MineAgent: Towards Remote-Sensing Mineral Exploration with Multimodal Large Language Models

Anonymous ACL submission

Abstract

Remote-sensing mineral exploration is critical 002 for identifying economically viable mineral deposits, yet it poses significant challenges for multimodal large language models (MLLMs). These include limitations in domain-specific geological knowledge and difficulties in reasoning across multiple remote-sensing images, 007 further exacerbating long-context issues. To address these, we present MineAgent, a modular framework leveraging hierarchical judging and decision-making modules to improve multi-image reasoning and spatial-spectral in-013 tegration. Complementing this, we propose MineBench, a benchmark specific for evaluating MLLMs in domain-specific mineral exploration tasks using geological and hyperspectral data. Extensive experiments demonstrate the 017 effectiveness of MineAgent, highlighting its potential to advance MLLMs in remote-sensing 019 mineral exploration.

1 Introduction

022

024

Mineral exploration is a systematic geological investigation focused on locating, identifying, and evaluating economically viable mineral deposits (Dentith and Mudge, 2014). It is essential to discover and secure raw materials critical for global infrastructure, technological advancement, and sustainable development (Gocht et al., 2012). Nowadays, remote-sensing satellite imaging studies are widely and effectively used in mineral exploration, offering an efficient, cost-effective alternative to traditional field surveys (Van der Meer et al., 2012; Bedini, 2017; Ousmanou et al., 2024).

In remote-sensing mineral exploration, human experts typically follow: identifying *geological* features from images like faults and fractures, integrating multiple *hyperspectral* images to detect mineralization patterns, and synthesizing these into a mineral prospectivity map (MPM) to predict mineral deposit locations (Sabins, 1999; Shirmard et al., 2022; Zuo et al., 2021). These processes are manual, time-intensive, and reliant on expert knowledge, necessitating automated machine learning and deep learning (DL) solutions for scalability. 041

042

043

044

045

047

049

052

053

055

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

081

To this end, DL models, e.g., CNNs (Alzubaidi et al., 2021; Fu et al., 2023) and Transformers (Yin et al., 2024a), have been widely applied to process remote-sensing (RS) data. These methods excel at extracting features from RS images, mapping geological, geochemical, and geophysical attributes to predict mineral deposits (Yang et al., 2024). However, their data-driven nature makes them reliant on labeled datasets, limiting their generalization to new geological scenarios. In contrast, multimodal large language models (MLLMs) have recently emerged with remarkable zero-shot capabilities, integrating visual and textual contexts to tackle tasks (Muhtar et al., 2024; Zhang et al., 2024c; Wang et al., 2024a) without requiring taskspecific training data (Yin et al., 2024b).

Despite their promise, MLLMs face critical challenges when applied to mineral exploration with multiple RS images: they lack domain-specific geological knowledge (Zhang et al., 2024b) and struggle to reason effectively across multiple images (Liu et al., 2024b; Zhao et al., 2024). What's worse, domain-specific instructions (e.g., thousands of tokens) and multi-image inputs (e.g., 9 images) exacerbate the challenge by long-context issues that hinder reasoning accuracy (Liu et al., 2024c). For example, Figure 1(a) highlights how MLLMs struggle with critical spatial elements like the strategic placement of low-value areas (blue). besides, in Figure 1(b), MLLMs demonstrate significant difficulty in synthesizing spatial relationships across multiple geological contexts.

To circumvent the challenges of domain-specific knowledge integration and multi-image reasoning in mineral exploration, we propose MineAgent, a modular MLLM framework specifically designed to address these complexities (Figure 3).

Figure 1: Judgment comparisons between GPT-40 (OpenAI, 2024) and human evaluator. GPT-40 in blue box and humanannotation in red box. In (b), yellow boxes highlight regions and their spatial relations identified by the human but not GPT-40.

MineAgent employs hierarchical judging and decision-making modules to extract, integrate, and analyze spatial and spectral features from remote-sensing data. By considering the commonpractice pipeline and orchestrating these modules, MineAgent enhances reasoning capabilities across geological and hyperspectral contexts, enabling accurate deposit predictions.

084

101

103

104

105

106

107

109

110

111

Moreover, we present MineBench, a benchmark for multimodal mineral exploration tasks. It standardizes task formulations and datasets, enabling rigorous evaluation of MLLMs in reasoning over domain-specific remote-sensing data. MineBench provides a unique challenge to MLLMs where both multi-image reasoning and long-tail domain understanding are required to accomplish one task. The main contributions of this work are:

- We propose MineAgent, a modular framework addressing domain challenges in multi-image reasoning for mineral exploration.
- We develop MineBench, a standardized benchmark for evaluating MLLMs in mineral exploration with geological and hyperspectral data.
- We conduct extensive experiments¹ across various models and setups, demonstrating MineAgent's effectiveness and providing insights into MLLMs in this domain.

2 Related Work

Multi-image Reasoning of MLLMs. Recent studies have revealed a significant performance

gap between single- and multi-image reasoning tasks (Liu et al., 2024d; Wang et al., 2024b; Jiang et al., 2024; Zhang et al., 2024a; Liu et al., 2024b). For instance, Wang et al. (2024d) highlighted deficiencies in temporal and contextual reasoning across image sequences while Zhao et al. (2024) explored multi-dimensional aspects of multi-image reasoning, such as perception, knowledge integration, reasoning, and multi-hop inference. However, domain-specific tasks, such as those in mineral exploration, pose unique challenges requiring not only multi-image reasoning but also domainspecific knowledge. This motivates us to present MineBench to evaluate MLLMs' reasoning capabilities within a long-tail domain rigorously.

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

135

136

137

138

139

140

141

142

143

Remote Sensing MLLMs. The application of MLLMs in remote sensing has gained traction for tasks like image captioning and visual question answering (Zhan et al., 2023; Cheng et al., 2022; Wang et al., 2021). These models, fine-tuned with extensive visual-text instructions, demonstrate strong performance on single-image tasks (Kuckreja et al., 2024; Zhan et al., 2024; Luo et al., 2024). However, their capabilities remain limited when extended to multi-image reasoning, a critical requirement for mineral exploration tasks that demand integration of spatial and spectral information across multiple images. Furthermore, the lack of standardized datasets tailored to multi-image remotesensing tasks hinders progress in applying MLLMs to domains like mineral exploration. Addressing this gap, we propose a modular MLLM framework,

¹Our codes and data have been uploaded into the system.

Figure 2: Task definition in MineBench. Particularly, a targeted area a is represented by two image types, i.e., $\mathcal{I}_a =$ $\{\mathcal{I}_a^{(\mathrm{g})},\mathcal{I}_a^{(\mathrm{h})}\}$. $\mathcal{I}_a^{(\mathrm{h})}$ are color-coded images where uncolored regions represent sub-threshold potential.

MineAgent, coupled with MineBench.

144

145

146

147

148

149

151

152

153

157

158

159

160

161

162

163

164

MineBench: on Remote-sensing Images 3

The field of mineral exploration currently lacks a well-organized benchmark to evaluate the performance of MLLMs. Existing ones do not capture the unique challenges of integrating geological knowledge with multimodal reasoning. These motivate us to present a new mineral exploration benchmark.

Task Formulation. Mineral exploration enables quantifiable assessments of deposit likelihood, facilitating prioritization of exploration areas, so it is 154 usually formulated as a binary classification prob-155 lem (Alzubaidi et al., 2021; Fu et al., 2023), i.e., 156

$$y \sim P_{\theta}(\mathbf{y}|a) \coloneqq P_{\theta}(\cdot|\mathcal{I}_a) = P_{\theta}(\cdot|\mathcal{I}_a^{(g)}, \mathcal{I}_a^{(h)}) \quad (1)$$

where $y \in \mathcal{Y}$ represents the presence of mineral deposits with $\mathcal{Y} = \{0, 1\}$ in a targeted area a and a can be represented as a set of remote-sensing images, \mathcal{I}^a . In mineral exploration, according to distinct roles and nature of the data, \mathcal{I}^a can be coarsely grouped into two sub-sets, i.e., geological images $(\mathcal{I}_a^{(g)})$ and hyperspectral images $(\mathcal{I}_a^{(h)})$.

Remote-sensing Images in Mineral Exploration. 165 Geological images $(\mathcal{I}_a^{(g)})$, see Figure 2(a)) focus on 166 capturing macroscopic spatial and morphological features, such as landforms, tectonic structures, and geological units, which are critical for identifying 169 large-scale mineralization patterns and structural 170 controls, whereas hyperspectral images ($\mathcal{I}_{a}^{(h)}$, see Figure 2(b)) are designed to capture high-resolution 172 spectral reflectance data across a wide range of 173 wavelengths, enabling the detailed characterization 174 and differentiation of mineral types and their spatial 175 distributions at a pixel-by-pixel level. 176

Data Sourcing and Preprocessing. We utilized raw remote-sensing data from the Geoscience Western Australia (GSWA) repository², an opensource geoscience data source (Portal), to compose MineBench. Although the raw remote-sensing images encompass all necessary information to infer mineral exploration tasks, the raw hyperspectral images, $\mathcal{I}_a^{(h)}$, are not intuitive for visualizing mineralization patterns (Sabins, 1999). This limitation makes it considerably challenging for MLLMs or even humans to identify meaningful deposit signatures directly because such tasks require extensive domain knowledge in mineral exploration to interpret and process the raw data effectively. Therefore, following common practices in mineral exploration (Yazdi et al., 2018; Wambo et al., 2020; Ghamisi et al., 2017), we preprocess the raw hyperspectral images using domain-specific linear combinations to generate three distinct deposit signature images, $\mathcal{I}_a^{(s)}$ (see Figure 2(bottom)). These signature images provide a visually interpretable representation of key features in deposit formation, significantly reducing task complexity for both human experts and automated models. Consequently, MineBench is formulated as

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

199

200

201

202

203

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

221

222

$$y \sim P_{\theta}(\mathbf{y}|\mathcal{I}_a^{(g)}, \mathcal{I}_a^{(s)}).$$
 (2)

More details on data sourcing and preprocessing are provided in Appendix A and B, respectively.

Data Labeling and Sampling. We access the deposit locations directly sourced from authoritative records as class labels³ – 'positive' as y = 1and 'negative' as y = 0. Considering the inherent class imbalance in real-world mineral exploration, a strategic random sampling approach was employed to ensure robust evaluation close to realworld scenarios. The resulting dataset consists of 73 positive areas and 539 negative areas, yielding an \sim 1:9 positive-to-negative ratio, leading to reliable and statistically meaningful evaluations (Hewson et al., 2015; Gonzalez-Alvarez et al., 2020).

Validation of Preprocessing. While preprocessing provides visually interpretable features for mineral exploration, it inherently involves a loss of information due to the linear combinations. To ensure that the processed data retains sufficient detail for deterministic judgments, we also conducted a

²https://data.dea.ga.gov.au/?prefix=ASTER_ Geoscience_Map_of_Australia/

³https://map.sarig.sa.gov.au/

Figure 3: The tailored MineAgent for mineral exploration. (Left) Base pipeline using step-by-step reasoning; (Right) MineAgent decomposing pipeline into specialized modules, improving assessment accuracy.

human evaluation on a subset (20%) of the dataset. To facilitate this evaluation, the deposit signature images, $\mathcal{I}_a^{(s)}$, were further combined into a mineral prospectivity map (MPM), $\mathcal{I}_a^{(mpm)}$, offering a clear and intuitive visualization of potential mineral deposits (Zuo, 2020; Xu et al., 2021). Using the MPM, human experts make judgments upon

$$HumanEval(\cdot | \mathcal{I}_a^{(g)}, \mathcal{I}_a^{(mpm)})$$
(3)

and validated the data by comparing it against official deposit locations. The results (97.4% accuracy) demonstrate that even with MPM, human judgments align well with the provided class labels, confirming the reliability of the preprocessing. Further details on the validation process are provided in Appendix B.4. In the remaining, we omit the subscript *a* for clarity if no confusion is caused.

