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Abstract
Suppose in a given planar circular region, there are smart mobile evaders and we want to find them using sweeping
agents. We assume the sweeping agents are in a line formation whose total length is predetermined. We propose
procedures for designing a sweeping process that ensures the successful completion of the task, thereby deriving
conditions on the sweeping velocity of the linear formation and its path. Successful completion of the task means
that evaders with a given limit on their velocity cannot escape the sweeping agents. We present results on the search
time given the initial conditions.

1. Introduction

The aim of this work is to provide a search policy for a line formation of sweeping agents that must
guarantee detection of an unknown number of smart evaders initially residing inside a given circular
region of radius R0. A search strategy that guarantees detection of all smart evaders is called a “must-
win” policy. Evaders move and try to escape the initial region at a maximal velocity of VT , known to the
sweepers. The sweeping formation moves at a velocity Vs > VT and detects the evaders using sensors
with a total length of 2r. The search processes are equivalent to a single sweeping agent with a linear
sensor of length 2r. A linear sensor of length 2r is a rectangular-shaped sensor with practically zero width
and a length of 2r. A “must-win” policy requires a minimal velocity that depends on the trajectory of the
sweepers. Throughout the sweep, evaders are detected when the sweepers’ sensors overlap the evader
region (the region where evaders may possibly be located). See Fig. 1 for a depiction of the sensing
region of a line formation of agents. The sweepers’ sensing region is approximated by a rectangular-
shaped sensor with zero width and a length of 2r that is equivalent to a line sensor of a sweeper with
length 2r. The search processes can be viewed as a 2-dimensional search in which the actual agents
travel on a plane or as a 3-dimensional search where the sweepers are drone like agents which fly over
the evader region. The analysis of 2D and 3D sweep processes and of sweep processes that are carried
out by a line formation of sweepers or by a single sweeper (with equivalent sensing capabilities as the
formation) is exactly the same. The evader region is assumed not to contain obstacles.

There can be two goals for the sweeping formation: the confinement task and the complete cleaning
(detection) tasks. The confinement task is a task in which the sweeping line formation of agents has to
entrap the evaders in their initial domain. This implies that the evader region does not increase after a
full sweep around the region. The feasibility of completing the confinement task imposes a lower bound
on the velocity of the sweeping agents. This lower bound is referred to as the critical velocity. Increasing
the velocity above the lower bound enables the agents to complete the detection task as well. We present
results on the total search time as a function of the sweeping velocity of the search formation given
initial conditions on the size of the search region and the maximal velocity of the evaders.
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Figure 1. Line formation of agents with a combined sensor diameter length of 2r. The velocity Vs is
measured with respect to the center of the line formation, and its direction is perpendicular to the vector
between the center of the evader region and the center of the line formation. The line formation performs
a counter-clockwise circular sweep.

The contributions of the paper are as follows. A complete theoretical analysis of trajectories, critical
velocities, and search times for a line formation of agents whose mission is to guarantee detection of
all smart evaders that are initially located in a given circular region from which they may optimally
plan to move out and escape the pursuing sweepers. The theoretical analysis is provided by considering
several methods to determine the critical velocity the linear array must have, in order to shrink the evader
region to be bounded by a circle with a smaller radius than half the formation’s sensing range. We derive
analytical formulas for the number of sweeps around the region as well as the time required to complete
them. Additionally, we prove that a line formation of sweepers employing the circular sweep process
cannot complete the cleaning of the entire evader region without modifying the search process at the
last sweep and propose such an end-game modification that guarantees the completion of the task. The
theoretical analysis is complemented by simulations that verify the theoretical results and illustrate them
graphically.

A simulation that demonstrates the progress of the proposed circular search process was generated
using NetLogo software [1], and an example of its output is presented in Fig. 2. Green areas are locations
that are free from evaders, and red areas indicate locations where potential evaders may still be located.

2. Overview of related research

An interesting challenge for multi-agent systems is the design of searching or sweeping algorithms for
static or mobile targets in a region, which can either be fully mapped in advance or unknown, see for
example refs. [2, 3, 4]. Often the aim is to continuously patrol a domain in order to detect intruders or to
systematically search for mobile targets known to be located within some area, as performed in ref. [5].

Some take probabilistic approaches when designing a search process, such as ref. [6] by Bertuccelli
et al. that aim to improve detection of dynamic targets by updating a probability map of possible tar-
get locations available to searching Unmanned Aerial Vehicles (UAVs). The UAVs are sent to explore
regions in space that have a high probability to contain targets, and the authors suggest a probability
map update approach that accounts for uncertainty in target movements. In ref. [7], Chung et al. con-
sider optimal detection of an underwater intruder in a channel using one or more unmanned underwater
vehicles. Chung et al. seek to find periodic closed trajectories for multiple patrollers that maximize the
probability of detecting a single intruder moving at a constant speed. The problem is formulated as an
optimal control problem whose solution is attained using an approximation to a nonlinear program. The
authors consider that a patroller’s turn radius is constrained by its dynamics and additionally assume
that patrollers have imperfect sensing capabilities that depend on spatial and temporal considerations.

Search procedures that guarantee detection of all targets belong to a different paradigm. Guaranteed
target detection can involve, for instance, search for static targets throughout a complete covering of the
area where they are located. However, a much more interesting and realistic scenario is the question of
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Figure 2. Swept areas and evader region status for different times in a scenario where the line formation
of agents employs the circular sweep process. (a) Start of the sweep. (b) After a sweep by an angle of π

2 .
(c) Halfway through the first sweep. (d) Toward the end of the first sweep. (e) After a sweep by an angle
of π

2 in the second sweep. (f) Beginning of the third sweep. Green areas are locations that are free from
evaders, and red areas indicate locations where potential evaders may still be located.

how to efficiently search for targets that are dynamic and smart. A smart target is one that detects and
responds to the motions of searchers by performing optimal evasive maneuvers, to avoid interception.
Several such problems originated in the second world war due to the need to design patrol strategies
for aircraft aiming to detect ships or submarines in the English channel, see for example ref. [8]. The
problem of patrolling a corridor using multi-agent sweeping systems in order to ensure the detection
and interception of smart targets was also investigated by Vincent et al. in ref. [9], and probably optimal
strategies are provided by Altshuler et al. in ref. [10]. A somewhat related, discrete version of the problem
was also investigated by Wagner et al. and later by Altshuler et al. in refs. [11, 12, 13]. It focuses on a
dynamic variant of the cooperative cleaners problem, a problem that requires several simple agents to
clean a connected region on the grid with contaminated pixels. This contamination is assumed to spread
to neighbors at a given rate.

In refs. [14, 15, 16, 17, 18], Bressan et al. investigate optimal strategies for the construction of barriers
in real time aiming at containing and confining the spread of fire from a given initial area of the plane.
Bressan et al. are interested in determining the minimal possible barrier construction speed that enables
the confinement of the fire. Furthermore, the authors seek conditions for determining the optimality of a
confinement strategy. Bressan et al. define the barrier curve construction as an optimization problem by
introducing a cost functional that takes into account the value of the area destroyed by the fire in addition
to the total cost of building the barrier walls. The goal is that after finite time, the fire will be entirely
enclosed by the walls, thereby stopping the fire’s spread and thus enabling the termination of the barrier
construction process. Bressan et al. propose necessary and sufficient conditions for the construction of an
optimal barrier, suggesting that an optimal strategy for confining the spread of fire from an initial circular
area in the plane should include building logarithmic spiral firewalls that track the fire’s wavefront as
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well as building a delaying arc whose purpose is to delay the spreading of the fire. Additionally, Bressan
et al. provide a numerical algorithm that aims to approximate such an optimal barrier. An additional
work that builds a barrier against an advancing fire using a spiral out pattern is ref. [19] by Klein et al.
The construction of the barrier is performed using logarithmic spirals performed along the boundary of
an expanding fire and is carried out by a firefighter with a point-like “sensor”. Similarly to the works
of Bressan et al., the building of the barrier is successful when the barrier curve closes into itself, thus
containing the fire within. Additionally, ref. [19] provides a proof of a lower bound on a firefighter’s
velocity needed in order to construct a barrier that contains the spread of fire from an arbitrary-sized
circular region of the plane. The constructed lower bound for the ratio between the firefighter’s and fire’s
velocities interestingly equals the golden ratio. In ref. [20], Brown et al. propose a progressively spiral
out search pattern with the aim of building a no intrusion area in which all mobile ground evaders are
detected. Taking into account turning rate constraints and a given number of searching UAVs, Brown
et al. determine the maximal radius of a circular area in which all targets are guaranteed to be detected.
Additionally, the authors propose procedures for dynamic insertion and removal of a UAV from a UAV
search team without discontinuing the target detection confidence area, allowing for increased robustness
of the search process.

In ref. [5], Tang et al. develop a non-escape search procedure for evaders. Evaders are originally
located in a convex region of the plane and may move out of it. Tang et al. propose a cooperative pro-
gressing spiral in algorithm performed by several agents with disk-shaped sensors in a leader–follower
formation. The authors establish a sufficient condition for the number of searching agents required to
guarantee that no evader escapes the region undetected. This lower bound is based on the sensor radius,
searcher and evader velocities and the initial perimeter of the region. In ref. [21], McGee et al. investi-
gate a search problem for smart targets. The targets do not have any maneuverability restrictions except
for the maximal velocity they can move in, and the sensor that the agents are equipped with detects all
targets within a disk-shaped area around the searcher location. McGee et al. consider search patterns
consisting of spiral and linear sections. In ref. [22], Hew considers searching for smart evaders using
concentric arc trajectories with agents that have sensors similar to ref. [21]. Such a search is proposed
for detecting submarines in a channel or in a half plane. The paper focuses on determining the size of a
region that can be successfully patrolled by a single searcher, where the searcher and evader velocities
are known. The search problem in the paper is formulated as an optimization problem so that the search
progress per arc or linear iteration has to be maximized while guaranteeing that the evader cannot slip
past the searcher undetected.

3. The sweep process model

This paper considers a scenario in which a single agent or alternatively a linear formation of several
identical agents search for smart mobile targets or evaders that are to be detected. The information the
agents perceive only comes from their own sensors, and evaders that intersect a sweeper’s field of view
are detected. We assume the single agent has a linear sensor of length 2r or that the linear formation
of agents combine to a line-shaped sensor of total length 2r. The evaders are initially located in a disk-
shaped region of radius R0. There can be many evaders we wish do detect, and we consider the domain
to be continuous, meaning that an evader can be located at any point in the interior of the circular region
at the beginning of the search process. The sweepers are designed in a way that will require a minimal
amount of memory in order to complete the required task due to the fact that the sweeping protocol is
predetermined and deterministic. The sweepers move so that the line formation advances, most often
perpendicularly to the agents’ linear array with a speed of Vs (measured at the center of the linear sensor).
By assumption, the evaders move at a maximal speed of VT , without any maneuverability restrictions.
The sweepers’ objective is to “clean” or to detect all evaders that can move freely in all directions from
their initial locations in the circular region of radius R0.
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Figure 3. Beginning of the search using a line formation of agents. The sweepers’ sensors are shown
in green, and red areas indicate locations where potential evaders may be located. The line formation
of agents has a line-shaped sensor of length 2r. At the beginning of the sweep process, the sweeper
formation has an effective sensor length of r inside the evader region and a sensor length of r out-
side of the evader region. The initial radius of the evader region is R0. The line formation performs a
counter-clockwise circular sweep process.

