
Under review as a conference paper at ICLR 2024

FINE-GRAINED AUDIO-VISUAL JOINT REPRESENTA-
TIONS FOR MULTIMODAL LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Audio-visual large language models (LLM) have drawn significant attention, yet
the fine-grained combination of both input streams is rather under-explored, which
is challenging but necessary for LLMs to understand general video inputs. To this
end, a fine-grained audio-visual joint representation (FAVOR) learning frame-
work for multimodal LLMs is proposed in this paper, which extends a text-
based LLM to simultaneously perceive speech and audio events in the audio in-
put stream and images or videos in the visual input stream, at the frame level.
To fuse the audio and visual feature streams into joint representations and to
align the joint space with the LLM input embedding space, we propose a causal
Q-Former structure with a causal attention module to enhance the capture of
causal relations of the audio-visual frames across time. An audio-visual evalu-
ation benchmark (AVEB) is also introducedproposed which comprises six repre-
sentative single-modal tasks with five cross-modal tasks reflecting audio-visual
co-reasoning abilities. While achieving competitive single-modal performance on
audio, speech and image tasks in AVEB, FAVOR achieved over 20% accuracy
improvements on the video question-answering task when fine-grained informa-
tion or temporal causal reasoning is required. FAVOR, in addition, demonstrated
remarkable video comprehension and reasoning abilities on tasks that are unprece-
dented by other multimodal LLMs. An interactive demo of FAVOR is available
at https://github.com/BriansIDP/AudioVisualLLM.git, and the
training code and model checkpoints will be released soon.

1 INTRODUCTION

Text-based large language models (LLM) (Brown et al., 2020; Touvron et al., 2023; Chiang et al.,
2023; Anil et al., 2023; Du et al., 2022) have demonstrated remarkable performance in various
natural language processing tasks, especially achieving human-level capabilities in reasoning and
comprehension (OpenAI, 2023). Meanwhile, instruction fine-tuning (Chung et al., 2022; Ouyang
et al., 2022; Peng et al., 2023), where data is organised as pairs of user instruction (or prompt) and
reference response, has emerged as a training paradigm that enables LLMs to perform various tasks
by following open-ended natural language instructions from non-expert users.

Recently, there has been a burgeoning research interest in equipping LLMs with visual and auditory
perception abilities. While most recent studies have been focusing on incorporating a single specific
type of input, such as image (Li et al., 2023a; Alayrac et al., 2022; Dai et al., 2023), video (Maaz
et al., 2023; Chen et al., 2023b; Zhao et al., 2022; Zeng et al., 2023), audio (Gong et al., 2023) or
speech (Zhang et al., 2023a; Rubenstein et al., 2023) separately. These investigations often employ
a trained modality alignment module that aligns the representation space of the input modality with
the text one. Subsequently, work has started looking at incorporating multiple simultaneous input
modalities (Su et al., 2023; Zhang et al., 2023b; Lyu et al., 2023; Zhao et al., 2023; Chen et al.,
2023a). Despite the sequential nature of video and audio inputs, most aforementioned work treated
video as a sampled subset of individual images and audio as a fixed-length spectrogram. As a
result, these models tend to ignore information and causal relations when the input sequence length
increases. Moreover, speech, as a crucial aspect of auditory input in videos that in particular relies on
fine-grained information extraction, is considerably under-explored in multimodal LLM research.

To this end, this paper proposes FAVOR, a fine-grained audio-visual joint representation learn-
ing framework for LLM-based multimodal understanding and reasoning with audio-visual input
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sequences consisting of images, audio events, speech, and video. It takes audio-visual sequences
at high temporal resolution certain frame rates as inputs and, if paired, temporally synchronises
them using a synchronisation module. Such a frame-level fine-grained synchronisation allows a
more thorough and fine-grained interaction between audio and visual modalities across time, which
is particularly beneficial for videos with speech. Since the input sequences have variable lengths,
FAVOR divides the sequence into a number of fixed-length sliding windows and aligns the synchro-
nised sequence within each window to the LLM input text representation space. In order to capture
the causal relations among consecutive video frames within a window, a causal Q-Former structure
is proposed that introduces a causal attention module to Q-Former (Li et al., 2023a).

FAVOR is comprehensively evaluated using an audio-visual evaluation benchmark (AVEB) intro-
ducedproposed in this paper, which integrates 11 tasks including 6 different types of open-source
tasks with single-modal inputs, as well as 5 cross-modal inference tasks. While achieving competi-
tive performance on single-modal tasks, FAVOR also achieved large performance improvements on
cross-modal tasks compared to single-modal models, e.g. over 10% absolute accuracy improvement
on audio-visual sound source detection. Notably, benefiting from the fine-grained nature, FAVOR
achieved a remarkably 25% accuracy improvement in video QA tasks compared to the strong In-
structBLIP baseline. The main contribution of this paper can be summarised as follows:

• This paper proposes the FAVOR learning framework for multimodal LLMs. To the best of our
knowledge, FAVOR is the first approach that is capable of performing cross-modal cognitive tasks
involving audio, speech, image and video inputs with high temporal resolution.

• This paper proposes the causal Q-Former structure which comprises a causal encoder module.
A novel diversity loss is also proposed to encourage diverse joint representations to be learned.
Further with a novel diversity training loss, causal Q-Former is capable of handling audio-visual
sequence input efficiently with a small number of training examples.

• This paper introduces the AVEB benchmark comprising single-modal and cross-modal tasks to
quantitatively evaluate the performance of audio-visual LLMs.

2 RELATED WORK

Our work is based on the Q-Former structure to fuse the audio and visual modalities and to align
with the text representation space (Li et al., 2023a; Dai et al., 2023). While Q-Former has been pri-
marily proposed for visual information extraction, it also performs remarkably in extracting auditory
features for automatic speech recognition (ASR) (Yu et al., 2023). In addition to Q-Former, various
types of modality aligners have been studied, such as the cross-attention mechanism (Alayrac et al.,
2022), pre-trained multimodal embeddings, (Girdhar et al., 2023) and temporal and spatial pooling
(Maaz et al., 2023). Different from standard Q-Former approaches, our causal Q-Former used in
the FAVOR framework pays particular attention to the sequential nature of the input feature streams
with the model structure and training methods dedicated to audio-visual understanding.