4 Methodology

230

231

To leverage the capabilities of multimodal large 240 language models (MLLMs) in mineral exploration, 241 we naturally formulate the task as a visual question-242 answering (VQA) problem. Specifically, given remote-sensing images (e.g., $\mathcal{I}^{(g)}$ and $\mathcal{I}^{(s)}$) and 244 a domain-specific query about the presence of a 245 particular mineral deposit, the model generates a response indicating the likelihood of the deposit. 247 This response can then be mapped to a classifica-248

tion label using a predefined verbalizer, i.e.,

$$p \sim \mathcal{M}(\mathcal{I}^{(g)}, \mathcal{I}^{(s)}; \theta),$$
 (4)

where θ parameterizes the MLLM, \mathcal{M} , and o denotes a natural language response with verbalizer.

Despite the simplicity in Eq.(4), the inherent limitations of MLLMs in lacking domain-specific geological knowledge pose significant challenges – they struggle with interpreting complex hyperspectral imaging data and understanding spatial patterns critical for mineral exploration.

4.1 Baseline: Mineral Exploration Pipeline

To alleviate the lack of domain knowledge, we first propose a baseline framework that integrates the conventional mineral exploration pipeline with domain-specific instructions to enhance the understanding and reasoning capabilities of MLLMs. This pipeline emulates the workflow of human experts in mineral exploration by leveraging step-bystep structured prompts and reasoning mechanisms.

Formally, let P denote a curated set of domainspecific prompts tailored for the task. These prompts are carefully designed to encode key domain knowledge and guide the MLLM through sequential reasoning steps. The method can be represented as

$$o^{\text{(pipeline)}} \sim \mathcal{M}(\mathcal{I}^{(g)}, \mathcal{I}^{(s)}; \theta, P),$$
 (5) 274

250

253

254

256

257

259

260

261

262

263

264

265

266

268

271

272

273

where $\mathcal{I}^{(g)}$ and $\mathcal{I}^{(s)}$ represent geological and pro-275 cessed hyperspectral images, and $o^{(pipeline)}$ is the 276 model-generated step-by-step reasoning by following the pipeline instruction P. 278

277

301

302

307

310

311

312

313

314

315

316

Specifically, pipeline instruction P consists of sequential stages that transform raw geological data into actionable insights: Geological Environment 281 Analysis (S_1) analyzes geological images to identify key structural elements, such as faults, crucial for understanding the mineralization environ-284 ment. Local Mineralization Detection (S_2) uses hyperspectral images to detect deposit signatures by examining color variations, providing granular 287 insights into potential mineralization zones. Global Deposit Location Inference (S_3) evaluates spatial 289 correlations among deposit signatures to infer deposit locations based on mineralization patterns. Sequential arrangements with strong spatial continuity suggest the presence of complete deposits. Cross-referencing Validation (S_4) synthesizes findings from S_1 to S_3 to estimate deposit probabilities and accurately identify target exploration areas. Therefore, $o^{(\text{pipeline})}$ can be decomposed as 297

$$o^{\text{(pipeline)}} \coloneqq o^{(s1)} \oplus o^{(s2)} \oplus o^{(s3)} \oplus o^{(s4)} \oplus y, \quad (6)$$

where $o^{(s^*)}$ denotes the rationale and staged judgment generated for the corresponding stage, and yis the final judgment. Note we generate all outputs in $o^{\text{(pipeline)}}$ together in one MLLM inference (see Appendix H for details). As such, this structured pipeline enhances the reliability of mineral exploration by ensuring transparency at every stage.

MineAgent: Orchestrating over 4.2 **Remote-sensing Images**

However, the above is still vulnerable to multiimage reasoning as MLLMs struggle to synthesize spatial and contextual relationships across multiple images and long contexts, leading to incomplete understandings of multiple remote-sensing images for mineral exploration. Therefore, we propose an agent framework, MineAgent, that decomposes the exploration process into modular components.

4.2.1 General MineAgent Framework

MineAgent focuses on two core kinds of modules 317 to enhance its reasoning capabilities: judging and 319 decision-making, as shown in Figure 4. While a judging module specializes in extracting specific features from remote-sensing images (e.g., geological structures or spectral mineralization signatures), a decision-making module is designed for 323

Figure 4: A general framework of MineAgent.

a specific task to integrate these features to perform high-level reasoning tasks, such as inferring mineral deposit likelihood or validating predictions across diverse datasets.

324

325

326

327

328

329

330

332

333

334

335

336

337

338

339

340

341

342

344

345

346

347

348

349

350

351

352

354

355

356

357

358

360

Judging Modules in Hierarchy. A judging module operates with two types of inputs to maintain focus and robustness in feature extraction, i.e.,

$$c \sim \mathcal{J}(\mathcal{I}, \mathcal{C}; \theta)$$
, where $\mathcal{C} = \{c_i\}_{i=0}^N$. (7)

The first type of input includes one or a few singlecategory remote-sensing images, \mathcal{I} , such as geological or hyperspectral images, ensuring that the module specializes in analyzing a specific feature (e.g., structural patterns or deposit signatures). The second type of input comes from the outputs, C, of other judging modules, enabling a hierarchical structure. And either of them is optional. This setup allows for cross-image reasoning and intermediate result validation, effectively integrating insights from multiple sources. By focusing on specific features while facilitating inter-module communication, this approach circumvents the challenges of multi-image reasoning in complex mineral exploration tasks.

Communication Protocol. A well-defined communication protocol is critical for ensuring efficient information exchange between modules. Each module in MineAgent communicates using a semistructured output format,

$$c_i = \{s_i, a_i, e_i\},\tag{8}$$

where s_i is a numerical score reflecting the module's confidence or evaluation, a_i represents the identified favorable areas or features, and e_i provides an analytical explanation or rationale behind the module's output. s_i is determined based on a detailed scoring guide, ensuring consistency.

Decision-making Modules Specific to Tasks. A decision-making module is invoked to integrate

Tool Type	Module Type	Captured Feature	Inp. Imgs (\mathcal{I})	Inp. Ref (\mathcal{C})	Output	Stage
Geological Tool	Judging	Geological context	${\cal I}^{({ m g})}_a$	N/A	c_1	S_1
	Judging	Signature 1	$\mathcal{I}^{(s)}$	N/A	c_2	S_2
Hyperspetral Tools	Judging	Signature 2	${\cal I}^{({ m g})}_a$	N/A	c_3	S_2
	Judging	Signature 3	${\cal I}^{({ m s})}_a$	N/A	c_4	S_2
Cores image Tools	Judging	Relation between signatures	$\mathcal{I}^{(s)}$	$c_2 - c_4$	c_5	S_3
Corss-Image Tools	Judging	Validation between $\mathcal{I}_a^{\rm (g)}$ and $\mathcal{I}_a^{\rm (s)}$	${\cal I}^{ m (g)}_a, {\cal I}^{ m (s)}_a$	$c_1 - c_5$	c_6	S_4
Deposit Presence Tool	Decision-making	Response of deposit presence	N/A	N/A	o ^(dm)	N/A

Table 1: Tools in MineAgent tailored for mineral exploration. 'Inp.' denotes the model inputs in Eq.(7).

multiple structured outputs from the judging modules to derive high-level insights and outputs for a
specific task. Formally, this task-specific module is
written as

367

371

374

375

376

388

393

398

$$o^{(\mathrm{dm})} \coloneqq \mathcal{D}(\mathcal{C}; \theta), \tag{9}$$

The module takes a set of assessment tuples $C = \{c_1, c_2, \ldots, c_M\}$ as input and outputs $o^{(dm)}$, the final decision, along with a confidence score or feedback to guide downstream processes.

Thus, MineAgent orchestrates the exploration process by integrating judgments from hierarchical judging modules and decisions from task-specific decision-making modules, ensuring robust multiimage reasoning and high-confidence answers.

4.2.2 Grounding for Mineral Exploration

As we have a mature pipeline for mineral exploration with remote-sensing images according to human experts, we apply a workflow-based paradigm (Li et al., 2024) to our agent framework for mineral exploration.

To ground the MineAgent, we propose multiple tools as in Table 1 for judging modules in Eq.(7) and decision-making modules in Eq.(9): *remotesensing image judging tool* suite is a collection of MLLM-based modules designed to extract critical features from remote-sensing data, including geological and hyperspectral images (see Appendix H for details). And *deposit presence decision-making tool* insights from the judging modules to determine the likelihood of mineral deposit presence in a targeted area. To optimize computational efficiency, we directly employ Bayesian optimization (Snoek et al., 2012) to calculate the overall evaluation score $o^{(dm)} = \sum w_i s_i$, where w_i represents the weight assigned to each criterion.

5 Experiment

Metric. Due to the inherent class imbalance in MineBench, multiple complementary metrics

are employed. The F1 score for positive classes (Pos.F1) evaluates the MLLMs' ability to identify deposits. The macro-averaged F1 score (Avg.F1) provides balanced assessment across classes, while the Roc-AUC evaluates discriminative ability. Additionally, the Matthews Correlation Coefficient (MCC) provides a comprehensive evaluation by synthesizing the confusion matrix ranging from -1 to 1, where -1 indicates complete misclassification, 1 represents perfect prediction (Chicco and Jurman, 2020). The details of the experimental setting are provided in Appendix C.