The search time clearly depends on the type of sweeping movement the formation employs. Detection
of evaders is based on a deterministic and preprogrammed circular sweeping protocol around the region.
We propose procedures for designing a sweeping process that aims to successfully complete two tasks,
the confinement and the search task. The desired result is that after each sweep around the region, the
radius of the circle that bounds the evader region will decrease by a value that is strictly positive. This
guarantees complete cleaning of the evader region, by shrinking in finite time the possible area in which
evaders can reside to zero. At the beginning of the circular search process, we assume that only half
the formation’s sensor is inside the evader region, that is a footprint of length r, while the other half is
outside the region in order to catch evaders that may move outside the region while the search progresses.
Figure 3 shows a depiction of the line formation’s placement at the beginning of the search, in which
the formation performs the counter-clockwise circular sweep process.

We analyze the proposed sweep process’s performance in terms of the total time to complete the
search, defined as the time at which all potential evaders that resided in the initial evader region were
found. First, we obtain a lower bound on the sweeper array’s velocity that is independent of the search
process. Then, several methods to determine the minimal velocity the linear array must have, in order to
shrink the evader region to be bounded by a circle with a smaller radius than half the formation’s sensor
length, r. We then show that the minimal searcher velocity that can prevent escape cannot be based
upon a single traversal of the evader region. For the case, the agent or alternatively the line formation
of agents travels in a circular pattern around the evader region, we show that the minimal agent velocity
that ensures satisfaction of the confinement task has to be more than twice the lower bound on a searcher
velocity, and hence is not optimal. We derive two critical agent velocities that can be used together with
a bisection method in order to construct an agent velocity that results in tight satisfaction of a developed
inequality that guarantees no escape from the evader region. An analytical formula that calculates the
number of required scans that are needed in order to reduce the evader region to be contained in a circle
with a smaller radius than r is then derived. A formula for the time it takes the agents to complete
the previously mentioned scans according to the search parameters is obtained. We later show that for
a line formation of sweepers equipped with line sensors, a circular sweep pattern around the evader
region cannot complete the cleaning of the entire area using only circular sweeping. In order to solve
the problem, we provide a modification for the search process when the evader region is bounded by a
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circle with a radius of less than r. We then show that if the ratio between the searcher velocity Vs and the
evader’s maximal velocity VT is above a certain threshold, the sweeper formation can completely clean
the region performing the modified algorithm.

As opposed to our simple circular search process, McGee and Hedrick in ref. [21] consider more
complex search patterns and use disk-shaped sensors with a radius of r to detect evaders. While they
address the issue of the maximal region that be cleaned using their protocol, they do not provide evalu-
ations on the time it takes to find all evaders. In ref. [22], Hew assumes the searcher also has a circular
sensor of radius r that detects evaders if and only if they are at a distance of at most r from the searcher.
In ref. [5], as in our scenario, the searching agents move at a fixed speed and evaders move at a speed
with a known limit. However, the searchers are equipped with disk-shaped sensors and not linear detec-
tors. In a similar way to our approach, guaranteeing that no evader escapes during the first traversal of
the region ensures no evaders will escape in subsequent traversals around a smaller region. Unlike our
exact sweep time calculations, Tang et al. do not provide implicit formulas for the total sweep time of
search regions. However, they show the results of a simulation where they calculate the probability to
detect a target that starts at a random location in the region and moves with a random walk at its maximal
speed within a specified number of seconds.

Previously discussed search procedures in refs. [5] and [21] do not impose a linear formation on the
agents. In both of these related works, the searching agents are distributed equally along the region’s
perimeter. Sweeping in a formation allows us to utilize coordination between sweepers in order to
increase the effective sensing range. Furthermore, sweeping in a line formation allows to easily han-
dle cases where one or several sweepers malfunction and cease to contribute to the sweep process. If a
sweeper malfunctions during the sweep, sweepers that are further away from the center of the evader
region than the faulty sweeper can advance inward to replace its place in the formation. This effectively
decreases the total sensing range of the line formation by the faulty sweeper’s sensing range; however,
it allows the sweep process to continue uninterrupted and with minor adjustments. In case, sweepers
are equally distributed along the region, the recovery from an event where a sweeper malfunctions is
considerably more complex, since the sweeping regions need to be redistributed.

The goal of this paper is to provide a comprehensive mathematical and geometric analysis for a
simple sweeping protocol to address the sweeping detection task. This report is organized as follows: the
fourth section provides an optimal bound on the cleaning rate that results in a minimal critical velocity a
sweeper agent or alternatively a line formation of agents must have in order to successfully accomplish a
confinement task. The fifth section provides preliminary considerations on analysis of a circular search
patterns. Section 6 provides an analysis of the critical velocity that is needed for a line formation of
agents in order for it to implement a no escape search. Section 7 provides a sweep time analysis of
the proposed protocol. Section 8 provides a modification to the sweep process that is performed at the
end of the process and enables to complete the search task successfully. Section 9 identifies challenges
regarding the application of the proposed search strategies in physical robotics systems. Additionally,
possible solutions that address these challenges are discussed. In the last section, conclusions are given
and some extensions are discussed.

4. A universal bound on cleaning rate

In this section, we present an optimal bound on the cleaning rate of a searcher with a linear sensor.
This bound is independent of the particular search pattern employed. For each of the proposed search
methods, we then compare the resulting cleaning rate to the optimal derived bound in order to compare
between different search methods. This will be done for the case of a single searching agent as well
as for the multi-agent case. We will denote the searcher’s velocity as Vs, the sensor length as 2r, and
the maximal velocity of an evading agent as VT . The maximal cleaning rate occurs when the footprint
of the sensor over the evader region is maximal. For a line-shaped sensor of length 2r, this happens
when the entire length of the sensor is fully inside the evader region and it moves perpendicular to its
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orientation. The rate of sweeping when this happens has to be higher than the minimal expansion rate
of the evader region (given its total area); otherwise, no sweeping process can ensure detection of all
evaders. The smallest searcher velocity satisfying this requirement is defined as the critical velocity and
denoted by VLB, we have:

Theorem 1. No sweeping process will be able to successfully complete the confinement task if its
velocity, Vs, is less than,

VLB = πR0VT

r
(1)

Proof. Denote by �T the interval of search. The maximal area that can be scanned when the searcher
moves with a velocity Vs is given by,

AMax Clean = 2rVs�T (2)

that is, the best cleaning rate is 2rVs. The least spread of the evader region that expands due to evaders’
possible motion with velocity VT occurs when the region has the shape of a circle. This is due to the
isoperimetric inequality: for a given area, the minimal boundary length that encloses it happens when
the shape of the region is circular. Therefore, for an initial circular region with radius R0, the evader
region minimal expansion will be to a circle with a larger radius. For a spread of �T , the radius of the
evader region can grow to be R0 + VT�T and the area of the evader region will increase from πR0

2

to π (R0 + VT�T )2. Therefore, the growth of the evader region area in time �T will be ALeast Spread =
π (R0 + VT�T )2 − πR0

2 = 2πR0VT�T + (VT�T)2. The spread rate will therefore be the division of
the last expression by �T . Letting �T → 0, the expansion rate is 2πR0VT , the least possible spread
rate. In order to guarantee the possibility of sweeping, we must set the best cleaning rate to be larger
than the worst spread of area that is 2rVs ≥ 2πR0VT . This yields the minimal velocity of the sweeping
line regardless of the searching algorithm employed. Hence,

Vs ≥ πR0VT

r
= VLB (3)

Hopefully, after the first sweep, the evader region is bounded by a circle with a smaller radius than
the initial evader region’s radius, and since the sweepers travel along the perimeter of the evader region
and this perimeter decreases after the first sweep, ensuring a sufficient sweeper velocity that guarantees
that no evader escapes during the initial sweep guarantees also that the sweeper velocity is sufficient to
prevent escape in subsequent sweeps as well. The formulation of the problem in terms of the smallest
possible searcher velocity that is needed in order to guarantee a no escape search is equivalent to asking
what is the maximal boundable circular region that is possible to confine the evaders to given a searcher’s
velocity of Vs, sensor length of 2r, and a maximal velocity of an evading agent that is equal to VT .

5. Some preliminary considerations on circular search patterns

In this section, an intuitive and naive proposal for a cleaning search algorithm of an initial circular
domain using a single agent or a line formation of agents is presented. Consider a sweeper line formation
moving with a linear velocity of Vs (measured at the center of the formation) and an evader with maximal
linear velocity of VT . It is assumed that at the beginning of the sweep process, the radius of the circle
bounding the evader region is R0 and that the line formation of sweepers is equipped with a linear sensor
whose length is 2r. At the beginning of the circular search process, half of the formation’s sensor is inside
the evader region, that is, a footprint of length r, while the other half is outside the region. The analysis
of a desired search pattern relies on the various parameters that involve the problem such as Vs, VT ,
R0, and r. The search process that we first consider is very simple. Each time the sweeper completes
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a single sweep of 2π around the center of the evader region, it “steps” a positive distance toward the
center of the circle and starts a new sweep. All points swept by the sensor at each round are in the sensing
range of the sweeping agent, that is its field of view, and therefore are detected and cleaned. The search
process continues in this way until the evader region is bounded by a circle of radius less than r and then
the sweeper employs a different form of search which will be elaborated on in the following sections.
To facilitate a solution to the problem using the proposed advancement strategy, a minimal velocity of
the agent that depends on the geometry of the problem as well as the evader’s maximal velocity must
be maintained in order to guarantee cleaning of the domain. It is tempting to assume that it will be
enough to consider a single circular traversal around the evader region in order to set a bound on the
minimal searcher’s velocity. Let us denote by T the time it takes the sweeping line to complete a full
circle around the initial evader region. This implies that TVs = 2πR0. At the same time, the maximal
distance an evader can travel in order to ensure that it is detected during the sweep by the agent is no more
than TVT = r. Thus, for this critical velocity of the evader, we have that 2πR0

Vs
= r

VT
. This leads to the

following inequality regarding the minimal, or critical linear velocity of the agent: An agent that moves
at this velocity will be able to ensure that after each complete sweep, the evader domain is bounded by
a circle of the same radius as the initial evader region radius. This means that in order for the sweeper
to be able to progress in its cleaning process, it must move at this speed or above it, and hence,

Vs ≥ 2πR0VT

r
(4)

When we have equality in (4), we denote the obtained velocity as

Vs 1 cycle = 2πR0VT

r
(5)

In Section 6, we will prove that this intuitive result is not correct and that the agent needs to move
in a greater velocity than Vs 1 cycle = 2πR0VT

r in order to guarantee a non escape search. An illustrative
simulation that demonstrates the evolution of the naive circular search process discussed in this section
is presented in Fig. 4. Green areas are locations that are free from evaders, and red areas indicate locations
where potential evaders may still be located. The results of the simulation visually show that moving
in a velocity of Vs 1 cycle is not sufficient to satisfy the confinement task since evaders escape the region
searched by the sweepers.

