
Equivariant Diffusion Policy

Dian Wang1∗, Stephen Hart2, David Surovik2, Tarik Kelestemur2, Haojie Huang1,
Haibo Zhao1, Mark Yeatman2, Jiuguang Wang2, Robin Walters1, Robert Platt1,2

1Northeastern University 2Boston Dynamics AI Institute
https://equidiff.github.io

Abstract: Recent work has shown diffusion models are an effective approach to
learning the multimodal distributions arising from demonstration data in behavior
cloning. However, a drawback of this approach is the need to learn a denoising
function, which is significantly more complex than learning an explicit policy.
In this work, we propose Equivariant Diffusion Policy, a novel diffusion policy
learning method that leverages domain symmetries to obtain better sample effi-
ciency and generalization in the denoising function. We theoretically analyze the
SO(2) symmetry of full 6-DoF control and characterize when a diffusion model
is SO(2)-equivariant. We furthermore evaluate the method empirically on a set of
12 simulation tasks in MimicGen, and show that it obtains a success rate that is,
on average, 21.9% higher than the baseline Diffusion Policy. We also evaluate the
method on a real-world system to show that effective policies can be learned with
relatively few training samples, whereas the baseline Diffusion Policy cannot.

Keywords: Equivariance, Diffusion Model, Robotic Manipulation

1 Introduction

Figure 1: Equivariance in diffusion policy. Top
left: a randomly sampled trajectory. Top right: a
valid trajectory after denoising. If the state and
the random trajectory are both rotated (bottom
left), and we rotate the noise accordingly in the
denoising process, we will end up with a success-
ful trajectory in the rotated state (bottom right).

The recently proposed Diffusion Policy [1] for-
mulates robotic manipulation action prediction
as a diffusion model that denoises the action con-
ditioned on the observation, thereby better cap-
turing the multimodal action distribution of the
demonstration data in Behavior Cloning (BC).
Although Diffusion Policy often outperforms
baselines on benchmarks [2, 3], a key drawback
is that the denoising function is more complex
than a standard policy function. In particular,
for a single state-action pair (s, a), the denois-
ing process uses a mapping (s, a + εk, k) 7→ εk

for all possible k and εk, where εk is Gaussian
noise conditioned on step k, which is harder to
train compared with an explicit BC s 7→ a.

In this paper, we leverage equivariant neural
models to embed task symmetry as an inductive
bias in the diffusion process, making the denois-
ing function easier to learn. Although equivariant diffusion models have been studied by a number
of prior works [4, 5, 6, 7, 8], our paper is the first to study the idea in the context of visuomotor
policy learning. As illustrated in Figure 1, rotation of a state and noisy trajectory action about the
gravity axis (i.e., rotated on the tabletop) results in a corresponding rotation of the denoised trajec-

∗Part of the work was done as an intern at the Boston Dynamics AI Institute

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://equidiff.github.io

tory. As a result of this symmetry, our model is more data efficient and generalizes better than the
non-symmetric baselines, mitigating the high data costs typically associated with diffusion.

Our contributions are as follows: 1) we propose Equivariant Diffusion Policy, a novel BC approach
based on equivariant diffusion, 2) we analyze the conditions under which the denoising function is
equivariant, 3) we theoretically demonstrate the use of SO(2)-equivariance in the context of 6-DoF
control for robotic manipulation, which prior methods [9, 10] leveraged in a less expressive SE(2)
action space, and 4) we provide a thorough demonstration of our method in both simulated and phys-
ical systems. In simulation, we evaluate on 12 manipulation tasks in the MimicGen benchmark [11]
and outperform the baseline Diffusion Policy by an average success rate of 21.9% when trained with
100 demos. On hardware, we show that successful policies can be learned with a small number (be-
tween 20 and 60) of demonstrations for six different manipulation tasks, including a long-horizon
bagel baking task, while the original Diffusion Policy performs poorly in this low-data regime.

2 Related Work

Diffusion Models Diffusion models [12] learn distributions by modeling the reverse of a diffusion
process, which is a Markov chain that gradually adds Gaussian noise to the data until it transitions
to a Gaussian distribution. Denoising diffusion models [13, 14] can be interpreted as learning the
gradient field of an implicit score during training, where inference applies a sequence of score op-
timization steps. This new family of generative methods has proven to be effective for capturing
multimodal distributions in planning [15, 16] and policy learning [17, 18, 19, 1, 20]. However, these
methods did not leverage the geometric symmetries underlying the task and the diffusion process.
Xu et al. [21], Hoogeboom et al. [4] show that leveraging SO(3) symmetries from the domain in the
diffusion process dramatically improves sample efficiency and generalization ability in molecular
generation. EDGI [6] extends diffuser [15] to equivariant diffusion planning with improved perfor-
mance, but relies on the ground truth state as the input. Ryu et al. [7] propose bi-equivariant diffusion
models for visual robotic manipulation, while limited to open-loop settings. By contrast, we exploit
domain symmetries during the diffusion process to attain an effective closed-loop visuomotor policy.

Equivariance in manipulation policies Robots operate within a three-dimensional Euclidean
space, where manipulation tasks inherently encompass geometric symmetries such as rotations. Re-
cent works [9, 22, 23, 24, 25, 26, 27, 10, 28, 29, 30, 31, 32] compellingly show that improvement
in sample efficiency and performance can be obtained by leveraging symmetries in policy leaning.
[33, 34, 35] show the efficiency of equivariant models for on-robot learning. [36, 37, 38, 39] learn
an open-loop pick and place policy with few demonstrations. While this prior work either considers
symmetries in SE(3) open-loop or SE(2) closed-loop action spaces, our paper studies symmetries
in an SE(3) closed-loop action space, and is the first one to study the symmetries in diffusion policy.

Closed-loop Visuomotor control Closed-loop visuomotor policies are more robust and respon-
sive but struggle with learning from diverse trajectories and predicting long-horizon actions. Pre-
vious methods [40, 41, 42, 43] directly map from observations to actions. However, this type of
explicit policy learning struggles to learn multimodal behavior distributions and may not be expres-
sive enough to capture the full range and fidelity of trajectory data [17, 44]. Several works propose
implicit policies [45, 46] with energy-based models [47, 48]. However, training is challenging due to
the necessity of a substantial volume of negative samples to effectively learn an optimal energy score
function for state-action pairs. Recently, [17, 1] model action generation as a conditional denoising
diffusion process and demonstrate strong performance by adapting diffusion models to sequential
environments. Our work builds on [1] but focuses on equivariance in the diffusion process.

3 Background

Problem Statement We study policy learning using behavior cloning. The agent is required to
learn a mapping from the observation o to the action a that mimics an expert policy. Both o and a can

2

contain a number of time steps, i.e., o = {ot−(m−1), . . . ,ot−1,ot},a = {at,at+1, . . . ,at+(n−1)}
where m is the number of history steps observed and n is the number of future action steps. The
observation contains both visual information (images or voxels) and the pose vector of the gripper.

Let Tt ∈ R4×4 be the current SE(3) pose of the gripper in the world frame, the actions at specify
a desired pose At ∈ R4×4 of the gripper and an open-width command wt ∈ R. The pose can
be either absolute (Tt+1 = At, also called position control) or relative (Tt+1 = AtTt, also called
velocity control). In order to noise and denoise via addition and subtraction as in the standard
diffusion process, we vectorize the SE(3) pose At into a vector at during diffusion and denoising,
and orthogonalize the noise-free action vector after denoising.

Diffusion Policy Chi et al. [1] proposed Diffusion Policy to model the multimodal distribution in
behavior cloning using Denoising Diffusion Probabilistic Models (DDPMs) [14]. Diffusion Policy
learns a noise prediction function εθ(o,a+ εk, k) = εk using a network εθ parameterized by θ. The
network is expected to predict the noise component of the input a+ εk. During training, transitions
(o,a) are sampled from the expert dataset. Then, random noise εk (conditioned on a randomly
sampled denoising step k) is added to a. The loss is L = ||εθ(o,a+εk, k)−εk||2. During inference,
given an observation o, DDPM performs a sequence of K denoising steps starting from a random
action ak ∼ N (0, 1) to generate an action a0 defined inductively by

ak−1 = α(ak − γεθ(o,a
k, k) + ϵ), (1)

where ϵ ∼ N (0, σ2I). α, γ, σ are functions of the denoising step k (also known as the noise
schedule). The action a0 is expected to be a sample from the expert policy π : o 7→ a.

Equivariance A function f is equivariant if it commutes with the transformations of a symmetry
group G. Specifically, ∀g ∈ G, f(ρx(g)x) = ρy(g)f(x), where ρ : G → GL(n) is called the
group representation that maps each group element to an n × n invertible matrix that acts on the
input and output through matrix multiplication. We sometimes leave the actions implicit and write
f(gx) = gf(x). We mainly focus on the group SO(2) of planar rotations (i.e., rotation around the
z-axis of the world) and its subgroup Cu containing u discrete rotations. There are three particular
representations of SO(2) or Cu that are of interest in this paper:

1) the trivial representation ρ0 defines SO(2) or Cu acting on an invariant scalar x ∈ R by ρ0(g)x =
x. 2) the irreducible representation ρω defines SO(2) or Cu acting on a vector v ∈ R2 by a 2 × 2
rotation matrix with frequency ω, ρω(g)v =

(cosωg − sinωg
sinωg cosωg

)
v. 3) the regular representation ρreg

that defines Cu acting on a vector x ∈ Ru by u × u permutation matrices. Let g = rm ∈ Cu =
{1, r1, . . . , ru−1} and (x1, . . . , xu) ∈ Ru. Then ρreg(g)x = (xu−m+1, . . . , xu, x1, x2, . . . , xu−m)
cyclically permutes the coordinates of Ru.