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

5.1 Main Results

Table 2 presents the comparative performance of various MLLMs: Qwen2-VL-7B/72B (Bai et al., 2023; Wang et al., 2024c), Gemini-Flash-2.0 (Team et al., 2024), Gemini-Pro-1.5, GPT- 40 (OpenAI, 2024), LLaVA-13B (Liu et al., 2023b, 2024a), Yi-6B/34B (Young et al., 2024) and InterVL-26B (Chen et al., 2024) on MineBench. This evaluation highlights several key findings regarding the strengths and limitations of the MLLMs:

Effectiveness of MineAgent. Experimental results demonstrate significant performance improvements achieved by MineAgent, with the highest improvement reaching 30.14% when paired with GPT-40 and 23.77% when paired with Qwen-7B. This result highlights the potential of MineAgent in enhancing multi-image reasoning and domainspecific gaps. Few open-source MLLMs, especially smaller ones (e.g., Yi-6B and LLaVA-13B), show performance degradation when integrated with MineAgent, primarily due to their unstable reasoning capabilities in interpreting score criteria. This problem, existing in both baseline and MineAgent, leads to a label-score mismatch problem, such as assigning a score of 5 as "positive" and a score of 9 as "negative.", making the outputs less meaningful. Statistically, Yi-6B exhibited a 23.53% label-score mismatch, while LLaVA-13B showed

		Baseline				with MineAgent			
Source	Model	Pos.F1	Avg.F1	Roc-AUC	мсс	Pos.F1	Avg.F1	Roc-AUC	мсс
N/A	Random Choice	11.86	49.96	51.01	2.01	11.86	49.96	51.01	2.01
	Gemini-Pro-1.5	20.95	18.56	49.66	-0.77	21.72 (+0.77)	30.57 (+12.01)	52.34 (+2.68)	3.52 (+4.29)
Closed Source	Gemini-Flash-2.0	20.30	41.24	51.33	1.73	22.54 (+2.24)	56.18 (+14.49)	56.03 (+4.70)	12.37 (+10.6)
Closed-Source	Qwen2-VL-72B	22.97	20.76	54.44	9.97	58.71 (+34.74)	75.30 (+54.54)	84.01 (+29.6)	54.21 (+41.84)
	GPT-40	34.93	57.27	69.35	26.16	61.20 (+26.27)	77.19 (+19.92)	83.35 (+13.82)	56.30 (+30.14)
	Yi-6B	15.74	43.89	47.14	-3.82	21.82 (+6.08)	15.16 (-28.74)	51.54 (+7.65)	5.05 (+8.87)
	LLaVA-13B	19.46	26.32	47.28	-4.31	20.58 (+1.9)	21.36 (-4.96)	50.77(+3.49)	1.60 (+5.91)
Open-Source	InterVL-26B	19.26	31.87	56.91	8.95	24.23 (+5.06)	44.32 (+12.45)	57.10 (+0.19)	9.24 (+0.29)
	Yi-34B	22.16	43.63	54.28	5.55	29.71 (+7.10)	50.85 (+7.22)	64.82 (+10.34)	19.28 (+13.73)
	Qwen-7B	22.92	24.16	54.59	8.69	30.99 (+8.07)	47.93(+23.77)	68.23 (+13.64)	23.79 (+15.10)

Table 2: Comparison between baseline and MineAgent. Highlighted rows indicate the highest scores in either closed- or open-source MLLMs. Red denotes improvements from baseline, while Gray denotes the number worse than the random choice.

an even higher rate of 35.15%, compared to mere 1.96% for GPT-40. Moreover, we observe a notable discrepancy between scores and their corresponding explanations from smaller MLLMs, as detailed in Appendix D. These findings underscore the critical importance of stable foundational models in achieving consistent performance improvements.

439

440

441

442

443

444

445

461

462 463

464

446 Performance Ceiling. MLLMs encounter significant limitations when addressing mineral ex-447 ploration tasks, even with the enhanced reason-448 ing capabilities provided by MineAgent. For in-449 stance, GPT-40 achieves a Pos.F1 score of only 450 61.21% and an Avg.F1 of 77.19%. Notably, sev-451 eral open-source MLLMs perform below the ran-452 dom choice, underscoring fundamental architec-453 tural constraints. Moreover, a substantial perfor-454 mance disparity exists between closed-source and 455 open-source MLLMs. This performance gap stems 456 from two factors: a lack of high-quality, domain-457 specific training data to capture the nuances and 458 459 insufficient exposure to multi-image reasoning scenarios needed for handling task complexity. 460

5.2 MLLM Capabilities Evaluation

To assess MLLMs across varying levels of analytical complexity, we introduce a three-tiered evaluation framework. The most challenging "Hard"

Setting	Input	Output		
Setting	Inp.Imags (\mathcal{I})	Number	Julput	
Easy	$\mathcal{I}_{a}^{(\mathrm{g})},\mathcal{I}_{a}^{(\mathrm{mpm})}$	2	o ^(dm)	
Standard	$\mathcal{I}^{(\mathrm{g})}_{a}, \mathcal{I}^{(\mathrm{s})}_{a}$	4	o ^(dm)	
Hard	$\mathcal{I}^{(\mathrm{g})}_{a}, \mathcal{I}^{(\mathrm{h})}_{a}$	9	o ^(dm)	

Table 3: Statistics of various settings.

setting employs raw remote-sensing data $\mathcal{I}_{a}^{(h)}$, from GSWA without preprocessing steps. This configuration rigorously tests MLLMs' fundamental reasoning capabilities, demanding comprehensive interpretation with minimal prior knowledge. In the "Standard" setting, MineBench preprocesses $\mathcal{I}_{a}^{(h)}$ into deposit signatures $\mathcal{I}_{a}^{(s)}$, exposuring intuitive mineralization patterns. The "Easy" setting, further simplify the "Standard" MineBench by using a manually preprocessed mineral prospectivity map $\mathcal{I}_{a}^{(mpm)}$, incorporating extensive prior geological knowledge. MineBench statistics and task configurations are summarized in Table 3.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

Experimental results reveal a clear correlation between task complexity and MLLM performance, as shown in Figure 5. As settings demand more sophisticated domain expertise and multi-image reasoning, performance metrics systematically decline. Even the state-of-the-art GPT-40 demonstrates this trend, with Avg.F1 scores declining from 87.41% in the "Easy" task to 60.47% in the "Hard" task. These findings underscore MineBench's critical role in identifying and facilitating improvements to current MLLM limitations by offering diverse, strategically designed evaluation settings.

5.3 Alignment of MLLMs with Human

Following scoring guidelines, both the human expert and the MLLM are tasked with assigning a score within defined areas to evaluate reasoning ability in this evaluation. The evaluation employed 20% of the MineBench, with samples selected randomly while maintaining the original positive-negative class distribution. The quantitative results (Figure 6) reveal two key findings:

Figure 5: Performance across varying complexity levels

Figure 6: comparison of MLLMs and human assessment w.r.t Pearson correlation and weighted kappa across six outputs (c_1 to c_6). The dashed lines indicate avg. performance.

Model-Human Alignment. GPT-40 demonstrated significantly higher Pearson correlation and weighted Kappa scores than Qwen-7B across all evaluation criteria. This strong alignment with human expert correlates with the models' overall performance, validating that higher-performing MLLMs can better approximate human scoring patterns (Ouyang et al., 2022). To provide a comprehensive view of the models' scoring patterns, we visualize the score distributions in Appendix E.

Challenges in Complex Task. The output c_6 exhibited the lowest consistency scores, falling well below the average. This result underscores a key limitation: even advanced methods face difficulties extracting features from multi-image reasoning, which emphasizes the current shortcomings of MLLMs in handling mineral exploration tasks.

5.4 Ablation Studies

499

500

501

502

507

509

510

511

512

513

514

515

516

517We conducted ablation studies to evaluate the effec-518tiveness of MineAgent by analyzing its components519using GPT-40. Four variants were designed and520evaluated to investigate the role of each component521in handling tasks of different complexity levels. 1)522*MineAgent:* The framework incorporates all com-523ponents, including the judging modules, commu-524nication protocol, and decision-making modules.

Setting	Component	Pos.F1	Avg.F1	Roc-Auc	Mcc
	MineAgent	61.20	77.19	83.35	56.30
Standard	w/o J	54.73	72.92	80.90	49.25
Stanuaru	w/o JC	32.51	59.05	82.28	34.94
	BASE	34.93	57.27	69.35	26.16
Easy	MineAgent	71.62	83.86	84.26	67.73
	w/o A	44.00	62.91	80.27	40.62
	w/o JC	77.78	87.41	86.96	74.82
	BASE	55.24	75.52	69.58	57.03

Table 4: Performance across different settings and components. The highest scores are marked in bold.

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

2) *w/o J:* A variant of MineAgent that removes the judging modules, implementing the exploration pipeline in a single inference. 3) *w/o JC:* Extending w/o J, this version further excludes the communication protocol, resulting in the absence of detailed scoring guidelines.(4) *BASE:* A simplified version that additionally excludes the decision-making module, producing $o^{(pipeline)}$ as the result.

The results show MineAgent effectively reduces reasoning complexity by decomposing the pipeline into manageable components: The removal of judging modules led to a 7.05% decline in the MCC score. Excluding the detailed scoring guidelines within the communication protocol caused a substantial performance drop. Further, the decisionmaking modules played a critical role in enhancing the MLLM's capability to navigate the exploration pipeline. The details of the decision-making modules are further analyzed in Appendix F, showing their effectiveness. In the "Easy" setting, an unexpected performance pattern emerged: the w/o JC variant outperformed the full MineAgent framework. This result aligns with prior findings: while existing MLLMs excel in basic visual reasoning, they often struggle with complex multi-image and domain-specific tasks (Kazemi et al., 2024).

6 Conclusion

In this paper, we present MineAgent, a novel MLLM agent framework designed to address critical challenges in multi-image reasoning and domain-specific gap for mineral exploration. Our comprehensive quantitative and qualitative ablation studies further validate the effectiveness of MineAgent. Further, our results underscore both the potential and the limitations of MLLMs in mineral exploration, revealing significant performance degradation as task complexity increases.

562 Limitation

1) Generalized applications: This work can only recognize specific types of deposits, restricting its 564 applicability to a wider range of mineral types. 2) Domain-Specific Knowledge Enhancement: Continuing from the initial success of MineAgent, future work will explore strategies such as integrat-568 ing domain-specific knowledge bases or leverag-569 ing reinforcement learning to further improve the 570 MLLMs' performance in specialized tasks. 3) Assistant Tools : The results under the "Hard" setting 572 highlight significant challenges. Future research will integrate assistant tools, such as integrating 574 coding agents or feedback loops, can enhance the 575 robustness and reasoning capabilities of models in 576 realistic environments. 577

References

579

580

581

583

584

585

587

588

595

607

611

- Fatimah Alzubaidi, Peyman Mostaghimi, Pawel Swietojanski, Stuart R Clark, and Ryan T Armstrong. 2021.
 Automated lithology classification from drill core images using convolutional neural networks. *Journal of Petroleum Science and Engineering*, 197:107933.
- Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. 2023. Qwen-vl: A versatile vision-language model for understanding, localization, text reading, and beyond. *arXiv preprint arXiv:2308.12966*.
- Enton Bedini. 2017. The use of hyperspectral remote sensing for mineral exploration: A review. *Journal of Hyperspectral Remote Sensing*, 7(4):189–211.
- Emmanuel John Muico Carranza. 2008. *Geochemical anomaly and mineral prospectivity mapping in GIS*. Elsevier.
- Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. 2024. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 24185–24198.
- Qimin Cheng, Haiyan Huang, Yuan Xu, Yuzhuo Zhou, Huanying Li, and Zhongyuan Wang. 2022. Nwpucaptions dataset and mlca-net for remote sensing image captioning. *IEEE Transactions on Geoscience and Remote Sensing*, 60:1–19.
- Davide Chicco and Giuseppe Jurman. 2020. The advantages of the matthews correlation coefficient (mcc) over f1 score and accuracy in binary classification evaluation. *BMC genomics*, 21:1–13.

