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Abstract

Remote-sensing mineral exploration is critical001
for identifying economically viable mineral de-002
posits, yet it poses significant challenges for003
multimodal large language models (MLLMs).004
These include limitations in domain-specific005
geological knowledge and difficulties in rea-006
soning across multiple remote-sensing images,007
further exacerbating long-context issues. To008
address these, we present MineAgent, a mod-009
ular framework leveraging hierarchical judg-010
ing and decision-making modules to improve011
multi-image reasoning and spatial-spectral in-012
tegration. Complementing this, we propose013
MineBench, a benchmark specific for evaluat-014
ing MLLMs in domain-specific mineral explo-015
ration tasks using geological and hyperspectral016
data. Extensive experiments demonstrate the017
effectiveness of MineAgent, highlighting its po-018
tential to advance MLLMs in remote-sensing019
mineral exploration.020

1 Introduction021

Mineral exploration is a systematic geological022

investigation focused on locating, identifying,023

and evaluating economically viable mineral de-024

posits (Dentith and Mudge, 2014). It is essential to025

discover and secure raw materials critical for global026

infrastructure, technological advancement, and sus-027

tainable development (Gocht et al., 2012). Nowa-028

days, remote-sensing satellite imaging studies are029

widely and effectively used in mineral exploration,030

offering an efficient, cost-effective alternative to031

traditional field surveys (Van der Meer et al., 2012;032

Bedini, 2017; Ousmanou et al., 2024).033

In remote-sensing mineral exploration, human034

experts typically follow: identifying geological fea-035

tures from images like faults and fractures, integrat-036

ing multiple hyperspectral images to detect min-037

eralization patterns, and synthesizing these into038

a mineral prospectivity map (MPM) to predict039

mineral deposit locations (Sabins, 1999; Shirmard040

et al., 2022; Zuo et al., 2021). These processes 041

are manual, time-intensive, and reliant on expert 042

knowledge, necessitating automated machine learn- 043

ing and deep learning (DL) solutions for scalability. 044

To this end, DL models, e.g., CNNs (Alzubaidi 045

et al., 2021; Fu et al., 2023) and Transformers (Yin 046

et al., 2024a), have been widely applied to pro- 047

cess remote-sensing (RS) data. These methods 048

excel at extracting features from RS images, map- 049

ping geological, geochemical, and geophysical at- 050

tributes to predict mineral deposits (Yang et al., 051

2024). However, their data-driven nature makes 052

them reliant on labeled datasets, limiting their gen- 053

eralization to new geological scenarios. In contrast, 054

multimodal large language models (MLLMs) have 055

recently emerged with remarkable zero-shot ca- 056

pabilities, integrating visual and textual contexts 057

to tackle tasks (Muhtar et al., 2024; Zhang et al., 058

2024c; Wang et al., 2024a) without requiring task- 059

specific training data (Yin et al., 2024b). 060

Despite their promise, MLLMs face critical chal- 061

lenges when applied to mineral exploration with 062

multiple RS images: they lack domain-specific geo- 063

logical knowledge (Zhang et al., 2024b) and strug- 064

gle to reason effectively across multiple images 065

(Liu et al., 2024b; Zhao et al., 2024). What’s worse, 066

domain-specific instructions (e.g., thousands of to- 067

kens) and multi-image inputs (e.g., 9 images) ex- 068

acerbate the challenge by long-context issues that 069

hinder reasoning accuracy (Liu et al., 2024c). For 070

example, Figure 1(a) highlights how MLLMs strug- 071

gle with critical spatial elements like the strategic 072

placement of low-value areas (blue). besides, in 073

Figure 1(b), MLLMs demonstrate significant dif- 074

ficulty in synthesizing spatial relationships across 075

multiple geological contexts. 076

To circumvent the challenges of domain-specific 077

knowledge integration and multi-image reasoning 078

in mineral exploration, we propose MineAgent, 079

a modular MLLM framework specifically de- 080

signed to address these complexities (Figure 3). 081

1



Score 0：The <Image> primarily shows blue areas with no significant high-value zones. This indicates a lack of potential.

### Task
Identify and describe potential mineralization areas of given <Image>, based on both the color value and the 
size of the colored regions,  where red represents high values and blue represents low values. 
### Scoring Guidelines 
0 Points: No significant colored areas.  No potential.
2 Points: Small high-value areas or well-distributed low-value areas.  Low potential.

Score 2：The <Image> contains large areas of moderate values (green) and extensive low-value regions (blue).

### Task
Analyze the continuity across <Image1>, <Image2>, and <Image3>.  These images denotes different mineral indicators, with colors 
representing varying values. Continuity is defined as the smooth spatial transition of colored regions across the three images.  
Identify whether the images exhibit continuity, as this would indicate the presence of a complete mineral deposit.
### Scoring Guidelines 
3 Points: Moderate continuity with some overlap of colored areas across all mineral indicators.
5 Points: Strong continuity with some overlap of high-value areas across all mineral indicators.

Score 3：The <Image2> and <Image3> both show scattered high-value areas, 
particularly in the central and eastern regions. While there is some continuity, 
<Image1> shows minimal overlap with these areas, reducing the overall confidence.

Score 5：In the central region, the moderate to high-value zones of images are clearly 
arranged in sequence. These zones exhibit partial overlap and strong connectivity, 
demonstrating good spatial continuity. 

<Image1>

(a)

(b)

<Image>

<Image2>

<Image3>

Figure 1: Judgment comparisons between GPT-4o (OpenAI, 2024) and human evaluator. GPT-4o in blue box and human-
annotation in red box. In (b), yellow boxes highlight regions and their spatial relations identified by the human but not GPT-4o.

MineAgent employs hierarchical judging and082

decision-making modules to extract, integrate,083

and analyze spatial and spectral features from084

remote-sensing data. By considering the common-085

practice pipeline and orchestrating these modules,086

MineAgent enhances reasoning capabilities across087

geological and hyperspectral contexts, enabling ac-088

curate deposit predictions.089

Moreover, we present MineBench, a benchmark090

for multimodal mineral exploration tasks. It stan-091

dardizes task formulations and datasets, enabling092

rigorous evaluation of MLLMs in reasoning over093

domain-specific remote-sensing data. MineBench094

provides a unique challenge to MLLMs where both095

multi-image reasoning and long-tail domain under-096

standing are required to accomplish one task. The097

main contributions of this work are:098

• We propose MineAgent, a modular framework099

addressing domain challenges in multi-image100

reasoning for mineral exploration.101

• We develop MineBench, a standardized bench-102

mark for evaluating MLLMs in mineral explo-103

ration with geological and hyperspectral data.104

• We conduct extensive experiments1 across105

various models and setups, demonstrating106

MineAgent’s effectiveness and providing in-107

sights into MLLMs in this domain.108

2 Related Work109

Multi-image Reasoning of MLLMs. Recent110

studies have revealed a significant performance111

1Our codes and data have been uploaded into the system.

gap between single- and multi-image reasoning 112

tasks (Liu et al., 2024d; Wang et al., 2024b; Jiang 113

et al., 2024; Zhang et al., 2024a; Liu et al., 2024b). 114

For instance, Wang et al. (2024d) highlighted de- 115

ficiencies in temporal and contextual reasoning 116

across image sequences while Zhao et al. (2024) 117

explored multi-dimensional aspects of multi-image 118

reasoning, such as perception, knowledge integra- 119

tion, reasoning, and multi-hop inference. How- 120

ever, domain-specific tasks, such as those in min- 121

eral exploration, pose unique challenges requiring 122

not only multi-image reasoning but also domain- 123

specific knowledge. This motivates us to present 124

MineBench to evaluate MLLMs’ reasoning capa- 125

bilities within a long-tail domain rigorously. 126

Remote Sensing MLLMs. The application of 127

MLLMs in remote sensing has gained traction 128

for tasks like image captioning and visual ques- 129

tion answering (Zhan et al., 2023; Cheng et al., 130

2022; Wang et al., 2021). These models, fine-tuned 131

with extensive visual-text instructions, demonstrate 132

strong performance on single-image tasks (Kuck- 133

reja et al., 2024; Zhan et al., 2024; Luo et al., 2024). 134

However, their capabilities remain limited when ex- 135

tended to multi-image reasoning, a critical require- 136

ment for mineral exploration tasks that demand in- 137

tegration of spatial and spectral information across 138

multiple images. Furthermore, the lack of stan- 139

dardized datasets tailored to multi-image remote- 140

sensing tasks hinders progress in applying MLLMs 141

to domains like mineral exploration. Addressing 142

this gap, we propose a modular MLLM framework, 143
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Figure 2: Task definition in MineBench. Particularly, a
targeted area a is represented by two image types, i.e., Ia =
{I (g)

a , I (h)
a }. I (h)

a are color-coded images where uncolored
regions represent sub-threshold potential.