6. Sweeping Confinement and the critical velocity

In this scenario, a line formation of agents, or alternatively a single agent whose total sensing length is
2r, is considered. A depiction of the start of the scenario is presented in Fig. 5. The formation travels
counter-clockwise on the perimeter of the disk. We prove that in order for a line formation of agents to
perform a non escape search, their critical velocity should be based on more than one cycle in order to
prevent escape outside of a circle of radius R0 + r, for any evader trajectory whose maximal velocity
is VT . The formation employs a circular search pattern. Assuming that the sweeper formation travels
counter-clockwise, we denote by P the most problematic point in the scenario, this is the point (0, R),
which is just to the right of the linear sensor. An evader that spreads from point P at time t = 0 will
result in an upper bound for the considered problem. We denote by χ (θ (t)) the tip of the linear sensor’s
location as a function of the angle of the agent with respect to the center of the evader region. In order to
detect all evaders, we require that the envelope that describes the potential possible locations of evaders
moving with a maximal velocity of VT whose origin is at time t = 0 is at point P will always be below
χ (θ (t)). We therefore view the evader region spread as a wave that propagates from every point in the
evader region with a velocity of VT . By basing our analysis on the escape from the most problematic
point, we guarantee that setting a searcher’s velocity that ensures no escape from point P ensures that
there will be no escape from any other point as well. The proof that point P is the most problematic point
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Figure 4. Swept areas and evader region status for different times in a scenario where the line formation
of agents (represented by a single agent with a line sensor of length 2r) employs a naive circular search
process for solving the confinement task. (a) After a sweep by an angle of π

2 . (b) After a sweep by an angle
of 3π

2 . (c) Toward the end of the first full sweep. (d) Near the end of the first sweep. (e) End of the first
sweep. (f) Beginning of the second sweep. (g) Continuation of the failed second sweep. (h) Continuation
of evader region spread outside of the initial evader region during the second sweep. Green areas are
locations that are free from evaders, and red areas indicate locations where potential evaders may still
be located.

in the cleaning of the evader region and that this point remains the most problematic point for all cycles
given that the sweeper formation scans the evader region at a fixed circular trajectory is presented next.

Theorem 2. Point P is the most problematic point in the cleaning of the evader region. This point
remains the most problematic point for all cycles given that the line formation of agents scans the evader
region at a fixed circular trajectory.

Proof. We denote by �T1cycle = 2πR0
Vs

the time it takes the sweeper formation to complete a full cycle
around the evader region. If VT�T1cycle ≤ r, then at the end of the sweeper formation’s traversal around
the evader region, the expansion of the evader region is contained in a circle of radius R0 + r. At the time
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Figure 5. Line formation of agents with a line sensor of length 2r. The sweepers’ sensors are shown
in green, and red areas indicate locations where potential evaders may be located. At the beginning of
the sweep process, the sweeper formation has an effective sensor length of r inside the evader region
and a sensor length of r outside of the evader region. The initial radius of the evader region is R0. The
searchers’ velocity is Vs, and the maximal evader velocity is VT . χ (θ (t)) denotes the tip of the linear
sensor’s location as a function of the angle of the center of the linear formation of agents with respect
to the center of the evader region.

the line formation of agents completes the full circular traversal around the evader region, the furthest
danger point from the center of the evader region is a point that originated at time t = 0, the time the
search began, from point P. Any other point in the evader region is closer to the center of the evader
region than the furthest point at �T1cycle. When the searcher reaches its original position, the furthest
danger points from the center are those that originated from point P too. Therefore, if the agent scans
the evader region at a fixed circular trajectory, the point P is the most problematic danger point in all
cycles.

Remark 1. In order to guarantee that after each cycle, the boundary will remain confined inside a circle
of radius R0 + r, we must look at times that correspond to a complete traversal of a cycle around the
evader region in addition to a traversal of π

2 degrees of the searcher from the initial point and set our
critical velocity based upon it.

Proof. A smart evader that wishes to escape from the sweeper formation knows the center point of the
evader region. This point is the point the sweeper formation sweeps around. A smart evader that starts its
escape from point P will escape in the direction of the positive y axis in order to increase its distance from
the center of the evader region. Moving in the direction of the negative y axis will reduce the distance of
the evading agent from the center of evader region. Such movement is opposed to its desire to escape the
region that is scanned by the formation and to its desire to move out of the region that is bounded by a
circle of radius R0 + r. As the time the evader has to escape before being detected by the line formation
of agents increases, it can increase its distance from the center of the evader region by choosing a suitable
trajectory. Therefore, since the evader is smart, it is assumed that it knows the direction of search of the
scanning agent. If we assume the formation travels counter-clockwise, in order to increase the time it
can escape, the evader will travel in the direction of the negative x axis. From the intersection of the
two constraints, we conclude that the evader will escape in the directions corresponding to angles that
are between [ 3π

2 , 2π ]. Therefore, in order to set the critical velocity, we need to consider search times
that correspond to a full traversal around the evader region in addition to a traversal of a maximum of
π
2 degrees from the formation’s initial point.
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We denote by �T the time it takes the searcher to complete a full cycle. Therefore, �T = 2πR0
Vs

, and
the time it takes to pass a quarter of a cycle is T̃ = πR0

2Vs
. After the first circular sweep, we consider the

outer tip of the sensor array as it moves around and consider the distance from it to the point P. Applying
the law of cosines for the triangle highlighted in blue results in,

χ2(θ (t)) = (R0 + r)2 + R0
2 − 2R0(R0 + r) cos θ (6)

We remember that ω = θ̇(t) and therefore θ = Vs
R0

t. To impede any possibility of escape by a smart evader
from point P, we need to have,

χ2(θ (t)) ≥ (VT�T + VT t)2 ∀ t ≥ 0 (7)

This yields the requirement ∀ t ≥ 0,

(R0 + r)2 + R0
2 − 2R0(R0 + r) cos

(
Vst
R0

)
≥ VT

2
(

2πR0

Vs
+ t
)2

(8)

Rearranging terms yields the requirement on Vs given by,

cos
(

Vst
R0

)
≤ 1 + 1

2R0(R0 + r)

(
r2 − VT

2
(

2πR0

Vs
+ t
))

(9)

We therefore define the function f (t, Vs) as,

f (t, Vs) = 1 + 1
2R0(R0 + r)

(
r2 − VT

2
(

2πR0

VS
+ t
)2
)

− cos
(

VSt
R0

)
(10)

and we wish to determine Vs that satisfies,

f (t, Vs) ≥ 0 ∀t ∈
[
0,

πR0

2Vs

]
(11)

Theorem 3. The function f (t, Vs) does not have critical minimal points when considered as a function
of two variables. f (t, Vs) is a monotonically increasing function in Vs for all t.

Proof. The function f (t, Vs) does not have minimum points when considered as a function of two vari-
ables. We will now prove that the function f (t, Vs) is monotonically increasing in Vs ∀t. That is if
Vs2 ≥ Vs1, it holds that f (t, Vs2) ≥ f (t, Vs1) ∀t ∈

[
0, πR0

2Vs1

]
. Since ∂f (t,Vs)

∂Vs
> 0 ∀t ∈

[
0, πR0

2VS1

]
, f (t, Vs) can-

not have minimum points when considered as a function of two variables in the domain of interest.
Therefore, by analyzing the function along the boundary of the feasible domain, that is along the min-
imal Vs satisfying the inequality, we will search for the time at which the expression is minimal. From
this minimal time, we will derive a minimal value for Vs that is denoted by Vc that ensures no escape
after one cycle. The minimal value for Vs that holds for the first sweep will be sufficient for the next
sweeps as well. When the agent formation advances inward toward the center of the evader region, it
traverses a circle with a smaller radius and hence the time takes it to scan this perimeter is shorter when
moving with the same Vs compared to the time it takes it to scan the first cycle. This allows advanc-
ing inward after the completion of a cycle in an amount that will be analyzed later when moving in a
velocity that is greater than Vc. In order to show that the function f (t, Vs) is monotonically increasing in
Vs ∀t ∈

[
0, πR0

2Vs

]
, we show that the function’s derivative is positive for all relevant times.

∂f (t, Vs)
∂Vs

= 2πVT
2

Vs
2 (R0 + r)

(
2πR0

Vs
+ t
)

+ sin
(

Vst
R0

)
t

R0
(12)

The first term is always positive in the domain of interest. The sine function in the second term takes the
values of 0 ≤ sin

(
Vst
R0

)
≤ 1, ∀t ∈ [0, πR0

2Vs
] and is therefore also non-negative in our domain of interest.
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Since the derivative of the function is the sum of a positive term and a non-negative term, it is positive
in the domain of interest and therefore f (t, Vs) is monotonically increasing in Vs for t ∈

[
0, πR0

2Vs

]
.

A plot that shows the behavior of ∂f (t,Vs)
∂t and shows that it is an increasing function in t at the beginning

of the second sweep around the evader region can be seen in Fig. A.1, in Appendix A. The analysis in
the next section will be done for a given Vs, and therefore, f (t, Vs) is analyzed as a function of t. Since
this function decreases for a very short amount of time before starting to increase, we are looking for
the time t∗ at which the minimum value of f (t, Vs) is attained. From (11), we need f (t, Vs) to be positive
for all times in order to guarantee no evasion. The times of interest, recall, are from,

0 ≤ t ≤ πR0

2Vs
(13)

Theorem 4. The function f (t, Vs) reaches its minimum at time t∗(Vs), where t∗(Vs) is given by,

t∗(Vs) =
√

−b − √
b2 − 4ac

2a
− 2πR0

Vs
(14)

Where the coefficients a, b, c are given by,

a = k2VT
4, b = l − 2k2r2VT

2 − 2kVT
2, c = 2kr2 + k2r4 (15)

With k, l given by,

k = 1
2R0(R0 + r)

, l = VT
4

Vs
2(R0 + r)2 (16)

For proof see Appendix A. ∂f (t,Vs)
∂t has a zero crossing point in the domain t ∈

[
0, πR0

2Vs

]
, as shown

in Appendix M. At t∗(Vs), where ∂f (t,Vs)
∂t crosses zero, f (t, Vs) turns from descending to increasing. We

are looking for the time at which this zero crossing of ∂f (t,Vs)
∂t occurs. After obtaining, t∗(Vs), where

f (t, Vs) is minimal for any choice of Vs, we wish to find the minimal Vs in which (11) is satisfied with
equality, that is we wish to find the value of Vs in which f (t∗(Vs), Vs) = 0. This yields the minimal or
critical Vs that enables to complete the confinement task successfully. Plugging the values of r = 10,
VT = 1, and R0 = 100 results in f (t∗, Vs 1 cycle) = −1.047 ∗ 10−6 < 0. This can be observed in Fig. A.2
in Appendix A, as well as in Fig. 6, where the blue plot shows f (t∗, Vs 1 cycle). This validates our proof
that there exists a set of search parameters for which Vs 1 cycle is not sufficient. Note that if we have
t∗(Vs), we can write f (t∗(Vs), Vs) = F(Vs), and this expresses the minimal value of f (t∗, Vs) at its critical
minimal point. This derivation yields expressions that do not allow an analytical solution for Vs; however,
using numerical methods, we can find a critical velocity that satisfies |f (t∗, Vs)| ≤ ε, for an arbitrarily
infinitesimal choice of tolerance parameter ε. Selecting a specific ε ensures that

