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ABSTRACT
In this paper, we introduce IRM-Net, a novel variant of the
U-Net architecture designed for indoor radio map estimation.
IRM-Net incorporates two principal improvements over the
standard U-Net. First, we replace conventional convolutional
layers with a cascaded combination of a Detail Enhancement
Block (DEB) and a Detail Enhancement Attention Block
(DEAB), which enhances the model’s ability to capture fine-
grained features. Second, we implement dense connections
in both the encoder and decoder, facilitating multi-level se-
mantic interactions that mitigate information loss more ef-
fectively than traditional serial connections. IRM-Net was
trained and evaluated on the benchmark dataset provided
by the Sampling-Assisted Pathloss Radio Map Prediction
Data Competition. Experimental results demonstrate that
our approach can reliably predict path loss distributions in
previously unseen indoor environments.

Index Terms— Indoor radio map, U-Net, Detail enhance-
ment, Path loss

1. INTRODUCTION

Radio maps provide a dynamic depiction of the distribution
of received signal strength across space, time, and frequency.
High-precision radio maps are crucial for assessing propaga-
tion environments in various applications, such as resource
allocation [1], network planning, fault diagnosis, and posi-
tioning services [2]. Indoor propagation scenarios, though
generally more static than their outdoor counterparts, exhibit
highly uncertain path loss patterns due to densely distributed
walls and diverse building materials. These characteristics
pose significant challenges to accurate propagation modeling,
particularly in capturing fine-grained small-scale fading ef-
fects.

In recent year, Convolutional Neural Networks (CNNs),
especially variants of U-Net [3] have become the prevailing
approach for radio map estimation. To enhance long range
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modeling capabilities, recent studies such as [4] have also
investigated the applicability of large-scale linear architec-
tures like Transformer in this context. These methods have
demonstrated impressive performance in spatial modeling
and nonlinear regression. However, they still leave room
for improvement in representing the intricate details of radio
maps. Specifically, current models often fall short in per-
ceiving complex spatial structures and multi-scale features,
making them less effective in capturing subtle variations
introduced by dynamic propagation environments.

To overcome these limitations, we propose IRM-Net, an
attention-based U-Net variant specifically designed for indoor
radio map estimation. Unlike conventional architectures,
IRM-Net employs a cascaded combination of a Detail En-
hancement Block (DEB) and a Detail Enhancement Attention
Block (DEAB) [5] to replace traditional convolutional layers,
thereby enhancing the extraction of localized, fine-grained
features associated with small-scale fading. Additionally,
dense connections are integrated into both the encoder and
decoder, and multi-level feature interaction pathways are
constructed to improve multi-scale contextual awareness and
mitigate information loss caused by downsampling and up-
sampling operations.

Empirical evaluations demonstrate that IRM-Net accu-
rately predicts path loss distributions in previously unseen
indoor environments. Specifically, in the two subtasks of
the Sampling-Assisted Pathloss Radio Map Prediction Data
Competition [6], IRM-Net achieves Root Mean Square Errors
(RMSE) of 6.20 dB and 5.91 dB at a 0.02% sampling rate,
and 4.36 dB and 3.84 dB at a 0.5% sampling rate.

2. METHODS

2.1. Baseline of IRM-Net

In recent years, the U-Net model has achieved significant suc-
cess in areas such as semantic segmentation [7], object de-
tection [8], and image translation [9]. Inspired by this, re-
searchers have successfully applied the U-Net model to the
field of radio map construction [10]. However, the standard
U-Net model struggles to perceive the fine-grained features
of radio maps, often resulting in varying degrees of distor-
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Fig. 1. The framework of IRM-Net
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Fig. 2. The framework and feature visualization of DEB mod-
ule
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Fig. 3. The framework of DEAB module

tion. To address this issue, several U-Net variants have been
redesigned for improvement.