A representation ρ can also be a combination of different representations, i.e., ρ = ρn0
0 ⊕ρn1

1 ⊕ρn2
2 ∈

GL(n0+2n1+2n2). In such a case, ρ(g) is an (n0+2n1+2n2)×(n0+2n1+2n2) block diagonal
matrix that acts on x ∈ Rn0+2n1+2n2 .

4 Method

4.1 Theory of Equivariant Diffusion Policy

The main contribution of this paper is a method that incorporates equivariance in the diffusion pro-
cess for policy learning. As theoretical justification, we first analyze the noise prediction function
and show that it is equivariant any time the expert policy that is being modeled is equivariant. This
implies equivariant neural networks have the correct inductive bias to model this function.

Let π : o 7→ a be the expert policy function, and let ε : (o,ak, k) 7→ εk be the ground truth noise
prediction function associated with the expert policy such that εk = ε(o, π(o) + εk, k). Assume
g ∈ SO(2) acts upon the noise εk in the same way as it acts upon the action a.
Proposition 1. The noise prediction function ε is equivariant, i.e., ε(go, gak, k) = gε(o,ak, k), g ∈
SO(2), when the expert policy function is SO(2)-equivariant, i.e., π(go) = gπ(o), g ∈ SO(2).

3

Figure 2: Equivariance of the denois-
ing function ε. Left: In observation
o, the goal for the gripper is to reach
the green block while avoiding the blue
obstacle. Right: The expert trajectory
and the gradient field associated with
the denoising function. If the policy is
equivariant, both the denoising function
and the entire gradient field is equivari-
ant. The orange boxes show the equiv-
ariance of ε with a particular input εk.

See Appendix A for the proof. Figure 2 illustrates the
equivariance property of ε. If we infer ε for all actions
in the action space, we effectively acquire a gradient field
towards the expert trajectory. The figure shows that such
a gradient field is equivariant when the expert policy is
equivariant, thus the function ε is also equivariant. Notice
that the figure shows the average of all action time steps.

4.2 SO(2) Representation on 6DoF Action

A key step in defining an Equivariant Diffusion Policy is
to define how actions at transform under rotation. We
describe this transformation in terms of irreducible SO(2)
representations, which allows us to build the equivariance
constraint into the denoising network.

Proposition 2. There exist irreducible representations
that describe how SO(2) acts on an SE(3) gripper action
at. In absolute pose control, let at = Vecc(At) where
Vecc flattens an SE(3) pose At ∈ R4×4 into a vector by
column, gat = (ρ1 ⊕ ρ20)

4(g)at. In relative pose control,
let at = Vecr(At) where Vecr flattens At into a vector
by row, gat = P−1

[
(ρ60 ⊕ ρ41 ⊕ ρ2)(g)

]
Pat, where P is

a fixed change-of-basis matrix.

Absolute Control We first consider absolute pose con-
trol, i.e., Tt+1 = At. Let Tg be the transformation matrix corresponding to the SO(2) rota-

tion along the z-axis of the world frame, Tg =

(cos g − sin g 0 0
sin g cos g 0 0
0 0 1 0
0 0 0 1

)
=

(
ρ1(g)

ρ0(g)
ρ0(g)

)
, where

ρ1(g) =
(cos g − sin g
sin g cos g

)
. The SO(2) action on At is gAt = TgAt = (ρ1 ⊕ ρ20)(g)At. Vectorizing

At by column gives at = Vecc(At) =
[
A1T

t ,A2T
t ,A3T

t ,A4T
t

]T
where Ai

t is the ith column of At.
By the rule of matrix multiplication, we have gAi

t = (ρ1 ⊕ ρ20)(g)A
i
t and gat = (ρ1 ⊕ ρ20)

4(g)at.

Since the gripper open width is invariant, gwt = ρ0(g)wt, we can append wt to at and add an extra
ρ0 to the representation. We can also simplify the representation by removing the constants in the
transformation matrix and removing the last row in the rotation part of the transformation matrix
(i.e., the 6D rotation representation [49]). The resulting action vector would be at ∈ R6 × R3 × R,
where the first six elements are the 6D rotation, the following three elements are the translation, and
the last element is the gripper open width. In such a case, we have gat = (ρ31⊕(ρ1⊕ρ0)⊕ρ0)(g)at.

Relative Control For relative gripper pose, i.e., Tt+1 = AtTt, the group action on At satisfies
(gAt)TgTt = Tg(AtTt) (because the rotation g ∈ SO(2) applies to both the current pose and
the change of pose). Solving for gAt we get gAt = TgAtT

−1
g . Let at = Vecr(At) where

Vecr : Rn×m → R(n·m) flattens a matrix into a vector by row. Here we want to find a linear
action ρA that satisfies gat = ρA(g)Vecr(At) = Vecr(TgAtT

−1
g). After solving for ρA ∈ R16×16

and calculating a change-of-basis matrix P such that PρAP−1 is a block diagonal matrix consisting
of irreducible representations, we have gat = P−1

[
(ρ60 ⊕ ρ41 ⊕ ρ2)(g)

]
Pat (see Appendix B for

details). For easier implementation, we add a ρ0 for the gripper action wt, remove the constants in
the transformation matrix, and decompose SE(3) = SO(3)× R3. See Appendix C.

4.3 Implementation of Equivariant Diffusion Policy

Now that we have the theoretical grounding of the equivariance in the noise prediction function
ε, this section will introduce the network architecture of our Equivariant Diffusion Policy. As is

4

(a) Kitchen D1 (b) Nut Assembly D0 (c) Pick Place D0 (d) Coffee Preparation D1

Figure 4: The experimental environments from MimicGen [11]. The left image in each subfigure
shows the initial state of the environment; the right image shows the goal state. See Figure 8 in the
Appendix for all environments.

Figure 3: Overview of our Equivariant Dif-
fusion Policy architecture.

shown in Figure 3, our network consists of three
main parts: encoding (white box), denoising (yel-
low box), and decoding (gray box). We implement
our network using the escnn library [50]. First, an
equivariant observation encoder and an equivariant
action encoder take inputs o and ak, respectively, to
create equivariant embeddings eo and eak . The em-
beddings will be in the form of a regular represen-
tation of the subgroup Cu ⊂ SO(2) (where u is the
number of discrete rotations in the group). The em-
beddings have shape eo ∈ Ru×do and eak ∈ Ru×da ,
where each of the do or da dimensional vectors en-
codes the features for a specific group element (i.e.,
a rotation angle). Second, in the denoising step, let
ego ∈ Rdo and eg

ak ∈ Rda be a pair of partial em-
beddings corresponding to the same group element
g. We process each pair with a 1D Temporal U-Net
(adopted from the prior works [15, 1]) to calculate
an equivariant noise embedding. Specifically, letting
k be the denoising step, U the U-Net, and z its out-
put, we have zg = U(ego, e

g
ak , k). Since the same

network is applied for all g ∈ Cu, the output is an equivariant embedding of the noise in the regular
representation. Finally, an equivariant decoder will decode the noise εk. See Appendix D for details.

5 Experiments

5.1 Simulation Experiment

Experimental Settings We first evaluate our Equivariant Diffusion Policy (EquiDiff) with either
image (Im) or voxel (Vo) input on 12 manipulation tasks from MimicGen [11] (Figure 4). We define
the rotation of the observation as a voxel grid rotation or an image rotation. Notice that in the image
version of our method, there is a mismatch between the rotation of the agent view image and the
rotation of the ground truth state since the agent view is not orthogonally top-down. Although top-
down observations could be captured, we use the observation settings in the published dataset from
MimicGen [11] to demonstrate the generalizability of our method1. On the other hand, the voxel
version eliminates this symmetry mismatch as the rotation of the voxel grid aligns with the rotation
of the ground truth state. To better leverage the equivariance, we also add a rotation augmentation in
the voxel version of our method following our analysis in Section 4.1-4.2. We compare our method
with the following baselines: 1) DiffPo-C: the original diffusion policy [1] trained with the 1D
Temporal UNet [15]. Notice that the baseline shares the same UNet architecture as our method, but
it does not have any equivariant structure. 2) DiffPo-T: same as above, but trained with a transformer.
3) DP3: the 3D diffusion policy [20] trained with a point net encoder. 4) ACT: the Action Chunking

1Prior work [52] demonstrate that the equivariant CNN is still able to capture symmetry in such a scenario.

5

Stack D1 Stack Three D1 Square D2 Threading D2

Method Ctrl Obs 100 200 1000 100 200 1000 100 200 1000 100 200 1000

EquiDiff (Vo)

Abs

Voxel 99 (+23) 100 (+3) 100 (=) 75 (+37) 91 (+19) 91 (-3) 39 (+31) 48 (+29) 63 (+14) 39 (+22) 53 (+18) 55 (-4)
EquiDiff (Im) RGB 93 (+17) 100 (+3) 100 (=) 55 (+17) 77 (+5) 96 (+2) 25 (+17) 41 (+22) 60 (+11) 22 (+5) 40 (+5) 59 (=)
DiffPo-C [1] RGB 76 97 100 38 72 94 8 19 46 17 35 59
DiffPo-T [1] RGB 51 83 99 17 41 84 5 11 45 11 18 41
DP3 [20] PCD 69 87 99 7 23 65 7 6 19 12 23 40
ACT [51] RGB 35 73 96 6 37 78 6 18 49 10 21 35

EquiDiff (Vo)

Rel

Voxel 95 (+14) 100 (+5) 100 (=) 59 (+33) 76 (+24) 83 (-9) 25 (+17) 35 (+14) 52 (-7) 33 (+20) 39 (+13) 46 (-1)
EquiDiff (Im) RGB 75 (-6) 96 (+1) 100 (=) 25 (-1) 63 (+11) 92 (=) 11 (+3) 21 (=) 48 (-11) 11 (-2) 22 (-4) 49 (+2)
DiffPo-C [1] RGB 81 93 99 26 52 86 6 13 37 13 26 40
BC RNN [2] RGB 59 95 100 12 48 92 8 21 59 7 13 47