∣∣f (t∗, Vs bisection)
∣∣≤ ε

and therefore ∀ t, f (t, Vs bisection) + ε ≥ 0. The proof, description of the method and informative plots
that show the applicability of the method are given in Appendix C. If we wish to develop an analytical
solution for the critical Vs, we will need to use some approximations. Choosing Vs 1 cycle results in a value
of f (t∗, Vs 1 cycle) which is slightly less than 0 for all choices of parameters. Another method that will be
explained and derived yields a sweeper velocity, denoted by Vc, that results in a value of f (t∗, Vc) which
is slightly greater than 0 for all choices of parameters. After developing Vc, we can apply a bisection
method around Vs 1 cycle and Vc and obtain a velocity that results in a value of f (t∗, Vc) that is close to 0 with
any desired accuracy. Figure 6 shows f (t, Vs) for various choices of Vs. It can be seen that as Vs increases
above a certain velocity, f (t, Vs) is always positive. Velocities where f (t, Vs) ≥ 0 for all relevant times
ensure a guaranteed no escape search for all possible evader trajectories satisfying a maximal evader
velocity of VT .
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f (t,Vs) for Various Choices of Vs
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Figure 6. f (t, Vs) for various choices of Vs. It can be seen that as Vs increases above a certain velocity,
f (t, Vs) is always positive. Velocities where f (t, Vs) ≥ 0 for all relevant times ensure a guaranteed no
escape search for all possible evader trajectories satisfying a maximal evader velocity of VT . The blue
function represents f (t, Vs 1 cycle). The two other plots represent values of f (t, Vs) for higher values of Vs,
namely Vs 1 cycle < V2 < V3. The chosen values of the parameters are r = 10, VT = 1 and R0 = 100.

7. The circular sweep process analysis

Since it is not possible to analytically solve for the critical velocity, Vs, that satisfies f (t∗(Vs), Vs) = 0,
we propose a method to derive a slightly larger critical velocity that has a simpler form and allows exact
calculations of the search times. Previously, we tried to find the tightest lower bound on the searcher’s
velocity by constructing a function of 2 variables f (t, Vs), by demanding that the furthest possible spread
of the evader region will be cleaned by the furthest tip of the formation’s line sensor. A lesser requirement
is to demand that by the time the most problematic point in the evader region, point P, spreads to a
possible circle of radius of r around point P, the searcher formation completes in addition to a full
sweep around the evader region an additional angular traversal that is proportional to traversing an arc
of length r. This means that the agent formation travels an angle of 2π + β where β is marked in Fig. 7.
We denote the time it takes the most problematic point, point P, to spread a distance of r as Te. We have
that Te = r

VT
. We can see from Fig. 7. that sin β = r

R0
; therefore, β = arcsin r

R0
. The time it takes the

formation to travel an angle of 2π + β is therefore given by Ts = (2π+arcsin ( r
R0

))R0
Vs

. In order to guarantee
no escape, we demand that Ts ≤ Te. Therefore, rearranging terms in the previous equation and plugging
Te instead of Ts, we get that,

Vc ≥
(
2π + arcsin

(
r

R0

))
R0VT

r
(17)

The lower bound on a sweeper velocity that ensures confinement is obtained when we have equal-

ity in (17), that is VcLB =
(
2π+arcsin

(
r

R0

))
R0VT

r . For R0 = 100, r = 10, VT = 1, VcLB = 63.8335. In future
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Figure 7. Geometric representation of the critical velocity calculation that results in a simpler criti-
cal velocity expression. The simplified expression for the critical velocity bounds the previously found
critical velocity from above for all choices of geometric parameters. Red areas indicate locations where
potential evaders may be located. The green circle denotes a spread of potential evaders to a circle of
radius r around the most problematic point P during a traversal of 2π + β around the evader region,
where β = arcsin r

R0
.

derivations, we use the first-order Taylor approximation for the arcsine function in (17), in order to
enable the construction of analytical results for the sweep times of the evader region. Such an approxi-
mation is valid since in all practical scenarios, the ratio between r

R0
is sufficiently small. Applying this

approximation to (17) allows us to define Vc, the chosen critical velocity, given by,

Vc = 2πR0VT

r
+ VT (18)

Theorem 5. For all search parameters, VT , R0, r, satisfying that R0 ≥ r it holds that f (t∗(Vc), Vc) ≥ 0.
Therefore, it holds that for all t, f (t, Vc) ≥ 0. Thus, Vc is a sufficiently high velocity in order to accomplish
the confinement task.

For proof see Appendix B. Due to the mentioned geometric considerations, it holds that for all search
parameters satisfying that R0 ≥ r f (t∗(Vc), Vc) > 0. Therefore, it holds that ∀ t, f (t, Vc) ≥ 0. Thus, Vc is
a sufficiently high velocity in order to accomplish the confinement task. In order for the sweeper agent
formation to advance inward toward the center of the evader region, it must travel in a velocity that is
greater than the critical velocity. We denote by �V > 0 the increment in the sweeping agents velocity
that is above the critical velocity. Each agent’s velocity Vs is therefore given by the sum of the critical
velocity and �V , namely Vs = Vc + �V .

Theorem 6. For a line formation of agents that performs the circular sweep process, the number of
iterations it will take the formation to reduce the evader region to be bounded by a circle with a radius
that is less than or equal to r is given by,

N =
⎡⎢⎢⎢

ln
(

2πrVT −r(Vs−VT )

2πR0VT −r(Vs−VT )

)
ln
(
1 + 2πVT

Vs+VT

)
⎤⎥⎥⎥ (19)
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We denote by Tin the sum of all the inward advancement times and by Tcircular the sum of all the circular
traversal times. The time it takes the swarm to reduce the evader region to be bounded by a circle with
a radius that is less than or equal to r is given by, T = Tcircular + Tin. Tin is given by,

Tin = R0

Vs
+
(

1 + 2πVT

Vs + VT

)N−1 (2πR0VT − r(Vs − VT )

Vs (Vs + VT )

)
(20)

And Tcircular is given by,

Tcircular = −R0(Vs+VT )

VsVT
+ r(Vs−VT )(Vs+VT +2πVT N)

2πVsVT 2

+
(
1 + 2πVT

Vs+VT

)N ( 2πR0VT −r(Vs−VT )

VsVT

) (
Vs+VT
2πVT

)
+ 2πr

Vs

(21)

Proof. The distance a line formation of sweepers can advance inward after completing an iteration is
given by,

δi(�V ) = r − VT�Ti − VT Ta = r(Vs − VT ) − 2πRiVT

Vs
(22)

Where in the term δi(�V ), �V denotes the increase in the agent velocity relative to the critical velocity,
and i denotes the number of sweep iterations the sweeper performed around the evader region, where i
starts from sweep number 0, and �T = 2πRi

Vs
. Since in (17), we construct Vs based on a sweeper move-

ment of an angle of 2π + β and we wish that the formation will advance inward toward the center of
the evader region after a sweep of 2π ; the distance it can advance has to account for the additional time,
denoted by Ta, that it takes it to traverse an additional angle of β. This time is given by,

Ta =
arcsin

(
r
Ri

)
Ri

Vs
≈ r

Vs
(23)

Where the last equality results from a first-order Taylor approximation of the arcsine. During Ta, the
evaders continue to spread with a velocity of VT and therefore the distance the sweeper can advance
decreases by VT Ta. The time it takes the formation to move inward until half its sensor length is over the
evader region depends on the relative velocity between the agents inward entry and the evader region out-
ward expansion. Therefore, the distance the formation can advance inward after completing an iteration
is given by,

δieff (�V ) = δi(�V )
(

Vs

Vs + VT

)
(24)

δieff (�V ) is a monotonically increasing function in i. The inward advancement time is denoted by Tini
and is given by,

Tini = δieff (�V )
Vs

= r(Vs − VT ) − 2πRiVT

Vs (Vs + VT )
(25)

Where the index i in Tini denotes the iteration number in which the advancement is done. Thus, the new
radius of the circle that will bound the evader region is given by

Ri+1 = Ri − δieff (�V ) = Ri − r(Vs − VT ) − 2πRiVT

Vs + VT
(26)

After rearranging terms we obtain and defining the coefficients c1 and c2 as,

c1 = − r(Vs − VT )

Vs + VT
, c2 = 1 + 2πVT

Vs + VT
(27)

(26) takes the form of,

Ri+1 = c2Ri + c1 (28)
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The construction of this difference equation enables to calculate the number of iterations, N , it takes the
formation to reduce the evader region to be contained in a circle with the radius of the last scan, R̂N = r.
The full derivation can be found in Appendices D and E. N is given by,

N =
⎡⎢⎢⎢

ln
(

2πrVT −r(Vs−VT )

2πR0VT −r(Vs−VT )

)
ln
(
1 + 2πVT

Vs+VT

)
⎤⎥⎥⎥ (29)

The total time it will take the formation to completely detect all evaders is given by total time of inward
advancements combined with the times it takes the formation to complete the circular traversals of the
evader region in all cycles. We denote by Tin the sum of all the inward advancement times and by Tcircular
the sum of all the circular traversal times. Namely we have that, T = Tin + Tcircular . We denote the total
advancement time until the evader region is bounded by a circle with a radius that is less than or equal to

r as T̃in. It is given by, T̃in =
Nn−2∑
i=0

Tini . Since during the inward advancements, only the tip of the sensor,

that has zero width, is inserted into the evader region, it does not detect any evaders until it completes
its inward advance and starts sweeping again. After the formation completes its advance into the evader
region, its sensor footprint over the domain is equal to r. The total search time until the evader region
is bounded by a circle with a radius that is less than or equal to r is given by T̃ = T̃in + T̃circular . Using
the developed term for Tini , the total inward advancement times until the evader region is bounded by a
circle with a radius that is less than or equal to r are computed by,

T̃in =
N−2∑
i=0

Tini = (N − 1) r(Vs − VT )

Vs (Vs + VT )
−

2πVT
N−2∑
i=0

Ri

Vs (Vs + VT )
(30)

We note that the first inward advancement occurs when the evader region is bounded by a circle of
radius R0 and the last inward advancement occurs at iteration number N − 2, which describes the inward
advancement in which the evader region transitions from being bounded by a circle of radius RN−2 to
being bounded by a circle of radius RN − 1 . After iteration N − 1, the evader region is confined to a
circle with a radius that is less than or equal to r and the agents perform the last circular sweep. The full
derivation of T̃in can be found in Appendix K. This derivation yields that,

T̃in =
N−2∑
i=0

Tini = − r(Vs − VT )

2πVT Vs
+ R0

Vs
−
(

1 + 2πVT

Vs + VT

)N−1 (2πR0VT − r(Vs − VT )