Michael Dentith and Stephen T Mudge. 2014. *Geophysics for the mineral exploration geoscientist.* Cambridge University Press. 612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

- Xuefeng Du, Chaowei Xiao, and Yixuan Li. 2024. Haloscope: Harnessing unlabeled llm generations for hallucination detection. *arXiv preprint arXiv:2409.17504*.
- Yufeng Fu, Qiuming Cheng, Linhai Jing, Bei Ye, and Hanze Fu. 2023. Mineral prospectivity mapping of porphyry copper deposits based on remote sensing imagery and geochemical data in the duolong ore district, tibet. *Remote Sensing*, 15(2):439.
- Pedram Ghamisi, Naoto Yokoya, Jun Li, Wenzhi Liao, Sicong Liu, Javier Plaza, Behnood Rasti, and Antonio Plaza. 2017. Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art. *IEEE Geoscience and Remote Sensing Magazine*, 5(4):37–78.
- Werner R Gocht, Half Zantop, and Roderick G Eggert. 2012. International mineral economics: mineral exploration, mine valuation, mineral markets, international mineral policies. Springer Science & Business Media.
- Ignacio Gonzalez-Alvarez, MA Goncalves, and Emmanuel John M Carranza. 2020. Introduction to the special issue challenges for mineral exploration in the 21st century: Targeting mineral deposits under cover. *Ore Geology Reviews*, 126:103785.
- Robert Hewson, D Robson, Alan Mauger, Thomas Cudahy, Matilda Thomas, and Simon Jones. 2015. Using the geoscience australia-csiro aster maps and airborne geophysics to explore australian geoscience. *Journal* of Spatial Science, 60(2):207–231.
- Dongfu Jiang, Xuan He, Huaye Zeng, Cong Wei, Max Ku, Qian Liu, and Wenhu Chen. 2024. Mantis: Interleaved multi-image instruction tuning. *arXiv preprint arXiv:2405.01483*.
- Mehran Kazemi, Nishanth Dikkala, Ankit Anand, Petar Devic, Ishita Dasgupta, Fangyu Liu, Bahare Fatemi, Pranjal Awasthi, Dee Guo, Sreenivas Gollapudi, et al. 2024. Remi: A dataset for reasoning with multiple images. *arXiv preprint arXiv:2406.09175*.
- Kartik Kuckreja, Muhammad Sohail Danish, Muzammal Naseer, Abhijit Das, Salman Khan, and Fahad Shahbaz Khan. 2024. Geochat: Grounded large vision-language model for remote sensing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 27831–27840.
- Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Balaji Rama, Om Raheja, Hao Wang, He Zhu, and Yongfeng Zhang. 2024. Autoflow: Automated workflow generation for large language model agents. *arXiv preprint arXiv:2407.12821*.

771

772

773

720

721

- Cai Liu, Wenlei Wang, Juxing Tang, Qin Wang, Ke Zheng, Yanyun Sun, Jiahong Zhang, Fuping Gan, and Baobao Cao. 2023a. A deep-learning-based mineral prospectivity modeling framework and workflow in prediction of porphyry–epithermal mineralization in the duolong ore district, tibet. *Ore Geology Reviews*, 157:105419.
- Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. 2024a. Llavanext: Improved reasoning, ocr, and world knowledge.

672

673

675

681

701

703

704

705

706

707

709

710

711

712

713

714

715

716

717

718

- Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023b. Visual instruction tuning.
- Haowei Liu, Xi Zhang, Haiyang Xu, Yaya Shi, Chaoya Jiang, Ming Yan, Ji Zhang, Fei Huang, Chunfeng Yuan, Bing Li, et al. 2024b. Mibench: Evaluating multimodal large language models over multiple images. arXiv preprint arXiv:2407.15272.
- Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy Liang. 2024c. Lost in the middle: How language models use long contexts. *Transactions of the Association for Computational Linguistics*, 12:157–173.
- Ziyu Liu, Tao Chu, Yuhang Zang, Xilin Wei, Xiaoyi Dong, Pan Zhang, Zijian Liang, Yuanjun Xiong, Yu Qiao, Dahua Lin, et al. 2024d. Mmdu: A multi-turn multi-image dialog understanding benchmark and instruction-tuning dataset for lvlms. *arXiv preprint arXiv:2406.11833*.
- Junwei Luo, Zhen Pang, Yongjun Zhang, Tingzhu Wang, Linlin Wang, Bo Dang, Jiangwei Lao, Jian Wang, Jingdong Chen, Yihua Tan, et al. 2024. Skysensegpt: A fine-grained instruction tuning dataset and model for remote sensing vision-language understanding. arXiv preprint arXiv:2406.10100.
- Dilxat Muhtar, Zhenshi Li, Feng Gu, Xueliang Zhang, and Pengfeng Xiao. 2024. Lhrs-bot: Empowering remote sensing with vgi-enhanced large multimodal language model. *arXiv preprint arXiv:2402.02544*.
- OpenAI. 2024. Chatgpt-4o. Available at https://openai.com.
- Safianou Ousmanou, Fozing Eric Martial, Tcheumenak Kouémo Jules, Achu Megnemo Ludovic, Kamgang Tchuifong Agnès Blandine, Aman Sufinatu, Rachid Mohamed, and Kwékam Maurice. 2024. Mapping and discrimination of the mineralization potential in granitoids from banyo area (adamawa, cameroon), using landsat 9 oli, aster images and field observations. *Geosystems and Geoenvironment*, 3(1):100239.
- Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35:27730–27744.

- Binh Thai Pham, Indra Prakash, and Dieu Tien Bui. 2018. Spatial prediction of landslides using a hybrid machine learning approach based on random subspace and classification and regression trees. *Geomorphology*, 303:256–270.
- AuScope Discovery Portal. Satellite aster geoscience product notes for australia.
- Zhongliang Ren, Lin Sun, and Qiuping Zhai. 2020. Improved k-means and spectral matching for hyperspectral mineral mapping. *International Journal of Applied Earth Observation and Geoinformation*, 91:102154.
- Floyd F Sabins. 1999. Remote sensing for mineral exploration. *Ore geology reviews*, 14(3-4):157–183.
- Hojat Shirmard, Ehsan Farahbakhsh, R Dietmar Müller, and Rohitash Chandra. 2022. A review of machine learning in processing remote sensing data for mineral exploration. *Remote Sensing of Environment*, 268:112750.
- Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian optimization of machine learning algorithms. *Advances in neural information processing systems*, 25.
- Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. 2024. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*.
- Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-sne. *Journal of machine learning research*, 9(11).
- Freek D Van der Meer, Harald MA Van der Werff, Frank JA Van Ruitenbeek, Chris A Hecker, Wim H Bakker, Marleen F Noomen, Mark Van Der Meijde, E John M Carranza, J Boudewijn De Smeth, and Tsehaie Woldai. 2012. Multi-and hyperspectral geologic remote sensing: A review. *International journal of applied Earth observation and geoinformation*, 14(1):112–128.
- Jonas Didero Takodjou Wambo, Amin Beiranvand Pour, Sylvestre Ganno, Paul D Asimow, Basem Zoheir, Rodrigo dos Reis Salles, Jean Paul Nzenti, Biswajeet Pradhan, and Aidy M Muslim. 2020. Identifying high potential zones of gold mineralization in a sub-tropical region using landsat-8 and aster remote sensing data: a case study of the ngoura-colomines goldfield, eastern cameroon. *Ore Geology Reviews*, 122:103530.
- Di Wang, Jing Zhang, Bo Du, Minqiang Xu, Lin Liu, Dacheng Tao, and Liangpei Zhang. 2024a. Samrs: Scaling-up remote sensing segmentation dataset with segment anything model. *Advances in Neural Information Processing Systems*, 36.

- 774 775 776 781 783
- 790 791 793 795
- 803 804
- 810 811 813 815
- 816 817 818 819
- 820
- 824
- 825
- 827

830

- Fei Wang, Xingyu Fu, James Y Huang, Zekun Li, Qin Liu, Xiaogeng Liu, Mingyu Derek Ma, Nan Xu, Wenxuan Zhou, Kai Zhang, et al. 2024b. Muirbench: A comprehensive benchmark for robust multi-image understanding. arXiv preprint arXiv:2406.09411.
- Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zhong. 2021. Loveda: A remote sensing land-cover dataset for domain adaptive semantic segmentation. arXiv preprint arXiv:2110.08733.
- Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. 2024c. Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution. arXiv preprint arXiv:2409.12191.
 - Xiyao Wang, Yuhang Zhou, Xiaoyu Liu, Hongjin Lu, Yuancheng Xu, Feihong He, Jaehong Yoon, Taixi Lu, Gedas Bertasius, Mohit Bansal, et al. 2024d. Mementos: A comprehensive benchmark for multimodal large language model reasoning over image sequences. arXiv preprint arXiv:2401.10529.
- Yongyang Xu, Zixuan Li, Zhong Xie, Huihui Cai, Pengfei Niu, and Hui Liu. 2021. Mineral prospectivity mapping by deep learning method in yawan-daqiao area, gansu. Ore Geology Reviews, 138:104316.
- Fanfan Yang, Renguang Zuo, and Oliver P Kreuzer. 2024. Artificial intelligence for mineral exploration: A review and perspectives on future directions from data science. Earth-Science Reviews, page 104941.
- Zahra Yazdi, Alireza Jafari Rad, Mehraj Aghazadeh, and Peyman Afzal. 2018. Alteration mapping for porphyry copper exploration using aster and quickbird multispectral images, sonajeel prospect, nw iran. Journal of the Indian Society of Remote Sensing, 46:1581-1593.
- Chuntao Yin, Yaqian Long, Lei Liu, Yasir Shaheen Khalil, and Songxing Ye. 2024a. Mapping ni-cuplatinum group element-hosting, small-sized, maficultramafic rocks using worldview-3 images and a spatial-spectral transformer deep learning method. Economic Geology, 119(3):665-680.
- Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. 2024b. A survey on multimodal large language models. National Science *Review*, page nwae403.
- Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng Zhu, Jiangun Chen, Jing Chang, et al. 2024. Yi: Open foundation models by 01. ai. arXiv preprint arXiv:2403.04652.
- Yang Zhan, Zhitong Xiong, and Yuan Yuan. 2023. Rsvg: Exploring data and models for visual grounding on remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 61:1-13.

Yang Zhan, Zhitong Xiong, and Yuan Yuan. 2024. Skyeyegpt: Unifying remote sensing vision-language tasks via instruction tuning with large language model. arXiv preprint arXiv:2401.09712.

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

- Daoan Zhang, Junming Yang, Hanjia Lyu, Zijian Jin, Yuan Yao, Mingkai Chen, and Jiebo Luo. 2024a. Cocot: Contrastive chain-of-thought prompting for large multimodal models with multiple image inputs. arXiv preprint arXiv:2401.02582.
- Duzhen Zhang, Yahan Yu, Jiahua Dong, Chenxing Li, Dan Su, Chenhui Chu, and Dong Yu. 2024b. Mmllms: Recent advances in multimodal large language models. arXiv preprint arXiv:2401.13601.
- Wei Zhang, Miaoxin Cai, Tong Zhang, Yin Zhuang, and Xuerui Mao. 2024c. Earthgpt: A universal multimodal large language model for multi-sensor image comprehension in remote sensing domain. IEEE Transactions on Geoscience and Remote Sensing.
- Bingchen Zhao, Yongshuo Zong, Letian Zhang, and Timothy Hospedales. 2024. Benchmarking multiimage understanding in vision and language models: Perception, knowledge, reasoning, and multi-hop reasoning. arXiv preprint arXiv:2406.12742.
- Renguang Zuo. 2020. Geodata science-based mineral prospectivity mapping: A review. Natural Resources Research, 29(6):3415-3424.
- Renguang Zuo, Oliver P Kreuzer, Jian Wang, Yihui Xiong, Zhenjie Zhang, and Ziye Wang. 2021. Uncertainties in gis-based mineral prospectivity mapping: Key types, potential impacts and possible solutions. Natural Resources Research, 30:3059–3079.