Coffee D2 Three Pc. Assembly D2 Hammer Cleanup D1 Mug Cleanup D1

Method Ctrl Obs 100 200 1000 100 200 1000 100 200 1000 100 200 1000

EquiDiff (Vo)

Abs

Voxel 65 (+18) 73 (+7) 76 (-3) 37 (+33) 58 (+52) 71 (+28) 70 (+16) 66 (-5) 73 (-14) 53 (+10) 65 (+6) 68 (+5)
EquiDiff (Im) RGB 60 (+13) 79 (+13) 76 (-3) 15 (+11) 39 (+33) 69 (+26) 65 (+11) 63 (-8) 77 (-10) 49 (+6) 64 (+5) 67 (+2)
DiffPo-C [1] RGB 44 66 79 4 6 30 52 59 73 43 59 65
DiffPo-T [1] RGB 47 61 75 1 4 43 48 60 76 30 43 63
DP3 [20] PCD 34 45 69 0 1 3 54 71 87 21 33 53
ACT [51] RGB 19 33 64 0 3 24 38 54 71 23 31 56

EquiDiff (Vo)

Rel

Voxel 55 (+12) 59 (+7) 64 (-12) 5 (+3) 5 (=) 55 (+28) 64 (+21) 62 (+8) 67 (-5) 39 (+14) 43 (+4) 62 (-5)
EquiDiff (Im) RGB 41 (-2) 59 (+7) 66 (-10) 1 (-1) 5 (=) 59 (+32) 49 (+6) 52 (-2) 69 (-3) 29 (+4) 36 (-3) 65 (-2)
DiffPo-C [1] RGB 43 51 67 2 2 20 43 54 65 25 39 55
BC RNN [2] RGB 37 52 76 0 5 27 32 43 72 19 39 67

Kitchen D1 Nut Assembly D0 Pick Place D0 Coffee Preparation D1

Method Ctrl Obs 100 200 1000 100 200 1000 100 200 1000 100 200 1000

EquiDiff (Vo)

Abs

Voxel 85 (+18) 89 (+4) 88 (-3) 67 (+12) 77 (+9) 83 (-1) 58 (+23) 68 (+3) 82 (-1) 80 (+15) 83 (+21) 85 (+9)
EquiDiff (Im) RGB 67 (=) 77 (-8) 81 (-10) 74 (+19) 85 (+17) 94 (+10) 42 (+7) 74 (+9) 92 (+9) 77 (+12) 83 (+21) 85 (+9)
DiffPo-C [1] RGB 67 85 87 55 68 83 35 65 83 65 62 58
DiffPo-T [1] RGB 54 75 81 31 32 46 15 37 50 38 51 76
DP3 [20] PCD 45 71 91 16 24 58 12 15 34 10 22 63
ACT [51] RGB 37 61 87 42 64 84 7 17 50 32 46 65

EquiDiff (Vo)

Rel

Voxel 69 (+27) 83 (+19) 89 (+8) 53 (+11) 65 (+3) 72 (-13) 40 (+5) 58 (-1) 79 (-3) 48 (+6) 71 (+18) 73 (+12)
EquiDiff (Im) RGB 61 (+19) 72 (+8) 83 (+2) 44 (+2) 65 (+3) 87 (+2) 29 (-6) 55 (-4) 91 (+9) 49 (+7) 59 (+6) 79 (+18)
DiffPo-C [1] RGB 42 64 81 42 62 75 35 59 82 42 53 51
BC RNN [2] RGB 31 47 81 35 58 85 21 41 77 14 32 61

Table 1: The performance of our method compared with the baselines in simulation. We experi-
ment with 100, 200, and 1000 demos in each environment and report the maximum task success rate
among 50 evaluations throughout training. Results averaged over three seeds. Number in parenthe-
ses shows the difference between our method and the best baseline (with increment colored in blue
and decrement in red). Bold performance indicates the best, bold difference is greater than 10%.

Transformer [51] trained as a conditional VAE. 5) BC RNN: a recurrent architecture from [2]. Notice
that the voxel version of our method and DP3 utilizes the 3D inputs constructed from four cameras,
while the image version of our method and the other baselines directly use the RGB images from two
cameras. As our main baseline, we evaluate DiffPo-C in both absolute and relative pose control. We
evaluate the other baselines in the same control mode as in the original work (absolute for DiffPo-T,
DP3 and ACT, and relative for BC RNN). See Appendix E and F for the details.

Average over 12 Environments

Method Ctrl 100 200 1000

EquiDiff (Vo)

Abs

63.9 (+21.9) 72.6 (+14.8) 77.9 (+6.5)
EquiDiff (Im) 53.7 (+11.7) 68.5 (+10.7) 79.7 (+8.3)
DiffPo-C [1] 42.0 57.8 71.4
DiffPo-T [1] 29.0 43.0 64.9
DP3 [20] 23.9 35.1 56.8
ACT [51] 21.3 38.2 63.3

EquiDiff (Vo)

Rel

48.8 (+15.5) 58.0 (+10.7) 70.2 (-0.1)
EquiDiff (Im) 35.4 (+2.1) 50.4 (+3.1) 74.0 (+3.7)
DiffPo-C [1] 33.3 47.3 63.2
BC RNN [2] 22.9 41.2 70.3

Table 2: The average performance over
12 tasks of Equivariant Diffusion Policy
compared with baselines.

Results Table 1 shows the experimental result in terms
of the maximum success rate among 50 evaluations
throughout the training. First, with absolute pose con-
trol, our Equivariant Diffusion Policy with voxel input
achieves the best overall performance, outperforming
the baselines in 11 out of the 12 environments (Ham-
mer Cleanup D1 being the exception). With RGB im-
age inputs, our method outperforms all RGB baselines
in all environments except for Kitchen D1. Second, in
relative control, our method with voxel input achieves
the best performance, while our method with RGB input
is only marginally better than the baselines. Third, our
method appears to perform particularly well in the low-

6

(a) (b)

Figure 5: (a) The three task groups are based on the level of equivariance and their initial object
distribution. Images were generated by taking the average of five random initialization states. (b)
The performance improvement of our Equivariant Diffusion Policy (Voxel) compared with the orig-
inal diffusion policy in absolute pose control. Blue environments are high-equivariance tasks; green
environments are intermediate-equivariance tasks; red environments are low-equivariance tasks.

data regime (i.e., with 100 or 200 demos). Specifically, taking the average over all environments (as
is shown in Table 2), our method with voxel input and absolute pose control trained with 100 demos
outperforms the best baseline by 21.9%. When trained with 200 demos, it outperforms all baselines
trained with 1000 demos, indicating the strong sample efficiency of our method. We also perform
an ablation study in Appendix H, where we ablate the equivariant structure and the voxel input in
our method. We show that though both of these items contribute to the performance improvement
our method shows over the baseline, the equivariant structure is the more important factor.

5.2 Improvement with Different Levels of Equivariance

We further analyze the performance improvement of our method when the tasks have different levels
of equivariance. Since equivariant models generalize automatically across different object poses,
equivariance should hypothetically be more useful when there is greater variance in the distribution
of initial object poses. We qualitatively group the tasks into three levels: 1) high-equivariance
tasks where the poses of the objects are initialized randomly within the workspace; 2) intermediate-
equivariance tasks where each object is initialized in a certain range, but with some randomness
inside the range; 3) low-equivariance tasks where there is no randomness for the position and/or
orientation of certain objects. Figure 5a shows the three task groups. We show the performance
improvement of our Equivariant Diffusion Policy with voxel in absolute pose control compared
with the standard diffusion policy in Figure 5b. Generally, the high-equivariance tasks benefit more
from injecting symmetry in the network architecture. Moreover, our method’s strong performance
in the intermediate and low-equivariance tasks indicates its robustness and generalizability, as the
model’s symmetry is helpful even when the task is partially symmetric.

5.3 Real-Robot Experiment

Experimental Settings In this section, we evaluate our method on a real robot system contain-
ing a Franka Emika robot arm [53] equipped with a pair of fin-ray [54] fingers and three Intel
Realsense [55] D455 cameras. Demonstrations were gathered by an operator using a 6DoF 3DCon-
nexion mouse. Observations and demonstration actions were recorded at 5Hz. Similarly to prior

7

(a) Oven Opening (b) Banana in Bowl (c) Letter Alignment (d) Trash Sweeping

(e) Hammer to Drawer (f) Bagel Baking

Figure 6: The real-world environments. The left image of each subfigure shows the initial state of the
environment; the right image shows the goal state. See Appendix L for a detailed task description.

Oven Opening Banana in Bowl Letter Alignment Trash Sweeping Hammer to Drawer Bagel Baking

Demos 20 40 40 40 60 58

EquiDiff (Vo) 95% (19/20) 95% (19/20) 95% (19/20) 90% (18/20) 85% (17/20) 80% (16/20)
DiffPo-C (Vo) 60% (12/20) 30% (6/20) 0% (0/20) 5%(1/20) 5%(1/20) 10% (2/20)

Table 3: Performance of Equivariant Diffusion Policy in Real-World Robot Experiments.

work [1], we use DDIM [56] in this experiment to reduce the number of denoising steps to 16.
Figure 6 shows the six tasks in this experiment. We compare our Equivariant Diffusion Policy with
voxel input against a baseline Diffusion Policy, which uses the same voxel grid as the vision input
and uses a non-equivariant 3D convolutional encoder with approximately the same number of train-
able parameters as ours. As we show in the ablation study (Appendix H), this baseline works better
than the original diffusion policy with image input.

Results We evaluate the trained models over 20 test trials for each task. The results are shown in
Table 3. Our Equivariant Diffusion Policy can solve those tasks with only 20 to 60 demonstrations.
Notably, our method achieves an 80% success rate in bagel baking, where the failures were all due
to the joint limits of the robot. In comparison, the baseline performs poorly in all six tasks.

