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ABSTRACT

Text-to-image diffusion models (DMs) inadvertently reproduce copyrighted styles
and protected visual concepts, raising legal and ethical concerns. Concept erasure
has emerged as a safeguard, aiming to selectively suppress such concepts through
fine-tuning. However, existing methods do not scale to practical settings where
providers must erase multiple and possibly conflicting concepts. The core bottle-
neck is their reliance on static erasure: a single checkpoint is fine-tuned to remove
all target concepts, regardless of the actual erasure needs at inference. This rigid
design mismatches real-world usage, where requests vary per generation, leading
to degraded erasure success and reduced fidelity for non-target content.
We propose DYME, an on-demand erasure framework that trains lightweight,
concept-specific LoRA adapters and dynamically composes only those needed at
inference. This modular design enables flexible multi-concept erasure, but naive
composition causes interference among adapters, especially when many or seman-
tically related concepts are suppressed. To overcome this, we introduce bi-level or-
thogonality constraints at both the feature and parameter levels, disentangling rep-
resentation shifts and enforcing orthogonal adapter subspaces. We further develop
ERASUREBENCH-H, a new hierarchical benchmark with brand–series–character
structure, enabling principled evaluation across semantic granularities and era-
sure set sizes. Experiments on ERASUREBENCH-H and standard datasets (e.g.,
CIFAR-100, Imagenette) demonstrate that DYME consistently outperforms state-
of-the-art baselines, achieving higher multi-concept erasure fidelity with minimal
collateral degradation.

1 INTRODUCTION

Recent advances in text-to-image diffusion models (DMs) (Rombach et al., 2022), have enabled
remarkable generation capabilities across a vast range of visual concepts. This expressiveness, how-
ever, has raised pressing legal and ethical issues: DMs can easily reproduce copyrighted content such
as trademarked characters, corporate logos, and proprietary designs (Jiang et al., 2023; Zhang et al.,
2023a; Almeda et al., 2024), exposing providers to increasing legal scrutiny and lawsuits (Winston
Cho, 2024; Chris Cooke, 2024). To mitigate these risks, concept erasure has emerged as a practical
safeguard that disables a model’s ability to generate protected or unwanted content while preserving
quality for unrelated concepts. Typical methods fine-tune the DM so that prompts invoking a target
concept (e.g., “a picture of Mickey Mouse”) are redirected to neutral substitutes (e.g., “a generic
cartoon character”), enabling targeted removal without retraining from scratch (Zhang et al., 2024a;
Lyu et al., 2024; Orgad et al., 2023; Gandikota et al., 2024; Gong et al., 2024; Fan et al., 2024).
While effective in the single-concept case, existing methods struggle with the multi-concept erasure
required in practice, such as takedown requests covering all copyrighted characters in a specific se-
ries, brand or arbitrary combinations thereof. As the erasure scope (the full set of concepts prepared
for removal) expands, their performance deteriorates due to two core limitations. First, parameter-
level conflicts arise when model updates for multiple concepts, causing gradients to clash and weak-
ening the removal of a large number of concepts. Second, at the semantic level, related concepts
often share latent attributes or representation directions, making selective suppression difficult. This
leads to both leakage of target concepts and degradation of generating benign content (Nie et al.,
2025; Kumari et al., 2023).
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Figure 1: Multi-Concept Erasure Scalability. Sce-
nario 1 (left): We increase erasure scope but in each
generation only one concept is erased. Static era-
sure methods (SE: MACE, FMN, SalUn, ESD, SPM,
AC) significantly degrade, whereas our dynamic era-
sure (DE: DYME) remains effective. Scenario 2 (right):
We increase the number of concepts per generation
(erasure subset), with fixed erasure scope, DYME sig-
nificantly outperforms existing methods (MACE, SPM,
SalUn). Harmonic accuracy is defined in Sec. 5.1.

A closer look reveals that these failures stem
from the static erasure paradigm adopted by
prior methods. Each fine-tuning run targets a
fixed set of concepts, producing a checkpoint
that can only suppress this set as a whole, re-
gardless of the per-generation erasure subset
(the specific set requested at inference). This
rigid design mismatches real-world demands,
where erasure requests vary per generation and
typically involve only the concepts explicitly
invoked in a user’s prompt. For example, if
the erasure scope covers all Disney characters,
static methods suppress every character in that
set for every prompt. Yet in practice, if a user
enters the prompt “a photo of Mickey Mouse”
to generate an image, the erasure subset con-
tains only Mickey Mouse, since no other Dis-
ney characters are involved. Static approaches
cannot make this distinction: once trained on
a broad erasure scope, they erase all included
concepts indiscriminately, reducing diversity
and degrading fidelity. As shown in Fig. 1 (Sce-
nario 1), this static design scales poorly as the
erasure scope widens.
To overcome these limitations, we shift to an on-demand erasure framework. The key idea is to
decouple training from inference by distinguishing between the erasure scope and the erasure subset.
This separation enables a modular design in which erasure components are trained collectively for
coverage but activated selectively per generation. As a result, each request suppresses the necessary
concepts, minimizing collateral damage and preserving generation quality for non-target content.
Building on this principle, we introduce DYME, a dynamic multi-concept erasure framework that
treats concept removal as an on-demand capability. DYME trains lightweight, concept-specific
LoRA (Hu et al., 2022) adapters, and at inference, dynamically composes only those adapters cor-
responding to the erasure subset. This design provides per-generation control: when the erasure
subset is fixed, performance remains stable as the erasure scope grows, as shown by the green curve
in Scenario 1 of Fig. 1, yielding an unchanged and substantial advantage of DYME over static era-
sure methods. A key challenge, however, is LoRA crosstalk (Dalva et al., 2025; Gu et al., 2023;
Po et al., 2024; Simsar et al., 2025): non-orthogonal updates from multiple adapters can interfere
in shared layers especially cross-attention, degrading both erasure reliability and generation fidelity.
To overcome this, we develop bi-level orthogonality constraints: an input-aware constraint that dis-
entangles LoRA-induced representation shifts for specific prompts, and a parameter-level constraint
that enforces independence across adapter weights globally. Together, these constraints ensure that
adapters operate in complementary subspaces, enabling robust multi-concept erasure.
Finally, to enable rigorous evaluation of multi-concept erasure scalability, we extend prior evalua-
tion that vary only the erasure scope by additionally scaling with the per-generation erasure subset.
Concretely, we instantiate scaling erasure subset requests in two ways: (i) simply using conjunc-
tions explicitly invoke multiple concepts per generation; and (ii) by enlarging the concept scope of a
named concept, where concept scope is defined as the number of defined unit concepts it subsumes.
However, on standard flat-category benchmarks such as CIFAR-100 (Krizhevsky et al., 2009) and
Imagenette (Howard & Gugger, 2020), concepts are not hierarchically nested, making unit con-
cepts and thus concept scope ill-defined. So we introduce ERASUREBENCH-H, a benchmark with
a hierarchical brand–series–character structure that mirrors real-world takedown requests targeting
groups of related concepts. This hierarchy makes concept scope explicit (e.g., a brand covers mul-
tiple series, which in turn cover multiple characters), thereby supporting controlled analyses across
per-generation erasure subset sizes by varying concept scope. ERASUREBENCH-H thus provides
a principled testbed for evaluating scalable, dynamic erasure methods beyond what flat-category
datasets allow. To the best of our knowledge, this is the first work to systematically investigate
multi-concept erasure scalability in diffusion models.
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Our main contributions are threefold:
• We formalize multi-concept erasure in diffusion models, identify parameter- and semantic-level

coupling as key barriers, and introduce the scope–subset distinction to enable scalable erasure.
• We propose DYME, a dynamic erasure framework that trains modular LoRA adapters and in-

troduces bi-level orthogonality constraints to mitigate crosstalk, ensuring reliable multi-concept
composition.