MineAgent, coupled with MineBench.144

3 MineBench: on Remote-sensing Images145

The field of mineral exploration currently lacks a146

well-organized benchmark to evaluate the perfor-147

mance of MLLMs. Existing ones do not capture the148

unique challenges of integrating geological knowl-149

edge with multimodal reasoning. These motivate150

us to present a new mineral exploration benchmark.151

Task Formulation. Mineral exploration enables152

quantifiable assessments of deposit likelihood, fa-153

cilitating prioritization of exploration areas, so it is154

usually formulated as a binary classification prob-155

lem (Alzubaidi et al., 2021; Fu et al., 2023), i.e.,156

y ∼ Pθ(y|a) := Pθ(·|Ia) = Pθ(·|I (g)
a , I (h)

a ) (1)157

where y ∈ Y represents the presence of mineral158

deposits with Y = {0, 1} in a targeted area a and159

a can be represented as a set of remote-sensing160

images, Ia. In mineral exploration, according to161

distinct roles and nature of the data, Ia can be162

coarsely grouped into two sub-sets, i.e., geological163

images (I (g)
a ) and hyperspectral images (I (h)

a ).164

Remote-sensing Images in Mineral Exploration.165

Geological images (I (g)
a , see Figure 2(a)) focus on166

capturing macroscopic spatial and morphological167

features, such as landforms, tectonic structures, and168

geological units, which are critical for identifying169

large-scale mineralization patterns and structural170

controls, whereas hyperspectral images (I (h)
a , see171

Figure 2(b)) are designed to capture high-resolution172

spectral reflectance data across a wide range of173

wavelengths, enabling the detailed characterization174

and differentiation of mineral types and their spatial175

distributions at a pixel-by-pixel level.176

Data Sourcing and Preprocessing. We utilized 177

raw remote-sensing data from the Geoscience 178

Western Australia (GSWA) repository2, an open- 179

source geoscience data source (Portal), to compose 180

MineBench. Although the raw remote-sensing im- 181

ages encompass all necessary information to infer 182

mineral exploration tasks, the raw hyperspectral 183

images, I (h)
a , are not intuitive for visualizing min- 184

eralization patterns (Sabins, 1999). This limitation 185

makes it considerably challenging for MLLMs or 186

even humans to identify meaningful deposit signa- 187

tures directly because such tasks require extensive 188

domain knowledge in mineral exploration to inter- 189

pret and process the raw data effectively. There- 190

fore, following common practices in mineral ex- 191

ploration (Yazdi et al., 2018; Wambo et al., 2020; 192

Ghamisi et al., 2017), we preprocess the raw hyper- 193

spectral images using domain-specific linear com- 194

binations to generate three distinct deposit signa- 195

ture images, I (s)
a (see Figure 2(bottom)). These 196

signature images provide a visually interpretable 197

representation of key features in deposit formation, 198

significantly reducing task complexity for both hu- 199

man experts and automated models. Consequently, 200

MineBench is formulated as 201

y ∼ Pθ(y|I (g)
a , I (s)

a ). (2) 202

More details on data sourcing and preprocessing 203

are provided in Appendix A and B, respectively. 204

Data Labeling and Sampling. We access the 205

deposit locations directly sourced from authorita- 206

tive records as class labels3 – ‘positive’ as y = 1 207

and ‘negative’ as y = 0. Considering the inher- 208

ent class imbalance in real-world mineral explo- 209

ration, a strategic random sampling approach was 210

employed to ensure robust evaluation close to real- 211

world scenarios. The resulting dataset consists of 212

73 positive areas and 539 negative areas, yielding 213

an ∼1:9 positive-to-negative ratio, leading to reli- 214

able and statistically meaningful evaluations (Hew- 215

son et al., 2015; Gonzalez-Alvarez et al., 2020). 216

Validation of Preprocssing. While preprocess- 217

ing provides visually interpretable features for min- 218

eral exploration, it inherently involves a loss of 219

information due to the linear combinations. To en- 220

sure that the processed data retains sufficient detail 221

for deterministic judgments, we also conducted a 222

2https://data.dea.ga.gov.au/?prefix=ASTER_
Geoscience_Map_of_Australia/

3https://map.sarig.sa.gov.au/

3

https://data.dea.ga.gov.au/?prefix=ASTER_Geoscience_Map_of_Australia/
https://data.dea.ga.gov.au/?prefix=ASTER_Geoscience_Map_of_Australia/
https://map.sarig.sa.gov.au/


Collaboration Evaluative

Evaluate the copper deposit potential based on geological 
image. Focus on identifying favorable geological areas like 
exposed bedrock and linear structures.

Identify and describe potential areas of mineralogical 
areas, based on both the color value and the size of the 
each deposit signatures.

Based on {       --       }, examine the continuity between the 
deposit signatures, to detect indicates a well-formed  deposit.

 Based on {       --       },  find where geological environment  
overlap with the high-potential  mineralization zones.

 Local Mineralization Detection 

 Geological Environment Analysis

 Deposit Location Inference

Please assess the potential for copper deposits using remote sensing images by following the 
outlined procedure step by step. Assign a certainty score to indicate the likelihood of deposits.

Cross-referencing Validation

Judging Modules in Hierarchy

Exploration Pipeline

... Criteria

Communication Protocol

Geological Tool

Score 2: No deposits Score 3.78: Deposits are identified in this area.

Hyperspetral Tools

Corss-image Tools

Human 

Decision-making Modules

Figure 3: The tailored MineAgent for mineral exploration. (Left) Base pipeline using step-by-step reasoning; (Right)
MineAgent decomposing pipeline into specialized modules, improving assessment accuracy.

human evaluation on a subset (20%) of the dataset.223

To facilitate this evaluation, the deposit signature224

images, I (s)
a , were further combined into a mineral225

prospectivity map (MPM), I (mpm)
a , offering a clear226

and intuitive visualization of potential mineral de-227

posits (Zuo, 2020; Xu et al., 2021). Using the228

MPM, human experts make judgments upon229

HumanEval(·|I (g)
a , I (mpm)

a ) (3)230

and validated the data by comparing it against of-231

ficial deposit locations. The results (97.4% accu-232

racy) demonstrate that even with MPM, human233

judgments align well with the provided class labels,234

confirming the reliability of the preprocessing. Fur-235

ther details on the validation process are provided236

in Appendix B.4. In the remaining, we omit the237

subscript a for clarity if no confusion is caused.238

4 Methodology239

To leverage the capabilities of multimodal large240

language models (MLLMs) in mineral exploration,241

we naturally formulate the task as a visual question-242

answering (VQA) problem. Specifically, given243

remote-sensing images (e.g., I (g) and I (s)) and244

a domain-specific query about the presence of a245

particular mineral deposit, the model generates a246

response indicating the likelihood of the deposit.247

This response can then be mapped to a classifica-248

tion label using a predefined verbalizer, i.e., 249

o ∼ M(I (g), I (s); θ), (4) 250

where θ parameterizes the MLLM, M, and o de- 251

notes a natural language response with verbalizer. 252

Despite the simplicity in Eq.(4), the inherent 253

limitations of MLLMs in lacking domain-specific 254

geological knowledge pose significant challenges – 255

they struggle with interpreting complex hyperspec- 256

tral imaging data and understanding spatial patterns 257

critical for mineral exploration. 258

4.1 Baseline: Mineral Exploration Pipeline 259

To alleviate the lack of domain knowledge, we 260

first propose a baseline framework that integrates 261

the conventional mineral exploration pipeline with 262

domain-specific instructions to enhance the under- 263

standing and reasoning capabilities of MLLMs. 264

This pipeline emulates the workflow of human ex- 265

perts in mineral exploration by leveraging step-by- 266

step structured prompts and reasoning mechanisms. 267

Formally, let P denote a curated set of domain- 268

specific prompts tailored for the task. These 269

prompts are carefully designed to encode key do- 270

main knowledge and guide the MLLM through 271

sequential reasoning steps. The method can be 272

represented as 273

o(pipeline) ∼ M(I (g), I (s); θ, P ), (5) 274
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where I (g) and I (s) represent geological and pro-275