6 Conclusion

This paper studies the leveraging of symmetries in visuomotor policy learning. We propose the novel
Equivariant Diffusion Policy method and provide a theoretical analysis identifying the conditions
under which diffusion processes are equivariant. We also demonstrate a general framework for
using SO(2)-equivariance in the 6DoF control for robotic manipulation. We evaluate our method in
both simulation and the real world and show in both cases that our method outperforms the baseline
Diffusion Policy by a large margin.

One limitation of this work is the partial utilization of the power of equivariance due to the symmetry
mismatch in the vision system. Even with the voxel input, Factors like the arm’s occasional presence
in the voxel grid and camera noise could break symmetry. Future work could address this by design-
ing a vision system free of symmetry corruption. Additionally, “incorrect equivariance”, as shown in
prior work [57], may harm performance when the model’s symmetry conflicts with the demonstra-
tion. Another limitation is that although the theory in Section 4.2 is not limited to diffusion policies
and can apply to other policy learning pipelines as well, this is not demonstrated. Specifically, given
the good performance of BC RNN with the relative pose control in Table 1, experimenting with an
equivariant version of BC RNN could be beneficial. Finally, extending our method to other robotic
tasks like navigation, locomotion, and mobile manipulation is a key future direction.

8

Acknowledgments

This work is supported in part by NSF 1750649, NSF 2107256, NSF 2314182, NSF 2134178, NSF
2409351, and NASA 80NSSC19K1474. Dian Wang is supported in part by the JPMorgan Chase
PhD fellowship. The authors would like to thank Dr. Osman Dogan Yirmibesoglu for the design
of the fin-ray gripper fingers, Dr. Andy Park for building the teleop system for data collection,
Emmanuel Panov for collecting demonstration data in the robot experiment, Dr. Thomas Weng for
the proof-read of the paper, and Dr. Cheng Chi for the helpful discussion.

References
[1] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion Policy:

Visuomotor Policy Learning via Action Diffusion. In Proceedings of Robotics: Science and
Systems (RSS), 2023.

[2] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,
Y. Zhu, and R. Martı́n-Martı́n. What Matters in Learning from Offline Human Demonstrations
for Robot Manipulation. In A. Faust, D. Hsu, and G. Neumann, editors, Proceedings of the 5th
Conference on Robot Learning, volume 164 of Proceedings of Machine Learning Research,
pages 1678–1690. PMLR, 08–11 Nov 2022.

[3] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay Policy Learning: Solv-
ing Long-Horizon Tasks via Imitation and Reinforcement Learning. In Conference on Robot
Learning, pages 1025–1037. PMLR, 2020.

[4] E. Hoogeboom, V. G. Satorras, C. Vignac, and M. Welling. Equivariant Diffusion for Molecule
Generation in 3D. In International Conference on Machine Learning, pages 8867–8887.
PMLR, 2022.

[5] J. Guan, W. W. Qian, X. Peng, Y. Su, J. Peng, and J. Ma. 3D Equivariant Diffusion for Target-
Aware Molecule Generation and Affinity Prediction. In The Eleventh International Conference
on Learning Representations, 2023.

[6] J. Brehmer, J. Bose, P. De Haan, and T. Cohen. EDGI: Equivariant Diffusion for Planning with
Embodied Agents. arXiv preprint arXiv:2303.12410, 2023.

[7] H. Ryu, J. Kim, J. Chang, H. S. Ahn, J. Seo, T. Kim, J. Choi, and R. Horowitz. Diffusion-
EDFs: Bi-equivariant Denoising Generative Modeling on SE(3) for Visual Robotic Manipula-
tion. arXiv preprint arXiv:2309.02685, 2023.

[8] K. Chen, X. Chen, Z. Yu, M. Zhu, and H. Yang. Equidiff: A conditional equivariant diffusion
model for trajectory prediction. In 2023 IEEE 26th International Conference on Intelligent
Transportation Systems (ITSC), pages 746–751. IEEE, 2023.

[9] D. Wang, R. Walters, and R. Platt. SO(2)-Equivariant Reinforcement Learning. In Interna-
tional Conference on Learning Representations, 2022.

[10] M. Jia, D. Wang, G. Su, D. Klee, X. Zhu, R. Walters, and R. Platt. SEIL: Simulation-augmented
Equivariant Imitation Learning. In International Conference on Robotics and Automation
(ICRA), 2023.

[11] A. Mandlekar, S. Nasiriany, B. Wen, I. Akinola, Y. Narang, L. Fan, Y. Zhu, and D. Fox. Mim-
icGen: A Data Generation System for Scalable Robot Learning using Human Demonstrations.
In 7th Annual Conference on Robot Learning, 2023.

[12] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep Unsupervised Learn-
ing using Nonequilibrium Thermodynamics. In F. Bach and D. Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 2256–2265, Lille, France, 07–09 Jul 2015. PMLR.

9

[13] Y. Song and S. Ermon. Generative Modeling by Estimating Gradients of the Data Distribution.
Advances in Neural Information Processing Systems, 32, 2019.

[14] J. Ho, A. Jain, and P. Abbeel. Denoising Diffusion Probabilistic Models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[15] M. Janner, Y. Du, J. Tenenbaum, and S. Levine. Planning with Diffusion for Flexible Behavior
Synthesis. In International Conference on Machine Learning, pages 9902–9915. PMLR, 2022.

[16] Z. Liang, Y. Mu, M. Ding, F. Ni, M. Tomizuka, and P. Luo. AdaptDiffuser: Diffusion Models
as Adaptive Self-evolving Planners. In International Conference on Machine Learning, 2023.

[17] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu, S. V. Macua, S. Z. Tan,
I. Momennejad, K. Hofmann, et al. Imitating Human Behaviour with Diffusion Models. In
The Eleventh International Conference on Learning Representations, 2022.

[18] Z. Wang, J. J. Hunt, and M. Zhou. Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning. In The Eleventh International Conference on Learning Representa-
tions, 2022.

[19] Z. Xian, N. Gkanatsios, T. Gervet, T.-W. Ke, and K. Fragkiadaki. ChainedDiffuser: Unify-
ing Trajectory Diffusion and Keypose Prediction for Robotic Manipulation. In 7th Annual
Conference on Robot Learning, 2023.

[20] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu. 3d diffusion policy: Generalizable
visuomotor policy learning via simple 3d representations. In Robotics: Science and Systems,
2024.

[21] M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, and J. Tang. GeoDiff: A Geometric Diffusion
Model for Molecular Conformation Generation. In International Conference on Learning
Representations, 2022.

[22] D. Wang, R. Walters, X. Zhu, and R. Platt. Equivariant Q Learning in Spatial Action Spaces.
In 5th Annual Conference on Robot Learning, 2021.

[23] H. Huang, D. Wang, A. Tangri, R. Walters, and R. Platt. Leveraging Symmetries in Pick and
Place. The International Journal of Robotics Research, 2023.

[24] A. Simeonov, Y. Du, Y.-C. Lin, A. R. Garcia, L. P. Kaelbling, T. Lozano-Pérez, and P. Agrawal.
SE(3)-Equivariant Relational Rearrangement with Neural Descriptor Fields. In Conference on
Robot Learning, pages 835–846. PMLR, 2023.

[25] C. Pan, B. Okorn, H. Zhang, B. Eisner, and D. Held. TAX-Pose: Task-Specific Cross-Pose
Estimation for Robot Manipulation. In Conference on Robot Learning, pages 1783–1792.
PMLR, 2023.

[26] H. Huang, D. Wang, X. Zhu, R. Walters, and R. Platt. Edge Grasp Network: A Graph-Based
SE(3)-invariant Approach to Grasp Detection. In International Conference on Robotics and
Automation (ICRA), 2023.

[27] S. Liu, M. Xu, P. Huang, X. Zhang, Y. Liu, K. Oguchi, and D. Zhao. Continual Vision-based
Reinforcement Learning with Group Symmetries. In Conference on Robot Learning, pages
222–240. PMLR, 2023.

[28] S. Kim, B. Lim, Y. Lee, and F. C. Park. Se (2)-equivariant pushing dynamics models for
tabletop object manipulations. In Conference on Robot Learning, pages 427–436. PMLR,
2023.

[29] C. Kohler, A. S. Srikanth, E. Arora, and R. Platt. Symmetric models for visual force policy
learning. arXiv preprint arXiv:2308.14670, 2023.

10

[30] H. H. Nguyen, A. Baisero, D. Klee, D. Wang, R. Platt, and C. Amato. Equivariant reinforce-
ment learning under partial observability. In Conference on Robot Learning, pages 3309–3320.
PMLR, 2023.

[31] H. Nguyen, T. Kozuno, C. C. Beltran-Hernandez, and M. Hamaya. Symmetry-aware reinforce-
ment learning for robotic assembly under partial observability with a soft wrist. arXiv preprint
arXiv:2402.18002, 2024.

[32] B. Eisner, Y. Yang, T. Davchev, M. Vecerik, J. Scholz, and D. Held. Deep SE(3)-equivariant
geometric reasoning for precise placement tasks. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=

2inBuwTyL2.

[33] X. Zhu, D. Wang, O. Biza, G. Su, R. Walters, and R. Platt. Sample Efficient Grasp Learning
Using Equivariant Models. In Robotics: Science and Systems, 2022.

[34] D. Wang, M. Jia, X. Zhu, R. Walters, and R. Platt. On-Robot Learning With Equivariant
Models. In 6th Annual Conference on Robot Learning, 2022.

[35] X. Zhu, D. Wang, G. Su, O. Biza, R. Walters, and R. Platt. On robot grasp learning using
equivariant models. Autonomous Robots, 47(8):1175–1193, 2023.