The architecture of the proposed IRM-Net model is de-
picted in Fig. 1. IRM-Net is a U-Net variant comprising five
encoder–decoder stages, consisting of an encoder, a feature
transformation module, and a decoder. At the input stage, the
encoder receives a comprehensive set of parameters includ-
ing reflection coefficients, transmission coefficients, propa-
gation distances, antenna gains, radiation angles, transmitter
positions, sparse sampling points, and free-space path loss
maps. These inputs undergo a series of semantic and con-
textual transformations, ultimately yielding a predicted radio
map as output. IRM-Net introduces several key enhance-
ments over conventional U-Net architectures:

First, we incorporate dense connectivity into each stage
of both the encoder and decoder. This facilitates the direct
propagation of low level features to deeper layers, promoting
cross-scale feature interactions and maintaining spatial conti-
nuity in semantic information flow.

Second, we replace conventional convolutional layers in
the encoder with a DEB, as shown in Fig. 2(a). The DEB
module combines multiple types of differential convolution
(DConv) operators namely central, horizontal, vertical, and
diagonal to enhance directional sensitivity to structural details
in the feature maps. Fig. 2(b) illustrates the contrast in fea-
ture extraction between DEB and standard convolutions. The
top two rows display outputs from the first and second con-
ventional convolutional layers (Conv1 and Conv2), while the
bottom rows present outputs when these layers are replaced
with DEB (DEB1 and DEB2). The DEB enhanced outputs
clearly show sharper edges, more defined contours, and richer
textures, whereas the conventional outputs are smoother and



less detailed.
Finally, at the bottleneck layer of IRM-Net, we introduce

the DEAB, whose architecture is depicted in Fig. 3. DEAB
retains the high-resolution feature sensing capabilities of
DEB, while integrating Convolutional Block Attention Mod-
ule (CBAM) [11] and pixel attention mechanisms to enhance
focus on contextually important regions. Structurally, DEAB
is a two-stage residual module. In the first stage, differential
convolutions and an activation function are applied to the
input, followed by residual summation. In the second stage,
the activation is replaced by channel and spatial attention
modules. These two stages are sequentially connected and
embedded into a larger residual block referred to as Stage 3.
Prior to final summation in Stage 3, a pixel attention module
is further applied to emphasize key pixels, thereby improving
feature discriminability in critical regions.

2.2. Path Loss Model in LoS Environment

To expedite model convergence during training, we augment
the input features of IRM-Net by incorporating a path loss
map. Specifically, we utilize a free-space path loss model [12]
to dynamically generate the map in real time. The corre-
sponding transformation is defined in Eq. (1).

PL (d) [dB] = α+ 10β log 10 (d) +N
(
0, σ2

)
(1)

Where d represents the distance in meters between the re-
ceiver R and transmitter T . Moreover, PL(d) denotes the
path loss at distance d (expressed in dB), α and β indicates
the path loss exponent, and σ is the Gaussian standard devia-
tion. In this paper, the parameters set (e.g., α̂, β̂, σ̂) are set to
(76.14, 3.71, 0.5). As illustrated in Fig. 4, this path loss model
characterizes signal attenuation under free-sapce conditions.
Although it is not directly applicable in complex multi-wall
environments, it offers a generalizable prior that serves as a
learnable baseline, thereby facilitating the optimization of the
training process.

2.3. Loss Function

To ensure pixel level accuracy in the generated radio maps,
we adopt Mean Squared Error (MSE) as the loss function,
which is defined in Eq. (2).

LMSE =
1

N
·

N∑
i=1

(yi − ŷi)
2 (2)

Here N denotes the total number of pixels in the radio map,
while yi and ŷi represent the ground truth and predicted pixel,
respectively.

To further align model performance with human visual
perception and reduce local distortions, we incorporate the
Structural Similarity Index Measure (SSIM) [13] into the loss
formulation. SSIM is defined in Eq. (3).
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Fig. 4. Path loss maps

LSSIM (x, y) =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) (3)

Here µx and µy are the mean values of the predicted and
ground truth maps, σ2

x and σ2
y are their respective variances,

σxy is their covariance. C1 and C2 are small constants used
for numerical stability.

The final loss function L is a weighted combination of
MSE and SSIM, given in Eq. (4).

L = λ · LMSE +
(
1− λ

)
LSSIM (4)

Here, λ is the weighting coefficient, set to 0.8.