cessed hyperspectral images, and o(pipeline) is the276

model-generated step-by-step reasoning by follow-277

ing the pipeline instruction P .278

Specifically, pipeline instruction P consists of279

sequential stages that transform raw geological data280

into actionable insights: Geological Environment281

Analysis (S1) analyzes geological images to iden-282

tify key structural elements, such as faults, cru-283

cial for understanding the mineralization environ-284

ment. Local Mineralization Detection (S2) uses285

hyperspectral images to detect deposit signatures286

by examining color variations, providing granular287

insights into potential mineralization zones. Global288

Deposit Location Inference (S3) evaluates spatial289

correlations among deposit signatures to infer de-290

posit locations based on mineralization patterns.291

Sequential arrangements with strong spatial con-292

tinuity suggest the presence of complete deposits.293

Cross-referencing Validation (S4) synthesizes find-294

ings from S1 to S3 to estimate deposit probabili-295

ties and accurately identify target exploration areas.296

Therefore, o(pipeline) can be decomposed as297

o(pipeline) := o(s1) ⊕ o(s2) ⊕ o(s3) ⊕ o(s4) ⊕ y, (6)298

where o(s*) denotes the rationale and staged judg-299

ment generated for the corresponding stage, and y300

is the final judgment. Note we generate all outputs301

in o(pipeline) together in one MLLM inference (see302

Appendix H for details). As such, this structured303

pipeline enhances the reliability of mineral explo-304

ration by ensuring transparency at every stage.305

4.2 MineAgent: Orchestrating over306

Remote-sensing Images307

However, the above is still vulnerable to multi-308

image reasoning as MLLMs struggle to synthesize309

spatial and contextual relationships across multiple310

images and long contexts, leading to incomplete311

understandings of multiple remote-sensing images312

for mineral exploration. Therefore, we propose an313

agent framework, MineAgent, that decomposes the314

exploration process into modular components.315

4.2.1 General MineAgent Framework316

MineAgent focuses on two core kinds of modules317

to enhance its reasoning capabilities: judging and318

decision-making, as shown in Figure 4. While a319

judging module specializes in extracting specific320

features from remote-sensing images (e.g., geo-321

logical structures or spectral mineralization signa-322

tures), a decision-making module is designed for323

...
single category cross multiple images   

Judging Modules 

Decision-making Modules

...

Figure 4: A general framework of MineAgent.

a specific task to integrate these features to per- 324

form high-level reasoning tasks, such as inferring 325

mineral deposit likelihood or validating predictions 326

across diverse datasets. 327

Judging Modules in Hierarchy. A judging mod- 328

ule operates with two types of inputs to maintain 329

focus and robustness in feature extraction, i.e., 330

c ∼ J (I, C; θ), where C = {ci}Ni=0. (7) 331

The first type of input includes one or a few single- 332

category remote-sensing images, I, such as geo- 333

logical or hyperspectral images, ensuring that the 334

module specializes in analyzing a specific feature 335

(e.g., structural patterns or deposit signatures). The 336

second type of input comes from the outputs, C, 337

of other judging modules, enabling a hierarchical 338

structure. And either of them is optional. This 339

setup allows for cross-image reasoning and inter- 340

mediate result validation, effectively integrating 341

insights from multiple sources. By focusing on spe- 342

cific features while facilitating inter-module com- 343

munication, this approach circumvents the chal- 344

lenges of multi-image reasoning in complex min- 345

eral exploration tasks. 346

Communication Protocol. A well-defined com- 347

munication protocol is critical for ensuring efficient 348

information exchange between modules. Each 349

module in MineAgent communicates using a semi- 350

structured output format, 351

ci = {si, ai, ei} , (8) 352

where si is a numerical score reflecting the mod- 353

ule’s confidence or evaluation, ai represents the 354

identified favorable areas or features, and ei pro- 355

vides an analytical explanation or rationale behind 356

the module’s output. si is determined based on a 357

detailed scoring guide, ensuring consistency. 358

Decision-making Modules Specific to Tasks. 359

A decision-making module is invoked to integrate 360

5



Tool Type Module Type Captured Feature Inp. Imgs (I) Inp. Ref (C) Output Stage

Geological Tool Judging Geological context I(g)
a N/A c1 S1

Hyperspetral Tools

Judging Signature 1 I(s) N/A c2 S2

Judging Signature 2 I(g)
a N/A c3 S2

Judging Signature 3 I(s)
a N/A c4 S2

Corss-image Tools
Judging Relation between signatures I(s) c2–c4 c5 S3

Judging Validation between I(g)
a and I(s)

a I(g)
a , I(s)

a c1–c5 c6 S4

Deposit Presence Tool Decision-making Response of deposit presence N/A N/A o(dm) N/A

Table 1: Tools in MineAgent tailored for mineral exploration. ‘Inp.’ denotes the model inputs in Eq.(7).

multiple structured outputs from the judging mod-361

ules to derive high-level insights and outputs for a362

specific task. Formally, this task-specific module is363

written as364

o(dm) := D(C; θ), (9)365

The module takes a set of assessment tuples C =366

{c1, c2, . . . , cM} as input and outputs o(dm), the367

final decision, along with a confidence score or368

feedback to guide downstream processes.369

Thus, MineAgent orchestrates the exploration370

process by integrating judgments from hierarchical371

judging modules and decisions from task-specific372

decision-making modules, ensuring robust multi-373

image reasoning and high-confidence answers.374

4.2.2 Grounding for Mineral Exploration375

As we have a mature pipeline for mineral ex-376

ploration with remote-sensing images according377

to human experts, we apply a workflow-based378

paradigm (Li et al., 2024) to our agent framework379

for mineral exploration.380

To ground the MineAgent, we propose multiple381

tools as in Table 1 for judging modules in Eq.(7)382

and decision-making modules in Eq.(9): remote-383

sensing image judging tool suite is a collection of384

MLLM-based modules designed to extract critical385

features from remote-sensing data, including geo-386

logical and hyperspectral images (see Appendix H387

for details). And deposit presence decision-making388

tool insights from the judging modules to determine389

the likelihood of mineral deposit presence in a tar-390

geted area. To optimize computational efficiency,391

we directly employ Bayesian optimization (Snoek392

et al., 2012) to calculate the overall evaluation score393

o(dm) =
∑

wisi, where wi represents the weight394

assigned to each criterion.395

5 Experiment396

Metric. Due to the inherent class imbalance397

in MineBench, multiple complementary metrics398

are employed. The F1 score for positive classes 399

(Pos.F1) evaluates the MLLMs’ ability to identify 400

deposits. The macro-averaged F1 score (Avg.F1) 401

provides balanced assessment across classes, while 402

the Roc-AUC evaluates discriminative ability. Ad- 403

ditionally, the Matthews Correlation Coefficient 404

(MCC) provides a comprehensive evaluation by 405

synthesizing the confusion matrix ranging from -1 406

to 1, where -1 indicates complete misclassification, 407

1 represents perfect prediction (Chicco and Jurman, 408

2020). The details of the experimental setting are 409

provided in Appendix C. 410

5.1 Main Results 411

Table 2 presents the comparative performance of 412

various MLLMs: Qwen2-VL-7B/72B (Bai et al., 413

2023; Wang et al., 2024c), Gemini-Flash-2.0 (Team 414

et al., 2024), Gemini-Pro-1.5, GPT- 4o (OpenAI, 415

2024), LLaVA-13B (Liu et al., 2023b, 2024a), 416

Yi-6B/34B (Young et al., 2024) and InterVL- 417

26B (Chen et al., 2024) on MineBench. This evalu- 418

ation highlights several key findings regarding the 419

strengths and limitations of the MLLMs: 420

Effectiveness of MineAgent. Experimental re- 421

sults demonstrate significant performance improve- 422

ments achieved by MineAgent, with the highest 423

improvement reaching 30.14% when paired with 424

GPT-4o and 23.77% when paired with Qwen-7B. 425

This result highlights the potential of MineAgent 426

in enhancing multi-image reasoning and domain- 427

specific gaps. Few open-source MLLMs, espe- 428

cially smaller ones (e.g., Yi-6B and LLaVA-13B), 429

show performance degradation when integrated 430

with MineAgent, primarily due to their unstable 431

reasoning capabilities in interpreting score crite- 432

ria. This problem, existing in both baseline and 433

MineAgent, leads to a label-score mismatch prob- 434

lem, such as assigning a score of 5 as “positive” and 435

a score of 9 as “negative.”, making the outputs less 436

meaningful. Statistically, Yi-6B exhibited a 23.53% 437

label-score mismatch, while LLaVA-13B showed 438
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Source Model
Baseline with MineAgent

