN*Dwm | pase voxel
size vg, resolution factor r > 2, similarity threshold 7 € [—1, 1], maximum depth K

1: bestLevel <+ K -1y

2. forke {K,K —1,...,0}do
3 vy < v/

4: I, |_P/’UkJ

5: C, < CellHash(Iy, k)
6: if £ = K then

7 Ctinal < Cy

8 continue

9: end if

10: (U, I, N,.) < UniqueWithCounts(C},)

11: Fys <+ Normalize(AggregateMean(Fys, I, N..))
12: S < Z(?:Ml Fy o FM,no’r‘m[I]

13: S « AggregateSum(s, I); 5+ S./N.

14: Meens < (<§ > 7—); Mpoints — Mcells[l]

15: bestLevel[Mpoints] < k
16: Cfinal [Mpm',nts] — Ck [Mpoi,m‘,s}
17: end for

18: (Uy, 1y, Ny) < UniqueWithCounts(C'sinar)

19: Fyei[n] < Fr[n,bestLevel[n],:]Vn € {1,..., N}
20: F < AggregateMean(Fy, I, Ny)

21: P« AggregateMean(P, I, Ny)

22: L < AggregateReduce(bestLevel, I 7)

23: return ', P, L

> Initialize all points to finest level
> Iterate from the finest to the coarsest level of the octree

> Integer voxel indices
> Calculate the level-dependent hash of the voxel

> Initialize the selected cells at the finest level

> List of cells, point to cell mapping and points-per-cell

> Calculate normalized feature per cell

> Per-point cosine similarity to average cell feature

> Mean similarity per cell

> Points in cells with similarity above the selected threshold
> Update the best-level mapping for the selected points

> Mean Gaussian features for selected octree cells
> Mean positions for selected octree cells
> Octree level for selected octree cells

and predict RGB feature vectors using a one-layer MLP di-
rectly from the input images, whose features are concate-
nated with the Gaussian feature vectors before predicting
the 3D Gaussian primitive attributes. Following the conven-
tion of predicting the 3D locations of all points in the first
image’s local coordinate system, predicted covariances and
spherical harmonics are also considered as being in the first
image’s local coordinate system. Note that, we construct
point clouds from VGGT using the predicted camera poses
and depth maps, rather than using the point cloud prediction
head.

3.3. Multi-Scale Octree-based 3D Point Fusion

The key component of SPLATT3RFUSION is a multi-scale
octree structure, designed to spatially fuse 3D points that
represent the same physical point in space. This allows us to
reduce redundancy in the predicted 3D Gaussian primitives,
especially with respect to regions with high view overlap.
In particular, given the set of N = W x H x n 3D
points predicted by VGGT, and their corresponding Gaus-
sian feature vectors (N x K x Dg) from the Gaussian
Feature Head, along with additional “matching features”
(N x Djy), we build a multi-scale octree with K levels.
In practice, the “matching features” are either learned from
a new MLP head, or derived from a frozen, pretrained DI-

NOv2 [43] model, upscaled to the original image resolution
using FeatUp [14]. These features are used to determine
whether points in a given octree cell should be merged to-
gether. In particular, during processing, we consider K lay-
ers of the octree, where each layer of the octree is a voxel
grid with voxel size vj, = vg/2¥, where vy is a hyperparam-
eter for the base voxel size. At each voxel ¢ in each layer
k, we compute a “matching score” si using the average co-
sine similarity between each point’s matching feature and
the mean matching feature inside that voxel.

i 1 f]flg
Sp = —; Lk )
' |P;|jez7,i Filll £l

where P} is the set of point indices inside voxel i at layer
k, f; is the matching feature of point j, and f; is the mean
matching feature of all points inside voxel ¢ at layer k. For
any voxel where the average cosine similarity is below a se-
lected “merging threshold” 7, we instead consider the finer
layer of the voxel grid.

This process continues from the coarsest layer of the oc-
tree to the finest layer, until all voxels have either been se-
lected for merging, or the finest layer has been reached. The
final set of selected voxels across all layers of the octree de-
termines the final set of merged points. The point positions



S > 0. > 0.
Method Close (¢ > 0.9,v¢ > 0.9)

Medium (¢ > 0.7, > 0.7)

Wide (¢ > 0.5, 4 > 0.5) Very Wide (¢ > 0.3, % > 0.3)

PSNR1 LPIPS| #Gauss.] PSNR{ LPIPS| #Gauss.] PSNRT LPIPS| #Gauss.| PSNR{ LPIPS| # Gauss.