2πVT Vs

)
(31)

In order to calculate Tin, we must add the last inward advancement. This time is given by Tinlast = RN
Vs

and is developed in Appendix K. Tin is given as Tin = T̃in + Tinlast and therefore yields,

Tin = R0

Vs
+
(

1 + 2πVT

Vs + VT

)N−1 (2πR0VT − r(Vs − VT )

Vs (Vs + VT )

)
(32)

The total circular traversal times are computed from by multiplying the recursive radii equation Ri+1 =
c2Ri + c1 on both sides by 2π

Vs
and developing recursive formulas for the sweep times. The formulas are

proved in Appendices G and H. The initial circular traversal time is given by, T0 = 2πR0
Vs

. The last circular
traversal time before the evader region is bounded by a circle with a radius that is smaller or equal to r,
denoted by RN , it is developed in a similar manner to the derivation of RN−2 in Appendix F. T̃circular is
given by,
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T̃circular = − R0 (Vs + VT )

VsVT
+ r(Vs − VT ) (Vs + VT + 2πVT N)

2πVsVT
2

+
(

1 + 2πVT

Vs + VT

)N (2πR0VT − r(Vs − VT )

VsVT

)(
Vs + VT

2πVT

)
(33)

The last circular sweep occurs after the sweeper formation advances toward the center of the evader
region and places the lower tip of its sensor at the center of the evader region. The last circular sweep is
therefore a circular sweep with a radius of r. The time it takes the sweepers to complete it is given by,
Tlast = 2πr

Vs
. Therefore, the total time of circular sweeps until the evader region is bounded by a circle

with a radius that is less than or equal to r is given by,

Tcircular =T̃circular + Tlast = −R0 (Vs + VT )

VsVT
+ r(Vs − VT ) (Vs + VT + 2πVT N)

2πVsVT
2

+
(

1 + 2πVT

Vs + VT

)N (2πR0VT − r(Vs − VT )

VsVT

)(
Vs + VT

2πVT

)
+ 2πr

Vs
(34)

An analysis can be performed in order to view the implications of having different ratios between the
sensor length and the initial evader region radius on the number of iterations and the times it takes to
reduce the evader region to be bounded by a circle with a radius that is less than or equal to r. We will
assume that R0 can be expressed as

R0 = αr, α > 1 (35)

In Fig. 8, we can view the number of iterations and cleaning times of the sweep process until the evader
region is bounded by a circle with a radius that is less than or equal to r, for 1 < α ≤ 100. From Fig. 8,
we can view that as α increases, N and T increase in a close to linear manner. This is not intuitive when
looking at the equations that are derived for N and T . Another interesting analysis can be done in order
to view the implications of different choices of �V on the number of iterations and sweep times of the
cleaning process. From Fig. 9, We can view that as �V increases, N and T decrease in a piecewise
exponential manner. This result can be anticipated since the number of iterations has to be an integer
number. This results in that for close values of �V , the number of iterations stays the same as for a
slightly smaller value of �V . Only when �V is sufficiently large in order to cause the iteration number
to decrease by a number that is greater than 1 iteration, this result will be apparent in the plot.

8. The end game

In order to entirely clean the evader region, the sweeper formation needs to change the scanning method
when the evader region is bounded by a circle of radius r. This is due to the fact that a smart evader
that is very close to the center of the evader region can travel at a very high angular velocity compared
to the angular velocity of the searcher. This constraint is described by the following two equations,
ωs = Vs

r , ωT = VT
ε

. The first describes the searcher’s angular velocity and the second the evader’s angular
velocity. Since ε can be arbitrarily small, the evader can move just behind the sweeper’s sensor and never
be detected. Thus, a slight modification to the sweep process needs to be applied in order to clean the
entire evader region with the line formation of agents that employs a circular scan. After completing
sweep number N − 1, the sweepers move toward the center of the evader region until the lower tip
of the sensor of the closest agent to the center of the evader region is placed at the center of the evader
region. Following this motion, the sweepers perform a circular sweep of radius r around the center of the
evader region. The time this last circular sweep takes is given by Tlast = 2πr

Vs
. Following this last scan, the

sweepers advance a distance of r downward until the lower tip of the formation’s sensor is located at
the point (0, −r). The time it takes the sweeper to perform this movement is given by, Tl = r

Vs
. Therefore,
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Figure 8. Number of iterations and cleaning times for 1 < α ≤ 100 for a single agent or alternatively a
line formation of agents employing the circular sweep process. The chosen values of the parameters are
VT = 1, �V = VT .

after the last circular scan and the last inward motion, the evader region is bounded by a circle of radius
Rlast , given by,

Rlast = TlastVT + TlVT = rVT (2π + 1)

Vs
(36)

For R0 = 100, r = 10, VT = 1, Vs = 64.8319, Rlast = 1.1234. In order to overcome the challenges in the
circular search that were described, we propose that after scan number N + 1, the agent line formation
will travel to the right until cleaning the wave front that propagates from the right portion of the remain-
ing evader region and then travel to the left until cleaning the remaining evader region. A depiction of
the scenario at the beginning of the end game is presented in Fig. 10. Theorem 7 states the conditions
for this demand to hold.

Theorem 7. When defining α = R0
r , if �V satisfies that,

�V ≥ −2παVT + πVT + VT + VT
√

π2 + 6π + 7 (37)

then the evader region will be completely cleaned by a single agent or a line formation of agents that
employs the linear scan after N + 1 iterations.

Proof. During the previously mentioned movement, the margin between the tip of the sensor in each
direction and the evader region boundaries must satisfy,

r − Rlast

VT
> Tone (38)
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Figure 9. Number of iterations and cleaning times for different choices of �V for a single agent or
alternatively a line formation of agents employing the circular sweep process. In this simulation, �V
varies between 0.1VT ≤ �V ≤ 10VT . The chosen values of the other parameters are VT = 1, R0 = 100
and r = 10.

in order to guarantee no escape. Tone denotes the time it takes the linear formation to clean the right
section of the remaining evader region in addition to the time it takes it to scan from the rightmost
point it got to until the leftmost point of the expansion. These times are, respectively, denoted as t and
t̃. Therefore, Tone is given by Tone = t̃ + t. The evader region’s rightmost point of expansion starts from
the point (Rlast , 0) and spreads at a velocity of VT . Therefore, if the constraint in (38) is satisfied, we
can view the rightward and leftward linear sweeps as a one-dimensional scan. This geometric constraint
can be observed in Fig. 10. Therefore, the time t it takes the formation to clean the spread of potential
evaders from the right section of the region can be calculated from, Vst = Rlast + VT t. Therefore, t is
given by, t = Rlast

Vs−VT
. t̃ is computed by calculating the time it takes the linear formation located at point

(tVs, 0) to change its scanning direction and perform a leftward scan to a point that spread at a velocity
of VT from the leftmost point in the evader region at the origin of the search, the point (− Rlast , 0), for
a time given by t̃ + t. We have that, −Rlast − VT

(
t̃ + t

)= tVs − Vst̃. Plugging in the value of t yields
t̃ = 2VsRlast

(Vs−VT )2
. Tone is therefore given by,

Tone = t + t̃ = r2VT (2π + 1) (6πR0VT + 3�Vr + 2VT r)
Vs(2πR0VT + �Vr)2 (39)

For R0 = 100, r = 10, VT = 1, Vs = 64.8319, t = 0.0176, t̃ = 0.0358, and Tone = 0.0533. Therefore, the
total scan time until a complete cleaning of the evader region is given by Ttotal = T + Tone = 349.3854.
For the one-dimensional scan to be valid and ensure a non escape search and complete cleaning of the
evader region, (38) must be satisfied. This demand implies that,
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Figure 10. Depiction of the linear right and left last sweep. The sweepers’ sensors are shown in green,
and red areas indicate locations where potential evaders may still be located. In order to overcome the
challenges in the circular search that were described, we propose that after scan number N + 1, the line
formation of agents will travel to the right until cleaning the wavefront that propagates from the right
portion of the remaining evader region and then travel to the left until cleaning the remaining evader
region.

r − Rlast

VT
>

Rlast (3Vs − VT )

(Vs − VT )2 (40)

From substitution of the expressions for Vs and Rlast , (40) can be written as,

r(Vs − VT )2 > RlastVs (VT + Vs) (41)

By substitution of R0 with αr where α > 1 and by substituting the terms for Vs and Rlast , (41) resolves
to a quadratic equation in �V that has only one positive root. This root is a monotonically decreasing
function in α, given by

�V ≥ −2παVT + πVT + VT + VT
√

π2 + 6π + 7 (42)

Therefore, for a given α, the designer of the sweep process can infer which �V needs to be chosen
in order to completely clean the evader region using the final linear sweeping motion.

The left plot of Fig. 11 shows the complete cleaning times of the evader region with a linear formation
as a function of �V . The right plot emphasizes that most of the cleaning times are due to circular
sweeping motions and that the inward advancement times have only a small effect on the total search
time. For a complete derivation see Appendix J.

Theorem 8. For a valid circular search process the total scan time until a complete cleaning of the
evader region is given by, T = Tcircular + Tin + Tone, or as,

T = − R0(Vs + VT )

VsVT
+ r(Vs − VT )(Vs + VT + 2πVT N)

2πVsVT
2

+
(

1 + 2πVT

Vs + VT

)N−1
((

(2πR0VT − r(Vs − VT ))
(
Vs

2 + VT
2 + 2VsVT + 2πVT Vs + 4πVT

2)
2πVsVT

2 (Vs + VT )

))

+ 2πr
Vs

+ R0

Vs
+ r2VT (2π + 1)(6πR0VT + 3�Vr + 2VT r)

Vs(2πR0VT + �Vr)2 (43)
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Figure 11. The left plot shows the complete cleaning times of the evader region with a linear formation
that performs the circular sweep process as a function of �V. The right plot shows the ratio between
the circular and inward advancement times during the sweep process.

9. Toward application in physical robotics systems

The sweep protocols presented in the previous sections can be implemented and applied in practi-
cal robotics systems. However, beforehand, several possible challenges need to be addressed. These
include coordination between sweepers in the line formation, handling limitations and imperfections
of the sweepers’ sensors, reacting to the presence of obstacles in the environment, and addressing the
difficulties of sweepers in maintaining a constant speed throughout the sweep.

In order to allow a line formation of sweepers to perform the proposed search protocols, coordina-
tion between the sweepers is required in order to maintain the line formation along the entire sweep.
Such coordination can be achieved if all sweepers are identical, move at the same speed, and each
sweeper keeps the distance from its adjacent sweepers in the formation using a constant spacing con-
troller. Obviously, in case only a single sweeper with a linear sensor performs the search protocols, no
coordination issues will limit the application of such protocols.