Pos.F1 Avg.F1 Roc-AUC MCC Pos.F1 Avg.F1 Roc-AUC MCC

N/A Random Choice 11.86 49.96 51.01 2.01 11.86 49.96 51.01 2.01

Closed-Source

Gemini-Pro-1.5 20.95 18.56 49.66 -0.77 21.72 (+0.77) 30.57 (+12.01) 52.34 (+2.68) 3.52 (+4.29)
Gemini-Flash-2.0 20.30 41.24 51.33 1.73 22.54 (+2.24) 56.18 (+14.49) 56.03 (+4.70) 12.37 (+10.6)
Qwen2-VL-72B 22.97 20.76 54.44 9.97 58.71 (+34.74) 75.30 (+54.54) 84.01 (+29.6) 54.21 (+41.84)
GPT-4o 34.93 57.27 69.35 26.16 61.20 (+26.27) 77.19 (+19.92) 83.35 (+13.82) 56.30 (+30.14)

Open-Source

Yi-6B 15.74 43.89 47.14 -3.82 21.82 (+6.08) 15.16 (-28.74) 51.54 (+7.65) 5.05 (+8.87)
LLaVA-13B 19.46 26.32 47.28 -4.31 20.58 (+1.9) 21.36 (-4.96) 50.77(+3.49) 1.60 (+5.91)
InterVL-26B 19.26 31.87 56.91 8.95 24.23 (+5.06) 44.32 (+12.45) 57.10 (+0.19) 9.24 (+0.29)
Yi-34B 22.16 43.63 54.28 5.55 29.71 (+7.10) 50.85 (+7.22) 64.82 (+10.34) 19.28 (+13.73)
Qwen-7B 22.92 24.16 54.59 8.69 30.99 (+8.07) 47.93(+23.77) 68.23 (+13.64) 23.79 (+15.10)

Table 2: Comparison between baseline and MineAgent. Highlighted rows indicate the highest scores in either closed- or
open-source MLLMs. Red denotes improvements from baseline, while Gray denotes the number worse than the random choice.

an even higher rate of 35.15%, compared to mere439

1.96% for GPT-4o. Moreover, we observe a notable440

discrepancy between scores and their correspond-441

ing explanations from smaller MLLMs, as detailed442

in Appendix D. These findings underscore the crit-443

ical importance of stable foundational models in444

achieving consistent performance improvements.445

Performance Ceiling. MLLMs encounter sig-446

nificant limitations when addressing mineral ex-447

ploration tasks, even with the enhanced reason-448

ing capabilities provided by MineAgent. For in-449

stance, GPT-4o achieves a Pos.F1 score of only450

61.21% and an Avg.F1 of 77.19%. Notably, sev-451

eral open-source MLLMs perform below the ran-452

dom choice, underscoring fundamental architec-453

tural constraints. Moreover, a substantial perfor-454

mance disparity exists between closed-source and455

open-source MLLMs. This performance gap stems456

from two factors: a lack of high-quality, domain-457

specific training data to capture the nuances and458

insufficient exposure to multi-image reasoning sce-459

narios needed for handling task complexity.460

5.2 MLLM Capabilities Evaluation461

To assess MLLMs across varying levels of analyt-462

ical complexity, we introduce a three-tiered eval-463

uation framework. The most challenging “Hard”464

Setting
Input

Output
Inp.Imags (I) Number

Easy I (g)
a , I (mpm)

a 2 o(dm)

Standard I (g)
a , I (s)

a 4 o(dm)

Hard I (g)
a , I (h)

a 9 o(dm)

Table 3: Statistics of various settings.

setting employs raw remote-sensing data I (h)
a , from 465

GSWA without preprocessing steps. This configu- 466

ration rigorously tests MLLMs’ fundamental rea- 467

soning capabilities, demanding comprehensive in- 468

terpretation with minimal prior knowledge. In the 469

“Standard” setting, MineBench preprocesses I(h)
a 470

into deposit signatures I (s)
a , exposuring intuitive 471

mineralization patterns. The “Easy” setting, fur- 472

ther simplify the “Standard” MineBench by using a 473

manually preprocessed mineral prospectivity map 474

I (mpm)
a , incorporating extensive prior geological 475

knowledge. MineBench statistics and task configu- 476

rations are summarized in Table 3. 477

Experimental results reveal a clear correlation 478

between task complexity and MLLM performance, 479

as shown in Figure 5. As settings demand more so- 480

phisticated domain expertise and multi-image rea- 481

soning, performance metrics systematically decline. 482

Even the state-of-the-art GPT-4o demonstrates this 483

trend, with Avg.F1 scores declining from 87.41% 484

in the “Easy” task to 60.47% in the “Hard” task. 485

These findings underscore MineBench’s critical 486

role in identifying and facilitating improvements 487

to current MLLM limitations by offering diverse, 488

strategically designed evaluation settings. 489

5.3 Alignment of MLLMs with Human 490

Following scoring guidelines, both the human ex- 491

pert and the MLLM are tasked with assigning a 492

score within defined areas to evaluate reasoning 493

ability in this evaluation. The evaluation employed 494

20% of the MineBench, with samples selected 495

randomly while maintaining the original positive- 496

negative class distribution. The quantitative results 497

(Figure 6) reveal two key findings: 498
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Figure 6: comparison of MLLMs and human assessment w.r.t
Pearson correlation and weighted kappa across six outputs (c1
to c6). The dashed lines indicate avg. performance.

Model-Human Alignment. GPT-4o demon-499

strated significantly higher Pearson correlation and500

weighted Kappa scores than Qwen-7B across all501

evaluation criteria. This strong alignment with502

human expert correlates with the models’ over-503

all performance, validating that higher-performing504

MLLMs can better approximate human scoring505

patterns (Ouyang et al., 2022). To provide a com-506

prehensive view of the models’ scoring patterns,507

we visualize the score distributions in Appendix E.508

Challenges in Complex Task. The output c6 ex-509

hibited the lowest consistency scores, falling well510

below the average. This result underscores a key511

limitation: even advanced methods face difficul-512

ties extracting features from multi-image reason-513

ing, which emphasizes the current shortcomings of514

MLLMs in handling mineral exploration tasks.515

5.4 Ablation Studies516

We conducted ablation studies to evaluate the effec-517

tiveness of MineAgent by analyzing its components518

using GPT-4o. Four variants were designed and519

evaluated to investigate the role of each component520

in handling tasks of different complexity levels. 1)521

MineAgent: The framework incorporates all com-522

ponents, including the judging modules, commu-523

nication protocol, and decision-making modules.524

Setting Component Pos.F1 Avg.F1 Roc-Auc Mcc

Standard

MineAgent 61.20 77.19 83.35 56.30
w/o J 54.73 72.92 80.90 49.25

w/o JC 32.51 59.05 82.28 34.94
BASE 34.93 57.27 69.35 26.16

Easy

MineAgent 71.62 83.86 84.26 67.73
w/o A 44.00 62.91 80.27 40.62
w/o JC 77.78 87.41 86.96 74.82
BASE 55.24 75.52 69.58 57.03

Table 4: Performance across different settings and compo-
nents. The highest scores are marked in bold.

2) w/o J: A variant of MineAgent that removes 525

the judging modules, implementing the exploration 526

pipeline in a single inference. 3) w/o JC: Extend- 527

ing w/o J, this version further excludes the com- 528

munication protocol, resulting in the absence of 529

detailed scoring guidelines.(4) BASE: A simpli- 530

fied version that additionally excludes the decision- 531

making module, producing o(pipeline) as the result. 532

The results show MineAgent effectively reduces 533

reasoning complexity by decomposing the pipeline 534

into manageable components: The removal of judg- 535

ing modules led to a 7.05% decline in the MCC 536

score. Excluding the detailed scoring guidelines 537

within the communication protocol caused a sub- 538

stantial performance drop. Further, the decision- 539

making modules played a critical role in enhancing 540

the MLLM’s capability to navigate the exploration 541

pipeline. The details of the decision-making mod- 542

ules are further analyzed in Appendix F, showing 543

their effectiveness. In the “Easy” setting, an un- 544

expected performance pattern emerged: the w/o 545

JC variant outperformed the full MineAgent frame- 546

work. This result aligns with prior findings: while 547

existing MLLMs excel in basic visual reasoning, 548

they often struggle with complex multi-image and 549

domain-specific tasks (Kazemi et al., 2024). 550

6 Conclusion 551

In this paper, we present MineAgent, a novel 552

MLLM agent framework designed to address 553

critical challenges in multi-image reasoning and 554

domain-specific gap for mineral exploration. Our 555

comprehensive quantitative and qualitative abla- 556

tion studies further validate the effectiveness of 557

MineAgent. Further, our results underscore both 558

the potential and the limitations of MLLMs in min- 559

eral exploration, revealing significant performance 560

degradation as task complexity increases. 561
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Limitation562