Ours -7 =0.995  28.84 0.085 74.4K 25.59 0.115
Ours -7 =0.999  28.11 0.080 91.8K 25.75 0.111
Splatt3R [51] 26.41 0.081 524.3K 24.80 0.102

76.7K 24.59 0.126 82.5K 23.96 0.128 92.2K
94.7K 24.71 0.122 101.3K 24.05 0.125 109.0K
524.3K 24.43 0.109

524.3K 24.05 0.111 524.3K

Table 1. Results on ScanNet++. We report similar or superior PSNR across most scenes, despite using only 15.5% of the 3D Gaussian
primitives on average. We report our results using the octree similarity threshold of 7 = 0.995 and 7 = 0.999. Best results are bolded.

and Gaussian features for each point inside the final vox-
els are averaged together to create a single new point and
feature vector to represent each voxel. In this way, clus-
ters of similar points predicted from nearby viewpoints can
be combined, while maintaining a dynamic spatial resolu-
tion that assigns more points to densely detailed regions of
the scene. This is as opposed to a uniform voxel grid [62],
where a constant spatial resolution is used throughout the
scene. For each point, we predict K x D¢ feature vectors —
one for each level of the octree — and during merging we se-
lect the gaussian feature corresponding to the selected level
of the octree.

We provide a visualization of the 3D Gaussians associ-
ated with the features at each layer of the octree, as well as
an example of the layer selection in Fig. 3, and provide a
pseudo-code description of the algorithm in Algorithm 1.

3.4. Training Procedure and Loss Functions

Following existing works [5, 8, 54], we train our model us-
ing only rendering losses. The training loss £ = Apefa +
AipipsLipips 18 caculated as a linear combination of mean
squared error /5 and LPIPS losses (Lypips) [73], between ren-
derings from the predicted 3D Gaussian Splats and ground
truth images, where Apg. and Appips are hyperparameters.
However, due to the misalignments between predicted
scene geometry and the true scene geometry, we utilize a
two-stage training strategy. First, we exclusively supervise
the reconstructed 3D scene from the perspective of the con-
text cameras. During training, each sample consists of k.
‘context’ images which we use to reconstruct the scene.
Then rendering losses are calculated using renders of the
scene from the camera poses predicted for the context im-
ages by VGGT. During the second stage of training, we ad-
ditionally use k; target images, like existing works, how-
ever we optimize the camera pose use photometric mean
squared error loss before calculating the target rendering
losses. Because our entire octree pipeline is differentiable
with respect to the features predicted by our network, we
can perform end-to-end training of the network. In addition
to supervising the 3D Gaussians obtained after the layer se-
lection process, we additionally convert the features from
each layer of the octree into 3D Gaussian primitives, and
supervise these renderings with the same loss weights. The

final loss is given as the sum of the losses for each render-
ing.

When training on ScanNet++, we follow Splatt3R [51]
and apply covisibility-based loss masks to focus the loss on
regions of the scene which are visible to the context views.
For RealEstate10k, since we do not have covisibility in-
formation, we following existing work and apply rendering
losses across the entire image. Note that, rather than using
a single octree merging threshold 7, we randomly sample a
different threshold for each batch, so that different merging
thresholds can be selected at test-time. Thresholds are sam-
pled from the range [0.8,0.999], sampling logarithmically
from the space 1 — 7.

4. Experiments
4.1. Settings

Implementation details. SPLATT3RFUSION is built
upon VGGT [59]. Unless otherwise specified, we randomly
sample k. = 2 context images and k; = 3 target im-
ages during training. We train our model at a resolution
of 518 x 518 at a batch size of 8, using Ay = 1.0 and
Alpips = 0.05. We optimize using the AdamW optimizer at a
learning rate of 3.0 x 10~?, with a weight decay of 0.05, and
a gradient clip value of 0.01. The primary experiments are
performed on 4x 48GB RTX A6000 GPUs, and secondary
experimental results and ablations are reported on training
runs completed with 2x 24GB RTX A5000 GPUs. Our
models are trained for 70,000 iterations during the first stage
of training, for 5,000 iterations during the second stage. For
our octree processing, unless otherwise specified, we use a
two-level octree, with a coarse layer of size 0.01 (in the nor-
malized prediction space used by VGGT), and a finer layer
of size 0.005.