• We release ERASUREBENCH-H, a hierarchical benchmark for real-world multi-concept
evaluation, and show through extensive experiments on CIFAR-100, Imagenette, and
ERASUREBENCH-H that DYME consistently outperforms static baselines, achieving >90%
harmonic accuracy even as the erasure scope grows. Moreover, when the size of erasure subset
increases, DYME maintains a clear lead over all baselines.

2 RELATED WORK

Concept erasure in diffusion models. Recent work on concept erasure aims to remove targeted
concepts from text-to-image diffusion models (e.g., Stable Diffusion) while preserving non-target
fidelity (Fan et al., 2024; Li et al., 2024; Schramowski et al., 2023). Among fine-tuning approaches,
FMN (Zhang et al., 2024a) suppresses targets by re-steering cross-attention (CA) scores of the corre-
sponding tokens; ESD (Gandikota et al., 2023) aligns target concepts toward a surrogate distribution
via CA-layer fine-tuning; and SPM (Lyu et al., 2024) inserts rank-1 parameter fine-tuning into se-
lected layers, which are trained to map the target concept to a safe surrogate. UCE (Gandikota et al.,
2024) provide closed-form updates for the cross-attention projection matrices, and yield fast edits.
Besides, SalUn (Fan et al., 2024) uses a gradient-based saliency mask to update parameters most
salient to the forgetting objective. MACE (Lu et al., 2024) couples a closed-form initialization with
lightweight LoRA refinement, fusing per-concept modules together. However, by assuming a static
erasure paradigm, prior work risks growing cross-concept interference. We investigate a dynamic
framework to improve the scalability and reliability of multi-concept erasure.
LoRA composition and interference mitigation. LoRA (Hu et al., 2022) adapts diffusion models
by injecting low-rank updates into linear layers while freezing base weights, enabling parameter-
efficient personalization (Tewel et al., 2024). To preserve plug-and-play control at inference, com-
position techniques determine how multiple adapters interact. LoRA-Merge (Zhong et al., 2024)
linearly fuses several low-rank deltas into the base weights to produce a single set of weights. LoRA-
Switch (Zhong et al., 2024) keeps adapters separate and activates one adapter (or schedules different
ones) across denoising steps. LoRA-Composite (Zhong et al., 2024) mixes multiple adapters via uni-
form or weighted averaging to support multi-concept/style control. However, simple composition
can induce concept conflicts and identity loss (Gu et al., 2023). To address this, Mix-of-Show (Gu
et al., 2023) formulates a constrained optimization to merge individually trained LoRAs while pre-
serving identity; yet it ultimately consolidates multiple adapters into a single LoRA, reverting to a
static erasure paradigm. Orthogonal Adaptation (Po et al., 2024) encourages zero inner products
between per-concept parameter matrices, but abstracts away from analyzing the cross-attention pro-
jections where LoRA is actually injected; we address these gaps by proposing bi-level orthogonality
constraints directly on these projections to better reduce interference, and adopting the training-free
LoRA-Composite that enables dynamic erasure without retraining or per-subset checkpoints.

3 PROBLEM STATEMENT AND CHALLENGES

Problem statement. Concept erasure aims to disable a model’s ability to generate specific visual
concepts, such as copyrighted characters. Formally, let C denote the universe of possible visual
concepts. An erasure scope Cscope ⊆ C is specified as all concepts the model should be prepared
to erase. At inference, a narrower erasure subset Csubset ⊆ Cscope is identified, corresponding to the
concepts that should be suppressed for a given prompt or generation. The goal of concept erasure
is twofold: (1) For any prompt p that invokes a target concept c ∈ Csubset, the generated image x0

should omit that concept; (2) For prompts containing only non-target concepts, x0 should remain
consistent with the original model’s distribution.
Challenges in current concept erasure methods. While existing concept erasure methods pri-
marily address the single-concept case, providers often face requests to suppress multiple related
concepts, such as all copyrighted characters from a specific series or brand. This multi-concept era-
sure setting, where the model must handle arbitrary subsets Csubset ⊆ Cscope, introduces the risk of
interference between concept updates.
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A straightforward strategy is to fine-tune the model to suppress the entire Cscope, a static approach.
As the size of Cscope increases, interference accumulates between erased concepts, as well as between
erased and preserved concepts. This results in degraded erasure effectiveness and lower non-target
fidelity, making static erasure unsuited to dynamic or large-scale policies.

Figure 2: LoRA crosstalk analysis. Cosine-similarity
heatmaps of LoRA-induced changes in cross-attention
outputs across timesteps and U-Net blocks. (a) Seman-
tically similar pairs show high similarity (red), indicat-
ing overlapping updates and strong crosstalk. (b) Se-
mantically dissimilar pairs are more orthogonal (blue),
showing reduced interference.

A more flexible strategy is to train concept-
specific LoRA adapters and activate only those
required for a particular Csubset. This modular
approach avoids unnecessary interference from
irrelevant concepts and allows for dynamic era-
sure. However, when multiple adapters are ac-
tivated together, their parameter updates can
overlap in the shared model layers, causing de-
structive crosstalk. This is especially severe
when the erased concepts are semantically sim-
ilar or share visual features, leading to both era-
sure leakage and collateral degradation. Fig-
ure 2 illustrates this crosstalk, with heatmaps
showing that LoRA-induced changes for simi-
lar concepts tend to align strongly (low orthog-
onality). Together, these challenges highlight
the need for a principled framework that can
support arbitrary erasure subsets while mini-
mizing destructive crosstalk and preserving fidelity.

4 DYME: DYNAMIC MULTI-CONCEPT ERASURE FRAMEWORK

To overcome the limitations of prior methods, we introduce DYME, a Dynamic Multi-Concept Era-
sure framework that treats concept erasure as an on-demand capability rather than a one-time fine-
tune. Instead of producing a single static checkpoint tied to a fixed erasure scope, DYME equips a
pre-trained DM with a set of lightweight, concept-specific LoRA modules. At inference, only the
LoRAs corresponding to the requested erasure subset are activated and composed, enabling efficient
and flexible erasure across arbitrary combinations without retraining or checkpoint management.
Figure 3 illustrates the DYME workflow in four steps. Step 1: Define the erasure scope Cscope, the
full set of concepts that may be erased, and specify neutral substitutes that determine how erased
concepts should appear (e.g., background, empty, or generic replacements). In our setup, we adopt
the absence variant as the reconstruction target. Step 2: Attach a lightweight LoRA module to the
backbone for each concept ci ∈ Cscope. Step 3: Train all LoRA modules with a joint objective that
combines reconstruction fidelity with orthogonality-based disentanglement, ensuring each module
suppresses its target concept without interfering with others. Step 4: At inference, given a prompt
and user-specified erasure subset Csubset ⊆ Cscope, DYME activates only the relevant LoRAs, com-
poses their outputs into a single denoising direction, and generates the final image. This modular
pipeline decouples training from inference: LoRAs are trained collectively for coverage but designed
for composability, enabling scalable, per-demand erasure. We next describe how DYME enforces
this composability through bi-level orthogonality constraints.