The work most closely related to ours is Video-LLaMA (Zhang et al., 2023b), Macaw-LLM (Lyu
et al., 2023) and X-LLM (Chen et al., 2023a), as all of them used LLMs for cross-modal understand-
ing based on general non-silent video inputs (referred to as audio-visual sequence in this paper).
X-LLM supports video and Chinese speech inputs, but cannot understand audio events and music.
Video-LLaMA employs an additional video Q-Former to encode features of several equally-spaced
frames extracted using a BLIP2 (Li et al., 2023a) image encoder. Macaw-LLM adopted a similar
approach and used three separate encoders for image, video and non-speech audio events. Both
Video-LLaMA and Macaw-LLM consider only non-speech audio events, and the audio encoders in
the two models are the ImageBind (Girdhar et al., 2023) and Whisper (Radford et al., 2023) model
encoders respectively. While both methods involve the fusion of audio and visual feature streams,
the two streams are sparsely pooled and processed rather independently, which removes fine-grained
audio-visual interactions at each time step. Compared to Video-LLaMA and Macaw-LLM, FAVOR
reserves fine-grained modality interactions and can understand speech inputs that are common in
general non-silent videos. This leads to an emphasis on causal modality synchronisation across time
and allows more content-based cross-modal interactions.

3 METHODOLOGY

In this section, we present the proposed FAVOR learning framework, which is designed to handle
audio and visual input sequences synchronously at high temporal resolution for LLMs. This section
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Figure 1: The fine-grained audio-visual joint representation (FAVOR) learning framework for multi-
modal LLMs. The temporal synchronisation module does not contain trainable parameters, and the
audio and visual feature encoders are not updated during training.

introduces the model structure, including the causal attention module and an optional diversity loss.

3.1 MODEL ARCHITECTURE

The structure of FAVOR is shown in Fig. 1. Key components that realise the fine-grained audio-
visual representation learning are the temporal synchronisation module and the causal Q-Former.
First, visual and audio inputs are encoded using the corresponding pre-trained encoders. The visual
encoder in FAVOR converts the input image into a certain number of vectors via the image encoder
in InstructBLIP (Li et al., 2023a). When video input is given, the visual encoder encodes each video
frame separately as a sequence of images at a 2 Hz frame rate, and the output image features are
concatenated along the temporal dimension to form a sequence of visual frames. The audio encoder
used is the Whisper ASR model encoder (Radford et al., 2023) that converts the input speech and
audio events into a sequence of vectors at a 50 Hz frame rate.

When both audio and visual inputs are present, the two encoded feature sequences are sent to the
temporal synchronisation module to obtain the time-synchronised feature sequences, as shown in
Fig. 1. Since video is sampled at a lower frame rate than audio, the audio and visual frames are
synchronised at each video frame (i.e. every 0.5 seconds), with zero padding to make both sequences
have equal lengths. Note that higher frequencies of visual frames are also supported in the FAVOR
framework which requires higher computation and storage costs. The synchronised audio frame
hA
t and visual frame hV

t are then concatenated along the feature dimension to obtain the combined
audio-visual feature frame hAV

t . That is,

hAV
t = Concat(hA

t ,h
V
t ), (1)

where Concat(·) represents the concatenation along the feature dimension. Note that in cases when
only one input modality is present, the other modality is filled with a sequence of zero padding of
the same sequence length. While an image alone is treated as a single frame, when paired audio
input exists, such as images with spoken captions (Hsu et al., 2020), each image is duplicated as if
it were a video input with a matched length to the audio input.

In order to handle variable-length inputs, the combined feature sequences are first divided into fixed-
length windows spanning, e.g. every 5 or 10 seconds. Then, a causal Q-Former based on the same
N trainable input query tokens q1, . . . ,qN is applied to convert each sliding window and generate
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N output query vectors carrying the audio-visual information. As shown in Eqn. (2),

hQ
w,1, ...,h

Q
w,N = Q-Formercausal(h

AV
t , . . . ,hAV

t+k;q1, . . . ,qN ), (2)

where w is the window index and k is the number of video frames in that window, and
Q-Formercausal(·) denotes the causal Q-Former computation described in detail later in Section 3.2.
The output query representations, hQ

w,1, ...,h
Q
w,N , are projected to the LLM input dimension before

sending to the LLM. Therefore, if the input sequence length of causal Q-Former is T , the number of
sliding windows W becomes ⌈T/k⌉, and the overall output sequence length from causal Q-Former
will be W × N . Through end-to-end training, the output audio-visual representations of causal Q-
Former are trained to align with the LLM input token space. Therefore, the use of sliding windows
enables the LLM input token sequence length W × N to vary based on T and can achieve a good
trade-off between the degree of information reserved and the computation and storage costs.

Finally, the instruction prompt, such as questions or task descriptions will be appended to the con-
catenated output queries of all windows to form the input to the LLM. The response sequence Ŷ
can be generated as follows:

Ŷ = argmax
Y

P (Y|hQ
1,1, . . . ,h

Q
1,N , . . . ,hQ

W,1, . . . ,h
Q
W,N , c1, . . . , cM ), (3)

where c1, c2, . . . , cM are the contents of the prompt.

3.2 Q-FORMER WITH CAUSAL SELF-ATTENTION

The proposed causal Q-Former structure is shown in Fig. 2. To capture the causal temporal corre-
lation among frames that are extracted independently, an additional causal self-attention module is
added to the standard Q-Former structure, indicated by the red block in Fig. 2.

Causal Self-Attention

Feed-Forward Network

Self-Attention

Cross Attention

Input Query q1, ..., qN Feature Sequence hAVt, ..., hAVt+k

N x

Causal Mask

1 frame

Figure 2: The causal attention module in the causal Q-Former with a block-wise triangular causal
mask (grey cells are masked). The number of features per frame here is 2 as an example.