1) Generalized applications: This work can only563

recognize specific types of deposits, restricting its564

applicability to a wider range of mineral types. 2)565

Domain-Specific Knowledge Enhancement: Con-566

tinuing from the initial success of MineAgent, fu-567

ture work will explore strategies such as integrat-568

ing domain-specific knowledge bases or leverag-569

ing reinforcement learning to further improve the570

MLLMs’ performance in specialized tasks. 3) As-571

sistant Tools : The results under the “Hard” setting572

highlight significant challenges. Future research573

will integrate assistant tools, such as integrating574

coding agents or feedback loops, can enhance the575

robustness and reasoning capabilities of models in576

realistic environments.577
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A Benchmark Construction862

MineBench is based on the publicly available863

GSWA remote-sensing dataset, a reliable resource864

for geoscience applications. GSWA comprises 17865

ASTER remote-sensing sub-datasets, 14 of which866

are synthesized using ASTER’s nine visible, near-867

infrared, and shortwave infrared bands (bands 1–9).868

The remaining three sub-datasets utilize ASTER’s869

thermal infrared bands (bands 10–14), extending870

the spectral range and enhancing suitability for871

geoscience interpretation. Each data underwent872

rigorous processing and evaluation to serve as the873

foundational base for MineBench.874

Data Collection To identify the targeted deposits,875

we selected nine remote-sensing sub-datasets Ia876

for analysis. The selected sub-datasets Ia are cate-877

gorized into two subsets based on their roles: geo-878

logical images I (g)
a and hyperspectral images I (h)

a ,879

as shown in Table 5. Details of these datasets are880

provided in the original technical document Por-881

tal. The remote-sensing data were segmented into882

12×12 km2 areas using a grid method to facilitate883

detection. To ensure high-quality data, areas con-884

taining blurry, irrelevant images or those heavily885

affected by shadows obscuring geological features886

were excluded. After labeling, areas with mineral887

deposits near edges or other factors hindering accu-888

rate identification were excluded.889

Quality Control with Human Annotators. A890

two-stage human review process was implemented891

to ensure data quality. A general reviewer con-892

ducted an initial quality check, followed by expert893

review and refinement. Areas requiring additional894

geochemical data or field observations for accurate895

identification were removed to improve prediction896

accuracy. This rigorous process ensures the accu-897

racy and utility of MineBench.898

B Benchmark Preprocessing Workflow899

A preprocessing workflow is proposed to construct900

the deposit signatures and mineral prospectivity901

map (MPM) used in MineBench evaluation and902

validation. This workflow enables precise control903

over feature extraction and integration, specifically904

optimized for copper mineralization detection. The905

detailed steps are as follows:906

B.1 Normalization of Remote-sensing Images907

To ensure consistency and standardization, each908

remote-sensing image Ia undergoes min-max nor-909

malization: 910

Ia,norm =
Ia −min(Ia)

max(Ia)−min(Ia)
(10) 911

where min(Ia) and max(Ia) are obtained from 912

the original dataset (Table 6). This normaliza- 913

tion scales remote-sensing images to the [0, 1] 914

range, facilitating seamless integration in prepro- 915

cessing steps. Additionally, the normalization func- 916

tion norm[a,b] ensures a consistent scaling range 917

throughout the workflow: 918

norm[min,max](Ia) =


0 if x < min

Ia−a
max−min

if min ≤ Ia ≤ max

1 if x > max

(11) 919

The function maps values to [0, 1], capping outliers 920

beyond specified bounds while preserving linear 921

scaling within the target range. It improves the 922

identification of high-potential areas by ensuring 923

standardized and consistent data scaling. 924

B.2 Preprocessing Step 925

Deposit Signatures. After normalization, raw hy- 926

perspectral images I (h)
a are transformed into de- 927

posit signatures I (s)
a using a weighted linear com- 928

bination informed by domain-specific knowledge 929

(Table 6). These relationships are critical for identi- 930

fying regions with varying mineralization patterns. 931

The first signature, the hydrothermal alteration 932

zone I (s,h)
a , a primary indicator of copper miner- 933

alization, is computed as: 934

I (s,h)
a = norm[1,3](I (h,ox)

a + 2I (h,oh)
a + 4I (h,op)

a )
(12) 935

where I (h,ox)
a represents ferric oxide content, I (h,oh)

a 936

denotes FeOH group content, and I (h,op)
a indicates 937

the opaque index. I (h,ox)
a , I (h,oh)

a , and I (h,op)
a are 938

types of hyperspectral images associated with spe- 939

cific minerals. The weights 1, 2, and 4 reflect each 940

indicator’s relative significance in identifying hy- 941

drothermal alteration. The normalization function 942

scales the output to the range [1, 3], enabling cross- 943

regional comparisons and threshold-based target- 944

ing. The value range is derived from expert obser- 945

vations. 946

Similarly, the second signature, the propylitic al- 947

teration zone I (s,p)
a , which characterizes peripheral 948

mineralization areas, is calculated as: 949

I(s,p)
a = norm[0.6,1](I(h,al)

a + I(h,oh)
a + I(h,mg)

a + 2I(h,fe)
a )

(13) 950

12



Remote-sening Data Associated Minerals Geoscience Application Notion

Ferric Oxide Content Hematite, Goethite

Identifies oxidation zones within hydrothermal systems, where hematite
and goethite accumulate due to surface weathering and high-oxidation
conditions. Weakly associated with propylitic zones but commonly
found in silicified zones within epithermal environments.

I(h,ox)
a

FeOH Group Content Jarosite, Chlorite, Epidote

Indicates FeOH-bearing minerals typical of acid-sulfate environments
in hydrothermal systems. Strongly associated with propylitic alteration,
with chlorite-epidote assemblages marking the transition between hy-
drothermal and propylitic zones.

I(h,oh)
a

Opaque Index Magnetite, Pyrite, Manganese Oxides
Highlights reduced zones containing opaque minerals like magnetite and
pyrite. Primarily found in the core areas of hydrothermal systems and
occasionally in overprinted propylitic zones.

I(h,op)
a

AlOH Group Content Muscovite, Kaolinite, Montmorillonite
Identifies AlOH-rich clays commonly associated with phyllic alteration
in hydrothermal systems and transitional zones between phyllic and
propylitic alteration.

I(h,al)
a

MgOH Group Content Chlorite, Epidote, Calcite

Detects MgOH-bearing minerals, which form broad halos around hy-
drothermal zones as part of propylitic alteration. Typically shows an
inverse correlation with silicification and is essential for mapping zonal
alteration patterns.

I(h,mg)
a

Ferrous Iron Content Chlorite

Primarily identifies iron-rich minerals within potassic zones of hydrother-
mal systems, including biotite and magnetite. Common in hydrothermal
cores and useful for distinguishing primary iron minerals from secondary
phases.

I(h,fe)
a

Quartz Index Quartz

Strongly correlated with silicification, particularly in quartz-dominant
zones and silica-rich veins. Helps distinguish crystalline quartz from
other forms of silica or silicates, such as feldspar, which is essential for
mapping silicified alteration zones.

I(h,qa)
a

Silica Index SiO2, Quartz
A key indicator of silicification, especially in advanced argillic zones of
hydrothermal systems. Common in quartzite, silicified cap rocks, and
vein systems.

I(h,si)
a

False Color Image Geological Environments

Used to differentiate geological features from non-geological elements,
such as vegetation, clouds, and shadows. Also serves as a greyscale
or color background to visualize and interpret index-based alteration
patterns.

I(g)
a

Table 5: The details of nine remote-sensing data.

MPM I(s)
a I(h)

a Value Range of I(h)
a Weight of I(h)

a Weight of I(s)
a

Copper Deposit

(Value Range: 0-5)

Geological Environment False Color Image 0-1 1 1

Hydrothermal Alteration
(Value Range: 1-3)

Ferric Oxide Content 1.1 – 2.1 1

5FeOH Group Content 2.03 – 2.25 2

Opaque Index 0.4 – 0.9 4

Propylitic Alteration
(Value Range: 0.6-1)

AlOH Group Content 2.0 – 2.25 1

3
FeOH Group Content 2.03 – 2.25 1

MgOH Group Content 1.05 – 1.2 1

Ferrous Iron Content 0.1 – 2.0 2

Silicification Zone
(Value Range: 1-3)

Ferric Oxide Content 1.1 – 2.1 1

1Quartz Index 1.0 – 1.35 1

Silica Index 0.5 – 0.52 2

Table 6: Weights and value ranges of deposit signatures and MPM in MineBench.