[36] H. Huang, D. Wang, R. Walters, and R. Platt. Equivariant Transporter Network. In Robotics:
Science and Systems, 2022.

[37] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitz-
mann. Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipula-
tion. In 2022 International Conference on Robotics and Automation (ICRA), pages 6394–6400.
IEEE, 2022.

[38] H. Ryu, H. in Lee, J.-H. Lee, and J. Choi. Equivariant Descriptor Fields: SE(3)-Equivariant
Energy-Based Models for End-to-End Visual Robotic Manipulation Learning. In The Eleventh
International Conference on Learning Representations, 2023.

[39] H. Huang, O. Howell, X. Zhu, D. Wang, R. Walters, and R. Platt. Fourier Transporter: Bi-
Equivariant Robotic Manipulation in 3D. arXiv preprint arXiv:2401.12046, 2024.

[40] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel. Deep Imitation
Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 5628–5635. IEEE, 2018.

[41] S. Toyer, R. Shah, A. Critch, and S. Russell. The Magical Benchmark for Robust Imitation.
Advances in Neural Information Processing Systems, 33:18284–18295, 2020.

[42] P. Florence, L. Manuelli, and R. Tedrake. Self-Supervised Correspondence in Visuomotor
Policy Learning. IEEE Robotics and Automation Letters, 5(2):492–499, 2019.

[43] R. Rahmatizadeh, P. Abolghasemi, L. Bölöni, and S. Levine. Vision-Based Multi-Task Ma-
nipulation for Enexpensive Robots Using End-to-End Learning from Demonstration. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages 3758–3765. IEEE,
2018.

[44] M. Orsini, A. Raichuk, L. Hussenot, D. Vincent, R. Dadashi, S. Girgin, M. Geist, O. Bachem,
O. Pietquin, and M. Andrychowicz. What Matters for Adversarial Imitation Learning? Ad-
vances in Neural Information Processing Systems, 34:14656–14668, 2021.

[45] D. Jarrett, I. Bica, and M. van der Schaar. Strictly Batch Imitation Learning by Energy-Based
Distribution Matching. Advances in Neural Information Processing Systems, 33:7354–7365,
2020.

11

https://openreview.net/forum?id=2inBuwTyL2
https://openreview.net/forum?id=2inBuwTyL2

[46] P. Florence, C. Lynch, A. Zeng, O. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee, I. Mor-
datch, and J. Tompson. Implicit Behavioral Cloning. Conference on Robot Learning (CoRL),
2021.

[47] Y. Du and I. Mordatch. Implicit generation and generalization in energy-based models. In
Advances in Neural Information Processing Systems, 2019.

[48] W. Grathwohl, K.-C. Wang, J.-H. Jacobsen, D. Duvenaud, and R. Zemel. Learning the Stein
Discrepancy for Training and Evaluating Energy-Based Models Without Sampling. In Inter-
national Conference on Machine Learning, pages 3732–3747. PMLR, 2020.

[49] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li. On the Continuity of Rotation Representations
in Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5745–5753, 2019.

[50] G. Cesa, L. Lang, and M. Weiler. A Program to Build E(n)-Equivariant Steerable CNNs. In
International Conference on Learning Representations, 2021.

[51] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning Fine-Grained Bimanual Manipulation
with Low-Cost Hardware. In Proceedings of Robotics: Science and Systems (RSS), 2023.

[52] D. Wang, J. Y. Park, N. Sortur, L. L. Wong, R. Walters, and R. Platt. The Surprising Effective-
ness of Equivariant Models in Domains with Latent Symmetry. In International Conference
on Learning Representations, 2023.

[53] S. Haddadin, S. Parusel, L. Johannsmeier, S. Golz, S. Gabl, F. Walch, M. Sabaghian, C. Jähne,
L. Hausperger, and S. Haddadin. The Franka Emika robot: A Reference Platform for Robotics
Research and Education. IEEE Robotics & Automation Magazine, 29(2):46–64, 2022.

[54] W. Crooks, G. Vukasin, M. O’Sullivan, W. Messner, and C. Rogers. Fin ray® effect inspired
soft robotic gripper: From the robosoft grand challenge toward optimization. Frontiers in
Robotics and AI, 3:70, 2016.

[55] L. Keselman, J. Iselin Woodfill, A. Grunnet-Jepsen, and A. Bhowmik. Intel Realsense Stereo-
scopic Depth Cameras. In Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops, pages 1–10, 2017.

[56] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In International Con-
ference on Learning Representations, 2020.

[57] D. Wang, X. Zhu, J. Y. Park, M. Jia, G. Su, R. Platt, and R. Walters. A general theory of correct,
incorrect, and extrinsic equivariance. Advances in Neural Information Processing Systems, 36,
2024.

[58] R. Wang, R. Walters, and R. Yu. Incorporating symmetry into deep dynamics models for
improved generalization. In International Conference on Learning Representations (ICLR),
2021.

[59] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern recognition, pages 770–
778, 2016.

[60] I. Loshchilov and F. Hutter. Decoupled Weight Decay Regularization. In International Con-
ference on Learning Representations, 2018.

12

A Proof of Proposition 1

Proof. Consider the observation o and the action a = π(o), let ak = a + εk. By the definition of
the noise prediction function ε, we have

εk = ε(o, π(o) + εk, k). (2)

Applying g ∈ SO(2) to o we have

εk = ε(go, π(go) + εk, k). (3)

Since π is equivariant,
εk = ε(go, ga+ εk, k). (4)

Since the noise prediction function predicts the noise as long as εk is the same on both sides of the
equation, we can substitute εk with gεk

gεk = ε(go, ga+ gεk, k). (5)

By linearity, ga+ gεk = g(a+ εk) = gak and thus

gεk = ε(go, gak, k). (6)

Replacing εk with ε(o,ak, k) gives gε(o,ak, k) = ε(go, gak, k) as desired.

B Decomposing Group Representation in Relative Pose Control into
Irreducible Representations

In Section 4.2, we want to find a linear action ρA that satisfies gat = ρA(g)Vecr(At) =
Vecr(TgAtT

−1
g). solving for ρA ∈ R16×16 we have the group action of SO(2) on Vecr(At)

as

ρA =

c2 − s2
2 0 0 − s2

2 s2 0 0
s2
2 c2 0 0 −s2 − s2

2 0 0
0 0 c 0 0 0 −s 0
0 0 0 c 0 0 0 −s
s2
2 −s2 0 0 c2 − s2

2 0 0
s2 s2

2 0 0 s2
2 c2 0 0

0 0 s 0 0 0 c 0
0 0 0 s 0 0 0 c

ρ1(g)
I2

ρ1(g)
I2

, (7)

where c = cos g, s = sin g, c2 = cos 2g, s2 = sin 2g. Define P as

P =

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

, (8)

13

We then have

PρAP−1 =

I6

ρ1(g)
ρ1(g)

ρ1(g)
ρ1(g)

ρ2(g)

 . (9)

C Simplifying Group Action in Relative Pose Control

In Section 4.2, we want to find a linear action ρA that satisfies

ρA(g)Vecr(At) = Vecr(TgAtT
−1
g), (10)

To simplify the problem, we decompose At =
[
Rt Dt
0 1

]
where Rt is the SO(3) rotation and Dt =

[x, y, z]T is the translation. Define Rg as the rotation matrix in Tg ,

Rg =

[
cos g − sin g 0
sin g cos g 0
0 0 1

]
=

[
ρ1(g)

ρ0(g)

]
. (11)

Since the conjugate does not apply to translation, we can write gDt = RgDt = [ρ1(x, y), ρ0(z)]
T

For rotation, similar as before, we need to find the representation ρR that satisfies

ρR(g)Vecr(Rt) = Vecr(RgRtR
−1
g). (12)

Solving for ρR(g) ∈ R9×9 we have

ρR =

c2 −cs 0 −cs s2 0 0 0 0
cs c2 0 −s2 −cs 0 0 0 0
0 0 c 0 0 −s 0 0 0
cs −s2 0 c2 −cs 0 0 0 0
s2 cs 0 cs c2 0 0 0 0
0 0 s 0 0 c 0 0 0
0 0 0 0 0 0 c −s 0
0 0 0 0 0 0 s c 0
0 0 0 0 0 0 0 0 1

, (13)

where c = cos g, s = sin g. To decompose it into the irreducible representations of SO(2), we
define

P =

1 0 0 0 1 0 0 0 0
0 −1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 0
−1 0 0 0 1 0 0 0 0

. (14)

Such that PρRP−1 is a block diagonal matrix consisting of irreducible representations

PρRP−1 =

ρ0(g)

ρ0(g)
ρ0(g)

ρ1(g)
ρ1(g)

ρ2(g)

 . (15)

14

Figure 7: The detailed network architecture of our Equivariant Diffusion Policy in the simulation
experiments.

We can then use ρ(g) = PρRP−1 = ρ30(g) ⊕ ρ21(g) ⊕ ρ2(g) ∈ R9×9 as the group representation
of the output of the equivariant network, then construct the 3 × 3 rotation matrix Rt using P .
Specifically, let V ∈ R9 be the output of the network associated with the representation ρ(g) (i.e., g
acts on V through ρ(g)V). Define

Vecr(Rt) = P−1V. (16)
Applying ρ(g) on V will lead to

P−1ρ(g)V (17)
=P−1PρRP−1V (18)
=ρRVecr(R), (19)

which is the desired property in the equivariant network.

In the end, adding the group action for the translation (ρ1 ⊕ ρ0) and gripper open width (ρ0), we
have ρa = ρ50 ⊕ ρ31 ⊕ ρ2.