A Benchmark Construction

862

866

868

872

873

874

892

894

899

900

901

902

903

906

907

909

MineBench is based on the publicly available GSWA remote-sensing dataset, a reliable resource for geoscience applications. GSWA comprises 17 ASTER remote-sensing sub-datasets, 14 of which are synthesized using ASTER's nine visible, nearinfrared, and shortwave infrared bands (bands 1–9). The remaining three sub-datasets utilize ASTER's thermal infrared bands (bands 10–14), extending the spectral range and enhancing suitability for geoscience interpretation. Each data underwent rigorous processing and evaluation to serve as the foundational base for MineBench.

Data Collection To identify the targeted deposits, we selected nine remote-sensing sub-datasets \mathcal{I}^a 876 for analysis. The selected sub-datasets \mathcal{I}^a are categorized into two subsets based on their roles: geo-878 logical images $\mathcal{I}_{a}^{(g)}$ and hyperspectral images $\mathcal{I}_{a}^{(h)}$, 879 as shown in Table 5. Details of these datasets are provided in the original technical document Portal. The remote-sensing data were segmented into 882 $12 \times 12 \ km^2$ areas using a grid method to facilitate detection. To ensure high-quality data, areas con-884 taining blurry, irrelevant images or those heavily affected by shadows obscuring geological features were excluded. After labeling, areas with mineral deposits near edges or other factors hindering accurate identification were excluded.

> Quality Control with Human Annotators. A two-stage human review process was implemented to ensure data quality. A general reviewer conducted an initial quality check, followed by expert review and refinement. Areas requiring additional geochemical data or field observations for accurate identification were removed to improve prediction accuracy. This rigorous process ensures the accuracy and utility of MineBench.

B Benchmark Preprocessing Workflow

A preprocessing workflow is proposed to construct the deposit signatures and mineral prospectivity map (MPM) used in MineBench evaluation and validation. This workflow enables precise control over feature extraction and integration, specifically optimized for copper mineralization detection. The detailed steps are as follows:

B.1 Normalization of Remote-sensing Images

To ensure consistency and standardization, each remote-sensing image \mathcal{I}_a undergoes min-max nor-

malization:

$$\mathcal{I}_{a,\text{norm}} = \frac{\mathcal{I}_a - \min(\mathcal{I}_a)}{\max(\mathcal{I}_a) - \min(\mathcal{I}_a)}$$
(10) 911

where $\min(\mathcal{I}_a)$ and $\max(\mathcal{I}_a)$ are obtained from the original dataset (Table 6). This normalization scales remote-sensing images to the [0, 1] range, facilitating seamless integration in preprocessing steps. Additionally, the normalization function norm_[a,b] ensures a consistent scaling range throughout the workflow:

$$\operatorname{norm}_{[min,max]}(\mathcal{I}_a) = \begin{cases} 0 & \text{if } x < min \\ \frac{\mathcal{I}_a - a}{max - min} & \text{if } min \leq \mathcal{I}_a \leq max \\ 1 & \text{if } x > max \end{cases}$$
(11)

The function maps values to [0, 1], capping outliers beyond specified bounds while preserving linear scaling within the target range. It improves the identification of high-potential areas by ensuring standardized and consistent data scaling.

B.2 Preprocessing Step

Deposit Signatures. After normalization, raw hyperspectral images $\mathcal{I}_a^{(h)}$ are transformed into deposit signatures $\mathcal{I}_a^{(s)}$ using a weighted linear combination informed by domain-specific knowledge (Table 6). These relationships are critical for identifying regions with varying mineralization patterns. The first signature, the hydrothermal alteration zone $\mathcal{I}_a^{(s,h)}$, a primary indicator of copper mineralization, is computed as:

$$\mathcal{I}_{a}^{(\mathrm{s},\mathrm{h})} = \mathrm{norm}_{[1,3]}(\mathcal{I}_{a}^{(\mathrm{h},\mathrm{ox})} + 2\mathcal{I}_{a}^{(\mathrm{h},\mathrm{oh})} + 4\mathcal{I}_{a}^{(\mathrm{h},\mathrm{op})})$$
(12)

where $\mathcal{I}_{a}^{(h,ox)}$ represents ferric oxide content, $\mathcal{I}_{a}^{(h,oh)}$ denotes FeOH group content, and $\mathcal{I}_{a}^{(h,op)}$ indicates the opaque index. $\mathcal{I}_{a}^{(h,ox)}$, $\mathcal{I}_{a}^{(h,oh)}$, and $\mathcal{I}_{a}^{(h,op)}$ are types of hyperspectral images associated with specific minerals. The weights 1, 2, and 4 reflect each indicator's relative significance in identifying hydrothermal alteration. The normalization function scales the output to the range [1, 3], enabling crossregional comparisons and threshold-based targeting. The value range is derived from expert observations.

Similarly, the second signature, the propylitic alteration zone $\mathcal{I}_a^{(s,p)}$, which characterizes peripheral mineralization areas, is calculated as:

$$\mathcal{I}_{a}^{(\text{s},\text{p})} = \text{norm}_{[0.6,1]}(\mathcal{I}_{a}^{(\text{h},\text{al})} + \mathcal{I}_{a}^{(\text{h},\text{oh})} + \mathcal{I}_{a}^{(\text{h},\text{mg})} + 2\mathcal{I}_{a}^{(\text{h},\text{fe})})$$
(13)

910

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

Remote-sening Data	Associated Minerals	Geoscience Application	Notion
Ferric Oxide Content	Hematite, Goethite	Identifies oxidation zones within hydrothermal systems, where hematite and goethite accumulate due to surface weathering and high-oxidation conditions. Weakly associated with propylitic zones but commonly found in silicified zones within epithermal environments.	$\mathcal{I}^{(\mathrm{h,ox})}_{a}$
FeOH Group Content	Jarosite, Chlorite, Epidote	Indicates FeOH-bearing minerals typical of acid-sulfate environments in hydrothermal systems. Strongly associated with propylitic alteration, with chlorite-epidote assemblages marking the transition between hy- drothermal and propylitic zones.	${\cal I}^{({ m h,oh})}_a$
Opaque Index	Magnetite, Pyrite, Manganese Oxides	Highlights reduced zones containing opaque minerals like magnetite and pyrite. Primarily found in the core areas of hydrothermal systems and occasionally in overprinted propylitic zones.	$\mathcal{I}^{(\mathrm{h,op})}_{a}$
AlOH Group Content	Muscovite, Kaolinite, Montmorillonite	Identifies AlOH-rich clays commonly associated with phyllic alteration in hydrothermal systems and transitional zones between phyllic and propylitic alteration.	$\mathcal{I}^{(\mathrm{h,al})}_{a}$
MgOH Group Content	Chlorite, Epidote, Calcite	Detects MgOH-bearing minerals, which form broad halos around hy- drothermal zones as part of propylitic alteration. Typically shows an inverse correlation with silicification and is essential for mapping zonal alteration patterns.	$\mathcal{I}^{(\mathrm{h,mg})}_{a}$
Ferrous Iron Content	Chlorite	Primarily identifies iron-rich minerals within potassic zones of hydrother- mal systems, including biotite and magnetite. Common in hydrothermal cores and useful for distinguishing primary iron minerals from secondary phases.	${\cal I}^{({\rm h},{ m fe})}_a$
Quartz Index	Quartz	Strongly correlated with silicification, particularly in quartz-dominant zones and silica-rich veins. Helps distinguish crystalline quartz from other forms of silica or silicates, such as feldspar, which is essential for mapping silicified alteration zones.	${\cal I}^{({ m h},{ m qa})}_a$
Silica Index	SiO ₂ , Quartz	A key indicator of silicification, especially in advanced argillic zones of hydrothermal systems. Common in quartzite, silicified cap rocks, and vein systems.	$\mathcal{I}^{(\mathrm{h,si})}_{a}$
False Color Image	Geological Environments	Used to differentiate geological features from non-geological elements, such as vegetation, clouds, and shadows. Also serves as a greyscale or color background to visualize and interpret index-based alteration patterns.	${\cal I}^{({ m g})}_a$

Table 5: The details of nine remote-sensing data.

MPM	${\cal I}^{({f s})}_a$	${\cal I}^{({f h})}_a$	Value Range of $\mathcal{I}_a^{(\mathbf{h})}$	Weight of $\mathcal{I}_a^{(\mathbf{h})}$	Weight of $\mathcal{I}_a^{\rm (s)}$
	Geological Environment	False Color Image	0-1	1	1
		Ferric Oxide Content	1.1 – 2.1	1	
	(Value Range: 1-3)	FeOH Group Content	2.03 - 2.25	2	5
	× 0 /	Opaque Index	0.4 - 0.9	4	
Copper Deposit		AlOH Group Content	2.0 - 2.25	1	
(Value Range: 0-5)	Propylitic Alteration	FeOH Group Content	2.03 - 2.25	1	3
	(Value Range: 0.6-1)	MgOH Group Content	1.05 - 1.2	1	5
		Ferrous Iron Content	0.1 - 2.0	2	
		Ferric Oxide Content	1.1 – 2.1	1	
	(Value Range: 1-3)	Quartz Index	1.0 - 1.35	1	1
	,	Silica Index	0.5 - 0.52	2	

Table 6: Weights and value ranges of deposit signatures and MPM in MineBench.

where $\mathcal{I}_{a}^{(h,al)}$ represents AlOH group content, $\mathcal{I}_{a}^{(h,mg)}$ indicates MgOH group content, and $\mathcal{I}_{a}^{(h,fe)}$ denotes ferrous iron content.

The final signature, the silicification zone $\mathcal{I}_{a}^{(s,s)}$, which indicates secondary mineralization patterns, is quantified as:

$$\mathcal{I}_{a}^{(\mathrm{s},\mathrm{s})} = \mathrm{norm}_{[1,2.5]} \left(\mathcal{I}_{a}^{(\mathrm{h},\mathrm{ox})} + \mathcal{I}_{a}^{(\mathrm{h},\mathrm{qa})} + 2\mathcal{I}_{a}^{(\mathrm{h},\mathrm{si})} \right)$$
(14)

where $\mathcal{I}_{a}^{(h,qa)}$ represents quartz content and $\mathcal{I}_{a}^{(h,si)}$ indicates silica abundance. This weighted combination captures distinct deposit signatures essential for deposit detection.

Mineral Prospectivity Map. Following the weighted linear combination, the mineral potential map is constructed by combining deposit signatures $\mathcal{I}_{a}^{(\mathrm{s},\mathrm{h})}, \mathcal{I}_{a}^{(\mathrm{s},\mathrm{p})}$, and $\mathcal{I}_{a}^{(\mathrm{s},\mathrm{s})}$ to quantitatively evaluate the copper deposit potential based on the spatial distribution and intensity of key alteration zones:

$$\mathcal{I}_{a}^{(\text{mpm})} = \text{normalize}_{[0,5]} (5\mathcal{I}_{a}^{(\text{s},\text{h})} + 3\mathcal{I}_{a}^{(\text{s},\text{p})} + \mathcal{I}_{a}^{(\text{s},\text{s})})$$
(15)

The weights (5, 3, and 1) are derived from extensive statistical analysis of known copper deposits across

1012

1013

diverse geological settings, reflecting the relative contribution of each zone to copper mineralization.

Hydrothermal Alteration Zone. The core zone $\mathcal{I}_{a}^{(s,h)}$ is characterized by intense hydrothermal alteration and high-temperature mineral assemblages, exhibiting the strongest spatial correlation with copper mineralization.