4.1 TRAINING WITH BI-LEVEL ORTHOGONALITY CONSTRAINTS

Naively composing multiple LoRAs for concepts in Csubset leads to crosstalk, particularly when
concepts are semantically related and their induced updates overlap in shared layers. To enable
stable multi-concept composition, we introduce a bi-level orthogonality strategy that integrates both
input-aware and input-agnostic constraints, mitigating interference both on observed training data
and in unseen scenarios.
Input-aware orthogonality constraint. To address prompt-specific interference during training,
we regularize LoRAs to produce disentangled representation shifts in cross-attention activations.
For each pair of concepts, we compute the change induced by their respective LoRA modules and
penalize alignment between these shifts. This encourages LoRAs to act along orthogonal directions
in the representation space, ensuring that composing adapters for the concepts and prompts seen
during training does not introduce redundant or conflicting updates.

4
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Figure 3: DYME overview. Workflow from scope definition and LoRA assignment to training with
orthogonality constraints and dynamic composition at inference.

Suppose for concept ci, the LoRA-induced update to the backbone weight matrices W(0)
⋆ is ∆W

(i)
⋆

for ⋆ ∈ {q, k, v, o} (q, k, v, o denote, respectively, the query, key, value, and output projections of
cross-attention). Let the modified weights be W

(i)
⋆ = W

(0)
⋆ +∆W

(i)
⋆ , and let X ∈ Rd×de be the

text embedding. The LoRA-modified output is:

O(i) = W (i)
o W (i)

v X · σ

(
(W

(i)
k X)TW

(i)
q z(i)

√
de

)
, (1)

where z(i) is the visual query token and σ(·) is the softmax. The induced shift is ∆O(i) = O(i) −
O(0). We define the orthogonality score between two LoRA modules as:

OS(i, j) = 1− ⟨∆O(i),∆O(j)⟩F
∥∆O(i)∥F ∥∆O(j)∥F

, (2)

where ⟨·, ·⟩F denotes the Frobenius inner product. Then we construct the input-aware orthogonality
loss as:

Laware
ortho = −E(ci,cj)∼Cscope,i̸=j [OS(i, j)] , (3)

which penalizes correlated LoRA-induced shifts across pairs, sampled from the erasure scope.
Input-agnostic orthogonality constraints. While effective on observed data, input-aware con-
straints alone can be limited: they depend on the coverage of training prompts and may leave resid-
ual overlap in unobserved or biased input distributions. In other words, orthogonality enforced on
training samples does not guarantee global disentanglement, especially as real-world prompts are
diverse and unpredictable.
To address these gaps, we introduce an input-agnostic constraint, which operates directly in the pa-
rameter space of the LoRA modules, independent of specific input prompts. By encouraging the pa-
rameters associated with each concept’s LoRA to be orthogonal, we promote global disentanglement
and robustness to prompt distribution shift. To make this precise, we formalize a parameter-space
condition that serves as an input-agnostic surrogate for output orthogonality:
Theorem 1. Let ci and cj be any two distinct concepts (i ̸= j). Suppose LoRA adaptation is
restricted to the value and output projections Wv , Wo, with the query and key projections fixed
(W

(i)
q = W

(0)
q , W

(i)
k = W

(0)
k ). Define

M (i) := W (0)
o ∆W (i)

v +∆W (i)
o W (0)

v +∆W (i)
o ∆W (i)

v .

Then a sufficient condition for the orthogonality of the representation shifts, ⟨∆O(i),∆O(j)⟩F = 0,
for all input text embeddings X and queries z(i), z(j), is that

(M (i))TM (j) + (M (j))TM (i) = 0.

Proof. Under the stated assumptions, the LoRA-induced representation shift for concept ci is

∆O(i) =
(
W (i)

o W (i)
v −W (0)

o W (0)
v

)
XA(i)

=
(
(W (0)

o +∆W (i)
o )(W (0)

v +∆W (i)
v )−W (0)

o W (0)
v

)
XA(i)

= MiXA(i),
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where

A(i) = σ

(
(W

(0)
k X)TW

(0)
q z(i)

√
de

)
.

Since we assume the attention map A(i) remains the same (Wq and Wk fixed), only Wv and Wo

differ between concepts, and thus the output change due to LoRA is linear in M (i). The Frobenius
inner product between the shifts for concepts i and j is then

⟨∆O(i),∆O(j)⟩F = tr
[
(∆O(i))T∆O(j)

]
= tr

[
(A(i))TXT(M (i))TM (j)XA(j)

]
.

To guarantee this vanishes for all possible choices of X, A(i), A(j), it is sufficient that
(M (i))TM (j) is skew-symmetric: (M (i))TM (j) + (M (j))TM (i) = 0. Indeed, for any vectors
u, v,

uT(M (i))TM (j)v = −vT(M (i))TM (j)u.

By the properties of the trace and bilinearity, this implies

tr
[
uT(M (i))TM (j)v

]
= 0,

and so ⟨∆O(i),∆O(j)⟩F = 0 for all i ̸= j.
Thus, the proposed parameter-space constraint is sufficient for input-agnostic orthogonality between
LoRA-induced representation shifts.

This theorem establishes that LoRA orthogonality can be enforced through a symmetric condition
on their parameter matrices, removing the need for input-dependent Jacobians or forward-pass cor-
relations. Building on this result, we construct the input-agnostic orthogonality loss as

Lagnostic
ortho = −E(ci,cj)∼Cscope, i ̸=j

[∥∥∥ 1
2

(
(M (i))TM (j) + (M (j))TM (i)

)∥∥∥2
F

]
. (4)

This loss encourages concept-specific LoRA modules to reside in decorrelated parameter subspaces,
providing a lightweight and input-independent safeguard against crosstalk that complements the
input-aware constraint.
Final Training Objective. The overall training objective for DYME combines a reconstruction loss
(erasing target concepts), the input-aware orthogonality loss (reducing input-specific crosstalk), and
the input-agnostic orthogonality loss (providing global disentanglement):

L = Lrec + λ1Laware
ortho + λ2Lagnostic

ortho , (5)

where λ1 and λ2 control the relative strength of the two constraints. Here, Lrec is a distance be-
tween the generated image and its neutral substitute, ensuring erasing effectiveness of target con-
cepts, Laware

ortho mitigates sample-specific interference, and Lagnostic
ortho enforces global disentanglement.

Together, they ensure LoRAs are effective individually and stable when composed.