Method PSNR T LPIPS | # Gauss. |
NoPoSplat [68] 25.03 0.160 131.1k
FLARE [76] 23.77 0.191 131.1k
Ours - 7 = 0.995 25.27 0.103 40.0k

Table 2. Results on RealEstatel0k. We report state-of-the-art
results, despite using fewer 3D Gaussians. Best results are bolded.



Thresholds used during training 1000
25.51
< 0.999
D 2544 A
[
o
© 253 /0.995
g
0.990
<L 252 i
E 0.980
WL 251 10.950
[ ] NoPoSplat
*
25.01

20000 40000 60000 80000 100000 120000 140000

Average Number of Gaussians per Sample

Threshold PSNR 1 LPIPS | Num Gaussians |
7=0.8 25.07 0.110 35.4k
7=0.9 25.07 0.110 35.4k
7 =10.95 25.08 0.110 35.5k
7=0.98 25.12 0.108 36.1k
7 =0.99 25.19 0.106 37.5k
T=0.995 2527 0.103 40.0k
7=0.999 2541 0.097 49.9k
7=1.0 25.55 0.091 109.6k

Figure 4. Results on RealEstate10k obtained when modifying the octree merging threshold at test-time. We observe a controllable trade-off

between PSNR and the number of 3D Gaussian primitives in the scene.
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Figure 5. Results on RealEstate10k using different features for
merging: RGB, Gaussian and Truncated DINOv2 features

Datasets and evaluation protocol. For evaluation, we re-
port PSNR and LPIPS (Learned Perceptual Image Patch
Similarity) [74]. We also report the number of 3D Gaus-
sians used in the scene to demonstrate the compactness of
the representation. All models are evaluated on two stan-
dard datasets for novel view synthesis: ScanNet++ [69] and
RealEstate10k [79]. For ScanNet++, we follow the same
experimental setup as Splatt3R [51], using the same train-
ing and testing splits, and evaluating on four different test-
ing splits with varying levels of difficulty and loss mask-
ing. For RealEstate10k, we follow existing works [5, 8, 68],
and report metrics across the entire image. Following No-
PoSplat [68] and FLARE [76], we report all results af-
ter performing 100 steps of test-time camera pose opti-
mization. We note that our backbone model VGGT is de-
signed to work with 518 x 518 images, whereas existing
RealEstate 10k are reported on 256 x 256 images. Therefore,
we upsample the 256 x 256 images to 518 x 518 to perform
inference, and downsample our renderings to 256 x 256 to
perform metric calculation for fair comparison.

4.2. Results

We begin by reporting our quantitative results for Scan-
Net++ in Tab. 1 and our results for RealEstate10k in Tab. 2.

On ScanNet++, we see that we are able to match or sur-
pass the performance of Splatt3R across different testing
splits at 7 = 0.995 despite using on average 15.5% of the
3D Gaussian primitives that Splatt3R uses. This demon-
strates the redundancy of the dense 3D Gaussian primitives
used by Splatt3R, and the effectiveness of our merging pro-
cedure. On RealEstate10k, we are able to surpass the per-
formance of NoPoSplat [68] and FLARE [76] while using
fewer primitives. We also note that NoPoSplat and FLARE
use the ground truth intrinsics for the input images, whereas
our method does not require any known camera intrinsics.
Because SPLATT3RFUSION natively operates at a resolu-
tion of 518 x 518, we directly predict 536.6k point primi-
tives, but our octree merging procedure reduces this to 61.9k
3D Gaussian primitives, less than half of the 3D Gaussians
used by NoPoSplat and FLARE.

Next, we explore our adjustable octree merging thresh-
old 7. By using randomly selected values for 7 for each
batch at training time, at test-time we can use this thresh-
old to control the number of 3D Gaussian primitives in the
final scene. In Fig. 4, we show the results of our method
on RealEstate10k for different values of this threshold. We
see that the threshold allows for a controllable tradeoff be-
tween PSNR and the number of 3D Gaussians in the scene.
For low threshold values, where points are combined in the
octree more aggressively, we are able to maintain the per-
formance of NoPoSplat with roughtly % of the 3D Gaussian
primitives, whereas if we use a threshold of 7 = 1.0 — in-
dicating that no merging should be performed except for on
the final layer of the octree — then we are able to achieve a
PSNR 0.52dB higher than NoPoSplat.