With the causal attention module, the encoding of one specific frame also includes the information
of all previous frames carried in an auto-regressive way. This is particularly beneficial for causal
reasoning questions, such as the “what happens next” questions (Xiao et al., 2021). Such questions
are sometimes difficult to learn using only the positional embeddings.

3.3 SYSTEM TRAINING AND DIVERSITY LOSS

The training data of video tasks, such as video question-answering (QA), usually only requires one
or two keyframes, and the output queries tend to repeatedly capture the same information. Therefore,
a novel diversity loss is proposed to encourage the causal Q-Former to extract more diverse aspects
of the input sequence. Specifically, the diversity loss is formulated as:

Ldiverse =

W∑
w=1

N∑
i=1

N∑
j=1,j ̸=i

sim(hQ
w,i,h

Q
w,j), (4)

where W and N are the total number of windows and the number of output queries of each window
respectively, and sim(·) is the cosine similarity between two vectors. Cosine similarity is adopted
since it is widely used for semantic similarity measurements, and in FAVOR, the output queries are
aligned with a semantic space of the LLM input token representations. This choice is also supported
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by the fact that the modulus of the output query tokens is very similar due to the layer normalisation
operation of the causal Q-Former. By encouraging the audio-visual frames to be orthogonal to
each other, the diversity loss forces the output query representations to be more spread in the text
representation space. Overall, the system is trained in an end-to-end fashion using the cross-entropy
(CE) loss and the diversity loss, as shown below:

L = LCE + λLdiverse, (5)

where λ is the factor controlling the importance of the diversity loss, and the CE loss is calculated
using the reference answer as the target.

4 EXPERIMENTAL SETUP

4.1 AUDIO-VISUAL EVALUATION BENCHMARK (AVEB)

In this paper, we introducepropose the AVEB benchmark for audio-visual LLM evaluation, which
evaluates single-modal perception ability via selected representative tasks while particularly focus-
ing on multi-modal inference. AVEB contains 6 single-modal tasks, including automatic speech
recognition (ASR) (Panayotov et al., 2015), audio captioning (AC) (Kim et al., 2019), image cap-
tioning (IC) (Young et al., 2014), optical character recognition (OCR) (Singh et al., 2019), visual
question answer (VQA) (Hudson & Manning, 2019), and video question answer (Video QA) (Xu
et al., 2017), together with 5 audio-visual tasks including audio-visual speech recognition (AVSR)
(Sanabria et al., 2018), audio-visual scene-aware dialogue (AVSD) (Alamri et al., 2019), image
spoken question answering (ISQA), audio-visual matching (AVM) (Hsu et al., 2020) and audio-
visual sound source detection (AVSSD) (Chen et al., 2020; Zhao et al., 2023). Related datasets
are indicated in the citations. More details about the test datasets can be found in Appendix A. In
addition, we incorporate two widely used audio-visual benchmarks, the fine-grained audible video
description (FAVD) (Shen et al., 2023) and the Vision-Audio-Language Omni-peRception (VALOR)
(Chen et al., 2023c;d) benchmarks in our evaluation. Evaluation details can be found in Appendix
B.

Table 1: AVEB details, including the number of samples used for evaluation and metrics reported.
Since TextVQA, GQA, NExT-QA, AVSD and VGGSS test sets are large, randomly sampled subsets
with enough samples for statistical significance were used in AVEB for efficient evaluation. The
audio video matching part of AVM is zero-shot.

Task Test set Num. of samples Metrics Zero-shot

ASR LibriSpeech test-clean 2620 utterances WER No
AC AudioCaps test 938 audio clips SPIDEr No
IC Flickr30k test 1000 images CIDEr / METEOR Yes
OCR TextVQA test 1000 images Accuracy Yes
VQA GQA testdev balanced 1000 images Accuracy Yes
Video QA NExT-QA test 1000 clips Accuracy No
AVSR How2 dev5 500 clips WER No
AVSD AVSD val 200 clips 2000 turns Accuracy No
ISQA TextVQA + GQA 2000 images Accuracy Yes
AVSSD VGGSS 850 video clips Accuracy Yes
AVM SpokenCOCO val2014 + VGGSS 1000 pairs 500 each Accuracy Yes
FAVD FAVDBench 1k videos BLEU / METEOR Yes
VALOR VALOR 32k 3k videos CIDEr / METEOR Yes

ASR and AC are evaluated using word error rate (WER) and SPIDEr (Liu et al., 2017), a
combination of SPICE and CIDEr respectively. The evaluation of IC uses CIDEr following
(Dai et al., 2023), and METEOR, as LLMs tend to use a diverse range of words with similar
meanings. OCR, VQA and Video QA are measured using top-1 accuracy. For OCR, the scoring
follows (Singh et al., 2019) where each hit in the reference answer contributes 1/3 to the total
hit. For VQA and Video QA, it is counted as correct if the reference answer exactly exists in
the generated answer using a word-by-word matching. In particular, during inference only, Video
QA is formulated as an in-context multiple-choice task where the choices are given in the prompt,
and one hit is counted only when the generated answer exactly matches the reference. The same
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measurement is taken for ISQA and AVM. Furthermore, for AVSD and AVSSD, as the reference
answer is a full sentence, ChatGPT-assisted scoring is used to determine whether the generated
answer is equivalent to the reference answer (see the prompt design in Appendix C).

While all other tasks already exist with open-source test sets, this paper particularly proposes ISQA
and AVM tasks where audio-visual interaction is necessary. ISQA is the task where the question is
in the audio and the answer can be found in the image. This test set is derived from the data used
for OCR and VQA, where the questions are synthesised using a commercial text-to-speech synthesis
system with a diverse range of speakers and styles. The text prompt is always “answer the question in
the audio about the image”, while the LLM is required to first understand the question in the speech,
and then answer it by looking at the image. AVM is the task of determining whether the given spoken
description in the SpokenCOCO dataset (Hsu et al., 2020) matches the image, or whether the given
audio clip is compatible with the given video chosen from the VGGSS dataset (Chen et al., 2020).
AVSSD is another task that requires a strong binding of audio and visual modalities, as a single
modality usually only provides partial information about the sound.