4.2 DYNAMIC COMPOSITION AT INFERENCE

At inference, DYME identifies the erasure subset Csubset for each prompt p. Only the corresponding
LoRA modules are activated, and their classifier-free guidance (Ho & Salimans, 2022) predictions
are computed and averaged to yield a unified denoising direction. This enables on-demand erasure
of arbitrary concept subsets, without retraining or storing multiple static checkpoints. Crucially,
thanks to bi-level orthogonality constraints, performance remains stable as the erasure scope grows.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Benchmark dataset. To enable rigorous evaluation of multi-concept erasure under realistic concept
relationships, we introduce ERASUREBENCH-H, a new Hierarchical Benchmark for Concept Era-
sure to reflect the hierarchical and compositional nature of concepts. While prior evaluations (Lu
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et al., 2024; Fan et al., 2024; Zhao et al., 2024; Li et al., 2025) often rely on datasets such as
CIFAR-10 and Imagenette, these datasets treat concepts as flat, disjoint categories and therefore
cannot capture the complexity of large-scale erasure involving overlapping or nested concepts.
ERASUREBENCH-H addresses this gap by organizing concepts in a brand–series–character hierar-
chy, which reflects the way unlearning requests often target groups of related concepts rather than
isolated categories. This structure enables evaluation across different concept scopes, from broad
brand-level suppression to fine-grained character-level erasure. The complete taxonomy, statistics,
and curation process are detailed in Appendix A.2.1.
Baseline and evaluation. We benchmark against static erasure models, ESD (Gandikota et al.,
2023), AC (Kumari et al., 2023), FMN (Zhang et al., 2024a), MACE (Lu et al., 2024), SPM (Lyu
et al., 2024), and SalUn (Fan et al., 2024). Implementation details are provided in Appx. A.2.2.
In our performance evaluation, we report four metrics: (i) Erasing Effectiveness Accuracy (AccEE):
the rate of generated images still classified as containing the erased concept(s) by a CLIP-based clas-
sifier (lower is better); (ii) Utility Preservation Accuracy (AccUP): the rate of non-target concepts
preserved in generation (higher is better); (iii) Image Fidelity: FID (Parmar et al., 2022) computed
on all generated images against MS-COCO (Lin et al., 2015); (iv) Harmonic Accuracy, which com-
bines AccEE and AccUP to penalize degenerate solutions, Accharmonic =

2
1

1−AccEE
+ 1

AccUP

.

Multi-concept erasure settings. We consider two key scenarios: (1) Erasure Scope Scaling. In
Sec. 5.2, we adopt the classic multi-concept erasure scenario used in prior work: the model is
trained to erase an increasing number of concepts while each generation involves only a single
target concept. This setting measures robustness as the erasure scope grows to large scale. (2) Per-
Generation Erasure Subset Scaling. This setting evaluates performance when multiple concepts
must be erased within a single generation, fixing the trained erasure scope and increasing the number
of simultaneously erased concepts per generation. We realize this in two complementary ways in
Sec. 5.3. (i) Conjunctions: we construct prompts by concatenating N targets with commas and
conjunctions; for example, when the per-generation erasure subset has size 3, the prompt is “a photo
of the beaver, dolphin, and otter”. (ii) Concept scope expansion: leveraging ERASUREBENCH-
H, we target higher-level semantic concepts (series- and brand-level) that aggregate multiple sub-
concepts (character-level). In this case, the per-generation erasure subset size equals the concept’s
scope (the number of constituent unit concepts), ranging from 1 up to 62. These scenarios directly
test a model’s ability to dynamically compose LoRA modules without interference.

5.2 ERASURE PERFORMANCE UNDER EXPANDING ERASURE SCOPE

To demonstrate the limitations of static erasure methods, we evaluate their performance as the era-
sure scope (i.e., the total number of concepts erased) increases. We adopt CIFAR-100 as the evalu-
ation dataset, treating each of its 100 classes as an individual concept. Models are trained to erase
{5, 10, 15, 20} concepts, but each test case involves only a single target concept per-generation
(i.e., erasure subset size is 1).
As a concrete example, when the per-generation erasure subset contains exactly one of the first
five CIFAR-100 classes (beaver, dolphin, otter, seal, whale), we compute AccUP by evaluating it on
each of the latter 50 CIFAR-100 concepts and taking the mean. In this setting, DYME achieves an
average Harmonic Accuracy of 90.82% across the five single-concept erasures. Because inference
is dynamic, this performance remains essentially unchanged as the total erasure scope grows while
static baselines deteriorate markedly (see Fig. 1 (left)). Moreover, in detailed results, ESD and AC
increasingly render generations semantically meaningless as the scope expands, which causes a large
drop in AccUP; FMN tends to retain concepts regardless of whether they are to be erased, which
causes a large drop in AccEE. When the erasure scope reaches 20, these methods fall to around 30%
Harmonic Accuracy, far below DYME. Detailed results are provided in Table 6.

5.3 ERASURE PERFORMANCE UNDER EXPANDING ERASURE SUBSET

Increasing per-generation erasure subset by conjunctions. Having examined scalability with
respect to the erasure scope, we now turn to the complementary setting that requires composing
multiple LoRA adapters per generation. As defined in Sec. 5.2, we evaluate multi-concept erasure
by growing the per-generation subset size. For each N ∈ {2, 3, 4, 5}, we follow the benchmark’s
canonical class order, partition classes into contiguous 5-tuples, and for each tuple take the first N
classes as the target set—thus the targets for N = 2, 3, 4, 5 are nested (prefixes of the same ordered

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method 2-concept 3-concept 4-concept 5-concept FID↓AccEE ↓ AccUP ↑ Accharmonic↑ AccEE ↓ AccUP ↑ Accharmonic↑ AccEE ↓ AccUP ↑ Accharmonic↑ AccEE ↓ AccUP ↑ Accharmonic↑
SD (Original) 98.50 70.50 - 99.50 64.00 - 100.00 37.50 - 100.00 25.50 - 98.54

MACE 12.00 27.50 41.90 17.00 20.50 32.88 17.50 15.50 26.10 14.50 11.50 20.27 117.26
SPM 32.50 60.50 63.81 36.00 33.00 43.55 60.00 21.50 27.97 53.00 22.00 29.97 107.90
SalUn 5.50 41.00 57.19 11.50 42.50 57.42 15.00 8.00 14.62 12.50 9.00 16.32 119.38

DYME w/o ortho 40.00 70.50 64.83 47.00 64.00 57.98 67.00 37.50 35.11 58.50 25.50 31.59 112.44
DYME 2.00 70.50 82.01 4.00 64.00 76.80 7.00 37.50 53.45 6.00 25.50 40.12 109.91

Table 1: Multi-concept erasure performance as per-generation erasure set increases by conjunctions
on the CIFAR100 dataset.