D Network Architecture Detail

In the image version, we implement the equivariant observation encoder with an equivariant
ResNet [58] for the agent view image, a standard ResNet [59] for the eye-in-hand image, and an
equivariant MLP for the robot states. We implement the equivariant layers in the group C8. Figure 7
shows the detailed network architecture of our Equivariant Diffusion Policy in the simulation exper-
iments. The network is defined under group C8. First, in the encoding phase, the agent view image
is processed with an equivariant ResNet-18, whose output is a 128 × 8-dimensional regular repre-
sentation vector of group. A non-equivariant ResNet-18 with a spatial maxpool at the end processes
the eye-in-hand image and outputs a 128-dimensional representation vector that uses the trivial in-
variance representation. Those two vectors are concatenated with the gripper position (represented

15

(a) Stack D1 (b) Stack Three D1 (c) Square D2 (d) Threading D2

(e) Coffee D2 (f) Three Pc. Assembly D2 (g) Hammer Cleanup D1 (h) Mug Cleanup D1

(i) Kitchen D1 (j) Nut Assembly D0 (k) Pick Place D0 (l) Coffee Preparation D1

Figure 8: The experimental environments from MimicGen [11]. The left image in each sub figure
shows an initial state of the environment; the right image shows the goal state.

(a) Kitchen D1

(b) Coffee Preparation D1

Figure 9: Illustration of an episode of Kitchen D1 task and Coffee Preparation D1 task.

using ρ1 ⊕ ρ0), gripper orientation (in the format of 6D rotation, represented using ρ31), and the
gripper finger position (represented using ρ20). The concatenated mixed-representation vector is sent
to an equivariant linear layer, whose output is a 128 × 8-dimensional regular representation obser-
vation embedding. The noisy action is also encoded using an equivariant linear layer, whose output
is a 64 × 8-dimensional regular representation action embedding. Second, in the denoising phase,
we process each part of the observation embedding and the action embedding that corresponds to
the same group element with a 1D Temporal UNet with hidden dimensions of [512, 1024, 2048] to
get a 64-dimensional vector. Doing so for each pair, we will recover a 64 × 8-dimensional regular
representation noise embedding. In the end, an equivariant linear layer will decode the noise.

In the voxel version, the agent view image is replaced with a voxel grid, and we replace the equiv-
ariant ResNet with an 8-layer 3D equivariant convolutional encoder. The 1D Temporal UNet has a
hidden dimensions of [256, 512, 1024]. The other part of the network stays the same. In the real-
world, we remove the eye-in-hand image and only use the voxel grid as vision input (the gripper
state vector stays the same).

E Simulation Environments

Figure 8 shows the initial and goal states of each tasks. Figure 9 shows an example trajectory for
finishing the Kitchen and Coffee Preparation tasks. The RGB observation is an agent-view image
and an eye-in-hand image with a size of 3 × 84 × 84. The voxel grid observation has a size of

16

Task Max Steps Max Out of Plane Rot in Demo

Stack D1 400 11.2
Stack Three D1 400 13.2

Square D2 400 14.7
Threading D2 400 13.4

Coffee D2 400 14.1
Three Piece Assembly D2 500 16.2

Hammer Cleanup D1 500 16.4
Mug Cleanup D1 500 13.0

Kitchen D1 800 16.2
Nut Assembly D0 500 15.5

Pick Place D0 1000 18.0
Coffee Preparation D1 800 59.0

Table 4: The maximum number of time steps and the maximum out of plane rotation (in degrees) in
the demo for each simulation environments. The maximum out of plane rotation in the demo is the
maximum angular difference between the SO(3) rotation and the SO(2) rotation (i.e., only rotating
around the z axis) over all demonstration steps, averaged over 1000 demonstration episodes.

Method Obs Obs Step Action Pred. Step Action Exec. Step

EquiDiff (Vo) Voxel Grid, Eye-In-Hand Image, Gripper State 1 16 8
EquiDiff (Im) Agent View Image, Eye-In-Hand Image, Gripper State 2 16 8
DiffPo-C Agent View Image, Eye-In-Hand Image, Gripper State 2 16 8
DiffPo-T Agent View Image, Eye-In-Hand Image, Gripper State 2 10 8
DP3 Point Cloud, Gripper State 2 16 8
ACT Agent View Image, Eye-In-Hand Image, Gripper State 1 10 10
BC-RNN Agent View Image, Eye-In-Hand Image, Gripper State 1 1 1

Table 5: The observation format, observation step, action prediction step, and action execution step
for all methods. The gripper state is a vector including a 3 dimensional position vector, a rotation
vector in the format of 6D rotation representation or 4D quaternion, and a 2 dimensional finger
position.

4× 64× 64× 64 where the first channel is binary occupancy and the remaining three channels are
RGB. The point cloud observation has a size of 1024×6 (i.e, xyzrgb). The point cloud only contains
points above the table, as suggested in [20]. All tasks have a full 6 DoF SE(3) action space. Table 4
shows the maximum number of time steps (following [11]) and the maximum out of plane rotation
in the demo, calculated by taking the maximum angular difference between the SO(3) rotation and
the SO(2) rotation (i.e., only rotating around the z axis) across the entire demonstration episode.
Results averaged for 1000 demonstrations.

F Training Detail

In the simulation experiments, we follow the hyper-parameters of the prior work [1] for the image
version of our method, where the only change is that we increase the batch size to 128 for faster
training. Specifically, the observation contains two steps of history observation, and the output of
the denoising process is a sequence of 16 action steps. We use all 16 steps for training but only
execute eight steps in evaluation. We train our models with the AdamW [60] optimizer (with a
learning rate of 10−4 and weight decay of 10−6) and Exponential Moving Average (EMA). We use
a cosine learning rate scheduler with 500 warm-up steps. We use DDPM [14] with 100 denoising
steps for both training and evaluation. For each different number of demos (100, 200, 1000), we
maintain roughly the same number of training steps by the training for 50000/n epochs where n is
the number of demos. Evaluations are conducted every 1000/n epochs (50 evaluations in total). In
the voxel version, we use only one step of history observation, and keep the other hyper-parameters
the same.

The hyper-parameters for the diffusion policy and BC RNN baselines exactly follow [1]. We follow
the original work [20] for the hyper-parameters of DP3, except that we use the same action sequence
length (16 for training and 8 for evaluation) as [1] and our method. For the ACT baseline, we follow
the hyper-parameters provided in the prior work [51], except that we use a chunk size of 10, KL

17

Stack D1 Stack Three D1 Square D2 Threading D2

Method Ctrl 100 200 1000 100 200 1000 100 200 1000 100 200 1000

EquiDiff (Vo)

Abs

98.7±0.7 100.0±0.0 100.0±0.0 74.7±4.4 91.3±0.7 90.7±1.3 38.7±1.3 48.0±3.1 63.3±1.3 38.7±0.7 52.7±2.9 54.7±2.9
EquiDiff (Im) 93.3±0.7 100.0±0.0 100.0±0.0 54.7±5.2 77.3±1.8 96.0±1.2 25.3±8.7 41.3±9.8 60.0±4.2 22.0±1.2 40.0±1.2 59.3±1.8
DiffPo-C [1] 76.0±4.0 97.3±0.7 100.0±0.0 38.0±0.0 72.0±2.0 94.0±1.2 8.0±1.2 19.3±5.3 46.0±7.2 17.3±1.8 35.3±1.3 58.7±0.7
DiffPo-T [1] 51.3±1.8 82.7±0.7 98.7±0.7 16.7±0.7 41.3±2.9 84.0±1.2 4.7±1.8 11.3±2.4 44.7±4.7 10.7±0.7 18.0±1.2 40.7±0.7
DP3 [20] 69.3±3.7 86.7±4.7 99.3±0.7 7.3±0.7 22.7±3.7 65.3±1.8 6.7±0.7 6.0±0.0 19.3±3.3 12.0±3.1 23.3±3.3 40.0±2.0
ACT [51] 34.7±0.7 72.7±7.7 96.0±1.2 6.0±2.3 36.7±2.7 78.0±1.2 6.0±0.0 18.0±1.2 49.3±4.7 10.0±1.2 20.7±2.9 35.3±2.4

EquiDiff (Vo)

Rel

94.7±1.3 100.0±0.0 100.0±0.0 59.3±0.7 76.0±0.0 82.7±0.7 24.7±1.8 34.7±5.2 52.0±2.3 33.3±1.8 38.7±2.9 46.0±1.2
EquiDiff (Im) 74.7±5.8 96.0±0.0 100.0±0.0 25.3±3.3 62.7±3.5 92.0±1.2 11.3±1.3 20.7±4.1 48.0±4.0 11.3±1.3 22.0±1.2 49.3±2.4
DiffPo-C [1] 80.7±2.4 93.3±0.7 99.3±0.7 26.0±4.0 52.0±2.0 86.0±1.2 6.0±1.2 13.3±1.3 36.7±4.8 13.3±1.8 26.0±3.1 40.0±2.3
BC RNN [2] 59.3±7.0 94.7±1.3 100.0±0.0 12.0±2.5 48.0±5.3 92.0±2.3 8.0±1.2 20.7±2.7 58.7±3.5 7.3±0.7 13.3±2.4 46.7±0.7

Coffee D2 Three Pc. Assembly D2 Hammer Cleanup D1 Mug Cleanup D1

Method Ctrl 100 200 1000 100 200 1000 100 200 1000 100 200 1000

EquiDiff (Vo)