Physical robotic sweepers can utilize various types of on-board sensors to detect evaders. Actual real-
world sensors suitable for surveillance, monitoring and detection tasks include sensors such as visible
light cameras, infrared cameras, and RADARs. Visible light sensors are clearly the preferred choice due
to their low cost and high resolution; however, they are limited at night time, a drawback that can be
mitigated by using more expensive IR sensors. Radars, on the other hand, are not limited by lighting
or adverse weather conditions (rain, snow, fog); however, they suffer from inferior resolution compared
to video sensors. The limitations and imperfections of the sweepers’ sensors may result in failure to
detect evaders in the field of view of the sweeper’s sensor or alternatively in false alarm detections of
non-existing evaders. In order to alleviate these limitations and enable usage of practical sensors in the
proposed sweep protocols, the theoretical assumption made in the paper, that assumes that whenever an
evader is in the field of view of the searcher’s sensor, it is detected with probability 1, needs to be updated.
A more realistic model would be a model which is based on the statistics of the detection process and the
environmental conditions. Existing computer vision and machine learning algorithms address detection
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and tracking tasks and could be applied on-board the sweepers to detect evaders. Therefore, after a
realistic sensor model is incorporated into the sweep process, the path to deployment is facilitated.

The presence of obstacles in the environment might require a modification to the sweep process. In
case, the search process is a 3-dimensional search where sweepers fly over the evader region, obstacles
do not impact the sweep process. In case, the search process is a 2-dimensional search where agents
travel on a plane, obstacles’ geometry, nature (dynamic or static), and a priori knowledge of obstacle
information to either sweepers, evaders or both, are all likely to require considerable adjustments to the
sweep process. Optimally adapting the sweep process to guarantee detection of all evaders in such more
complex environments depends on the specific scenario’s details.

A possible solution to the physical inability of sweepers to move at a fixed speed throughout the entire
search can be achieved by introducing a tuneable robustness parameter that compensates for the agents’
inability to move at a constant speed. Such robustness parameter allows a margin between the evader
region boundaries and the tip of the line formation’s sensor. This margin comes at the expense of permit-
ting the agents to advance a smaller distance into the evader region after each iteration. Such a method
may also compensate for the assumed simplified model where agents can change their directions of travel
instantaneously in the planar sweep scenario, thereby accommodating more realistic physical sensor
motion models.

10. Conclusions

This research analyses a scenario in which a line formation of agents, or alternatively a single agent,
prevents escape from an initial circular area containing evaders that must be detected. We prove inter-
esting and nonintuitive results on how to determine the minimal velocity a sweeper agent should have,
in order to ensure confinement of all smart evaders to their original domain. We prove that the mini-
mal searcher velocity preventing escape from the evader region cannot be solely based upon a single
circular traversal around the evader region. We compare this critical velocity to a lower bound derived
on the velocity, that is independent of the search process. We then show that for the line formation of
agents, it is impossible to completely clean the area using only a circular sweeping motion. Therefore,
after the evader region is shrunk and is bounded by a circle with a radius that is less than or equal to
r, a modification to the search process is introduced. We then show that if an additional demand on the
sweeper’s velocity is satisfied, the sweeper formation can completely clean the region using a final linear
scan. Future extensions for this work are to investigate more complex search patterns and to increase
cooperation between the members of the sweeper formation in order to reduce the sweepers’ critical
velocity toward the theoretical lower bound, thus enabling a reduction in the total search time.
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Appendix A
Theorem A.1. The function f (t, Vs) reaches its minimum at time t∗(Vs), where t∗(Vs) is given by,

t∗(Vs) =
√

−b − √
b2 − 4ac

2a
− 2πR0

Vs
(A1)

Where the coefficients a, b, c are given by,

a = k2VT
4, b = l − 2k2r2VT

2 − 2kVT
2, c = 2kr2 + k2r4 (A2)

With k, l given by,

k = 1
2R0(R0 + r)

, l = VT
4

Vs
2(R0 + r)2 (A3)

Proof. We have that,

f (t, Vs) = 1 + 1
2R0(R0 + r)

(
r2 − VT

2
(

2πR0

Vs
+ t
)2
)

− cos
(

Vst
R0

)
(A4)

We denote by M the following expression,

M =
(

2πR0

Vs
+ t
)2

(A5)

Taking the derivative of f (t, Vs) with respect to t yields,

f ′(t) = − VT
2

R0(R0 + r)

(
2πR0

Vs
+ t
)

+ sin
(

Vst
R0

)
Vs

R0
(A6)
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Equating (A6) to 0 in order to find the minimum point of f (t∗, Vs) yields,

sin
(

Vst∗

R0

)
= VT

2

Vs(R0 + r)

(
2πR0

Vs
+ t∗

)
(A7)

Using the trigonometric relation of cos2x + sin2x = 1, we have that,

cos
(

VSt∗

R0

)
=
√

1 − sin2
(

Vst∗
R0

)
(A8)

We substitute the expressions in (A5), (A7), into (A8). This yields,

cos
(

VSt∗

R0

)
=
√

1 − VT
4M

Vs
2(R0 + r)2 (A9)

Therefore, (A4) takes the form of,

f (t∗, Vs) = 1 + k
(
r2 − VT

2M
)

− √
1 − lM (A10)

We desire to find the minimal Vs that results in f (t∗, Vs) ≥ 0. We look for the zero crossing of f (t∗, Vs) and therefore equate (A10)
to 0. This yields that,

1 − lM =
(
1 + k

(
r2 − VT

2M
))2

(A11)

Rearranging terms yields,

1 − lM = 1 + k2
(
r2 − VT

2M
)2 + 2k

(
r2 − VT

2M
)

(A12)

We wish to express (A12) as a quadratic equation in M. Therefore, (A12) takes the form of,

−lM = k2r4 + k2VT
4M2 − 2k2r2VT

2M + 2kr2 − 2kVT
2M (A13)

Rearrangement of terms yields,

k2VT
4M2 + M

(
l − 2k2r2VT

2 − 2kVT
2
)

+ 2kr2 + k2r4 (A14)

We denote the quadratic equation’s coefficients by

a = k2VT
4, b = l − 2k2r2VT

2 − 2kVT
2, c = 2kr2 + k2r4 (A15)

Only the smallest of the equation’s roots, M1, lies in our domain on interest that correspond to times of up to a quarter of a traversal
around the evader region. Therefore, we have that,(

2πR0

VS
+ t∗

)2
= −b − √

b2 − 4ac
2a

(A16)

And the solution for t∗(Vs) is given by,

t∗(Vs) =
√

−b − √
b2 − 4ac

2a
− 2πR0

Vs
(A17)

Using the following values of R0 = 100, r = 10, VT = 1 yields,

k = 1
2R0(R0 + r)

= 1
22, 000

, l = VT
4

Vs
2(R0 + r)2 = 1

1102Vs
2 (A18)

Therefore, f (t, Vs) can be written as,

f (t, Vs) = 1 + 1
22, 000

(100 − M) −
√

1 − 1
1102Vs

2 M (A19)

Equating f (t, Vs) to 0 and rearranging terms yields,

1 − 1
1102Vs

2 M =
(

1 + 1
22, 000

(100 − M)

)2
(A20)

Or,

− 1
121Vs

2 M = 1
4, 840, 000

(100 − M)2 + (100 − M)

110
(A21)
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Figure A.1. Plot of the derivative of f (t, Vs) with respect to time. It can be seen that very close to the start time of the the second
sweep, ∂f (t,Vs)

∂t is negative; hence, f (t, Vs) decreases in this area. After ∂f (t,Vs)
∂t = 0, f (t, Vs) increases. The chosen values of the

parameters are r = 10, VT = 1 and R0 = 100.
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Figure A.2. It can be seen that when basing the critical velocity only upon one cycle the desired inequality of f (t, Vs 1 cycle ) ≥ 0 is
not satisfied for all desired times. The minimum point of f (t, Vs 1 cycle ) occurs at f (t∗, Vs 1 cycle ). The chosen values of the parameters
are r = 10, VT = 1 and R0 = 100.

Further development of terms yields,

− 40, 000M
Vs

2 = 10, 000 − 200M + M2 + 4, 400, 000 − 44, 000M (A22)

Choosing a value of,

Vs = 2πR0VT

r
(A23)
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Figure A.3. Dependence of t∗ on Vs. It can be seen that t∗(Vs) is a monotonically increasing function in Vs and therefore for a
larger Vs that ensures that ∀ t, f (t, Vs) ≥ 0, t∗ will occur later in the search process. The chosen values of the parameters are
r = 10, VT = 1 and R0 = 100.

We can solve for the values of the two solutions of the quadratic equation for M in (A23) given by,

M1 = 100.0023, M2 = 44, 089.844 (A24)

Using the value of M1 and using (A17) yields,

t∗(Vs) = 0.0012 (A25)

Figure A.1 shows that ∂f (t,Vs)
∂t is an increasing function at the beginning of the second sweep around the evader region.

Figure A.2 shows that basing the critical velocity on the naive proposal for a circular search pattern does not lead to satisfaction
of the confinement task. Plugging the values of r = 10, VT = 1, and R0 = 100 results in f (t∗, Vs 1 cycle ) = −1.047 ∗ 10−6 < 0 as can
be observed in Fig. 11. This validates our proof that there exists a set of search parameters for which Vs 1 cycle is not sufficient.
Figure A.3 shows the dependence of t∗ on Vs.

Appendix B
Theorem B.1. For all search parameters, VT , R0, r, satisfying that R0 ≥ r it holds that f (t∗, Vc) > 0. Therefore, it holds that for
all t, f (t, Vc) ≥ 0. Thus, Vc is a sufficiently high velocity in order to accomplish the confinement task.

Proof. We first assume that R0 can be expressed as R0 = αr , where α ≥ 1. Without loss of generality, we assume that VT = 1. In
Section 7, we saw that Vc can be expressed as,

Vc = 2πR0VT + VT r
r

(B1)

Substituting R0 = αr, and VT = 1 into (B1) yields,

Vc = 2πα + 1 (B2)

Vc is a monotonically increasing function in α.

f (t∗, Vc) = 1 + 1
2αr2(α + 1)

(
r2 −

(
2παr

2πα + 1
+ t∗

)2
)

− cos
(

(2πα + 1) t∗

αr

)
(B3)

f (t, Vc) is monotonically decreasing function in α. We prove this by showing that its derivative is negative for all α ≥ 1. The
expression for df (t∗(Vc(α),r),Vc(α))

dα
and its plot are given in Appendix L. The argument inside the cosine function decays to 0 as
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Figure B.1. f (t∗(Vc), Vc) as a function of α. The chosen values of the parameters are VT = 1, r = 1.
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Figure B.2. t∗(Vc) as a function of α. The chosen values of the parameters are VT = 1, r = 1.

alpha increases since t∗ goes to 0 as alpha increases. The second argument in (B3) also tends to 0 as α increases. This behavior
is plotted in Fig. B.1. Therefore, in order to lower bound f (t∗, Vc), we will prove that,

lim
α→∞ f (t∗, Vc) ≥ 0 (B4)

since t∗ is the point in time in which f (t, Vc) is minimal, ensuring that f (t∗, Vc) ≥ 0 guarantees that f (t, Vc) ≥ 0 ∀ t. Following
the notation in the proof of t∗, we have that,

k = 1
2R0(R0 + r)

= 1
2αr2(α + 1)