Method Series (small) Series (medium) Series (large)
AccEE ↓ AccUP ↑ Accharmonic↑ AccEE ↓ AccUP ↑ Accharmonic↑ AccEE ↓ AccUP ↑ Accharmonic↑

SD (Original) 90.50 72.50 – 93.00 67.00 – 95.50 51.50 –
MACE 11.50 19.00 31.28 7.50 18.00 30.14 5.00 7.00 13.04
SPM 43.00 61.50 59.16 52.50 61.00 53.41 67.50 44.00 37.39
SalUn 25.50 65.00 69.43 22.00 50.50 61.31 44.50 36.00 43.67
DYME 4.50 72.50 82.43 8.00 67.00 77.53 17.50 51.50 63.41

Table 2: Series-level concept erasure performance on the ERASUREBENCH-H dataset.

5-tuple). We generate 200 images per method for every target set. To keep static-erasure baselines
comparable, their trained erasure scope is capped at five concepts; larger scopes cause collapse that
masks method differences. Metrics follow Sec. 5.1: when calculating AccEE, each generated image
is counted as not erased if it contains at least one of the target concepts and when computing AccUP,
we randomly sample N non-target concepts and count an image as preserved if its top-N CLIP
logits collectively contain all N sampled non-targets.
Table 1 reports CIFAR-100 results as the per-generation erased subset grows from N=2 to N=5;
Imagenette and ERASUREBENCH-H exhibit the same trend, with detailed reports in Appx. A.3.2.
Across static baselines, harmonic accuracy declines monotonically with larger N , reflecting an in-
creasing failure to isolate target concepts—manifested as target leakage (higher AccEE) or over-
suppression (lower AccUP). In contrast, DYME maintains substantially higher harmonic accuracy
for all N . To attribute the gains, an ablated training configuration that disables our bi-level or-
thogonality (DYME (w/o ortho) in Table 1) performs markedly worse, underscoring the role of
orthogonality in achieving stable composition. We include this ablation solely to isolate the effect
of orthogonality; it is not a proper usage of DYME. Overall, as N increases, DyME yields stronger
multi-target erasure with better erasure effectiveness and utility preservation. Representative quali-
tative cases for this setting are provided in Appx. A.3.4.
Increasing per-generation erasure subset via concept scope expansion. Beyond explicitly en-
larging the subset via conjunction prompts (Sec. 5.3), real deployments also induce erasure subset
growth implicitly when the requested concept has a broader concept scope (Appx. A.3.5 illustrates
this growth.). Using ERASUREBENCH-H, we target higher-level concepts whose concept scope
equals the number of constituent unit concepts. For each higher-level target, we generate 200 im-
ages per method and report results at the character-, series- and brand-levels: at the character level
we average metrics over all characters, while at the series and brand levels we bucket targets into
Small, Medium and Large by the empirical tertiles of concept scope computed separately per level.
Metrics follow Sec. 5.1: AccEE counts an image as not erased if at least one unit concept from the
target appears according to the CLIP classifier; AccUP matches Sec. 5.2 at the character level (size
of erasure subset = 1) and, for series/brand levels, requires that the image’s top-5 CLIP logits all
fall within the corresponding non-target series or brand when classified at unit-concept granularity.
Across all three concept scope levels (character, series, and brand) DYME ranks first on harmonic
accuracy (character-level: Table 9; series-level: Table 2; brand-level: Table 3), indicating the best
combination of erasure effectiveness and utility preservation when the per-generation subset grows
via concept scope expansion. As the scope enlarges from a single character to an entire brand, the
synthesis task becomes harder (the attainable AccUP ceiling drops even for the underlying generator,
Stable Diffusion), so relative gaps among methods and their degradation rates are more informative
than differences in raw absolute values. By these criteria, DYME consistently degrades most grace-
fully and maintains the strongest margins at all concept scopes, while keeping competitive fidelity.

5.4 ABLATION STUDY

To assess the contribution of each design component, we ablate three choices—(i) dynamic LoRA
composition at inference (LoRA-C), (ii) the input-aware orthogonality constraint, and (iii) the input-
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Method Brand (small) Brand (medium) Brand (large)
AccEE ↓ AccUP ↑ Accharmonic↑ AccEE ↓ AccUP ↑ Accharmonic↑ AccEE ↓ AccUP ↑ Accharmonic↑

SD (Original) 86.50 61.50 - 90.00 10.50 - 92.00 7.50 -
MACE 13.00 23.50 37.00 3.90 3.50 6.75 4.50 2.50 4.87
SPM 43.00 55.50 56.24 23.00 4.50 8.50 60.50 6.00 10.42
SalUn 37.50 45.50 52.66 30.50 5.00 9.33 49.00 3.50 6.55
DyME 6.50 61.50 74.2 24.50 10.50 18.44 51.00 7.50 13.01

Table 3: Brand-level concept erasure performance on the ERASUREBENCH-H dataset.

agnostic orthogonality constraint. We evaluate all configurations under the conjunction-based era-
sure subset scaling setting (Sec. 5.3) to ensure that multiple adapters must be composed per gener-
ation.

Config LoRA-C
Orthogonality components Metrics

LIn-Aware
Ortho LIn-Ag

Ortho PBO AccEE ↓ AccUP ↑ Accharmonic ↑

1 - ✓ ✓ – 53.25 70.50 56.22
2 ✓ – ✓ – 34.50 70.50 67.91
3 ✓ ✓ – – 8.50 70.50 79.64
4 ✓ – – – 40.00 70.50 64.83
5 ✓ – – ✓ 19.00 70.50 75.39
6 ✓ ✓ – ✓ 8.50 70.50 79.64

DYME ✓ ✓ ✓ – 2.00 70.50 82.01

Table 4: Ablation on CIFAR-100. LoRA-C: LoRA
composition. LIn-Aware

Ortho : input-aware orthogonality con-
straint. LIn-Ag

Ortho : input-agnostic orthogonality constraint.
PBO: parameter space B orthogonality constraint.

We begin with Config. 1, probing whether
LoRA-C itself is essential. We replace LoRA-
C with two other schemes, LoRA Merge and
LoRA Switch, and report the mean across them
while keeping both orthogonality terms intact.
This substitution leads to a marked degradation,
which is consistent with reported scalability
limitations of these earlier LoRA combination
techniques (Zhang et al., 2023b; Zhong et al.,
2024). Next, we isolate the role of each or-
thogonality constraint in turn. Removing only
the input-aware term (Config. 2) while retaining
the input-agnostic term reveals how much ben-
efit arises from the input-aware orthogonality constraint; symmetrically, removing only the input-
agnostic term (Config. 3) exposes the contribution of it. To gauge the necessity of enforcing both
simultaneously, we also consider a no-orthogonality setting (Config. 4) in which neither term is
applied. Across these variants, removing or weakening either pathway reduces performance; fully
removing the bi-level orthogonality yields the largest drop (see Table 1 for more details), and in this
task the input-aware constraint contributes more than the input-agnostic term. Finally, we compare
our representation-space constraints to a parameter-space alternative inspired by orthogonal adapta-
tion (Po et al., 2024). Specifically, for each corresponding LoRA layer and each concept pair, we
enforce zero inner product between the B matrices, B⊤

i Bj = 0; we refer to this as the parameter-
space B orthogonality (PBO). We evaluate PBO as a full replacement for our bi-level orthogonality
and also as a hybrid in which PBO substitutes only for the input-aware constraint. While orthogonal
adaptation is helpful, it ignores inter-layer interactions within cross-attention; empirically, enforc-
ing matrix-level B-orthogonality provides some gains for concept erasure but remains inferior to
our bi-level orthogonality constraints. Results in Table 4 show that replacing dynamic composition
hurts performance, and that bi-level orthogonality is the largest single contributor to multi-concept
erasure task, with the input-aware term especially impactful.