Abs

64.7±0.7 73.3±1.8 76.0±0.0 37.3±2.7 58.0±5.0 71.3±3.3 70.0±2.0 66.0±2.3 72.7±0.7 52.7±1.3 64.7±2.4 68.0±1.2
EquiDiff (Im) 60.0±2.0 79.3±1.3 76.0±2.0 15.3±1.8 39.3±1.8 69.3±3.5 65.3±0.7 63.3±4.4 76.7±0.7 49.3±0.7 64.0±1.2 66.7±0.7
DiffPo-C [1] 44.0±1.2 66.0±2.3 78.7±0.7 4.0±0.0 6.0±1.2 30.0±1.2 52.0±1.2 58.7±1.3 73.3±2.4 42.7±0.7 58.7±1.3 65.3±2.4
DiffPo-T [1] 47.3±0.7 60.7±1.8 74.7±2.7 0.7±0.7 4.0±0.0 42.7±1.3 48.0±1.2 60.0±1.2 76.0±1.2 30.0±1.2 42.7±2.9 63.3±0.7
DP3 [20] 34.0±4.0 45.3±4.1 68.7±2.4 0.0±0.0 0.7±0.7 3.3±0.7 54.0±3.1 70.7±4.1 86.7±0.7 21.3±2.7 32.7±1.8 52.7±4.4
ACT [51] 19.3±2.4 33.3±2.4 64.0±2.3 0.0±0.0 3.3±0.7 24.0±3.1 38.0±4.2 54.0±1.2 70.7±1.3 23.3±0.7 31.3±1.3 56.0±2.0

EquiDiff (Vo)

Rel

55.3±0.7 59.3±0.7 64.0±0.0 4.7±0.7 5.3±0.7 54.7±3.5 64.0±1.2 62.0±1.2 67.3±1.3 39.3±0.7 43.3±1.8 62.0±1.2
EquiDiff (Im) 40.7±0.7 58.7±1.8 66.0±1.2 1.3±0.7 4.7±0.7 59.3±4.8 48.7±2.7 52.0±3.5 68.7±2.4 29.3±2.9 36.0±1.2 65.3±2.4
DiffPo-C [1] 42.7±1.8 50.7±1.8 66.7±2.9 2.0±1.2 2.0±0.0 20.0±1.2 43.3±1.8 54.0±1.2 65.3±1.8 25.3±0.7 39.3±1.8 54.7±0.7
BC RNN [2] 37.0±1.0 52.0±2.0 76.0±2.3 0.0±0.0 5.3±0.7 27.0±1.0 32.0±0.0 42.7±0.7 72.0±2.3 19.3±0.7 39.0±1.0 66.7±0.7

Kitchen D1 Nut Assembly D0 Pick Place D0 Coffee Preparation D1

Method Ctrl 100 200 1000 100 200 1000 100 200 1000 100 200 1000

EquiDiff (Vo)

Abs

85.3±0.7 89.3±0.7 88.0±2.3 67.3±0.9 77.0±0.0 83.3±0.7 57.7±1.8 68.5±0.6 82.2±0.8 80.0±1.2 83.3±1.8 85.3±1.8
EquiDiff (Im) 67.3±0.7 76.7±3.3 81.3±0.7 74.0±1.2 85.0±1.5 93.7±0.9 41.7±3.2 74.2±3.2 92.0±1.2 76.7±0.7 82.7±0.7 85.3±0.7
DiffPo-C [1] 66.7±2.4 84.7±0.7 86.7±1.8 54.7±2.3 68.0±2.6 83.0±1.5 35.3±2.2 65.0±2.8 82.7±0.6 65.3±0.7 62.0±4.2 58.0±3.1
DiffPo-T [1] 54.0±2.3 75.3±0.7 81.3±2.4 30.7±5.0 32.3±5.2 45.7±5.9 14.7±1.5 36.5±1.3 50.0±6.0 38.0±2.0 51.3±1.8 76.0±6.0
DP3 [20] 44.7±1.8 71.3±2.4 91.3±2.4 15.7±1.3 23.7±3.4 57.7±1.9 11.7±0.9 15.0±1.7 34.0±0.0 10.0±2.3 22.0±5.3 63.3±4.1
ACT [51] 37.3±3.5 60.7±3.5 87.3±3.5 42.3±2.9 63.7±3.5 84.3±0.9 7.2±0.9 17.2±1.1 50.0±2.9 32.0±2.0 46.0±3.1 64.7±2.4

EquiDiff (Vo)

Rel

69.3±1.8 82.7±1.3 89.3±1.8 53.0±1.0 65.0±2.0 72.0±2.0 40.3±1.6 58.2±0.9 78.8±0.8 48.0±1.2 70.7±2.9 73.3±1.8
EquiDiff (Im) 60.7±1.3 72.0±3.1 82.7±2.7 44.3±1.2 65.3±1.5 87.3±0.9 29.3±3.1 54.7±1.5 91.3±1.2 48.7±1.3 59.3±2.4 79.3±0.7
DiffPo-C [1] 42.0±2.3 64.0±5.0 81.3±1.3 41.7±2.7 62.0±1.5 75.3±1.2 34.7±1.1 58.7±1.0 82.2±2.5 42.0±3.1 52.7±3.3 51.3±1.8
BC RNN [2] 31.3±2.9 46.7±6.7 80.7±1.3 35.3±0.7 58.0±2.1 85.0±1.2 21.2±0.7 41.0±9.0 77.3±2.5 14.0±1.2 32.0±1.2 60.7±4.1

Table 6: The performance of our Equivariant Diffusion Policy compared with the baselines in simu-
lation. We experiment with 100, 200, and 1000 demos in each environment and report the maximum
task success rate among 50 evaluations throughout training. Results averaged over three seeds. ±
indicates standard error.

weight of 10, batch size of 64 with learning rate of 5×10−5, and no temporal aggregation, following
the tuning tips provided by the authors. See Table 5 for the observation format, observation step,
action prediction step, and action execution step for all methods.

In the real-world experiments, we use a batch size of 64, one step of observation, and disable the
EMA. We use DDIM [56] with 100 denoising steps for training and 16 denoising steps for evalua-
tion. The other hyper-parameters stay the same as in simulation.

G Simulation Experiment Result with Standard Error

Table 6 shows the same result in Table 1 with the standard error.

H Ablation Study

We perform an ablation study regarding the equivariant structure and the voxel input in our method.
We consider the following four candidates: 1) Ours: our Equivariant Diffusion Policy with voxel
input; 2) Ours no Voxel: our Equivariant Diffusion Policy with RGB input; 3) Ours no Equi.: the
baseline Diffusion Policy with voxel input; 4) Ours no Voxel no Equi.: the baseline Diffusion Policy
with RGB input, same as [1]. Table 7 shows the result and Table 8 shows the average over all 12 en-
vironments. Though both the equivariant structure and the voxel input contribute to the performance
improvement of our method, the equivariant structure plays a more important rule, as removing it

18

Stack D1 Stack Three D1 Square D2 Threading D2

Ablation Method Ctrl Obs 100 200 1000 100 200 1000 100 200 1000 100 200 1000

- EquiDiff (Vo)

Abs

Voxel 99 100 100 75 91 91 39 48 63 39 53 55
No Voxel EquiDiff (Im) RGB 93 100 100 55 77 96 25 41 60 22 40 59
No Equi. DiffPo-C (Vo) Voxel 87 99 100 33 79 94 10 24 60 19 43 54
No Voxel No Equi. DiffPo-C [1] RGB 76 97 100 38 72 94 8 19 46 17 35 59

Coffee D2 Three Pc. Asse. D2 Hammer Cleanup D1 Mug Cleanup D1

Ablation Method Ctrl Obs 100 200 1000 100 200 1000 100 200 1000 100 200 1000

- EquiDiff (Vo)

Abs

Voxel 65 73 76 37 58 71 70 66 73 53 65 68
No Voxel EquiDiff (Im) RGB 60 79 76 15 39 69 65 63 77 49 64 67
No Equi. DiffPo-C (Vo) Voxel 50 72 75 2 5 50 54 64 76 47 58 66
No Voxel No Equi. DiffPo-C [1] RGB 44 66 79 4 6 30 52 59 73 43 59 65

Kitchen D1 Nut Assembly D0 Pick Place D0 Coffee Prep. D1

Ablation Method Ctrl Obs 100 200 1000 100 200 1000 100 200 1000 100 200 1000

- EquiDiff (Vo)

Abs

Voxel 85 89 88 67 77 83 58 69 82 80 83 85
No Voxel EquiDiff (Im) RGB 67 77 81 74 85 94 42 74 92 77 83 85
No Equi. DiffPo-C (Vo) Voxel 82 87 87 66 77 84 41 67 84 65 75 77
No Voxel No Equi. DiffPo-C [1] RGB 67 85 87 55 68 83 35 65 83 65 62 58

Table 7: The ablation study that ablates the voxel input and the equivariant structure in our method.
We experiment with 100, 200, and 1000 demos in each environment and report the maximum task
success rate among 50 evaluations throughout training. Results averaged over three seeds.

Average over 12 Environments

Ablation Method Ctrl 100 200 1000

- EquiDiff (Vo)

Abs

63.9 72.6 77.9
No Voxel EquiDiff (Im) 53.7 (-10.3) 68.5 (-4.1) 79.7 (+1.8)
No Equi. DiffPo-C (Vo) 46.3 (-17.6) 62.5 (-10.1) 75.6 (-2.3)
No Voxel No Equi. DiffPo-C [1] 42.0 (-21.9) 57.8 (-14.8) 71.4 (-6.5)

Table 8: The average performance over 12 tasks of the ablation study. Number in parenthesis shows
the performance difference after removing different components in our Equivariant Diffusion Policy
with voxel input.

(No Equi.) lead to a more significant performance drop compared with removing the voxel input
(No Voxel). Note that by using the voxel input, Diffpo-C (Vo) is marginally better than the original
Diffusion Policy (DiffPo-C), thus we use Diffpo-C (Vo) as the baseline in our robot experiment in
Section 5.3.

I Implementing Equivariance via Data Augmentation

In this section, we evaluate implementing equivariance through data augmentation instead of using
equivariant networks. Specifically, we applied random rotation data augmentation based on our anal-
ysis in Sections 4.1 and 4.2 to a standard, unconstrained CNN. We then compared this CNN + Aug
baseline against using equivariant neural networks (Equi. Net) and not implementing equivariance
at all (CNN).