(B5)

l = VT
4

Vs
2(R0 + r)2 = 1

r2(2πα + 1)2(α + 1)2 (B6)
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The quadratic equation coefficients for the solution of M are given by,

a = k2VT
4 = 1

4α2r4(α + 1)2 (B7)

b = l − 2k2r2VT
2 − 2kVT

2 = 1
r2(2πα + 1)2(α + 1)2

− 1
2α2r2(α + 1)2

− 1
αr2(α + 1)

(B8)

c = 2kr2 + k2r4 = 1
α(α + 1)

+ 1
4α2(α + 1)2 (B9)

Letting α → ∞ we have,

lim
α→∞ a = 1

4α4r4 (B10)

lim
α→∞ b = − 1

α2r2 (B11)

lim
α→∞ c = 1

α2 (B12)

Selecting the root that is in the interval of interest yields,(
2πR0

Vc
+ t∗

)2
= −b − √

b2 − 4ac
2a

(B13)

Letting α → ∞ we have,

lim
α→∞

−b − √
b2 − 4ac

2a
≈ 2α4r4

(
1

α2r2 − 1
α2r2

√
1 − 1

α2

)
(B14)

The Taylor series expression for
√

1 − 1
α2 yields,√

1 − 1
α2 ≈ 1 − 1

2α2 + o
(

1
α2

)
(B15)

We therefore obtain that (B14) satisfies,

lim
α→∞ ≈ lim

α→∞ 2α4r4
(

1
α2r2 − 1

α2r2

(
1 − 1

2α2 + o
(

1
α2

)))
→ r2 (B16)

t∗(Vc) is therefore given by,

t∗(Vc) =
√

−b − √
b2 − 4ac

2a
− 2πR0

Vc
(B17)

Letting α → ∞ yields,

lim
α→∞ t∗(Vc) = lim

α→∞ r − 2παr
2πα + 1

→ 0 (B18)

Taking the limit of α → ∞ on the argument inside the cosine function in f (t∗, Vc) yields,

lim
α→∞

Vct∗

R0
= lim

α→∞
2πα + 1

αr
t∗ → 0 (B19)

Therefore, we obtain that,

lim
α→∞ f (t∗, Vc) = 0 (B20)

This results in the desired behavior that guarantees that,

f (t, Vc) ≥ 0, ∀ t, α ≥ 1 (B21)

Appendix C
In Section 6, we proved that for a sweeper velocity of Vs 1 cycle , f (t∗, Vs 1 cycle ) is slightly less than 0 for all choices of parameters.
In Theorem 5, we proved that for a choice of VC = 2πR0VT +VT r

r , f (t∗, VC) is slightly greater than 0 for all choices of parameters.
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Figure C.1. f (t, Vs) values for Vs = Vs bisection . The black asterisk denotes the appropriate t∗(Vs bisection )
of f (t, Vs bisection ). The chosen values of the parameters are r = 10, VT = 1 and R0 = 100.

We can therefore apply the bisection algorithm between the two velocities. We pick a desired tolerance parameter ε. Clearly,
Vs 1 cycle < VC . We proved that f (t∗, Vs 1 cycle ) < 0 and that f (t∗, VC) > 0 therefore f (t∗, Vs 1 cycle )f (t∗, VC ) < 0.

We initialize l0 = Vs 1 cycle , u0 = VC .
For any k = 0, 1, 2, ... we execute the following steps until the desired accuracy is obtained:

(1) We choose xk = uk+lk
2 .

(2) If f (t∗, lk)f (t∗, xk) > 0, we define lk+1 = xk , uk+1 = uk . Otherwise, we define lk+1 = lk , uk+1 = xk .
(3) If f (t∗, uk+1) − f (t∗, lk+1) ≤ ε then stop, and xk is the output.

Figure C.1 shows a plot of f (t, Vs bisection ). Vs bisection obtained from the bisection method. It can now be observed that for times of
interest

∣∣f (t∗, Vs bisection )
∣∣≤ ε therefore f (t, Vs bisection ) + ε ≥ 0 ∀ t and hence ensures a guaranteed no escape searcher velocity for

all possible evader trajectories satisfying a maximal evader velocity of VT , with the smallest possible Vs.

Appendix D
The number of sweep iterations that are required to reduce the evader region to be bounded by a circle with a radius that is less or
equal to RN is calculated in the following manner. We have that,

Ri+1 = c2Ri + c1 (D1)

Therefore,

RN = c2
N R0 + c1

N−1∑
i=0

c2
i = c2

N
(

R0 − c1

1 − c2

)
+ c1

1 − c2
(D2)

Rearranging terms results in,

RN − c1
1−c2

R0 − c1
1−c2

= c2
N (D3)

Applying the natural logarithm function to both sides results leads to,

ln

(
RN − c1

1−c2

R0 − c1
1−c2

)
= N ln c2 (D4)
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And the general form for the number of iterations it takes the sweeper line formation to reduce the evader region to be bounded
by a circle of a radius that corresponds to the last sweep before completely cleaning the evader region is given by,

N =

⎡⎢⎢⎢⎢⎢⎢
ln
(

RN − c1
1−c2

R0− c1
1−c2

)
ln c2

⎤⎥⎥⎥⎥⎥⎥ (D5)

Appendix E

N =
⌈

1
ln c2

ln

(
R̂N − c1

1−c2

R0 − c1
1−c2

)⌉
(E1)

c1 = − r(Vs − VT )

Vs + VT
, c2 = 1 + 2πVT

Vs + VT
(E2)

c1

1 − c2
= r(Vs − VT )

2πVT
(E3)

Where R̂N = r. We therefore obtain that the number of iterations it takes the line formation of sweepers to reduce the evader region
to be bounded by a circle of radius that is smaller than or equal to r is given by,

N =
⎡⎢⎢⎢

ln
(

2πrVT −r(Vs−VT )
2πR0VT −r(Vs−VT )

)
ln
(
1 + 2πVT

Vs+VT

)
⎤⎥⎥⎥ (E4)

Appendix F
The number of sweep iterations that are required to reduce the evader region to be bounded by a circle with a radius that is less
than or equal to RN−2 is N − 2. RN−2 is calculated in the following manner. We have that,

Ri+1 = c2Ri + c1 (F1)

Therefore,

RN−2 = c2
N−2R0 + c1

N−3∑
i=0

c2
i = c2

N−2
(

R0 − c1

1 − c2

)
+ c1

1 − c2
(F2)

Rearranging terms results in,

RN−2 − c1
1−c2

R0 − c1
1−c2

= c2
N−2 (F3)

Therefore, RN−2 is given by,

RN−2 = c1

1 − c2
+ c2

N−2
(

R0 − c1

1 − c2

)
(F4)

Appendix G
The time it takes a multi-agent line formation that performs the circular sweep process to completely clean the evader region is
calculated as follows. The recursive relation between the next and current radius of the circle that bounds the evader region is
given by,

Ri+1 = c2Ri + c1 (G1)

Suppose that there exists a constant γ such that

γ Ri = Ti (G2)

Therefore, multiplying (G1) by γ on both sides of the equation yields,

Ti+1 = c2Ti + c3 (G3)
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Where c3 is given by,

c3 = γ c1 (G4)

The time it takes to complete the first cycle around the evader region is T0 = γ R0, and the time it takes to complete the last cycle
before the evader region is bounded by a circle of radius r is, that is the time when the evader region is bounded by a circle of with
a greater radius than RN−1 is given by TN−1 = γ RN−1. Summing over the times of all cycles except the initial one is calculated
by summing the cycle times given in (G3). This results in,

N−1∑
i=1

Ti = c2

N−1∑
i=1

Ti + c2(T0 − TN−1) + (N − 1) c3 (G5)

Rearranging terms results in,
N−1∑
i=1

Ti = c2(T0 − TN−1) + (N − 1) c3

1 − c2
(G6)

Since the total time it takes the sweeper swarm to clean the evader region includes also the time of the first sweep we need to add
T0 to the summation as well. Thus, the total time it takes the sweeper swarm to reduce the evader region to be bounded by a circle
of radius that less than or equal to r is given by,

T =
N−1∑
i=0

Ti = T0 − c2TN−1 + (N − 1) c3

1 − c2
(G7)

Appendix H
The time it takes to complete a sweep around the evader region that is bounded by a circle with a radius of RN−1 is calculated in a
similar manner to the calculation in Appendix F. We have that the recursive relation between the time it takes the sweeping agent
to complete sweep number i and the time it takes it to complete sweep number i + 1 is given by,

Ti+1 = c2Ti + c3 (H1)

Therefore,

TN−1 = c2
N−1T0 + c3

N−2∑
i=0

c2
i = c2

N−1
(

T0 − c3

1 − c2

)
+ c3

1 − c2
(H2)

Rearranging terms results in,

TN−1 − c3
1−c2

T0 − c3
1−c2

= c2
N−1 (H3)

Therefore, the time it takes to complete a sweep around the evader region that is bounded by a circle with a radius of RN−1 is
given by,

TN−1 = c3

1 − c2
+ c2

N−1
(

T0 − c3

1 − c2

)
(H4)

Appendix I
The recursive relation between the next and current radius of the circle that bounds the evader region is given by,

Ri+1 = c2Ri + c1 (I1)

Summing over the evader region radii up to the N − 2 cycle except the initial radius of the evader region is calculated by summing
the radii given in (I1). This results in,

N−2∑
i=1

Ri = c2

N−2∑
i=1

Ri + c2(R0 − RN−2) + (N − 2) c1 (I2)

Rearranging terms results in,
N−2∑
i=1

Ri = c2(R0 − RN−2) + (N − 2) c1

1 − c2
(I3)
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Since the sum of radii in (I3) does include the initial radius of the evader region, we need to add R0 to the summation as well.
Thus, the desired sum of radii is given by,

N−2∑
i=0

Ri = R0 − c2RN−2 + (N − 2)c1

1 − c2
(I4)

Appendix J

Vs + VT = 2πR0VT + 2VT r + �Vr
r

(J1)

Vs − VT = 2πR0VT + �Vr
r

(J2)

(2πR0VT + �Vr)2 > VT r(2π + 1) (2πR0VT + 2VT r + �Vr) (J3)

We denote α = R0
r and obtain a quadratic equation in �V .