6 CONCLUSION

We presented DYME, a dynamic multi-concept erasure framework for text-to-image diffusion mod-
els that reframes concept erasure as an on-demand, modular capability. By training concept-
specific LoRA modules with bi-level orthogonality constraints, DYME enables composable multi-
concept erasure, even as the number or granularity of targeted concepts increases. Extensive exper-
iments on both standard (CIFAR-100, Imagenette) and newly introduced hierarchical benchmarks
(ERASUREBENCH-H) demonstrate that DYME achieves significantly higher erasure effectiveness
and utility preservation than existing approaches, while scaling to large, realistic erasure scenarios.
Our results highlight the importance of moving beyond static fine-tuning toward dynamic, inference-
time control, and show that principled disentanglement in both feature and parameter spaces is
critical for robust multi-concept erasure. We hope DYME and ERASUREBENCH-H will facilitate
further progress toward practical, scalable safeguards in generative modeling.
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ETHICS STATEMENT

This work studies text-to-image diffusion models by removing copyrighted concepts, with the goal
of reducing legal and policy risk in real deployments.

Dataset release. We release ERASUREBENCH-H as a CSV taxonomy only, containing about 300
unit-concept names (i.e., character names). It includes no images, audio, video, bios, or identi-
fiers, and thus does not contain personal data or sensitive attributes. Names and groupings are used
purely as string labels for research on concept erasure. We do not distribute any copyrighted media.
Trademarks, if mentioned, are for referential purposes; we will honor legitimate takedown requests.

Image generation protocol. To evaluate erasure quality without degenerate all-black outputs,
we temporarily disabled the Stable Diffusion safety checker during controlled offline experiments.
Prompts excluded sexually explicit, violent, or otherwise sensitive content. All generated images
were used solely to compute aggregate metrics and were deleted after the experiments; we do not
redistribute generated samples. Any released code/configurations will keep the safety checker en-
abled by default.

Other ethics topics. This study does not involve human subjects, user data, or personally identifi-
able information; no IRB was required. We disclose no conflicts of interest or external sponsorship.
The work does not aim to enable harmful applications; rather, it provides technical means to restrict
the generation of copyrighted or disallowed content. We are committed to lawful, policy-compliant
use of third-party models and datasets and to accurate documentation of our methods and results.

REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate reproducibility. Implementation details for our method
and all baselines (optimizer, learning rates, LoRA ranks/scales, training steps, sampler schedules,
and composition rules) are documented in Appx. A.2.2, with evaluation metrics defined in Sec. 5.1.
The full taxonomy and curation protocol for ERASUREBENCH-H are provided in Appx. A.2.1;
the dataset itself is a CSV taxonomy (no images) and will be released publicly together with our
cleaned codebase after submission. The code release will include configuration files that reproduce
the main tables and figures, as well as the exact random seeds used to generate quantitative results
and qualitative samples. Where applicable, we also provide scripts to regenerate tables/plots from
saved predictions to decouple heavy compute from post-processing.
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A APPENDIX

A.1 BACKGROUND

A.1.1 LATENT DIFFUSION MODELS (LDMS)

Latent diffusion models (LDMs) perform the diffusion process in a compressed latent space rather
than pixel space. Let E and D denote the encoder and decoder of a pretrained autoencoder (e.g.,
VAE), mapping images x to latents z = E(x) and back x̂ = D(z). The forward (noising) process
constructs a sequence {zt}Tt=0 by progressively adding Gaussian noise, while the reverse (denoising)
process is learned via a conditional denoiser ϵθ(zt, t,p), which predicts the noise at timestep t given
the latent zt and a text prompt embedding p. Starting from zT ∼ N (0, I), iterative updates using
ϵθ produce z0, which is then decoded to an image x̂0 = D(z0).
A common training objective is the (weighted) noise-prediction loss:

Ldiff(θ) = Ex,p, t, ϵ

[∥∥ϵ− ϵθ(zt, t,p)
∥∥2
2

]
, where zt = αt E(x) + σt ϵ, ϵ ∼ N (0, I).

Here αt and σt come from the noise schedule. Conditioning on p enables text-guided generation;
classifier-free guidance and various samplers (e.g., DDIM) are typically used at inference to trade
off fidelity and diversity.

A.1.2 CROSS-ATTENTION IN T2I MODELS

Cross-attention integrates textual context into visual latents within the U-Net backbone. Given an
input hidden state H∈Rn×d (from the image pathway) and a text embedding matrix T∈Rm×d, the
module applies learned projections:

Q = HWq, K = TWk, V = TWv,

where Wq,Wk,Wv ∈ Rd×d are the query, key, and value matrices. Attention weights and outputs
are computed as

Attn(H,T) = softmax
(

QK⊤
√
d

)
V Wo,

with an output projection Wo ∈ Rd×d. In multi-head settings, these computations are performed
head-wise and concatenated before Wo. Because cross-attention mixes text-derived (Wk,Wv) in-
formation with image-derived queries (Wq) in shared layers, it is a primary site where multiple
adapters (e.g., LoRA modules) can interact—motivating our later analysis of crosstalk and orthogo-
nality constraints.

A.2 DATASETS AND IMPLEMENTATION DETAILS.

A.2.1 ERASUREBENCH-H DATASET.

Concept Scope
Brands Series Characters

Disney

Mickey Mouse Clubhouse
Mickey Mouse
Minnie Mouse

. . .

Duffy and Friends
Duffy

ShellieMay
. . .

The Lion King
Simba
Timon

. . .

DC
Justice League

Batman
Wonder Woman

. . .

Shazam! Shazam
. . .

Table 5: Hierarchy overview of ERASUREBENCH-H (27 brands, 73 series, 300 characters)

As illustrated in Table 5 ERASUREBENCH-H organizes concepts in a brand–series–character hierar-
chy, supporting evaluation across semantic scopes and multi-level composition. For example, brands
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(e.g., Disney, Warner Bros., DC) decompose into series (e.g., The Lion King, Mickey Mouse Club-
house, Looney Tunes), which in turn decompose into characters (e.g., Simba, Mickey, Bugs Bunny,
Daffy Duck). In total, the benchmark comprises 27 brands, 73 series, and 300 character-level unit
concepts. We define a concept’s scope as the number of unit concepts it subsumes.
The hierarchical structure serves two key purposes: (1) It enables controlled evaluation of erasure at
multiple semantic levels, allowing us to test models’ ability to erase high-level collective concepts
(e.g., “Disney character”) that implicitly refer to multiple sub-concepts. (2) It supports structured
analysis of semantic overlap, subset composition, and the scalability of erasure mechanisms under
concept entanglement. Unlike existing flat-label datasets, ERASUREBENCH-H is specifically con-
structed to capture the compositional complexity of real-world content and the challenges it poses
for scalable concept erasure, facilitating systematic testing under both single- and multi-concept
erasure settings.