As is shown in Table 9, CNN + Aug can achieve good performance, occasionally even outperforming
equivariant networks in simpler tasks like Stack and Stack Three. However, it performs poorly in
more challenging tasks. When averaged across 12 environments, CNN + Aug performs better than
CNN but still underperforms compared to Equi. Net by a significant margin.

J SE(2) Action Space Variation

In this section, we evaluate a variation of our Equivariant Diffusion Policy in an SE(2) (with z trans-
lation) action space to demonstrate the necessity of leveraging an SE(3) action space. Specifically,
the SE(2) agent only learns the top-down rotation and the out-of-plane rotations will be constantly
set to 0. As is shown in Table 10, the SE(2) variation achieves a similar performance as the SE(3)
version in Stack Three, as the demonstration data in this task has the least amount of out-of-plane

19

Method Obs Stack D1 Stack Three D1 Square D2 Threading D2

Equi. Net (Vo) Voxel 98.7±0.7 74.7±4.4 38.7±1.3 38.7±0.7
CNN + Aug (Vo) Voxel 99.3±0.7 84.0±1.2 36.0±1.2 30.7±1.8
CNN (Vo) Voxel 86.7±1.3 33.3±1.8 10.0±2.0 19.3±2.4

Equi. Net (Im) RGB 93.3±0.7 54.7±5.2 25.3±8.7 22.0±1.2
CNN + Aug (Im) RGB 98.7±0.7 68.0±1.2 26.7±1.8 22.0±1.2
CNN (Im) RGB 76.0±4.0 38.0±0.0 8.0±1.2 17.3±1.8

Method Obs Coffee D2 Three Pc. Asse. D2 Hammer Cleanup D1 Mug Cleanup D1

Equi. Net (Vo) Voxel 64.7±0.7 37.3±2.7 70.0±2.0 52.7±1.3
CNN + Aug (Vo) Voxel 56.7±2.9 7.3±0.7 70.7±1.8 52.0±1.2
CNN (Vo) Voxel 50.0±3.1 2.0±0.0 54.0±3.1 46.7±0.7

Equi. Net (Im) RGB 60.0±2.0 15.3±1.8 65.3±0.7 49.3±0.7
CNN + Aug (Im) RGB 58.0±1.2 5.3±0.7 61.3±2.9 50.0±1.2
CNN (Im) RGB 44.0±1.2 4.0±0.0 52.0±1.2 42.7±0.7

Method Obs Kitchen D1 Nut Assembly D0 Pick Place D0 Coffee Prep. D1

Equi. Net (Vo) Voxel 85.3±0.7 67.3±0.9 57.7±1.8 80.0±1.2
CNN + Aug (Vo) Voxel 62.0±2.0 51.7±1.5 39.5±2.8 48.7±2.4
CNN (Vo) Voxel 82.0±2.3 66.0±1.7 40.8±1.9 65.3±0.7

Equi. Net (Im) RGB 67.3±0.7 74.0±1.2 41.7±3.2 76.7±0.7
CNN + Aug (Im) RGB 47.3±2.9 53.7±0.7 27.7±0.8 34.7±2.9
CNN (Im) RGB 66.7±2.4 54.7±2.3 35.3±2.2 65.3±0.7

Method Obs Average over 12 Environments

Equi. Net (Vo) Voxel 63.9
CNN + Aug (Vo) Voxel 53.3
CNN (Vo) Voxel 46.3

Equi. Net (Im) RGB 53.7
CNN + Aug (Im) RGB 46.2
CNN (Im) RGB 42.0

Table 9: Comparing implementing equivariance via equivariant network or data augmentation. We
experiment with 100 demos in each environment and report the maximum task success rate among
50 evaluations throughout training. Results averaged over three seeds.

Stack Three D1 Threading D2 Coffee Preparation D1

EquiDiff (Im), SE(3) Action 77.3 40.0 85.3
EquiDiff (Im), SE(2) Action 75.3 12.7 0.0

Table 10: Performance of Equivariant Diffusion Policy in SE(2) action space compared with SE(3)
action space. 200 demos are used in this experiment.

rotation (as shown in Table 4). On the other hand, the SE(2) variation significantly underperforms in
Threading, since the ability of wiggling the out-of-plane rotation helps the agent to precisely insert
the tool. In the end, the SE(2) agent cannot solve Coffee Preparation at all, because the task requires
a significant amount of out-of-plane rotation (as shown in Figure 9b).

K Robomimic Experiment

In this section, we compare our Equivariant Diffusion Policy with the original Diffusion Policy
across four Robomimic tasks (Figure 10). Both methods are trained with 100 Proficient-Human
(PH) demonstrations or 100 Multi-Human (MH) demonstrations. Other hyperparameters mirror
those used in our MimicGen experiment.

Table 11 shows the result. Our method achieves similar or slightly better performance compared to
the baseline Diffusion Policy. The improvements in Robomimic tasks are smaller than in Mimic-
Gen tasks. This is because the Robomimic tasks can be classified as Low-Equivariance Tasks (as
illustrated in Figure 5, bottom), with minimal randomness in the initial distribution (except for Lift),
making the symmetry in our method less advantageous.

20

(a) Lift (b) Can (c) Square (d) Tool Hang

Figure 10: The experimental environments from Robomimic. The left image in each subfigure
shows the initial state of the environment; the right image shows the goal state.

Lift Can Square tool hang Average100 PH 100 MH 100 PH 100 MH 100 PH 100 MH 100 PH

EquiDiff 100.0±0.0 100.0±0.0 99.3±0.7 96.7±0.7 84.0±1.2 76.7±1.3 76.0±0.0 90.4±2.3
DiffPo 100.0±0.0 100.0±0.0 100.0±0.0 95.3±0.7 85.3±0.7 70.7±0.7 64.0±5.8 87.9±3.2

Table 11: The performance of our Equivariant Diffusion Policy compared with the Diffusion Policy
baseline in Robomimic. We experiment with 100 Proficient-Human (PH) or Multi-Human (MH) de-
mos in each environment and report the maximum task success rate among 50 evaluations through-
out training. Results averaged over three seeds. ± indicates standard error.

L Real-Robot Environment Details

Figure 11 shows our real-world experimental platform containing a Franka Emika [53] and three
Intel Realsense[55] D455 cameras. Compared with simulation, we use a pair of fin-ray [54] gripper
fingers instead of the original Franka fingers. Figure 6 shows the five tasks in this experiment. In
Oven Opening, the oven is randomly initialized at one of the four borders of the workspace. In
Banana in Bowl, the initial poses of the banana and the bowl are both randomly sampled. In Trash
Sweeping, the robot needs to use a tool brush to sweep two pieces of crumpled paper out of its
workspace. The initial poses of the objects are randomly sampled. In Letter Alignment, the robot
needs to align the letters to form “AI”. The letter A is randomly initialized at one of the four corners
of the workspace, and the pose of the I is randomly sampled. In Hammer to Drawer, the robot needs
to open a drawer, pick up a hammer, place it inside the drawer, and close the drawer. The drawer
is initialized at one of the four borders of the workspace, and the hammer is randomly initialized at
the opposite side of the drawer. Lastly, we also evaluate a Bagel Baking task with an extremely long
time horizon, where the robot needs to open the oven, pull out the tray inside the oven, pick up the
bagel, place it inside the tray, close the tray, and close the oven. In this task, the oven is randomly
initialized at one of the three borders of the workspace (where we eliminate the side that is furthest
from the robot to avoid joint limits of the robot), and the bagel is randomly initialized along the
opposite side of the oven. The observation is a voxel grid with a resolution of 64× 64× 64 and the
gripper pose and open width. The voxel grid covers the (0.4m)3 workspace. During training, we
apply a random crop augmentation to crop the voxel grid to 58 × 58 × 58. In Banana in Bowl and
Trash Sweeping, we train the model with an additional random rotation augmentation. The baseline
is trained with the same data augmentation as our method.

M Generalization Experiment

In this experiment, we evaluate the generalizability of our Equivariant Diffusion Policy to unseen
object poses. We conduct this evaluation in the Bagel Baking experiment in the real world, where the
oven is initialized in three different poses during training (Fig 12a). At test time, we rotate the oven
to eight different, unseen poses (Fig 12b). We found that the learned policy can zero-shot generalize
to these unseen rotations, with the exception of the scenario where the oven is rotated to the bottom-
right corner. In this case, the policy is constrained by the robot’s joint limits. Specifically, the policy
was able to open the oven and pull out the tray, but when picking up the bagel, although the policy
could generate good gripper poses, the actions were infeasible for the robot due to joint limits. This
generalization demonstrates the power of the equivariant structure in our policy.

21

Figure 11: Our real-robot platform contains a Franka Emika robot arm equipped with a pair of fin-
ray fingers, and three Intel Realsense D455 cameras.

(a) Oven Poses in Training Set

(b) Oven Poses in The Generalization Experiment

Figure 12: (a) The initial oven poses in the training set. (b) The oven poses in the generalization
experiment. Those poses are unseen during training. In both training and testing, the pose of the
bagel is random.

22

	Introduction
	Related Work
	Background
	Method
	Theory of Equivariant Diffusion Policy
	SO(2) Representation on 6DoF Action
	Implementation of Equivariant Diffusion Policy

	Experiments
	Simulation Experiment
	Improvement with Different Levels of Equivariance
	Real-Robot Experiment

	Conclusion
	Proof of Proposition 1
	Decomposing Group Representation in Relative Pose Control into Irreducible Representations
	Simplifying Group Action in Relative Pose Control
	Network Architecture Detail
	Simulation Environments
	Training Detail
	Simulation Experiment Result with Standard Error
	Ablation Study
	Implementing Equivariance via Data Augmentation
	SE(2) Action Space Variation
	Robomimic Experiment
	Real-Robot Environment Details
	Generalization Experiment