4.2 MODEL CONFIGURATIONS

To validate the FAVOR learning framework, the Vicuna (Chiang et al., 2023) models (including
7B and 13B models, and 13B is the default option if not specified) are used as the LLM, Whisper
(Radford et al., 2023) large-v2 encoder as the audio encoder and InstructBLIP (Dai et al., 2023)
vision Transformer (ViT) plus Q-Former as the visual encoder. The visual encoder outputs 32 feature
vectors for each video frame (every 0.5 seconds), and the audio encoder outputs 50 feature vectors
per second. The causal Q-Former has two Transformer blocks with 768-dim hidden states. The
output query representations are projected to 5120-dim before being sent to the LLM. The LLM is
adapted using the low-rank adaptation (LoRA) (Hu et al., 2022) method with a rank of 32. Only the
parameters of the attention query, key and value projections and feed-forward network weights are
updated, which comprised 0.4% of the total number of LLM parameters.

Whisper and InstructBLIP are used as the single-modality baseline systems for comparison. As
FAVOR adopted video data with different styles and focuses, to eliminate the discrepancy in training
data and achieve fair comparisons, InstructBLIP is further fine-tuned on the same image and video
training data as FAVOR. For each video clip, five equally-spaced frames were used resulting in
160 output queries. This is the same as the number of output queries used for 25-second videos
in FAVOR. Video-LLaMA (Zhang et al., 2023b) was used as the multimodal baseline where only
Vicuna-7B checkpoint was released for audio-visual input1. The VALOR-base model (Chen et al.,
2023c) is used as the performance reference for the VALOR benchmark, as the total number of video
samples to train FAVOR is only 1M. Note that VALOR-base is a BERT-based model and fine-tuned
only on captioning tasks, which makes it not directly comparable to other multi-modal LLMs.

4.3 TRAINING DATA AND SPECIFICATIONS

FAVOR directly uses multi-task instruction fine-tuning to train the model parameters of causal Q-
Former and LoRA. Training data contains both single-modal and audio-visual paired data. For
audio-only tasks, LibriSpeech train-clean-100 and train-clean-360 sets are used for ASR, and Au-
dioCaps are used for AC. For visual-only tasks. A mixture of LLAVA-150k (Liu et al., 2023) image
QA data, OCRVQA OCR data (Mishra et al., 2019), TextCaps Sidorov et al. (2020) image caption
data, NExT-QA video QA training data (Xiao et al., 2021), 5000 samples from COCO train2014 data
with spoken captions (Lin et al., 2014) as well as 11k samples from VideoChat (Li et al., 2023b) are
used. For audio-visual tasks, randomly selected 600-hour Ego4D video captioning data (Grauman
et al., 2022), how2 300-hour training set AVSR data and AVSD training set are used. In order to
further stimulate modality interactions during training, 5,000 images with spoken captions are used
in the training set for the AVM task. Note that the entire training data only contains 1M samples
with fewer than 300k video samples, and only contains publicly available datasets. Details about the
training data can be found in Appendix A.

Furthermore, besides being trained using video and audio from the same source, FAVOR also uses
randomly paired audio and video in training. This novel training approach increases versatility
and achieves a better balance between the audio and visual modalities. It further enables FAVOR
to perform audio-visual co-reasoning tasks as shownproposed in the AVEB benchmark, including
ISQA and AVM. Moreover, we use a tiny storytelling set to further encourage a thorough mixture

1https://github.com/DAMO-NLP-SG/Video-LLaMA.git.
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Table 2: AVEB single-modal task results. If specified, InstructBLIP is fine-tuned on the training data
of FAVOR (“InstructBLIP fine-tuned”). IC is reported in CIDEr/METEOR. When using audio-only
and visual-only inputs, the other modality is masked during training and inference. Tasks unable to
be performed are marked with “-”.

Systems ASR ↓ AC ↑ Video QA ↑ IC ↑ OCR ↑ VQA ↑
Whisper large-v2 2.9% - - - - -
InstructBLIP 13B - - 21.0% 84.5 / 26.0 36.5% 48.9%
InstructBLIP 13B fine-tuned - - 24.7% 78.9 / 26.1 36.7% 45.6%
Video-LLaMA 7B - - 22.5% 22.0 / 16.6 16.4% 15.1%

FAVOR 13B (ours, audio-only) 2.7% 39.7 - - - -
FAVOR 13B (ours, visual-only) - - 44.8% 74.0 / 26.5 34.2% 45.6%
FAVOR 7B (ours, audio-visual) 4.1% 39.1 42.5% 78.1 / 26.3 34.6% 45.3%
FAVOR 13B (ours, audio-visual) 3.3% 42.6 49.3% 86.0 / 27.5 37.8% 45.2%

Table 3: AVEB audio-visual task results. If specified, InstructBLIP is fine-tuned on the training data
of FAVOR (“InstructBLIP†”). The other modality is masked in both training and testing when using
audio-only and visual-only inputs. Tasks unable to be performed are marked with “-”.

Systems AVSR ↓ AVSD ↑ ISQA ↑ AVSSD ↑ AVM ↑
Whisper large-v2 8.3% - - - -
InstructBLIP 13B - 41.4% - 1.1% -
InstructBLIP† 13B - 52.1% - 20.3% -
Video-LLaMA 7B - 27.6% - 41.9% 52.3%

FAVOR 13B (ours, audio-only) 8.3% - - 34.7% -
FAVOR 13B (ours, visual-only) - 53.3% - 23.5% -
FAVOR 7B (ours, audio-visual) 8.7% 51.2% 24.5% 50.5% 74.3%
FAVOR 13B (ours, audio-visual) 8.1% 54.5% 32.3% 51.1% 77.1%

of audio-visual descriptions for better demonstration quality only. In addition to all the training
datasets mentioned above, in order to explicitly encourage the model to generically combine both
modalities, a storytelling fine-tuning set is designed. The dataset is gathered by prompting GPT-3.5
with reference audio caption or transcription, together with video caption, and asking GPT-3.5 to
generate a coherent story combining both information (see details in Appendix D). The model is
fine-tuned on this data for only 100 steps with a very small learning rate without causing any loss in
the benchmark performance.