A.2.2 IMPLEMENTATION DETAILS.

All selected baselines have official, publicly available implementations and expose interfaces that
support our multiple concepts erasure setting. For completeness, Sec. 5.2 reports a comprehensive
comparison across all baselines. Methods that are markedly underperforming in this setting, con-
sistent with prior reports (Zhao et al., 2024; Zhang et al., 2024b; Li et al., 2025), are not carried
forward to more complex studies. Accordingly, Sec. 5.3 focuses on the strongest static baselines
(MACE (Lu et al., 2024), SPM (Lyu et al., 2024), and SalUn (Fan et al., 2024)).
All models are built on Stable Diffusion v1.4 and fine-tuned using a 50-step DDIM sampler (Song
et al., 2022). Each concept-specific LoRA is trained for 20 epochs. For the orthogonality constraints,
we compute pairwise orthogonality scores across all LoRA modules and, considering computational
efficiency, randomly draw 50 LoRA pairs per update. We follow the standard prompt template used
in prior work, a photo of the {target concepts}, which makes the per-generation era-
sure subset explicit and easy to identify. Baseline methods are trained with their default configu-
rations as reported in their respective papers. Unless otherwise stated, training uses Adam with a
learning rate of 1 × 10−5 and mini-batches of size 4. Unless otherwise noted, each per-concept
adapter uses rank r=8 with α=r (effective scale α/r=1), dropout = 0, and base weights are frozen
(no LoRA on the text encoder), biases are not trained, and LoRA parameters are initialized from
N (0, 10−4).

A.3 ADDITIONAL RESULTS FOR MULTI-CONCEPT ERASURE

A.3.1 ADDITIONAL RESULTS (PER CONCEPT) FOR ERASURE SCOPE SCALING ON
CIFAR-100

This section reports per-class results for the scope-scaling study (Sec. 5.2). The per-generation
erasure subset size is fixed to 1, and the erasure scope size varies over {5, 10, 15, 20}. As shown in
Table 6, we evaluate five CIFAR-100 classes (beaver, dolphin, otter, seal, whale). For each method
and scope size we report erasing effectiveness accuracy AccEE (lower is better), utility preservation
accuracy AccUP (higher is better), and their harmonic aggregate Accharmonic (higher is better). Dashes
indicate results that are not available or not applicable.

A.3.2 ADDITIONAL RESULTS FOR ERASURE SUBSET SCALING BY CONJUNCTIONS ON
IMAGENETTE AND ERASUREBENCH-H

This section reports per-benchmark results corresponding to Sec. 5.3. We follow the same protocol:
for each benchmark’s canonical class order, we partition classes into contiguous 5-tuples and, for
each subset size N ∈ {2, 3, 4, 5}, take the first N classes as the target set (prefix nesting). For
every target set and method, we generate 200 images. To keep static-erasure baselines comparable,
their trained erasure scope is capped at five concepts (larger scopes collapse and obscure method
differences). Metrics are computed as in Sec. 5.1: AccEE counts an image as not erased if it contains
at least one target concept, while AccUP requires the top-5 CLIP logits to collectively contain all
five corresponding non-target concepts; harmonic accuracy is then the harmonic mean of the two.
Table 7 lists the Imagenette results and Table 8 lists the ERASUREBENCH-H results. Qualitatively,
both benchmarks mirror the trend observed on CIFAR-100: as N increases, baselines degrade,
whereas DYME maintains a clear advantage. See Fig. 4 for a compact visualization of these trends.
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Method Erasure Scope size
AccEE ↓

AccUP ↑ Accharmonic ↑
beaver dolphin otter seal whale beaver dolphin otter seal whale

ESD

5 7.50 23.00 21.50 4.50 11.50 67.13 77.80 71.73 72.37 78.84 76.35
10 4.00 10.50 7.50 3.50 4.00 35.47 51.80 50.81 51.28 51.87 51.80
15 2.50 1.50 2.00 2.50 4.00 10.83 19.49 19.51 19.50 19.49 19.46
20 0.00 0.00 2.00 1.00 1.00 5.22 9.92 9.92 9.91 9.92 9.92

AC

5 87.50 89.00 80.00 88.50 95.50 88.19 21.90 19.56 32.61 20.35 8.56
10 94.50 92.00 87.50 90.00 94.00 82.76 10.31 14.59 21.72 17.84 11.19
15 92.00 88.50 83.50 93.50 92.00 87.11 14.65 20.32 27.74 12.10 14.65
20 91.00 91.50 90.00 96.00 94.50 83.88 16.25 15.43 17.87 7.64 10.32

FMN

5 76.00 63.00 83.00 55.00 78.00 86.45 37.57 51.82 28.41 59.19 35.07
10 80.50 67.00 87.00 59.00 82.00 79.85 32.00 46.72 22.36 54.20 29.38
15 81.00 68.00 88.50 60.50 83.00 76.01 30.40 45.04 20.73 52.42 27.79
20 79.50 66.00 86.00 58.00 81.50 80.00 33.27 47.72 23.83 55.08 30.71

SPM

5 11.00 17.00 15.00 14.00 16.50 87.30 88.14 85.10 86.13 86.65 85.36
10 17.00 21.50 14.00 10.50 10.00 88.07 85.46 83.01 91.86 88.78 89.02
15 10.50 25.00 37.50 16.00 22.00 84.90 87.14 79.64 72.00 84.45 81.30
20 38.50 50.00 67.50 34.50 47.50 90.12 73.11 64.32 47.77 75.86 66.35

SalUn

5 8.00 2.50 5.00 27.00 20.50 74.14 82.11 84.23 83.28 73.57 76.73
10 3.00 4.00 0.00 6.00 17.00 40.68 57.32 57.14 57.83 56.79 54.60
15 1.50 6.00 0.50 4.00 12.00 17.61 29.88 29.66 29.92 29.76 29.35
20 0.00 3.00 3.50 5.50 4.00 11.52 20.66 20.59 20.58 20.54 20.57

MACE

5 1.00 12.00 0.00 5.00 22.00 78.29 87.44 82.86 87.82 85.84 78.14
10 1.00 14.00 4.50 7.50 17.00 46.63 63.40 60.47 62.66 62.00 59.71
15 1.50 16.00 8.50 4.50 12.00 38.20 55.05 52.52 53.90 54.57 53.27
20 1.00 5.50 4.00 3.00 2.00 14.66 25.54 25.19 25.44 25.47 25.50

DYME

5

1.00 13.00 0.50 6.00 22.00 90.52 94.57 88.72 94.80 92.22 83.7910
15
20

SD 0 96.00 97.50 94.50 98.00 98.00 90.52 – – – – –

Table 6: Erasure Scope scaling on CIFAR-100 (per-class view). Per-generation erasure subset
size is 1. “Erasure Scope size” denotes the number of concepts the model is trained to erase (the
erasure scope). Columns list per-class AccEE (lower is better), overall AccUP (higher is better), and
per-class Accharmonic (higher is better). Evaluated on five CIFAR-100 classes: beaver, dolphin, otter,
seal, whale. “SD” is the unmodified Stable Diffusion baseline (no erasure). Dashes indicate results
not available or not applicable.