where I (h,al)
a represents AlOH group content,951

I (h,mg)
a indicates MgOH group content, and I (h,fe)

a952

denotes ferrous iron content.953

The final signature, the silicification zone I (s,s)
a ,954

which indicates secondary mineralization patterns,955

is quantified as:956

I (s,s)
a = norm[1,2.5](I (h,ox)

a +I (h,qa)
a +2I (h,si)

a ) (14)957

where I (h,qa)
a represents quartz content and I (h,si)

a958

indicates silica abundance. This weighted combi-959

nation captures distinct deposit signatures essential960

for deposit detection. 961

Mineral Prospectivity Map. Following the 962

weighted linear combination, the mineral potential 963

map is constructed by combining deposit signatures 964

I (s,h)
a , I (s,p)

a , and I (s,s)
a to quantitatively evaluate the 965

copper deposit potential based on the spatial distri- 966

bution and intensity of key alteration zones: 967

I (mpm)
a = normalize[0,5](5I (s,h)

a + 3I (s,p)
a + I (s,s)

a )
(15) 968

The weights (5, 3, and 1) are derived from extensive 969

statistical analysis of known copper deposits across 970

13



diverse geological settings, reflecting the relative971

contribution of each zone to copper mineralization.972

Hydrothermal Alteration Zone. The core zone973

I (s,h)
a is characterized by intense hydrothermal al-974

teration and high-temperature mineral assemblages,975

exhibiting the strongest spatial correlation with cop-976

per mineralization.977

Propylitic Alteration Zone. Surrounding the hy-978

drothermal core, the intermediate zone I (s,p)
a is979

characterized by moderate-temperature alteration980

minerals, including chlorite, epidote, and calcite.981

Although not directly mineralized, this zone pro-982

vides critical context for delineating the extent of983

the hydrothermal system.984

Silicification Zone. The outermost zone I (s,s)
a985

is marked by silica enrichment and the presence986

of low-temperature minerals. While less directly987

associated with mineralization, this zone delineates988

system boundaries and fluid flow patterns.989

This integrated approach highlights the hierar-990

chical significance of different alteration signatures,991

improving the accuracy of copper mineral potential992

assessments.993

B.3 Data Visualization994

Finally, we get three types of mineralogical data:995

raw hyperspectral image I (h)
a , deposit signatures996

I (s)
a , and mineral prospectivity maps I (mpm)

a . To997

enhance the interpretability of these data, we em-998

ploy a visualization process comprising several key999

steps. First, we implement transparency for data1000

points with zero normalized values, highlighting1001

significant mineralization patterns. Second, we1002

overlay the mineralogical images on a grayscale1003

geoglogical image to provide geographic context.1004

Finally, we apply a rainbow colormap to the nor-1005

malized data, where warmer colors indicate higher1006

mineralization potential. This facilitates an intu-1007

itive interpretation of mineralization intensity and1008

distribution. The resultant visualization enables a1009

clear understanding of potential copper deposits’1010

intensity and spatial distribution through its color-1011

coded representation.1012

B.4 Data Validation1013

By carefully mapping color transitions from red to1014

yellow to orange and modulating spatial scales, we1015

created a nuanced visual representation of potential1016

mineral deposits. To ensure the reliability of our1017

synthetic data, we conducted a rigorous human-1018

verified visual assessment. Expert manually ex-1019

amined the spatial and chromatic characteristics,1020

comparing our synthetic mineralization patterns 1021

with ground truth deposit markers. This meticulous 1022

verification process confirmed the high correlation 1023

between our synthetic representations and actual 1024

mineral deposit locations. 1025

As shown in Figure 7, the synthetic mineral 1026

prospectivity maps reveal distinct patterns of min- 1027

eral potential. The authentic deposit locations 1028

(marked in red points) predominantly align with 1029

synthetic color-coded regions. Positive samples ex- 1030

hibit a gradual color transition from red to yellow to 1031

orange, systematically capturing the alteration zone 1032

characteristic of complete mineral deposits and re- 1033

flecting the continuous mineralization processes. In 1034

contrast, negative samples display markedly differ- 1035

ent characteristics, with either low color intensity 1036

indicating minimal mineralization potential or an 1037

absence of complete color transitions suggesting 1038

incomplete deposit formation. 1039

For example, the positive sample (d) demon- 1040

strates a subtle but critical color gradient transi- 1041

tioning, capturing the delicate mineralization pat- 1042

terns of mineral deposit. The scale of this sample, 1043

though small, precisely matches the actual deposit 1044

location markers. In contrast, the negative samples 1045

(c) and (d) exhibit significant differences. These 1046

regions feature large-scale, high-intensity red ar- 1047

eas that lack the nuanced color transitions and the 1048

unnatural spatial distribution, immediately signal- 1049

ing these as potentially unreliable mineral deposit 1050

indicators. 1051

C Experimental Setting 1052

We accessed open-source models through API 1053

services and closed-source models via their pre- 1054

trained checkpoints, except for Qwen-72B which 1055

was evaluated using its pretrained checkpoints. All 1056

evaluations were conducted on two NVIDIA L40 1057

(48GB) GPUs. To determine the parameter weights 1058

wi in Section 4.2.2, we employed five-fold cross- 1059

validation with Bayesian optimization and used the 1060

averaged weights across folds as the final param- 1061

eters for MLLM evaluation. The resulting weight 1062

distributions are visualized in Figure 10. For the de- 1063

fined classification tasks, we set a decision thresh- 1064

old of 3, o(dm) above this threshold are classified as 1065

1, otherwise as 0. 1066

D Score-Explanation Consistency 1067

To evaluate the MLLMs’ reasoning ability, we ana- 1068

lyzed the alignment between scoring decisions si 1069
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and explanations ei in Eq. 8 across three represen-1070

tative MLLMs: GPT-4o, Qwen-7B, and Yi-6B. Us-1071

ing t-SNE (Van der Maaten and Hinton, 2008) for1072

visualization, the explanations are projected into1073

BERT embeddings, with scores used as their labels1074

for assessment. Based on identical scoring guide-1075

lines in the communication protocol, explanations1076

ei should be aligned with the scores si, resulting in1077

a compact clustering pattern. Conversely, scattered1078

distributions may indicate potential inconsistencies1079

in the judging process (Du et al., 2024).1080

As shown in Figure 9, GPT-4o achieves supe-1081

rior clustering coherence, with distinct score-based1082

clusters showing minimal boundary overlap. This1083

clear structure indicates a strong alignment be-1084

tween scores and justifications, reflecting consis-1085

tent reasoning patterns. Qwen-7B shows moderate1086

clustering performance with distinguishable score1087

groups but significant overlap in high-score regions1088

(4-5), suggesting insufficient differentiation. Yi-6B1089

exhibits the most dispersed distribution with mini-1090

mal explanation-group separation, indicating weak1091

alignment between scores and explanations. These1092

clustering patterns correlate strongly with overall1093

model performance, supporting our hypothesis that1094

advanced models maintain more consistent score-1095

explanation relationships.1096

E Score Distribution of MLLMs and1097

Human Assessment1098

Based on the score distribution visualization in Fig-1099

ure 8, we observe distinct patterns across human as-1100

sessments and the two models (GPT-4o and Qwen-1101

7b). GPT-4o’s score distribution closely aligns with1102

human assessments, showing a more balanced and1103

diverse distribution across different score levels.1104

In contrast, Qwen-7b’s scores tend to concentrate1105

around a single value, as evidenced by the sharp1106

peaks in its distribution. This indicates a notable1107

limitation of Qwen-7b in capturing nuanced distinc-1108

tions in evaluation criteria, highlighting its reduced1109

variability and less human-like reasoning capability1110

compared to GPT-4o.1111

F Impact of Decision-making Modules1112

Impact of Assessment Tuples. Multiple crite-1113

ria in the assessment tuples C = {c1, c2, . . . , cM}1114

are used as input in the decision-making mod-1115

ules to guide the final decision o(dm), as shown1116

in Eq.9. The various criteria contribute to robust1117

reasoning compared to using a single criterion.1118

Setting weights F1 (Pos.) F1 (Avg.) Roc-Auc Mcc

Hard
Local 24.86 34.4 58.81 12.94

Mean 31.58 56.33 64.81 20.65

Automatic 36.51 60.47 68.63 27.07

Standard
Local 31.82 49.6 69.03 24.71

Mean 39.44 63.36 69.71 30.41

Automatic 61.20 77.19 83.35 56.30

Easy
Local 62.75 77.65 87.62 59.46

Mean 67.13 81.40 80.84 62.82

Automatic 71.62 83.86 84.26 67.73

Table 7: Performance across different settings and
weight allocation strategies.