3. EXPERIMENTAL SETUP AND CHALLENGE
TASKS

3.1. Experimental Setup

1. Dataset: This paper utilizes a subset of the Task 2 data
from the indoor radio map dataset [14] used in the challenge.
The data spans various building materials, three frequency
bands (868 MHz, 1.8 GHz, and 3.5 GHz), and 50 randomly
assigned isotropic transmitter positions layout. The test set in-
cludes 5 indoor geometries, one frequency band (868 MHz),
and 50 Tx positions layout, totaling 250 radio maps. It is
worth noting that during the training process of IRM-Net, we
used data from all frequency bands for training. During the
testing phase, only samples operating at 868 MHz were used
for evaluation.

2. Evaluation Metrics: We adopt two performance met-
rics in this work, including RMSE and Normalized Mean
Square Error (NMSE), respectively defined by Eq.s (5) and
(6).

RMSE =

√∑N
i=1 (yi − ŷi)

2

N
(5)

NMSE =

∑N
i=1 (yi − ŷi)

2∑N
i=1 (yi)

2
(6)



Table 1. Details of Hyperparameters for IRM-Net
Parameter Value

Batch size 5
Optimizer AdamW

ReduceLROnPlateau factor=0.5, patience=5
Learning rate 1× 10−4

Weight decay 1× 10−5

Epochs 100

Here N denotes the total number of pixels in the radio map,
while yi and ŷi represent the ground truth and predicted pixel,
respectively.

3. Training Details: To support mini-batch training, we
resize all input features to 256×256 using Lanczos interpola-
tion. The dataset is split into training and validation sets using
a 9:1 ratio, and cross-validation is performed to determine fi-
nal model weights. Table 1 provides additional training spec-
ifications for IRM-Net. All experiments are conducted using
the PyTorch deep learning framework on a single RTX 3080
Ti GPU (12 GB).

4. Data Augmentation: To enhance robustness and ad-
dress the data scarcity issue, we employ various augmentation
strategies, including rotating and flipping the input images at
angles of 90◦, 180◦ and 270◦ to enrich the diversity of the
training data.

3.2. Challenge Task

The goal of this competition is to utilize sparse values of true
path loss in communication environments to assist in radio
map construction. The panels of Fig. 5 respectively shows
the sparse radio maps under random sampling conditions with
0.02% and 0.5% sampling rates. Firstly, the number of sam-
pling points | Sn | is controlled by Eq. (7), which can be
expressed as

| Sn |= Math.ceil (r ×Wn ×Hn) , (7)

where r denotes the sampling rate, while Wn and Hn rep-
resent the width and height of the radio map, respectively.
The sampling positions are controlled by a binary mask ma-
trix [15], defined as

M
(
ϵ(i,j)

)
=

{
0, ϵ(i,j) = None
1, else

, (8)

where ϵ(i,j) = None indicates that no sampling is performed
at a given position (i, j), and vice versa. Based on this, the
resulting sparse radio map G′(x) is defined as

G′ (x) = M
(
ϵ(i,j)

)
×G (x) , (9)

where G(x) represents the ground truth.
This paper comprises two distinct tasks. Task 1 evalu-

ates the impact of the number of randomly selected sampling
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Fig. 5. Sparse radio maps sample
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Fig. 6. Sparse radio maps under different sampling ranges

points on the performance of radio map construction. Specif-
ically, the sampling points of the n-th environment are found
by randomly drawing | Sn | (Eq. (7)) points without replace-
ment from the total WnHn points of the environment. Task
2 is to examine the influence of the selection of sampling po-
sitions on the final results under the same sampling quantity.
The sampling rates of these two tasks are 0.5% and 0.02%, re-
spectively, representing the high sampling rate and low sam-
pling rate schemes.

For Task 2, we propose a range-based sampling strategy.
Specifically, we prefer sampling locations that are farther
away from the transmitter. This choice is based on the obser-
vation that the field strength at sampling points far away from
the transmitter is weak, and the sampling error has more im-
pact on the accuracy of radio map reconstruction. Moreover,
rooms farther from the transmitter experience more complex
attenuation patterns due to multi-wall diffraction and multi-
path effects, resulting in highly nonlinear path loss character-
istics. As shown in Fig. 6, we visualize sparse radio maps for
different sampling ranges at a sampling rate of 0.5%. The left
(S), center (M), and right (L) panels correspond to sampling
radius of d = min (H,W ) /2, d =

(
H/2 +W/2

)
/2, and

d = max (H,W ) /2.