Propylitic Alteration Zone. Surrounding the hydrothermal core, the intermediate zone $\mathcal{I}_a^{(s,p)}$ is characterized by moderate-temperature alteration minerals, including chlorite, epidote, and calcite. Although not directly mineralized, this zone provides critical context for delineating the extent of the hydrothermal system.

Silicification Zone. The outermost zone $\mathcal{I}_a^{(s,s)}$ is marked by silica enrichment and the presence of low-temperature minerals. While less directly associated with mineralization, this zone delineates system boundaries and fluid flow patterns.

This integrated approach highlights the hierarchical significance of different alteration signatures, improving the accuracy of copper mineral potential assessments.

B.3 Data Visualization

Finally, we get three types of mineralogical data: raw hyperspectral image $\mathcal{I}_a^{(h)}$, deposit signatures $\mathcal{I}_{a}^{(s)}$, and mineral prospectivity maps $\mathcal{I}_{a}^{(mpm)}$. To enhance the interpretability of these data, we employ a visualization process comprising several key steps. First, we implement transparency for data points with zero normalized values, highlighting significant mineralization patterns. Second, we overlay the mineralogical images on a grayscale geoglogical image to provide geographic context. Finally, we apply a rainbow colormap to the normalized data, where warmer colors indicate higher mineralization potential. This facilitates an intuitive interpretation of mineralization intensity and distribution. The resultant visualization enables a clear understanding of potential copper deposits' intensity and spatial distribution through its colorcoded representation.

B.4 Data Validation

1014By carefully mapping color transitions from red to1015yellow to orange and modulating spatial scales, we1016created a nuanced visual representation of potential1017mineral deposits. To ensure the reliability of our1018synthetic data, we conducted a rigorous human-1019verified visual assessment. Expert manually ex-1020amined the spatial and chromatic characteristics,

comparing our synthetic mineralization patterns with ground truth deposit markers. This meticulous verification process confirmed the high correlation between our synthetic representations and actual mineral deposit locations. 1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1067

1069

As shown in Figure 7, the synthetic mineral prospectivity maps reveal distinct patterns of mineral potential. The authentic deposit locations (marked in red points) predominantly align with synthetic color-coded regions. Positive samples exhibit a gradual color transition from red to yellow to orange, systematically capturing the alteration zone characteristic of complete mineral deposits and reflecting the continuous mineralization processes. In contrast, negative samples display markedly different characteristics, with either low color intensity indicating minimal mineralization potential or an absence of complete color transitions suggesting incomplete deposit formation.

For example, the positive sample (d) demonstrates a subtle but critical color gradient transitioning, capturing the delicate mineralization patterns of mineral deposit. The scale of this sample, though small, precisely matches the actual deposit location markers. In contrast, the negative samples (c) and (d) exhibit significant differences. These regions feature large-scale, high-intensity red areas that lack the nuanced color transitions and the unnatural spatial distribution, immediately signaling these as potentially unreliable mineral deposit indicators.

C Experimental Setting

We accessed open-source models through API 1053 services and closed-source models via their pre-1054 trained checkpoints, except for Qwen-72B which 1055 was evaluated using its pretrained checkpoints. All 1056 evaluations were conducted on two NVIDIA L40 1057 (48GB) GPUs. To determine the parameter weights 1058 w_i in Section 4.2.2, we employed five-fold cross-1059 validation with Bayesian optimization and used the 1060 averaged weights across folds as the final param-1061 eters for MLLM evaluation. The resulting weight 1062 distributions are visualized in Figure 10. For the de-1063 fined classification tasks, we set a decision thresh-1064 old of 3, $o^{(dm)}$ above this threshold are classified as 1065 1, otherwise as 0. 1066

D Score-Explanation Consistency

To evaluate the MLLMs' reasoning ability, we analyzed the alignment between scoring decisions s_i

and explanations e_i in Eq. 8 across three represen-1070 tative MLLMs: GPT-40, Qwen-7B, and Yi-6B. Us-1071 ing t-SNE (Van der Maaten and Hinton, 2008) for 1072 visualization, the explanations are projected into 1073 BERT embeddings, with scores used as their labels for assessment. Based on identical scoring guide-1075 lines in the communication protocol, explanations 1076 e_i should be aligned with the scores s_i , resulting in 1077 a compact clustering pattern. Conversely, scattered 1078 distributions may indicate potential inconsistencies 1079 in the judging process (Du et al., 2024). 1080

1081

1082 1083

1084

1085

1087

1088

1089

1090

1092

1093

1094

1095

1096

1097

1098

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

As shown in Figure 9, GPT-40 achieves superior clustering coherence, with distinct score-based clusters showing minimal boundary overlap. This clear structure indicates a strong alignment between scores and justifications, reflecting consistent reasoning patterns. Qwen-7B shows moderate clustering performance with distinguishable score groups but significant overlap in high-score regions (4-5), suggesting insufficient differentiation. Yi-6B exhibits the most dispersed distribution with minimal explanation-group separation, indicating weak alignment between scores and explanations. These clustering patterns correlate strongly with overall model performance, supporting our hypothesis that advanced models maintain more consistent scoreexplanation relationships.

E Score Distribution of MLLMs and Human Assessment

Based on the score distribution visualization in Figure 8, we observe distinct patterns across human assessments and the two models (GPT-4o and Qwen-7b). GPT-4o's score distribution closely aligns with human assessments, showing a more balanced and diverse distribution across different score levels. In contrast, Qwen-7b's scores tend to concentrate around a single value, as evidenced by the sharp peaks in its distribution. This indicates a notable limitation of Qwen-7b in capturing nuanced distinctions in evaluation criteria, highlighting its reduced variability and less human-like reasoning capability compared to GPT-4o.

F Impact of Decision-making Modules

1113Impact of Assessment Tuples. Multiple crite-1114ria in the assessment tuples $C = \{c_1, c_2, \ldots, c_M\}$ 1115are used as input in the decision-making mod-1116ules to guide the final decision $o^{(dm)}$, as shown1117in Eq.9. The various criteria contribute to robust1118reasoning compared to using a single criterion.

Setting	weights	F1 (Pos.)	F1 (Avg.)	Roc-Auc	Mcc
	Local	24.86	34.4	58.81	12.94
Hard	Mean	31.58	56.33	64.81	20.65
	Automatic	36.51	60.47	68.63	27.07
Standard	Local	31.82	49.6	69.03	24.71
	Mean	39.44	63.36	69.71	30.41
	Automatic	61.20	77.19	83.35	56.30
Easy	Local	62.75	77.65	87.62	59.46
	Mean	67.13	81.40	80.84	62.82
	Automatic	71.62	83.86	84.26	67.73

Table 7: Performance across different settings and weight allocation strategies.

To evaluate their impact $o^{(dm)}$, we employ three weighting strategies: (1) *Local* which focuses on three data-driven types: geological context c_1 , hyerspectral context c_5 and cross-reference validation c_6 without intermediate results c_2-c_4 ; (2) *Mean* which assigns equal weights to c_1-c_6 ; and (3) *Automatic*, which dynamically balances criteria using Bayesian optimization.

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

As shown in Table 7, the *Local* setting obtained the worst accuracy due to the exclusion of c_2-c_4 . In contrast, the *Mean* setting improved overall performance but failed to capture information hierarchies effectively. The *Automatic* setting achieved superior results through the dynamic integration of all available outputs, effectively ensuring highconfidence answers. These findings demonstrate that the decision-making modules enhance model robustness by considering multiple assessment criteria in a balanced manner.

Impact of Decision-making Modules. Figure 10 illustrates how the model adjusts its reliance on different criteria as task complexity increases. Each setting reveals unique patterns, highlighting the adaptive output of the decision-making module in response to varying levels of difficulty. In "Easy" tasks, the weights w_1 to w_4 for criteria c_1 to c_4 are relatively uniform, ranging from approximately 0.15 to 0.3. This balanced distribution reflects the model's reliance on these single-category criteria for straightforward reasoning. The cross-image criterion c_5 is assigned negligible weight, indicating its minimal contribution. This uniformity suggests that higher-order information integration is unnecessary for simple tasks, where single-category criteria alone suffice for accurate inference.

As tasks increase to "Standard" complexity, the weight distribution shifts toward more discrimina-

Figure 7: Data Validation. Comparing synthetic mineralization patterns with ground truth deposit locations.

Figure 8: Score Distribution of MLLMs and Human Assessment

Figure 9: Visualization of score-explanation alignment using T-SNE projection. Data points are color-coded by scores ranging from 0 to 5, with red crosses marking statistical outliers. Ideally, the explanation should be consistent with the assigned scores, leading to the clustering patterns.

Figure 10: The Parameters of Decision-making Modules. w_1 to w_6 are assigned to various criterias (c_1 to c_6) across three task settings. Each box represents the range of weight values.

tive features. For instance, w_2 increases significantly to approximately 0.5, underscoring its role as a key criterion. While cross-image criteria gain slightly more weight, they remain secondary as the model integrates aggregated insights alongside foundational criteria. Notably, single-category criteria continue to dominate the reasoning process in this setting.

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

In "Hard" tasks, the model heavily relies on a few single-category criteria (e.g., w_1 and w_3), while cross-image criteria (w_5 and w_6) maintain negligible contributions. This reflects their reduced utility as task complexity increases, further emphasizing the importance of individual, highly discriminative criteria for complex reasoning.

G Effectiveness of Cross-image Tools

Figure 11: Effectiveness of cross-image tools. The impact of including/excluding additional references as input on the score distribution for global criteria c_5 and c_6 , evaluated using Qwen-7B.

As shown in Table 1, cross-image tools lever-1172 age inferences from single-category tools to ana-1173 1174 lyze complex relationships between multiple images. This integration harnesses complementary 1175 strengths, resulting in a balanced score distribu-1176 tion that reflects improved model robustness across 1177 diverse inference tasks. Figure 11 demonstrates 1178

that removing single-category inferences leads to a more concentrated score distribution, indicating that the model struggles to capture nuanced image features without auxiliary inputs. In contrast, integrating these inferences significantly improves the score distribution by increasing the proportion of high-scoring regions and reducing low-scoring instances. This improvement highlights enhanced reasoning accuracy. These findings emphasize the critical role of hierarchy flow in judging modules in strengthening inference robustness. By combining both global and detailed perspectives, the judging modules establish a more reliable reasoning for addressing cross-image reasoning challenges.

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1210

1211

1212

Η The Exploration Pipeline and Case Study

The detailed pipelines for the "Easy," Standard," and "Hard" settings are shown in Figure 12 13 and 14, respectively. The "Standard" and "Hard" pipelines differ only in the design of the hyperspetral tools. Consequently, the "Hard" pipeline focuses exclusively on the hyperspetral tools segment. For each setting, a case study is provided to illustrate the reasoning process in action, as shown in Figure 15 16 and 17.

Ι **More Related Work**

Machine Learning for Mineral Exploration. Mineral exploration represents a complex clas-1206 sification problem in geoscience, integrating di-1207 verse data sources to predict the location, quantity, 1208 and quality of mineral deposits (Carranza, 2008). 1209 Over the years, machine learning (ML) has played a transformative role in this field. Traditional approaches, such as principal component analysis (Ousmanou et al., 2024), k-means (Ren et al., 1213

Instructions for Cross-image Tools

You are a mineral exploration expert tasked with evaluating the potential for copper deposits in a given area using remote sensing images. Follow the three-step process below, ensuring the evaluation strictly adheres to the outlined criteria.