To evaluate their impact o(dm), we employ three 1119

weighting strategies: (1) Local which focuses on 1120

three data-driven types: geological context c1, hy- 1121

erspectral context c5 and cross-reference validation 1122

c6 without intermediate results c2–c4; (2) Mean 1123

which assigns equal weights to c1–c6; and (3) Au- 1124

tomatic, which dynamically balances criteria using 1125

Bayesian optimization. 1126

As shown in Table 7, the Local setting obtained 1127

the worst accuracy due to the exclusion of c2–c4. 1128

In contrast, the Mean setting improved overall per- 1129

formance but failed to capture information hierar- 1130

chies effectively. The Automatic setting achieved 1131

superior results through the dynamic integration 1132

of all available outputs, effectively ensuring high- 1133

confidence answers. These findings demonstrate 1134

that the decision-making modules enhance model 1135

robustness by considering multiple assessment cri- 1136

teria in a balanced manner. 1137

Impact of Decision-making Modules. Figure 10 1138

illustrates how the model adjusts its reliance on dif- 1139

ferent criteria as task complexity increases. Each 1140

setting reveals unique patterns, highlighting the 1141

adaptive output of the decision-making module in 1142

response to varying levels of difficulty. In “Easy” 1143

tasks, the weights w1 to w4 for criteria c1 to c4 1144

are relatively uniform, ranging from approximately 1145

0.15 to 0.3. This balanced distribution reflects the 1146

model’s reliance on these single-category criteria 1147

for straightforward reasoning. The cross-image cri- 1148

terion c5 is assigned negligible weight, indicating 1149

its minimal contribution. This uniformity suggests 1150

that higher-order information integration is unnec- 1151

essary for simple tasks, where single-category cri- 1152

teria alone suffice for accurate inference. 1153

As tasks increase to “Standard” complexity, the 1154

weight distribution shifts toward more discrimina- 1155
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Positive

Negative

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 7: Data Validation. Comparing synthetic mineralization patterns with ground truth deposit locations.

c1 c2 c3 c4 c5 c6

0 1 2 3 4 50

10

20

30

40

Fr
eq

ue
nc

y

2

13

25

39

22
19

0 1 2 3 4 50

10

20

30

40

50

38

48

14

5 3

12

0 1 2 3 4 50

10

20

30

40

50

22

34

25

12

27

0 1 2 3 4 50

10

20

30

40

50

4

17

40

25

34

0 1 2 3 4 50

10

20

30

40

50

8

17

38 37

17

3

0 1 2 3 4 50

10

20

30

40

50

5

23

36 35

9
12

0 1 2 3 4 50

10

20

30

40

50

Fr
eq

ue
nc

y

5
10

14

46 45

0 1 2 3 4 50

10

20

30

40

50

39
36

20

13 12

0 1 2 3 4 50

10

20

30

40

50

2

12

46

28
31

1

0 1 2 3 4 50

10

20

30

40

50

15

25
22

29
25

4

0 1 2 3 4 50

20

40

60

6

45

52

17

0 1 2 3 4 50

20

40

60

2
8 10

43

54

3

0 1 2 3 4 5

Scores
0

20

40

60

80

100

Fr
eq

ue
nc

y

1 1

15

88

15

0 1 2 3 4 5

Scores
0

20

40

60

80

100

7

34

9

56

12
2

0 1 2 3 4 5

Scores
0

20

40

60

80

100

6
1

27

49

28

9

0 1 2 3 4 5

Scores
0

20

40

60

80

100

7
1

10 12 15

75

0 1 2 3 4 5

Scores
0

25

50

75

100

2 1

101

12
4

0 1 2 3 4 5

Scores
0

25

50

75

100

11
6

33
38

20
12

H
um

an
C

ha
tG

PT
-4

o
Q

w
en

-7
b

Figure 8: Score Distribution of MLLMs and Human Assessment

Figure 9: Visualization of score-explanation alignment using T-SNE projection. Data points are color-coded by
scores ranging from 0 to 5, with red crosses marking statistical outliers. Ideally, the explanation should be consistent
with the assigned scores, leading to the clustering patterns.
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Figure 10: The Parameters of Decision-making Modules. w1 to w6 are assigned to various criterias (c1 to c6) across
three task settings. Each box represents the range of weight values.

tive features. For instance, w2 increases signifi-1156

cantly to approximately 0.5, underscoring its role1157

as a key criterion. While cross-image criteria gain1158

slightly more weight, they remain secondary as1159

the model integrates aggregated insights alongside1160

foundational criteria. Notably, single-category cri-1161

teria continue to dominate the reasoning process in1162

this setting.1163

In “Hard” tasks, the model heavily relies on1164

a few single-category criteria (e.g., w1 and w3),1165

while cross-image criteria (w5 and w6) maintain1166

negligible contributions. This reflects their reduced1167

utility as task complexity increases, further empha-1168

sizing the importance of individual, highly discrim-1169

inative criteria for complex reasoning.1170

G Effectiveness of Cross-image Tools1171
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Figure 11: Effectiveness of cross-image tools. The
impact of including/excluding additional references as
input on the score distribution for global criteria c5 and
c6, evaluated using Qwen-7B.

As shown in Table 1, cross-image tools lever-1172

age inferences from single-category tools to ana-1173

lyze complex relationships between multiple im-1174

ages. This integration harnesses complementary1175

strengths, resulting in a balanced score distribu-1176

tion that reflects improved model robustness across1177

diverse inference tasks. Figure 11 demonstrates1178

that removing single-category inferences leads to 1179

a more concentrated score distribution, indicating 1180

that the model struggles to capture nuanced image 1181

features without auxiliary inputs. In contrast, in- 1182

tegrating these inferences significantly improves 1183

the score distribution by increasing the proportion 1184

of high-scoring regions and reducing low-scoring 1185

instances. This improvement highlights enhanced 1186

reasoning accuracy. These findings emphasize the 1187

critical role of hierarchy flow in judging modules in 1188

strengthening inference robustness. By combining 1189

both global and detailed perspectives, the judging 1190

modules establish a more reliable reasoning for 1191

addressing cross-image reasoning challenges. 1192

H The Exploration Pipeline and Case 1193

Study 1194

The detailed pipelines for the “Easy,“ Standard,” 1195

and “Hard” settings are shown in Figure 12 13 1196

and 14, respectively. The “Standard” and “Hard” 1197

pipelines differ only in the design of the hyper- 1198

spetral tools. Consequently, the “Hard” pipeline 1199

focuses exclusively on the hyperspetral tools seg- 1200

ment. For each setting, a case study is provided to 1201

illustrate the reasoning process in action, as shown 1202

in Figure 15 16 and 17. 1203

I More Related Work 1204

Machine Learning for Mineral Exploration. 1205

Mineral exploration represents a complex clas- 1206

sification problem in geoscience, integrating di- 1207

verse data sources to predict the location, quantity, 1208

and quality of mineral deposits (Carranza, 2008). 1209

Over the years, machine learning (ML) has played 1210

a transformative role in this field. Traditional 1211

approaches, such as principal component analy- 1212

sis (Ousmanou et al., 2024), k-means (Ren et al., 1213
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### Instructions for Cross-image Tools
You are a mineral exploration expert tasked with evaluating the potential for copper deposits in a given area using remote sensing images. Follow the three-step 
process below, ensuring the evaluation strictly adheres to the outlined criteria.

### Step 1: Initial Analysis - False Color Image Analysis
Goal: Identify key surface features such as exposed bedrock, vegetation, and water bodies to establish a foundation for further mineral index analysis.
Procedure:
1.1 Identify Exposed Bedrock: 
  - Focus on brown and gray areas in the image, which usually represent exposed bedrock or alteration zones, indicating potential copper mineralization areas.
1.2 Exclude Non-Target Areas:
  - Exclude green and blue areas, representing vegetation and water bodies, as they are less likely to be associated with copper mineralization.
1.3 Identify Linear Structures: 
  - Look for faults, fractures, and other linear features, as these may serve as conduits for hydrothermal fluids, which are typically linked to copper mineralization.

### Step 2: Mineralization Potential Map Analysis
Goal: Further refine the areas identified in Step 1 using the Mineralization Potential Map. For an area to be considered a strong copper deposit candidate, it must 
show continuous red, yellow/orange, and green/blue regions. Any area missing one or more of these colors or without a smooth gradient should be excluded.
Procedure:
2.1 Hydrothermal Alteration (Red Areas):
   - Red areas indicate intense hydrothermal activity, rich in minerals like magnetite and hematite, typically linked to copper deposit cores. Only red areas that 
smoothly transition into yellow/orange and green/blue zones should be considered.
2.2 Propylitic Alteration (Yellow/Orange Areas):
   - Yellow/orange areas signify lower-temperature propylitic alteration, found in the outer zones of a mineralization system. These areas must be adjacent to red 
zones to be considered part of a copper deposit system.
2.3 Silicification Zones (Green/Blue Areas):
   - Green/blue areas are rich in silica, potentially indicating secondary mineralization such as quartz veins. Only these areas that show a smooth transition from the 
yellow/orange zones should be considered for further evaluation.