It is worth noting that in order to compare FAVOR with the original InstructBLIP on image tasks
directly, Flickr30k for IC, TextVQA for OCR and GQA for VQA in the benchmark are not included
in the training, and hence the model performed zero-shot learning on them. Moreover, since ISQA
uses synthesised speech, this is also not a trained task and the model performed zero-shot learning.

5 EXPERIMENTAL RESULTS

5.1 MAIN RESULTS

The main results of using FAVOR on AVEB tasks are summarised in Table 2 and Table 3 for single-
modal and audio-visual tasks respectively. While other models can only perform a subset of AVEB
tasks, FAVOR is the first single model that achieves competitive performance on all tasks compared
to the single-modal counterparts, with remarkably better performance on audio-visual tasks. In
particular, as the first work that integrates audio, speech, image and video modality into LLMs,
FAVOR effectively achieves audio-visual co-reasoning which is reflected by the performance on
ISQA, AVSSD and AVM tasks.

On audio-based tasks in Table 2, FAVOR obtains a similar WER compared to Whisper large-v2
and mixed results compared to the audio-only FAVOR. Further, with the aid of visual information,
FAVOR achieves a lower WER on AVSR than both models in Table 3. On visual tasks, FAVOR
demonstrates the best results on IC, OCR and Video QA, and on-par results on VQA with Instruct-
BLIP fine-tuned on the same training set. In particular, the fine-grained causal modelling of video
in FAVOR yields over 20% improvements compared to InstructBLIP even though the latter is fine-
tuned on the same set of video data.
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Table 4: Results on FAVDBench (BLEU1/BLEU4/METEOR) and VALOR (METEOR/CIDEr)
tasks. Our fine-tuning on VALOR is performed only on 10% of the VALOR training data.

Systems FAVD ↑ FAVD fine-tuned ↑ VALOR ↑ VALOR fine-tuned ↑
VALOR-base† - - - 14.8 / 55.7
Video-LLaMA 7B 20.8 / 2.4 / 15.0 39.4 / 6.5 / 16.5 10.7 / 1.2 10.9 / 21.3

FAVOR 7B (ours) 24.9 / 2.8 / 14.8 42.6 / 9.9 / 18.3 8.6 / 13.4 13.9 / 42.6
FAVOR 13B (ours) 28.2 / 3.0 / 15.2 44.2 / 10.9 / 19.1 8.8 / 15.3 14.2 / 46.9

Table 5: Ablation studies on the core components of FAVOR based on video and audio-visual tasks.
Each row represents removing one component with other parts remaining the same. Note the last
row is equivalent to Video-LLaMA with high temporal resolution, speech encoder and LoRA, and
the comparison to complete FAVOR directly reflected the benefit of the proposed structure design.

Systems Video QA AVSR AVSD ISQA AVSSD AVM

Complete FAVOR 49.3% 8.1% 54.5% 32.3% 51.1% 77.1%
FAVOR without causal encoder 42.8% 8.0% 54.1% 20.9% 37.1% 74.8%
FAVOR without sliding window 44.8% 8.5% 53.6% 29.7% 45.3% 74.5%
FAVOR without synchronisation 47.4% 8.4% 53.4% 17.2% 50.5% 72.5%
FAVOR without causal encoder, diversity 41.8% 8.9% 50.5% 16.7% 38.6% 72.0%

loss, and synchronisation

On the audio-visual tasks in Table 3, while outperforming all the baseline systems in every task,
FAVOR demonstrated a strong audio-visual co-reasoning ability based on the audio-visual matching
(AVM) dataset results and is the only system to our knowledge that can perform speech-image
co-reasoning based on image-spoken QA (ISQA). Audio-visual co-reasoning (including speech-
image co-reasoning) is an important yet challenging ability which requires the model to comprehend
the visual content as well as both speech and non-speech sounds in the audio, and to capture the
correlation between what it “hears” and “sees”. Such tasks were almost infeasible for any other
audio-visual models so far, since they were unable to understand both speech and non-speech sounds
and did not model the audio-visual correlations in fine-grain. Various audio-visual emergent abilities
in addition to the audio-visual co-reasoning ability, as discussed in Section 5.5.

Results on FAVD and VALOR test data (Table 4) also demonstrated the superiority of FAVOR over
Video-LLaMA. In the zero-shot case, Video-LLaMA tends to generate long paragraphs of text even
under the instruction of generating short sentence responses. This resulted in extremely low CIDEr
scores compared to FAVOR which closely follows the instruction and generate concise responses.
Notably, the best FAVOR model achieves better performance on FAVD than the best value reported
in (Shen et al., 2023). Although FAVOR uses only 10% of the VALOR training data for fine-tuning,
it achieves competitive performance on the VALOR test data.

5.2 ABLATION STUDIES

Detailed ablation studies are performed for each proposed component in FAVOR as shown in Table
9 for single-modal tasks and Table 10 for multimodal tasks in Appendix E. This section particularly
focuses on the use of causal Q-Former and audio-visual synchronisation on video and audio-visual
tasks, as summarised in Table 5.

First, the effect of the causal attention module is most clearly reflected by the performance on video
QA, ISQA and AVSSD, as it both boosted the temporal causality modelling as well as provided a
better audio-visual fusion before applying the cross-attention in the Q-Former. Second, the fine-
grained model design, including sliding windows and frame-level synchronisation the use of a
sliding window is crucial to achieving good results on the AVSR task speech input as shown in
the AVSR results. Without the sliding window, a fixed number of output queries are used no matter
how long the audio is, which results in more deletion errors. Besides, using sliding windows also
benefits the video QA task as they encourage the localised causal relationship to be captured. Fur-
thermore, the use of synchronisation is crucial for audio-visual co-reasoning to work as supported
by the ISQA and AVM results. Without synchronisation, modality alignment is done rather inde-
pendently and the correlation between audio and video is only modelled among high-level features
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(c). Video QA performance full train(a). AVSR performance subset train (b). Video QA performance subset train

Figure 3: Influence of the window sizes and the frames per second (FPS) to the model performance
on speech and video tasks. (a) and (b): results by training and evaluating using different window
sizes k on 10% of data. (c): the influence of FPS using the best model on full data.