Figure 4: Erasure subset scaling by conjunction prompts on Imagenette and ERASUREBENCH-H.

A.3.3 ADDITIONAL RESULTS FOR ERASURE SUBSET SCALING VIA CONCEPT SCOPE
EXPANSION

This subsection complements Sec. 5.3 by reporting the character-level case, where the concept scope
equals 1 and thus the per-generation erasure subset size is fixed at N=1. For each character and
method, we generate 200 images and compute metrics as in Sec. 5.1: AccEE (erasure effectiveness),
AccUP (utility preservation), and their harmonic mean. Table 9 summarizes character-level results.
As expected for N=1, absolute performance is higher than in higher concept scope settings; nev-
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Method 2-concept 3-concept 4-concept 5-concept
AccEE ↓ AccUP ↑ Accharmonic↑ AccEE ↓ AccUP ↑ Accharmonic↑ AccEE ↓ AccUP ↑ Accharmonic↑ AccEE ↓ AccUP ↑ Accharmonic↑

SD (Original) 92.50 82.00 - 97.00 76.50 - 94.00 77.00 - 90.00 83.50 -
MACE 8.00 38.50 54.28 4.50 49.50 65.20 8.00 32.50 48.03 9.50 39.50 55.00
SPM 10.50 70.50 78.87 18.50 64.00 71.70 14.00 66.00 74.68 16.50 63.50 72.14
SalUn 26.00 17.50 28.31 21.50 31.50 44.96 18.50 24.50 37.67 22.00 22.00 34.32

DYME w/o ortho 76.50 82.00 36.53 62.50 76.50 50.33 70.50 77.00 42.66 53.00 83.50 60.15
DYME 3.50 82.00 88.66 4.50 76.50 84.95 4.50 77.00 85.26 2.00 83.50 90.17

Table 7: Multi-concept erasure performance as per-generation erasure set increases by conjunctions
on the Imagenette dataset.

Method 2-concept 3-concept 4-concept 5-concept
AccEE ↓ AccUP ↑ Accharmonic↑ AccEE ↓ AccUP ↑ Accharmonic↑ AccEE ↓ AccUP ↑ Accharmonic↑ AccEE ↓ AccUP ↑ Accharmonic↑

SD (Original) 62.50 30.50 - 74.0 21.50 - 81.00 10.50 - 84.50 7.00 -
MACE 9.50 7.50 13.85 14.50 5.50 10.34 8.00 7.00 13.01 9.50 3.50 6.74
SPM 10.50 24.50 38.47 20.50 20.50 32.59 14.00 7.50 13.80 16.50 6.50 12.06
SalUn 13.50 27.00 41.15 14.00 19.00 31.12 18.50 9.50 17.02 22.00 4.00 7.61

DYME w/o ortho 56.50 30.50 35.86 52.50 21.50 29.60 60.00 10.50 16.63 47.00 7.00 12.37
DYME 8.50 30.50 45.75 9.00 21.50 34.78 7.00 10.50 18.87 7.50 7.00 13.02

Table 8: Multi-concept erasure performance as per-generation erasure set increases by conjunctions
on the ERASUREBENCH-H dataset.

Method
Character-level

FID↓
AccEE ↓ AccUP ↑ Accharmonic↑

SD (Original) 72.50 71.20 - 117.01
MACE 7.50 34.40 50.15 140.19
SPM 27.00 61.60 66.82 134.57
SalUn 8.50 21.00 34.16 134.57
DYME 7.50 71.20 80.46 133.04

Table 9: Character-level concept erasure performance on the ERASUREBENCH-H dataset.

ertheless, DYME maintains the best trade-off between erasure effectiveness and utility, consistent
with the trends in the main text.

A.3.4 QUALITATIVE COMPARISON FOR ERASED SUBSET SCALING BY CONJUNCTIONS

This subsection complements Sec. 5.3 with qualitative examples under the same setting. Baselines
are trained with an erasure scope of 5 and evaluated on conjunction prompts with a per-generation
erasure subset size of N = 2.
As shown in Fig. 5, panel (a) illustrates erasure effectiveness: all targets in the subset should be sup-
pressed; any visible target indicates leakage. Panel (b) illustrates utility preservation: the specified
non-target concepts must be preserved simultaneously. Rows correspond to the same prompt and
random seed; columns compare DYME with static-erasure baselines.
Across prompts, static baselines either exhibit target leakage or over-suppress non-targets. In con-
trast, DYME reliably removes all concepts in the subset and, by virtue of its dynamic erasure, re-
frains from activating any LoRA for non-target concepts, thereby matching the base Stable Diffusion
output for those elements.

A.3.5 CASE STUDY: CONCEPT-SCOPE EXPANSION AND PER-GENERATION ERASURE
SUBSET

We illustrate how concept-scope expansion enlarges the per-generation erasure subset using a
brand–series–character hierachy (e.g., the brand is Disney; the series is Mickey Mouse Clubhouse;
the character is Mickey Mouse). At the character level, the subset size is 1; at the series level it
equals the number of characters in the series; at the brand level it equals the number of unit concepts
under the brand. For each level we generate images with the prompts shown in Fig. 6 and apply
DYME.
As shown in Fig. 6, enlarging the concept scope from character to series and brand leads to leak-
age of an increasing number of unit concepts within the higher-level category. Consequently, the
per-generation erasure subset expands, and DYME must dynamically activate and compose more
LoRA adapters to suppress all implicated units. These observations validate the protocol of scal-
ing the erasure subset via concept-scope expansion and underscore the necessity of the hierarchical
benchmark ERASUREBENCH-H that makes concept scope explicit.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 5: Qualitative comparison: the size of erased subset scaling to 2 by conjunctions. (a) Era-
sure effectiveness: target concepts should be removed; any residual target indicates leakage. Across
prompts, static baselines either exhibit target leakage or over-suppress non-targets. (b) Utility preser-
vation: all specified non-target concepts should appear simultaneously. DYME, by virtue of its
dynamic erasure, refrains from activating any LoRA for non-target concepts, thereby matching the
base Stable Diffusion output for those elements. DYME is compared against baselines and the im-
ages on the same row are generated using the same random seed.

A.4 THE USE OF LARGE LANGUAGE MODELS

We used a large language model (e.g., ChatGPT) only for copy-editing: checking spelling, grammar,
punctuation, and minor stylistic issues. No substantive content (ideas, claims, equations, methods,
analyses, results, figures, tables, code, or data) was generated or modified by an LLM. All edits
were reviewed and accepted by the authors, who take full responsibility for the contents of this
manuscript. LLMs are not eligible for authorship.
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Figure 6: Concept-scope expansion increases the per-generation erasure subset. Left to right:
character-, series-, and brand-level concept scopes (prompts shown within each level). Top: gener-
ations before erasure; bottom: after applying DYME. As concept scope grows, the number of unit
concepts to suppress per generation (the erasure subset) increases.
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