4. EXPERIMENTAL RESULTS

Table 2 demonstrates the performance of IRM-Net on the
competition’s evaluation dataset. In Task 1, IRM-Net achieved
RMSE values of 6.20 dB and 4.36 dB under low and high
sampling rates, respectively. For Task 2, the model yielded
RMSEs of 5.91 dB and 3.84 dB under the same sampling
conditions. In terms of computational efficiency, IRM-Net
predicts a single radio map in 0.056 seconds, which is sev-



Table 2. The performance of IRM-Net on the evaluation
dataset

Task Sampling rate RMSE(dB)

Task 1
0% 6.42

0.02% 6.20
0.5% 4.36

Task 2 0.02% 5.91
0.5% 3.84

eral orders of magnitude ahead of the traditional ray-tracing
method.

To provide a quantitative comparison, we also bench-
marked IRM-Net against several existing deep learning mod-
els on Task 1, including U-Net [3], RadioUNet [10], and
DC-Net [15]. The evaluation results are presented in Ta-
ble 3. All models successfully completed the assessment;
however, conventional U-Net showed subpar performance
in detail sensitive evaluation metrics. In contrast, IRM-Net
achieved superior accuracy. Specifically, it reduced RMSE
(tensor level) by 0.0323 and 0.0340 under the 0.02% and
0.5% sampling rates, respectively, compared to U-Net.

To illustrate differences in local texture reconstruction,
Fig. 7 presents visual comparisons of the estimated radio
maps across methods. While all approaches exhibit some de-
gree of distortion relative to the ground truth, IRM-Net con-
sistently provides superior visual fidelity overall.

To assess the effect of sampling location on reconstruction
accuracy, we further investigated the impact of sampling dis-
tance. Specifically, IRM-Net was used as the learning base-
line to evaluate performance under different sampling strate-
gies. In addition to randomly selected points, we considered
the three range-based sampling schemes S, M, and L as de-
fined in Section 3.2. The results, presented in Table 4, indi-
cate that selecting points farther from the transmitter provides
a modest performance advantage over random sampling. For
instance, at a 0.02% sampling rate, the S, M, and L strategies
reduced RMSE (tensor level) by 0.0004, 0.0013, and 0.0016,
respectively, compared to random sampling.

5. CONCLUSION

In this paper, we presented IRM-Net, a deep neural network
designed for indoor radio map estimation. Compared to con-
ventional U-Net architectures, IRM-Net incorporates DEB
and DEAB modules to improve feature sensitivity. Addi-
tionally, dense connections were applied to both the encoder
and decoder to alleviate information loss caused by down-
sampling operations. Through numerical evaluations on the
benchmark dataset from the Sampling-Assisted Pathloss Ra-
dio Map Prediction Data Competition, we demonstrated the
viability and effectiveness of IRM-Net for accurate radio map
estimation.

Table 3. The construction performance of different models
Sampling rate RMSE NMSE

U-Net [3] 0.02% 0.0456 0.0188
0.5% 0.0455 0.0184

RadioUNet [10] 0.02% 0.0216 0.0030
0.5% 0.0163 0.0017

DC-Net [15] 0.02% 0.0178 0.0023
0.5% 0.0148 0.0010

IRM-Net 0.02% 0.0133 0.0013
0.5% 0.0115 0.0009

Table 4. The influence of sampling methods on the construc-
tion errors

Sampling type Sampling rate RMSE NMSE

Random sampling 0.02% 0.0133 0.0013
0.5% 0.0115 0.0009

Distance sampling (S) 0.02% 0.0129 0.0012
0.5% 0.0112 0.0008

Distance sampling (M) 0.02% 0.0120 0.0011
0.5% 0.0112 0.0008

Distance sampling (L) 0.02% 0.0117 0.0009
0.5% 0.0113 0.0008
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