λλλ

(a) (b) (c)

Figure 4: Variations of model performance due to the diversity loss factor, i.e. λ in Eqn. (4), on
(a) AVSR measured in %WER, (b) Video QA measured in %Accuracy and (c) AVSSD measured in
%Accuracy. Variations of average cosine similarities are also shown under different λ’s.

that are aligned in the text space. This may easily omit information about the concurrency of audio
and visual contents, such as how a specific part of speech relates to a specific visual scene. On the
other hand, synchronisation enables a temporally aligned cross-modal interaction which allows such
concurrency to be captured, resulting in enhanced performances on audio-visual tasks.

5.3 ANALYSIS ON THE SLIDING WINDOWS AND TEMPORAL RESOLUTION

As mentioned in Section 3.1, the trade-off between the sliding window size and the model perfor-
mance is shown in Figure 3. Specifically, (a) and (b) show the influence of the numbers of frames k
in a window while keeping the ratio N/k a constant (i.e. keeping the total output queries W × N
unchanged) and the same frame rate. This is trained on 10% of the full training data for quick
experiments. Although using shorter windows benefits ASR, as fewer output tokens are used to en-
capsulate all the visual information within that window, performance on video QA is degraded. On
the other hand, larger windows heavily reduce the ASR performance as the monotonic alignment in
ASR is especially difficult to learn with 10% of the training data.

Figure 3 (c) clearly shows the importance of high temporal resolution in video modelling. The lowest
FPS is equivalent to 8 frames per video, e.g. Video-LLaMA, where over 24% relative accuracy
improvements are achieved using an FPS of 2. Figure 3 (c) shows the influence of the number of
frames per second (FPS) on the model performance during inference. The best model trained on the
full set is used with the same number of frames per window. While low accuracy is observed when
the frame rate is low, increasing FPS beyond 1.0 only receives marginal improvements at the cost
of having many more output queries sent to the LLM. 2.0 FPS was chosen as it made the audio and
visual sequences have the most similar lengths, and hence easier for synchronisation.

5.4 ANALYSIS OF THE DIVERSITY LOSS

Analysis of the effect of diversity loss is also performed using 10% of the training data as shown in
Figure 4, and examples of cosine similarity matrices among output queries are shown in Appendix
F. For ASR, the model is trained to include all the speech information in the audio sequence and
the cosine similarity varies according to the length of the speech. For videos, the cosine similarity
is close and does not vary too much for different video lengths, and hence diversity loss effectively
acts as a way to encourage more diversified information to be captured. However, when a high

9
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λ is employed, diverse information causes confusion in the model and results in a more severe
hallucination problem (e.g. high insertion rate in WER) with heavily degraded model performance.

5.5 DISCUSSIONS ON INCORPORATING SPEECH AND SPEECH-VIDEO INTERACTIONS

Speech is an important source of information for video that should always be considered for audio-
visual LLM to perform a comprehensive understanding. Unlike audio events, the speech content can
hardly be inferred from the visual modality, making it particularly indispensable to comprehend any
videos involving people talking. Moreover, the co-occurrence of speech and video events, which
is modelled by the fine-grained temporal synchronisation in FAVOR, is required to understand the
audio-visual temporal relations, e.g. “What did A say” (more examples in Appendix G).

One of the major contributions of FAVOR is to incorporate speech in a multimodal LLM and ef-
fectively combine both speech and video content to generate responses. In addition to the ISQA
and AVM tasks that have already reflected the co-reasoning ability, the advantage of FAVOR can
be more clearly demonstrated by the emergent abilities (shown in Appendix G). For instance, in
response to questions about why a movie clip is funny or romantic, FAVOR combines the video,
dialogue between characters and background audio or music to generate a more encompassing and
convincing answer. Besides, FAVOR is able to understand the scene better by using knowledge from
the speech, such as the species of a particular fish introduced in a documentary.

6 CONCLUSION

This paper proposed FAVOR, a fine-grained audio-visual joint representation learning framework
for multimodal LLMs. On the introducedproposed AVEB benchmark for audio-visual evaluation,
FAVOR achieved competitive performance on audio and visual single-modal tasks with a remark-
able 20% absolute accuracy improvement on the causal reasoning video QA task compared to the
baselines. FAVOR demonstrated audio-visual, and particularly strong speech-visual co-reasoning
abilities, with remarkable cross-modal emergent abilities demonstrated via examples.

7 REPRODUCIBILITY STATEMENT

To make the experiments and models reproducible, the benchmark details are provided in the sup-
plementary materials, and a demo page is provided in the abstract for a convenient try-out of the
model. The details of the training and test data are summarised in Section 4 and Appendix A. Key
hyper-parameter settings were discussed in the result section. The complete training and inference
code together with model checkpoints will be released upon acceptance.

8 ETHICAL STATEMENT

The approaches in this paper do not give rise to any additional risks beyond the ones directly inher-
ited from the model checkpoints. The ASR encoder and visual encoder might work worse for people
from particular demographics. The framework also inherits the biases from all the large language
models used for experiments in this paper.
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A TRAINING SET AND BENCHMARK DETAILS

Data In Train In AVEB Description

LibriSpeech Yes Yes LibriSpeech is an English audiobook data. The train-clean-100 and
train-clean-360 splits were used for training, and test-clean was
used in AVEB. Prompt example: “Transcribe the speech into text.”

AudioCaps Yes Yes AudioCaps is a widely used audio caption dataset containing 46k
10-second audio samples with manually annotated captions. Ex-
ample prompt: “Please describe the audio.”