2 Image Inputs 4 Input Images 8 Input Images 12 Input Images 16 Input Images
Threshold PSNR Gaussians PSNR  Gaussians PSNR  Gaussians PSNR  Gaussians PSNR  Gaussians
7=0.8 28.16 67.4k 27.51 94.1k 27.09 132.9k 26.67 166.8k 26.31 196.6k
7=0.9 28.16 67.4k 27.51 94.1k 27.09 132.9k 26.67 166.8k 26.31 196.6k
7 =10.95 28.17 67.4k 27.52 94.2k 27.09 133.0k 26.67 167.0k 26.30 196.9k
7=10.98 28.28 68.3k 27.58 95.7k 27.12 135.9k 26.69 171.2k 26.31 202.5k
T =0.99 28.36 69.8k 27.63 98.5k 27.13 141.1k 26.69 178.7k 26.29 212.3k
7=0.995 28.45 72.0k 27.67 102.6k 27.15 148.6k 26.69 189.3k 26.28 226.1k
T=0.999 28.66 80.3k 27.77 117.8k 27.17 176.1k 26.69 227.5k 26.25 276.9k
T=1 29.08 216.5k 28.02 332.5k 27.31 507.3k 26.80 659.7k 26.35 801.7k

Figure 6. Reconstruction of 3D Scenes from different numbers of input images on a model trained with pairs of images from ScanNet++.
We observe non-linear increases in the number of 3D gaussians used by our octree.
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Figure 7. Results on RealEstatel0k from training models with
octrees of different depths

4.3. Ablation studies

For the ablations in this section, we compare results after
performing Stage 1 of training, and report metrics on a sub-
set of 250 samples from RealEstate10k. In Fig. 5, we ex-
plore using different features for ‘matching’ in the octree.
We perform these experiments on 2x 24GB RTX A5000
GPUs, and therefore test with DINOv?2 features truncated
from 384 dimensions to 64. We observe similar perfor-
mance between truncated DINOv2 features and learned
Gaussian features, but observe that for similar thresholds
using the RGB features — derived by running the input RGB
values through a one layer MLP — are able to achieve similar
PSNR scores with fewer 3D Gaussian primitives.

Unlike existing pose-free works which are lim-
ited to performing inference from a pair of images,
SPLATT3RFUSION can perform inference from much
larger collections of images. In Fig. 6, we train a model
using two context images, and then report the results of our
model when presented with different numbers of input im-
ages at test-time. We construct testing samples by taking
the «, 5 = 0.9 dataset on ScanNet++ specified by Splatt3R,
and adding additional frames to the input which are between

the two given frames. If a sufficient number of frames are
not available, we take the closest frames from outside the
given range. We see that our method can effectively per-
form inference from larger collections of images, and that
the number of 3D Gaussian primitives in the final recon-
struction grows non-linearly with the number of frames.

In Fig. 7, we show the performance of our method using
different depths for the octree on RealEstate10k. The octree
of depth 1 is equivalent to a uniform voxel gird, and due to
the lack of levels to select between, changing the selected
threshold value has no effect on the output. Among the
deeper octrees, we see that the best tradeoff between PSNR
and the number of 3D Gaussian primitives in the scene is
achieved with an octree of depth 2, although the highest
PSNR is achieved with an octree of depth 3, at the cost of a
higher number of primitives.

5. Conclusion

We present SPLATT3RFUSION, a feed-forward model for
predicting 3D Gaussian Splats from uncalibrated stereo im-
ages, without relying on camera intrinsics, extrinsics, or
depth information. The key of our success lies in the pro-
posed octree-based 3D point fusion module, which effec-
tively merges 3D points that represent the same physical
location in space. This differs from existing feed-forward
pose-free methods that simply take the union of per-image
3D Gaussian Splats, resulting in many redundant and over-
lapping 3D Gaussians. With our octree-based merging, our
SPLATT3RFUSION is able to significantly reduce the num-
ber of 3D Gaussians in the final representation, while main-
taining visual rendering quality in two large-scale scane-
level datasets.
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