Step 1: Initial Analysis - False Color Image Analysis

Goal: Identify key surface features such as exposed bedrock, vegetation, and water bodies to establish a foundation for further mineral index analysis. Procedure

1.1 Identify Exposed Bedrock:

- Focus on brown and gray areas in the image, which usually represent exposed bedrock or alteration zones, indicating potential copper mineralization areas. 1.2 Exclude Non-Target Areas:

- Exclude green and blue areas, representing vegetation and water bodies, as they are less likely to be associated with copper mineralization. 1.3 Identify Linear Structures:

- Look for faults, fractures, and other linear features, as these may serve as conduits for hydrothermal fluids, which are typically linked to copper mineralization.

Step 2: Mineralization Potential Map Analysis

Goal: Further refine the areas identified in Step 1 using the Mineralization Potential Map. For an area to be considered a strong copper deposit candidate, it must show continuous red, yellow/orange, and green/blue regions. Any area missing one or more of these colors or without a smooth gradient should be excluded.

2.1 Hydrothermal Alteration (Red Areas):

- Red areas indicate intense hydrothermal activity, rich in minerals like magnetite and hematite, typically linked to copper deposit cores. Only red areas that smoothly transition into yellow/orange and green/blue zones should be considered.

2.2 Propylitic Alteration (Yellow/Orange Areas):

- Yellow/orange areas signify lower-temperature propylitic alteration, found in the outer zones of a mineralization system. These areas must be adjacent to red zones to be considered part of a copper deposit system.

2.3 Silicification Zones (Green/Blue Areas):

- Green/blue areas are rich in silica, potentially indicating secondary mineralization such as quartz veins. Only these areas that show a smooth transition from the yellow/orange zones should be considered for further evaluation.

Step 3: Correlation and Continuity Analysis

Goal: Evaluate the spatial continuity between the mineralization core, outer alteration zones, and silicified areas to determine copper deposit potential. **Procedure:**

3.1 Assess Spatial Continuity:

- Ensure that the red core zones smoothly transition into yellow/orange alteration zones and then into green/blue silicified zones. This transition must be continuous and cover a sufficiently large area to suggest the presence of a cohesive mineralization system.

3.2 Evaluate Gradient and Area Coverage:

Verify that the transition from red to yellow/orange to green/blue is smooth and covers a significant area. Disconnected color patches should be excluded unless they are part of a larger continuous system.

Scoring Guidelines (0-20 Points):

Score the potential mineralization zones based on the following criteria:

Confidence 1: Geological context(0-4 points):

- Award points based on the presence and extent of favorable geological features, such as exposed bedrock or linear structures.

Confidence 2: Deposit signatures Identification (0-8 points):

- Hydrothermal Alteration (0-4 points): Score based on the clarity and size of red areas and ensure that they transition smoothly into yellow/orange and green/blue areas.

- Propylitic Alteration (0-2 points): Award points if yellow/orange areas are adjacent to red areas and form a continuous system

- Silicification Zone (0-2 points): Award points if green/blue areas follow the yellow/orange zones with a smooth transition.

Confidence 3: Relation between deposit signatures (0-4 points):

- If red, yellow/orange, and green/blue areas are all present, evaluate their connection. Award points based on the smoothness and continuity of transitions across the zones. If they are not connected, assign 0 points.

Confidence 4: Cross-referencing Validation (0-4 points): - Compare the Mineralization Potential Map with the favorable geological features from the False Color Image. Award high points if the areas identified in both analyses overlap significantly. Adjust points downward if there is overlap with non-target areas such as water bodies or dense vegetation.

Final Assessment:

- Total Score: Sum the confidence scores. Areas with a total score greater than 16 suggest significant copper mineralization potential and should be prioritized for further exploration.

Important Reminder:

Ensure all analyses focus on areas displaying continuous red, yellow/orange, and green/blue gradients. The scoring system must be applied consistently to maintain the accuracy of the results. Do not deviate from this process unless justified by specific data.

Figure 12: The pipeline of "Easy" setting

Instruction for Geological Tool

As a geological expert, your task is to evaluate the copper deposit potential based on a False Color Image (FCC). Focus on identifying favorable geological areas like exposed bedrock and linear structures. Analyze the image and assign a score from 0 to 5 based on the potential for copper mineralization.

Procedure:

- 1. Identify Exposed Bedrock:
- Focus on brown and gray areas in the image, which usually represent exposed bedrock or alteration zones, indicating potential copper mineralization areas. 2. Exclude Non-Target Areas:
- Exclude green and blue areas, representing vegetation and water bodies, as they are less likely to be associated with copper mineralization.
- 3. Identify Linear Structures:
- Look for faults, fractures, and other linear features, as these may serve as conduits for hydrothermal fluids, which are typically linked to copper mineralization.

###Scoring Guidelines for Geological Context (0-5 points):

- O Points: No favorable geological features (e.g., bedrock, linear structures); Image dominated by vegetation or water bodies.
 1-2 Points: Limited favorable features, such as small or isolated bedrock areas; Few or poorly connected linear structures. Low potential for copper mineralization. - 3 Points: Moderate presence of exposed bedrock and identifiable linear structures; Some overlap between favorable areas, but the overall zone size is limited.
- Medium potential for copper deposits.
- 4 Points: Well-distributed bedrock areas and several linear structures; High potential for copper deposits, with strong indicators but minor uncertainty.
 5 Points: Large, continuous bedrock areas with multiple well-defined linear structures; Strong spatial continuity, indicating very high potential for copper

mineralization. Set this score if the image is highly favorable overall.

Instructions for Hyperspetral Tools

As a mineral exploration expert, your goal is to evaluate the copper deposit potential in a given area. The analysis focuses on the colored areas in the images, where red represents high values and blue represents low values, following a rainbow color scale. Your objective is to identify and describe potential mineralization areas based on both the intensity (color value) and the size of the colored regions. Assign a score between 0 and 5 to each mineral index **Procedure:**

You will analyze three key mineral indices based on the color distribution:

- 1. Hydrothermal Alteration: Indicates core zones of copper deposits, linked to strong hydrothermal activity.
- 2. Propylitic Alteration: Typically represents outer edges of the mineral system with low-temperature alteration.
- 3. Silicification Zone: Indicates areas rich in guartz veins, commonly associated with copper mineralization.

Scoring Guidelines for Deposit Signatures (0-5 Points)
- 0 Points: No significant colored areas. Set `"favorable_area"` to `"no favorable area"`. No potential.

- 1 Points: Scattered high-value areas or moderate low-value areas. Low potential for mineralization.
- 2 Points: Small high-value areas or well-distributed low-value areas. Low potential for mineralization.
 3 Points: Moderate high-value areas with well-distributed low values. Some potential for mineralization.
- 4 Points: Well-distributed high-value areas with large spatial coverage. High potential for mineralization.
- 5 Points: Large, continuous high-value areas. Strong mineralization potential due to size and intensity. High potential for mineralization.
- ### Important Reminder:
- High-value colored areas (red, vellow, green) in the image should be prioritized, with larger areas indicating higher potential
- Color Bar for Reference
- Blue Areas: Indicate low values; Green Areas: Represent moderate-low values; Yellow Areas: Indicate intermediate values
- Orange Areas: Represent moderately high values; Red Areas: Represent high values.

Instructions for Cross-image Tools

As a remote sensing image analysis expert, your task is to identify favorable areas for copper mineralization by analyzing the provided images. Focus on two main tasks, and base your scoring solely on image overlay to locate areas with the highest potential for copper deposits. Assign a score between 0 and 5 to each task. ### Procedure

- 1. Assess Mineral Indices: Analyze the Hydrothermal Alteration, Propylitic Alteration, and Silicification Zone to evaluate the continuity of mineralization features. Focus on high-value areas (red and other strong colors) in the images.
 - Identify where these areas overlap or are close to each other across the three indices.
- Look for continuity: smooth transitions from hydrothermal zones to propylitic and silicification zones

Scoring Guidelines for Signatures' Relation (0-5 Points)

- 0 Points: No observable continuity or overlap of colored areas across all indices
- 1 Points: Weak continuity and minimal overlap of colored areas across all indices.
- 2 Points: Weak continuity with some overlap of colored areas across all indices.
- 3 Points: Moderate continuity with some overlap of colored areas across all indices
- 4 Points: Moderate continuity with some overlap of high-value areas across all indices.
- 5 Points: Strong continuity with some overlap of high-value areas across all indices.

Procedure:

- 2. Identify the Final Favorable Location: Find where geological insight from FCC overlap with the high-potential mineral areas identified in the first task.
- Instructions:
- Locate the high-potential mineral areas identified in the first task "Assess Mineral Indices".
- Locate favorable geological insight in the false color composition image.
 Cross-reference these geological features with the high-potential zones derived from the "Assess Mineral Indices".
- Highlight regions where geological features and high-potential mineralization areas coincide, as these are the most promising locations for copper deposits. ### Scoring Guidelines for Cross-referencing Validation (0-5 Points)
- 0 Points: No significant mineralization features identified from task 1 or geological insight from the FCC.
- 1 Points: No significant overlap between mineralization features from task 1 and geological features from the FCC.
- 2 Points: Minimal overlap between mineralization features from task 1 and geological features from the FCC.
- 3 Points: Moderate overlap between mineralization features from task 1 and geological features from the FCC.
- 4 Points: Significant overlap in moderate-potential areas between mineralization features from task 1 and favorable geological features from the FCC.
- 5 Points: Significant overlap in well-distributed potential areas between mineralization features from task 1 and favorable geological features from the FCC.

Figure 13: The pipeline of "Standard" setting

Instructions for Hyperspetral Tools

As a mineral exploration expert, your goal is to assess the copper deposit potential in a designated region by analyzing mineral indices images. This process is carried out in two stages: 1. Analyze individual mineral index images separately. 2. Perform a combined analysis by integrating the results of these individual indices. Each step focuses on the colored areas in the images. After combining the indices, you will assign a score between 0 and 5 for each zone

Procedure:

- 1. Analysis of Individual Hyperspetral Images:
- In this stage, you will analyze each Mineral Index based on the color distribution in the image:
- Ferric Oxide Index (Hematite, Goethite): Highlights iron oxide-rich zones, commonly associated with copper deposit cores.
- FeOH Group Index (Chlorite, Epidote, Jarosite): Identifies FeOH-rich zones, often found in outer hydrothermal alteration zones.
- Opaque Index: Detects opaque minerals (e.g., magnetite), often present in copper mineralization cores.
 AIOH Group Index (Muscovite, Illite, Kaolinite): Detects sericitic alteration, typically found in outer copper deposit zones
- MgOH Group Index (Chlorite, Calcite, Dolomite): Indicates magnesium-rich alteration from low-temperature hydrothermal fluids.
- Ferrous Iron in MgOH Index (Chlorite, Actinolite): Suggests peripheral mineralization in copper systems
- Quartz Index: Highlights quartz veins, commonly linked to hydrothermal systems. - Silica Index: Identifies silicified zones, which are often associated with mineralized areas
- For each index, you will evaluate copper potential by assessing the intensity and the spatial distribution of high-value areas.

2. Combined Deposit Signatures Analysis:

After individually analyzing each Mineral Index, combine the results to get a comprehensive view.