LLAVA-150k Yes No LLAVA-150k contain QA pairs generated using ChatGPT. Exam-
ple prompt: “What does the man hold in the image?”

OCRVQA Yes No OCRVQA is an OCR-based QA dataset containing questions
mostly about printed words in an image. Example prompt: “Who
wrote this book?”

TextVQA No Yes OCR-based QA dataset containing questions about various words
in realistic scenes (c.f. printed words). Example prompt: “What is
the brand of this camera?”

Flickr30k No Yes Image caption dataset where each image is annotated with manual
single-sentence descriptions. Example prompt: “Describe this im-
age in one short sentence.”

GQA No Yes GQA consists of questions about various day-to-day real-world im-
ages. This involves reasoning skills about the objects in the image.
Example prompt: “What kind of device is on top of the desk?”

TextCaps Yes No Image caption data particularly focusing on capturing text in the
image. Only 80k samples were randomly selected for training.
Example prompt: “Describe the image.”

MSVD-QA Yes No MSVD-QA is a dataset with questions about real-world video
clips. Example prompt: “In the video, what is the man with long
hair playing?”

NExT-QA Yes Yes NExT-QA is a video QA dataset, particularly focusing on causal
and temporal correlations. Example prompt: “What does the girl
in white do after bending down in the middle? Options/Choose one
from: (Add choices here during inference)”.

VideoChat Yes No A GPT4-generated video QA dataset where the question mainly
asks for detailed descriptions of the video. Example prompt: “Pro-
vide a detailed description of the given video.”

AVSD Yes Yes Audio-visual scene-aware dialogue data where questions are raised
in turns about the video and the audio in the video. Example
prompt: “And then what happened?” and “Is the man saying any-
thing?”

Ego4D Yes No An audio-visual dataset containing egocentric videos. Video de-
scriptions were used as supervision signals which came from
single-sentence short clip descriptions that were concatenated and
refined using ChatGPT. Example prompt: “Describe the video in
detail.”

How2 Yes Yes An audio-visual speech recognition dataset containing videos ex-
plaining how to perform various tasks. Example prompt: “Tran-
scribe the speech into text, paying attention to both audio and
video.”

VGGSS No Yes Sound source localisation data containing questions about the
sound source in a 5-to-10-second video clip. Example prompt:
“What is the source of the sound?”

Table 6: Dataset and benchmark details
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A range of datasets spanning audio and visual tasks were used in our experiments. Table 6 sum-
marises these datasets in detail, with individual descriptions and relevant prompt designs.

B EVALUATION DETAILS

ASR and AC are evaluated using word error rate (WER) and SPIDEr (Liu et al., 2017), a combina-
tion of SPICE and CIDEr respectively. The evaluation of IC uses CIDEr following (Dai et al., 2023),
and METEOR, as LLMs tend to use a diverse range of words with similar meanings. OCR, VQA
and Video QA are measured using top-1 accuracy. For OCR, the scoring follows (Singh et al., 2019)
where each hit in the reference answer contributes 1/3 to the total hit. For VQA and Video QA,
it is counted as correct if the reference answer exactly exists in the generated answer using word-
by-word matching. It is needed to check the opposite answer doesn’t exist for yes-or-no questions.
In particular, during inference only, Video QA is formulated as an in-context multiple-choice task
where the choices are given in the prompt, and one hit is counted only when the generated answer
exactly matches the reference. The same measurement is taken for ISQA and AVM. Furthermore,
for AVSD and AVSSD, as the reference answer is a full sentence, ChatGPT-assisted scoring is used
to determine whether the generated answer is equivalent to the reference answer (see the prompt
design in C).

C GPT SCORING PROMPT DESIGN

As open-ended questions in AVSD and VGGSS datasets contain full-sentence answers rather than
one or two words, it is difficult to evaluate via string matching. Therefore, ChatGPT was used to
assist with the evaluation. Prompt designs for each task are described in Table.

Task Description

AVSD Given the question “QUESTION”, is the answer “HYPOTHESIS” equivalent to the
answer “REFERENCE”? Answer “Yes” if they are equivalent, and “No” if they are
different.

VGGSS Is the sound source mentioned in answer “REFERENCE” the same as the sound source
mentioned in answer “HYPOTHESIS”? Answer “Yes” if they are the same, and ”No”
if they are different or one does not mention the sound source.

Table 7: Prompt design for ChatGPT-based evaluation. Note that QUESTION refers to the question,
HYPOTHESIS is the model-generated answer and REFERENCE is the reference answer.

D STORYTELLING DATASET

To better stimulate the ability to generate long descriptions using both audio and visual input, a tiny
storytelling dataset was generated to further fine-tune the model for a small number of steps. This
was generated by prompting GPT-3.5 with audio descriptions (including reference captions and ref-
erence speech transcriptions) as well as reference video descriptions. Audio samples were randomly
selected from both AudioCaps and LibriSpeech datasets, while video samples were randomly se-
lected from the Ego4D dataset. The prompt and the generated samples are summarised in Table 8.

Prompt Audio caption or speech transcription: AUDIO CAPTION. Video description:
VIDEO DESCRIPTION. Write a story combining both audio and video infor-
mation.

Data sample USER: <FAVOR output query representations> Write a story about what you
hear and see. LLM: Once apon a time, ...

Table 8: Prompt to generate the storytelling fine-tuning set and example training data.

15



Under review as a conference paper at ICLR 2024

E ABLATION STUDIES

The full ablation studies on all tasks in AVEB are shown in Table 9 and 10, as complementary
materials for section 5.2

Table 9: Ablation studies on the AVEB single-modal tasks.