�V2 + �V (4παVT − 2πVT − 2VT ) + 4π2α2VT
2 − 4π2VT

2α

− 4πVT
2 − 4παVT

2 − 6VT
2 > 0 (J4)

Equation (J4) has a positive and a negative root. Since �V is non-negative, we are interested only in the positive root. Therefore,
in order to completely clean the evader region, �V has to satisfy

�V ≥ −2παVT + πVT + VT + VT
√

π2 + 6π + 7 (J5)

Appendix K
The inward advancement time at iteration i is denoted by Tini . It is given by,

Tini = δieff (�V )
Vs

= r(Vs − VT ) − 2πRiVT

Vs (Vs + VT )
(K1)

The total advancement time until the evader region is bounded by a circle of with a radius that is less than or equal to r is denoted
as T̃in. It is given by,

T̃in =
N−2∑
i=0

Tini = (N − 1) r(Vs − VT )

Vs (Vs + VT )
−

2πVT
N−2∑
i=0

Ri

Vs (Vs + VT )
(K2)

We have that,

RN−2 = c1

1 − c2
+ c2

N−2
(

R0 − c1

1 − c2

)
(K3)

The sum of the radii is given by,
N−2∑
i=0

Ri = R0 − c2RN−2 + (N − 2)c1

1 − c2
(K4)

Where the coefficients c1 and c2 are given by,

c1 = − r(Vs − VT )

Vs + VT
, c2 = 1 + 2πVT

Vs + VT
(K5)

Substitution of terms for the expression of RN−2 in (K3) yields,

RN−2 = r(Vs − VT )

2πVT
+
(

1 + 2πVT

Vs + VT

)N−2 (2πR0VT − r(Vs − VT )

2πVT

)
(K6)

Substitution of terms in (K4) yields,
N−2∑
i=0

Ri = − R0
Vs + VT

2πVT
+ r(Vs − VT )(Vs + VT + 2πVT )

(2πVT )2

+
(

1 + 2πVT

Vs + VT

)N−1 (2πR0VT − r(Vs − VT )

(2πVT )2

)
(Vs + VT ) + (N − 2)r(Vs − VT )

2πVT
(K7)
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We therefore obtain that,

T̃in =
N−2∑
i=0

Tini = − r(Vs − VT )

2πVT Vs
+ R0

Vs
−
(

1 + 2πVT

Vs + VT

)N−1 (2πR0VT − r(Vs − VT )

2πVT Vs

)
(K8)

The last inward advancement is given by,

Tinlast = RN

Vs
(K9)

We have that,

RN = c1

1 − c2
+ c2

N
(

R0 − c1

1 − c2

)
(K10)

Therefore,

RN = r(Vs − VT )

2πVT
+
(

1 + 2πVT

Vs + VT

)N ( 2πR0VT − r(Vs − VT )

2πVT

)
(K11)

Substitution of terms yields,

Tinlast = r(Vs − VT )

2πVT Vs
+
(

1 + 2πVT

Vs + VT

)N (2πR0VT − r(Vs − VT )

2πVT Vs

)
(K12)

The total inward advancement times are therefore given by,

Tin = R0

Vs
+
(

1 + 2πVT

Vs + VT

)N−1 ( 2πR0VT − r(Vs − VT )

Vs (Vs + VT )

)
(K13)

The time it takes the sweeper formation to perform the circular sweeps before the evader region is bounded by a circle with a
radius that is smaller or equal to r is given by,

T̃circular = T0 − c2TN−1 + (N − 1) c3

1 − c2
(K14)

Where the coefficient c3 is given by,

c3 = − 2πr(Vs − VT )

Vs (Vs + VT )
(K15)

The time it takes the sweeper formation to perform the first sweep is given by,

T0 = 2πR0

Vs
(K16)

The time it takes the sweeper formation to perform the last circular sweep is given by,

TN−1 = r(Vs − VT )

VsVT
+
(

1 + 2πVT

Vs + VT

)N−1 ( 2πR0VT − r(Vs − VT )

VsVT

)
(K17)

Therefore, T̃circular is given by,

T̃circular = − R0 (Vs + VT )

VsVT
+ r(Vs − VT ) (Vs + VT + 2πVT N)

2πVsVT
2

+
(

1 + 2πVT

Vs + VT

)N (2πR0VT − r(Vs − VT )

VsVT

)(
Vs + VT

2πVT

)
(K18)

The last circular sweep occurs when the lowest tip of the formation’s sensor is located at the center of the evader region. It is
given by,

Tlast = 2πr
Vs

(K19)

Therefore, the total circular traversal times are given by,

Tcircular = −R0 (Vs + VT )

VsVT
+ r(Vs − VT ) (Vs + VT + 2πVT N)

2πVsVT
2

+
(

1 + 2πVT

Vs + VT

)N ( 2πR0VT − r(Vs − VT )

VsVT

)(
Vs + VT

2πVT

)
+ 2πr

Vs
(K20)
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Appendix L
When denoting the coefficients,

q1 = − 1
α r2 (α + 1)

− 1
2 α2 r2 (α + 1)2 + 1

r2 (2 π α + 1)2 (α + 1)2

+

√√√√( 1
α r2 (α + 1)

+ 1
2 α2 r2 (α + 1)2 − 1

r2 (2 π α + 1)2 (α + 1)2

)2
−

1
α (α+1)

+ 1
4 α2 (α+1)2

α2 r4 (α + 1)2

(L1)

q2 =
1

α (α+1)2
+ 1

α2 (α+1)
+ 1

2 α2 (α+1)3
+ 1

2 α3 (α+1)2

α2 r4 (α + 1)2 − 2
(

1
α r2 (α + 1)

+ 1
2 α2 r2 (α + 1)2 − 1

r2 (2 π α + 1)2 (α + 1)2

)
(

1
α r2 (α + 1)2 + 1

α2 r2 (α + 1)
+ 1

α2 r2 (α + 1)3 + 1
α3 r2 (α + 1)2 − 2

r2 (2 π α + 1)2 (α + 1)3 − 4 π

r2 (2 π α + 1)3 (α + 1)2

)
(L2)

q3 =
q2 +

2
(

1
α (α+1)

+ 1
4 α2 (α+1)2

)
α2 r4 (α+1)3

+
2
(

1
α (α+1)

+ 1
4 α2 (α+1)2

)
α3 r4 (α+1)2

2

√(
1

α r2 (α+1)
+ 1

2 α2 r2 (α+1)2
− 1

r2 (2 π α+1)2 (α+1)2

)2 −
1

α (α+1)
+ 1

4 α2 (α+1)2

α2 r4 (α+1)2

+ 1
α r2 (α + 1)2 + 1

α2 r2 (α + 1)
+ 1

α2 r2 (α + 1)3 + 1
α3 r2 (α + 1)2 − 2

r2 (2 π α + 1)2 (α + 1)3 − 4 π

r2 (2 π α + 1)3 (α + 1)2

(L3)

q4 =
1

α (α+1)2
+ 1

α2 (α+1)
+ 1

2 α2 (α+1)3
+ 1

2 α3 (α+1)2

α2 r4 (α + 1)2 − 2
(

1
α r2 (α + 1)

+ 1
2 α2 r2 (α + 1)2 − 1

r2 (2 π α + 1)2 (α + 1)2

)
(

1
α r2 (α + 1)2 + 1

α2 r2 (α + 1)
+ 1

α2 r2 (α + 1)3 + 1
α3 r2 (α + 1)2 − 2

r2 (2 π α + 1)2 (α + 1)3 − 4 π

r2 (2 π α + 1)3 (α + 1)2

)
(L4)

q5 =
q4 +

2
(

1
α (α+1)

+ 1
4 α2 (α+1)2

)
α2 r4 (α+1)3

+
2
(

1
α (α+1)

+ 1
4 α2 (α+1)2

)
α3 r4 (α+1)2

2

√(
1

α r2 (α+1)
+ 1

2 α2 r2 (α+1)2
− 1

r2 (2 π α+1)2 (α+1)2

)2 −
1

α (α+1)
+ 1

4 α2 (α+1)2

α2 r4 (α+1)2

+ 1
α r2 (α + 1)2 + 1

α2 r2 (α + 1)
+ 1

α2 r2 (α + 1)3 + 1
α3 r2 (α + 1)2 − 2

r2 (2 π α + 1)2 (α + 1)3 − 4 π

r2 (2 π α + 1)3 (α + 1)2

(L5)

q6 =
r
(√

2
√

−α2 r4 (α + 1)2 q1 − 2 π α r
2 π α+1

)
(2 π α + 1)

α2 −
2 π r

(√
2
√

−α2 r4 (α + 1)2 q1 − 2 π α r
2 π α+1

)
α

+
r (2 π α + 1)

(√
2
(
2 α r4 (α+1)2 q1+α2 r4 (α+1)2 q5+α2 r4 (2 α+2) q1

)
2
√

−α2 r4 (α+1)2 q1
+ 2 π r

2 π α+1 − 4 α r π2

(2 π α+1)2

)
α

(L6)

The expression for df (t∗(Vc(α),r),Vc(α))
dα

that shows that f (t∗ (Vc (α) , r) , Vc (α)) is a monotonically decreasing function since
its derivative is negative for all α ≥ 1 in α. It is given by,

df (t∗ (Vc (α) , r) , Vc (α))

dα
= 4 α r4 (α + 1)2 q1 + 2 α2 r4 (α + 1)2 q3 + 2 α2 r4 (2 α + 2) q1

2 α r2 (α + 1)

− sin

⎛⎜⎜⎝ r
(√

2
√

−α2 r4 (α + 1)2 q1 − 2 π α r
2 π α+1

)
(2 π α + 1)

α

⎞⎟⎟⎠ q6 − r2 + 2 α2 r4 (α + 1)2 q1

2 α r2 (α + 1)2 − r2 + 2 α2 r4 (α + 1)2 q1

2 α2 r2 (α + 1)

(L7)
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Figure L.1. Plot of df (t∗(Vc(α),r),Vc(α))
dα

that shows that f (t∗ (Vc (α) , r) , Vc (α)) is a monotonically decreasing function in α;
hence, its derivative is negative for all α ≥ 1.

Appendix M

In this appendix, we prove that ∂f (t,Vs)
∂t has a zero crossing point in the domain t ∈

[
0, πR0

2Vs

]
. The derivative of f (t, Vs) with respect

to the time t is given by,

∂f (t, Vs)
∂t

= − 2πVT
2

(R0 + r)Vs
− VT

2t
R0(R0 + r)

+ sin
(

Vst
R0

)
Vs

R0
(M1)

At the beginning of the second sweep around the evader region at time t = 0, we have that,

∂f (t, Vs)
∂t

∣∣∣∣
t=0

= − 2πVT
2

(R0 + r)Vs
(M2)

When the sweeper completes an additional sweep of π
2 around the evader region after time t = πR0

2Vs
, we have that ∂f (t,Vs)

∂t satisfies,

∂f (t, Vs)
∂t

∣∣∣∣
t= πR0

2Vs

= − 2πVT
2

(R0 + r)Vs
− VT

2

(R0 + r)Vs

π

2
+ Vs

R0
= − 5πVT

2

2(R0 + r)Vs
+ Vs

R0
(M3)

In order to show that ∂f (t,Vs)
∂t

∣∣∣
t= πR0

2Vs

is positive for all considered choices of Vs and therefore ∂f (t,Vs)
∂t has a zero crossing point in

the domain t ∈
[
0, πR0

2Vs

]
we show that,

− 5πVT
2

2(R0 + r)Vs
+ Vs

R0
> 0 (M4)

Rearranging terms yields that,

Vs
2 >

5πVT
2

2R0(R0 + r)
(M5)
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Selecting the positive root yields the following requirement for the sweeper velocity,

Vs > VT

√
5π

2R0(R0 + r)
(M6)

The minimal critical velocity that ensures a successful sweep around the region is selected to be higher than the requirement on
the velocity in (K3) and therefore ∂f (t,Vs)

∂t has a zero crossing point in the domain t ∈
[
0, πR0

2Vs

]
since it has a negative value at the

start of the domain and a positive value at its end.
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