2.1 Hydrothermal Alteration Zones

- Indicators: High-value areas in the Ferric Oxide, FeOH Group, and Opaque indices suggest high-temperature hydrothermal activity and copper mineralization cores

- Significance: These are the primary mineralization targets and should be the main focus of exploration.

2.2 Propylitic Alteration Zones

- Indicators: High-value areas in the AIOH, FeOH, MgOH, and Ferrous Iron indices suggest outer alteration zones influenced by low-temperature hydrothermal fluids.

Significance: These areas often indicate peripheral or secondary mineralization potential, providing key insights into the broader mineral system. 2.3 Silicification Zones:

- Indicators: High-value areas in the Ferric Oxide, Quartz, and Silica indices suggest the presence of quartz veins or silicified zones, often linked to secondary mineralization.

- Significance: These areas provide additional clues to copper mineralization near the outer limits of the system. After identifying these zones, provide a score based on their spatial distribution, continuity, and overall potential for copper deposits.

Scoring Guidelines for Deposit Signatures (0-5 Points)

- 0 Points: No significant potential areas across the combined mineral indices. Set "favorable_area" to "no favorable area". No potential.

- 1 Points: A few scattered potential areas across the combined indices. Very low mineralization potential.

- 2 Points: A few small, isolated potential areas across the combined indices. Low mineralization potential.

- 3 Points: Moderate potential areas across the combined indices. Some copper potential. Some potential.
- 4 Points: Well-distributed potential areas across the combined indices. High potential.
- 5 Points: Large, continuous potential areas across the combined indices. Very High potential

Important Reminder:

- High-value colored areas (red, yellow, green) in the image should be prioritized, with larger areas indicating higher potential.

- Color Bar for Reference

Blue Areas: Indicate low values;

Green Areas: Represent moderate-low values;

Yellow Areas: Indicate intermediate values

Orange Areas: Represent moderately high values;

Red Areas: Represent high values.

Figure 14: The pipeline of "Hard" setting

MineAgent: You are a mineral exploration expert tasked with evaluating the potential for copper deposits in a given area using remote sensing images. Score the potential mineralization zones based on the following guideline.

1. Provide a certainty score from 0 to 20, reflecting the overall confidence in your decision.

2. Assign a label of 1 (presence of copper deposits) only if there is strong evidence, such as high confidence or clear mineralization patterns. If the evidence is insufficient, assign a label of 0 (absence of copper deposits).

3. Evaluate each factor carefully, step by step, before making your final conclusion. **Output:** {"**prediction**": 1, "**score**": 18.0, "**explanation**": The false color image shows significant areas of exposed bedrock, particularly along the central and eastern parts of the image, which are potential indicators of copper mineralization. Linear structures, such as faults and fractures, are also visible, which can serve as conduits for hydrothermal fluids. The mineral prospective map shows a strong presence of red, yellow/orange, and green/blue areas, indicating hydrothermal alteration, propylitic alteration, and silicification zones, respectively. These areas are continuous and show smooth transitions between them, especially in the central and eastern parts of the image. Based on the explanation, the region shows significant potential for copper deposits, with a total score of 18. The presence of favorable geological features, continuous mineralization zones, and smooth transitions between these zones support the high potential for copper mineralization.}

Figure 15: The example of "Easy" setting

Geological Tool: As a geological expert, your task is to evaluate the copper deposit potential based on a False Color Image (FCC). Focus on identifying favorable geological areas like exposed bedrock and linear structures. Analyze the image and assign a score from 0 to 5 based on the potential for copper mineralization.

c1: {"score": 4, "favorable_area": "Central and eastern regions with exposed bedrock and linear structures", "explanation": "The image shows significant areas of brown and gray, indicating exposed bedrock, particularly in the central and eastern parts. There are also several linear features that suggest the presence of faults or fractures, which are favorable for copper mineralization. The distribution and size of these features indicate a high potential for copper deposits, with strong geological indicators present."}

Hyperspetral Tools: As a mineral exploration expert, your objective is to identify and describe potential mineralization areas based on both the intensity (color value) and the size of the colored regions. Assign a score between 0 and 5 to each mineral index. You will analyze three key mineral indices based on the color distribution:

1. hydrothermal alteration: High-value areas in the Ferric Oxide, FeOH Group, and Opaque indices suggest high-temperature hydrothermal activity and copper mineralization cores.

2. propylitic alteration: High-value areas in the AlOH, FeOH, MgOH, and Ferrous Iron indices suggest outer alteration zones influenced by low-temperature hydrothermal fluids.

3. silicification zone: High-value areas in the Ferric Oxide, Quartz, and Silica indices suggest the presence of quartz veins or silicified zones, often linked to secondary mineralization.

c2: {"score": 4, "favorable_area": The hydrothermal alteration zone shows well-distributed high-value areas, particularly along the central and northern sections, with significant red and orange regions., "explanation": The presence of continuous red and orange areas indicates a high potential for copper mineralization due to strong hydrothermal activity.}

c3: {"score": 3, "favorable_area": The propylitic alteration zone has scattered moderate to high-value areas, with some orange and yellow regions mainly in the central part., "explanation": The distribution of orange and yellow areas suggests moderate potential for mineralization, indicating peripheral zones of the mineral system.}

c4: {"score": 2, "favorable_area": The silicification zone has small, scattered high-value areas with limited orange and yellow spots., "explanation": The limited size and distribution of high-value areas suggest low to moderate potential for copper mineralization. The areas are not extensive enough to indicate strong mineralization potential.}

Cross-image Tools: As a remote sensing image explanation expert, your task is to identify favorable areas for copper mineralization by analyzing the provided images. Focus on two main tasks, and base your scoring solely on image overlay to locate areas with the highest potential for copper deposits. Assign a score between 0 and 5 to each task.

Based on the above analyses from {c1,c2,c3}, ensure that core zones transition smoothly into propylitic zones and then into silicified zones.
 Based on the above analyses {c1,c2,c3} and {c1}, find where geological features overlap with the high-potential mineral features.
 c5: {"score": 4, "favorable_area": Central region with overlapping hydrothermal and propylitic alteration, "explanation": The central region shows strong continuity of high-value areas in both hydrothermal and propylitic alteration zones, with significant red and orange areas indicating potential copper mineralization. This suggests a high potential due to the presence of continuous alteration features.}

c6: {"score": 4, "favorable_area": Central and eastern regions with exposed bedrock and alteration overlap", "explanation": "The central and eastern regions show a significant overlap of geological features from the FCC image, such as exposed bedrock and linear structures, with high-value alteration zones. This overlap suggests a strong potential for copper deposits, as geological and mineral indices align well.}

Figure 16: The example of "Standard" setting

<False color image>

Geological Tool: As a geological expert, your task is to evaluate the copper deposit potential based on a False Color Image (FCC). Focus on identifying favorable geological areas like exposed bedrock and linear structures. Assign a score from 0 to 5 based on the potential.

c1: {"score": 4, "favorable_area": Central and southern regions with exposed bedrock and linear structures, "explanation": The image shows welldistributed brown and gray areas indicating exposed bedrock, particularly in the central and southern regions. There are also several linear features suggesting potential pathways for hydrothermal fluids. These geological features are favorable for copper mineralization, leading to a high potential score.}

	1	Je,				24	24	
Ferric Oxide>	<feoh group=""></feoh>	<opaque></opaque>	<aioh_group></aioh_group>	<mgoh group=""></mgoh>	<ferrous iron=""></ferrous>	<quartz></quartz>	<silica></silica>	

Hyperspetral Tools: As a mineral exploration expert, your objective is to identify and describe potential mineralization areas based on both the intensity (color value) and the size of the colored regions. Assign a score between 0 and 5 to each mineral index. You will analyze three key mineral indices based on the color distribution:

1. hydrothermal alteration: High-value areas in the Ferric Oxide, FeOH Group, and Opaque indices suggest high-temperature hydrothermal activity and copper mineralization cores.

2. propylitic alteration: High-value areas in the AlOH, FeOH, MgOH, and Ferrous Iron indices suggest outer alteration zones influenced by low-temperature hydrothermal fluids.

3. silicification zone: High-value areas in the Ferric Oxide, Quartz, and Silica indices suggest the presence of quartz veins or silicified zones, often linked to secondary mineralization.

c2: {"score": 4, "favorable_area": Central and eastern parts with overlapping red areas in Ferric Oxide and Opaque indices., "explanation": The Ferric Oxide and Opaque indices show significant red areas, indicating high copper potential in the central and eastern regions. This suggests strong hydrothermal alteration zones.}

c3: {"score": 3, "favorable_area": Scattered areas in the AlOH and FeOH indices., "explanation": The AlOH and FeOH indices show moderate orange and yellow areas, indicating potential propylitic alteration zones. These are less continuous but suggest some secondary mineralization potential.}
 c4: {"score": 2, "favorable_area": Sparse areas in the Quartz and Silica indices., "explanation": The Quartz and Silica indices show limited red and orange areas, indicating less significant silicification zones. These areas suggest minor potential for secondary mineralization. }

			×.					2/2
<false color=""></false>	<ferric oxide=""></ferric>	<feoh group=""></feoh>	<opaque></opaque>	<aioh_group></aioh_group>	<mgoh group=""></mgoh>	<ferrous iron=""></ferrous>	<quartz></quartz>	<silica></silica>

Cross-image Tools: As a remote sensing image explanation expert, your task is to identify favorable areas for copper mineralization by analyzing the provided images. Focus on two main tasks, and base your scoring solely on image overlay to locate areas with the highest potential for copper deposits. Assign a score between 0 and 5 to each task.

1. Based on the above analyses from $\{c_1, c_2, c_3\}$, ensure that core zones transition smoothly into propylitic zones and then into silicified zones. 2. Based on the above analyses $\{c_1, c_2, c_3\}$ and $\{c_1\}$, find where geological features overlap with the high-potential mineral features.

c5: {"score": 4, "favorable_area": Central region with strong overlap in Ferric Oxide, Opaque, and Ferrous Iron indices., "explanation": There is strong continuity and overlap of high-value areas in the Ferric Oxide, Opaque, and Ferrous Iron indices. This suggests a well-developed mineralization system with high copper potential in the central region.}

c6: {"score": 5, "favorable_area": Central region with strong overlap of geological features and mineral indices, "explanation": The central region shows a strong overlap between the exposed bedrock and linear structures from the FCC image and the high-potential areas indicated by the Ferric Oxide, Opaque, and Ferrous Iron indices. This alignment suggests a well-developed hydrothermal system, enhancing the likelihood of copper mineralization. The consistent presence of favorable geological features and mineral indices across multiple analyses supports a high confidence score.}

Figure 17: The example of "Hard" setting

1214	2020), and regression trees (Pham et al., 2018),
1215	have shown success in identifying prospective min-
1216	eral deposits. With the increasing complexity of
1217	remote-sensing data, deep learning (DL) models
1218	have demonstrated efficient and accurate feature ex-
1219	traction capabilities (Liu et al., 2023a; Yang et al.,
1220	2024). However, existing ML and DL methods face
1221	key limitations, including dependence on labeled
1222	datasets and poor generalizability across diverse
1223	geological environments. To address these chal-
1224	lenges, we propose leveraging advanced MLLMs
1225	to explore mineral deposits, integrating human ex-
1226	pertise for enhanced insights.