Systems ASR ↓ AC ↑ IC ↑ OCR ↑ VQA ↑ Video QA ↑
FAVOR 3.3% 42.6 86.0 / 27.5 37.8% 45.2% 49.3%
without diversity loss 3.1% 42.7 71.9 / 26.1 37.2% 46.2% 47.1%
without causal enc. 3.0% 44.0 72.1 / 26.0 34.9% 45.7% 42.8%
without sliding window 3.3% 42.7 76.8 / 26.4 34.6% 44.8% 44.8%
without synchronisation 3.0% 40.6 85.6 / 26.7 32.5% 46.1% 47.4%
without causal encoder, diversity 3.1% 36.0 71.9 / 26.0 34.7% 44.8% 41.8%

loss, and synchronisation

Table 10: Ablation studies on the AVEB audio-visual tasks.

Systems AVSR ↓ AVSD ↑ ISQA ↑ AVSSD ↑ AVM ↑
FAVOR 8.1% 54.5% 32.3% 51.1% 77.1%
without diversity loss 8.1% 53.9% 34.1% 53.5% 75.7%
without causal enc. 8.0% 54.1% 20.9% 37.1% 74.8%
without sliding window 8.5% 53.6% 29.7% 45.3% 74.5%
without synchronisation 8.4% 53.4% 17.2% 50.5% 72.5%
without causal encoder, diversity 8.9% 50.5% 16.7% 38.6% 72.0%

loss, and synchronisation

F VISUALISATION OF DIVERSITY LOSS EFFECT

The cosine similarities among output query representations of the causal Q-Former under different
diversity loss factors are shown in Fig. 5.

λ=0.0 λ=0.1 λ=1.0

Figure 5: Visualisation of cosine similarity matrix with different diversity loss factors.

G CASE STUDIES

Six cases are illustrated in Fig. 6 to Fig. 12.
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Speech transcription: 
What is the red object in the image?

Can you answer the question in the audio?

Yes, the red object in the image is a can of soda
FAVOR

HUMAN

HUMAN

Figure 6: Case study 1 – Image-spoken QA task with real audio.

Speech transcription: 
A formation of air jet flying by in the air

Is the audio describing the image? Explain why

No. The audio is about a formation of air jet but the image is a man biting 
a sandwich

FAVOR

HUMAN

HUMAN

Figure 7: Case study 2 – Audio-visual matching task with the request for explanation. During the
benchmark test, the explanation was removed. The answer shows the understanding of both the
speech and the image as well as the ability to perform reasoning based on them.
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Audio Caption: 
A group of people cheering and clapping, while a man is yelling

Can you write a story based on the audio and the video?

FAVOR

HUMAN

HUMAN
Sure, here's a story based on the audio and video: 
As the waves crashed onto the beach, a group of people gathered to watch 
the stormy sea. They cheered and clapped as the water splashed against 
the shore. Suddenly, a seal appeared from the water and swam towards the 
crowd. The people were amazed and delighted as the seal played in the 
waves. 
……

Video Clip: 

Figure 8: Case study 3 – Storytelling task with a video clip and the audio came from a different
source. The answer combines the audio event, such as cheering and clapping, coherently with the
video content, such as the seal.

The video is a romantic scene of a man and a woman on a boat. The man 
is holding the woman in his arms, and they are both looking at the 
sunset. The audio is a song that adds to the romantic atmosphere. The 
woman says "I'm flying" and "Jack," which suggests that they are happy 
and enjoying the moment. The setting of the boat and the sunset create a 
beautiful and serene environment that enhances the romantic feel of the 
video. The man and the woman's body language and facial expressions 
also convey their love and affection for each other. Overall, the video is 
a perfect representation of a romantic and intimate moment between two 
people.

FAVOR

HUMAN

Explain in detail why this video together with the audio and what they 
say is romantic

HUMAN
Audio Description: 
Jack: “Open your eyes”. Rose: “I’m flying, Jack” 
Background music: “My Heart Will Go On”

Video Clip: 

Figure 9: Case study 4 – The famous scene in the movie Titanic could be understood by FAVOR.
The understanding combines the visual scene, the dialogue between characters, e.g. “I’m flying,
Jack”, as well as the background music to make the response comprehensive. It also reflected that
the system knows the speaker by quoting the heroine’s speech.
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With audio: The shark shown in the end of the video is a whale shark
FAVOR

HUMAN

HUMAN

What is the shark shown in the end of the video?

Speech Transcription: 
The world’s biggest living fish is shark…the largest, are whale 
sharks. These gentle giants usually grows…

Without audio: The shark shown in the end of the video is great white 
shark

FAVOR

Video Clip: 

Figure 10: Case study 5 – Demonstration of how speech content could provide knowledge for visual
understanding. The system was clearly unable to identify the species of the shark without the help
of the audio, and just made the most likely guess.

FAVOR

HUMAN

HUMAN

There is a rabbit, a fox and a sloth. What did the sloth say? Can you 
explain why the sloth is funny in detail?

The sloth said 'Nick' at the end of the video. The reason why the sloth is 
funny is because it is a slow-moving animal, and in the video, it is shown 
as being very lazy and taking a long time to do things. This contrast with 
the other animals, such as the rabbit and the fox, who are more active and 
energetic, makes the sloth stand out and adds humor to the scene. 
Additionally, the way the sloth is depicted in the video, with its slow 
movements and expressions, also adds to its comedic appeal.

Speech Content: 
Nick: “Flash Flash 100 miles dash”  
Flash: “Nick” (spoken very slowly)

Video Clip: 

Figure 11: Case study 6 – Demonstration of understanding cartoon clips about the amusing sloth
character named “Flash” in Zootopia. FAVOR explained using both audio and video, and accurately
attributed the word “Nick” to the sloth.
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FAVOR

HUMAN

HUMAN

Can you explain why this video is entertaining? 

The video is entertaining because it shows a man making a funny face 
and then saying "nice." The contrast between his serious expression and 
the word "nice" creates a sense of humor and surprise. Additionally, the 
sound effects of the man's burp and the loud pop add to the 
entertainment value of the video.

Audio Description: 
A man making a burp and a pop sound, followed by saying “nice"

Video Clip: 

Figure 12: Case study 7 – Demonstration of FAVOR using audio, speech and video to explain why
a specific meme is interesting. The explanation includes the funny sound, the word being said with
the facial expression.
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