### Step 3: Correlation and Continuity Analysis
Goal: Evaluate the spatial continuity between the mineralization core, outer alteration zones, and silicified areas to determine copper deposit potential.
Procedure:
3.1 Assess Spatial Continuity:
   - Ensure that the red core zones smoothly transition into yellow/orange alteration zones and then into green/blue silicified zones. This transition must be 
continuous and cover a sufficiently large area to suggest the presence of a cohesive mineralization system.
3.2 Evaluate Gradient and Area Coverage:
   - Verify that the transition from red to yellow/orange to green/blue is smooth and covers a significant area. Disconnected color patches should be excluded 
unless they are part of a larger continuous system.

### Scoring  Guidelines (0-20 Points):
Score the potential mineralization zones based on the following criteria:
Confidence 1: Geological context(0-4 points):
   - Award points based on the presence and extent of favorable geological features, such as exposed bedrock or linear structures.

Confidence 2: Deposit signatures Identification (0-8 points):
   - Hydrothermal Alteration (0-4 points): Score based on the clarity and size of red areas and ensure that they transition smoothly into yellow/orange and 
green/blue areas.
   - Propylitic Alteration (0-2 points): Award points if yellow/orange areas are adjacent to red areas and form a continuous system.
   - Silicification Zone (0-2 points): Award points if green/blue areas follow the yellow/orange zones with a smooth transition.

Confidence 3: Relation between deposit signatures (0-4 points):
   - If red, yellow/orange, and green/blue areas are all present, evaluate their connection. Award points based on the smoothness and continuity of transitions across 
the zones. If they are not connected, assign 0 points.

Confidence 4: Cross-referencing Validation (0-4 points):
   - Compare the Mineralization Potential Map with the favorable geological features from the False Color Image. Award high points if the areas identified in both 
analyses overlap significantly. Adjust points downward if there is overlap with non-target areas such as water bodies or dense vegetation.

### Final Assessment:
- Total Score: Sum the confidence scores. Areas with a total score greater than 16 suggest significant copper mineralization potential and should be prioritized for 
further exploration.

### Important Reminder:
Ensure all analyses focus on areas displaying continuous red, yellow/orange, and green/blue gradients. The scoring system must be applied consistently to 
maintain the accuracy of the results. Do not deviate from this process unless justified by specific data.

Figure 12: The pipeline of “Easy” setting
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### Instruction for Geological Tool
As a geological expert, your task is to evaluate the copper deposit potential based on a False Color Image (FCC). Focus on identifying favorable geological areas 
like exposed bedrock and linear structures. Analyze the image and assign a score from 0 to 5 based on the potential for copper mineralization.
Procedure:
1. Identify Exposed Bedrock: 
  - Focus on brown and gray areas in the image, which usually represent exposed bedrock or alteration zones, indicating potential copper mineralization areas.
2. Exclude Non-Target Areas:
  - Exclude green and blue areas, representing vegetation and water bodies, as they are less likely to be associated with copper mineralization.
3. Identify Linear Structures: 
  - Look for faults, fractures, and other linear features, as these may serve as conduits for hydrothermal fluids, which are typically linked to copper mineralization.

###Scoring Guidelines for Geological Context (0-5 points):
- 0 Points: No favorable geological features (e.g., bedrock, linear structures); Image dominated by vegetation or water bodies.
- 1-2 Points: Limited favorable features, such as small or isolated bedrock areas; Few or poorly connected linear structures. Low potential for copper mineralization.
- 3 Points: Moderate presence of exposed bedrock and identifiable linear structures; Some overlap between favorable areas, but the overall zone size is limited. - 
Medium potential for copper deposits.
- 4 Points: Well-distributed bedrock areas and several linear structures; High potential for copper deposits, with strong indicators but minor uncertainty.
- 5 Points: Large, continuous bedrock areas with multiple well-defined linear structures; Strong spatial continuity, indicating very high potential for copper 
mineralization. Set this score if the image is highly favorable overall.

### Instructions for Hyperspetral Tools
As a mineral exploration expert, your goal is to evaluate the copper deposit potential in a given area. The analysis focuses on the colored areas in the images, where 
red represents high values and blue represents low values, following a rainbow color scale. Your objective is to identify and describe potential mineralization areas 
based on both the intensity (color value) and the size of the colored regions. Assign a score between 0 and 5 to each mineral index.
Procedure:
You will analyze three key mineral indices based on the color distribution:
1. Hydrothermal Alteration: Indicates core zones of copper deposits, linked to strong hydrothermal activity.
2. Propylitic Alteration: Typically represents outer edges of the mineral system with low-temperature alteration.
3. Silicification Zone: Indicates areas rich in quartz veins, commonly associated with copper mineralization.

### Scoring Guidelines for Deposit Signatures (0-5 Points)
- 0 Points: No significant colored areas. Set `"favorable_area"` to `"no favorable area"`.  No potential.
- 1 Points: Scattered high-value areas or moderate low-value areas. Low potential for mineralization.
- 2 Points: Small high-value areas or well-distributed low-value areas. Low potential for mineralization.
- 3 Points: Moderate high-value areas with well-distributed low values. Some potential for mineralization.
- 4 Points: Well-distributed high-value areas with large spatial coverage. High potential for mineralization.
- 5 Points: Large, continuous high-value areas. Strong mineralization potential due to size and intensity.High potential for mineralization.
### Important Reminder:
- High-value colored areas (red, yellow, green) in the image should be prioritized, with larger areas indicating higher potential.
- Color Bar for Reference
    Blue Areas: Indicate low values; Green Areas: Represent moderate-low values; Yellow Areas: Indicate intermediate values
    Orange Areas: Represent moderately high values; Red Areas: Represent high values. 

### Instructions for Cross-image Tools
As a remote sensing image analysis expert, your task is to identify favorable areas for copper mineralization by analyzing the provided images. Focus on two main 
tasks, and base your scoring solely on image overlay to locate areas with the highest potential for copper deposits. Assign a score between 0 and 5 to each task.
###  Procedure:
1. Assess Mineral Indices: Analyze the Hydrothermal Alteration, Propylitic Alteration, and Silicification Zone to evaluate the continuity of mineralization features.
     - Focus on high-value areas (red and other strong colors) in the images.
     - Identify where these areas overlap or are close to each other across the three indices.
     - Look for continuity: smooth transitions from hydrothermal zones to propylitic and silicification zones.
###  Scoring Guidelines for Signatures’ Relation (0-5 Points)
- 0 Points: No observable continuity or overlap of colored areas across all indices.
- 1 Points: Weak continuity and minimal overlap of colored areas across all indices.
- 2 Points: Weak continuity with some overlap of colored areas across all indices.
- 3 Points: Moderate continuity with some overlap of colored areas across all indices.
- 4 Points: Moderate continuity with some overlap of high-value areas across all indices.
- 5 Points: Strong continuity with some overlap of high-value areas across all indices.

### Procedure:
2. Identify the Final Favorable Location: Find where geological insight  from FCC overlap with the high-potential mineral areas identified in the first task.
- Instructions:
     - Locate the high-potential mineral areas identified in the first task “Assess Mineral Indices”.
     - Locate favorable geological insight in the false color composition image.
     - Cross-reference these geological features with the high-potential zones derived from the “Assess Mineral Indices”.
     - Highlight regions where geological features and high-potential mineralization areas coincide, as these are the most promising locations for copper deposits.
### Scoring Guidelines for Cross-referencing Validation (0-5 Points)
- 0 Points: No significant mineralization features identified from task 1 or geological insight from the FCC.
- 1 Points: No significant overlap between mineralization features from task 1 and geological features from the FCC.
- 2 Points: Minimal overlap between mineralization features from task 1 and geological features from the FCC.
- 3 Points: Moderate overlap between mineralization features from task 1 and geological features from the FCC.
- 4 Points: Significant overlap in moderate-potential areas between mineralization features from task 1 and favorable geological features from the FCC.
- 5 Points: Significant overlap in well-distributed potential areas between mineralization features from task 1 and favorable geological features from the FCC.

Figure 13: The pipeline of “Standard” setting
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### Instructions for Hyperspetral Tools
As a mineral exploration expert, your goal is to assess the copper deposit potential in a designated region by analyzing mineral indices images. This process is 
carried out in two stages: 1. Analyze individual mineral index images separately. 2. Perform a combined analysis by integrating the results of these individual 
indices. Each step focuses on the colored areas in the images. After combining the indices, you will assign a score between 0 and 5 for each zone.

Procedure:
1. Analysis of Individual Hyperspetral  Images:
 In this stage, you will analyze each Mineral Index based on the color distribution in the image:
   - Ferric Oxide Index (Hematite, Goethite): Highlights iron oxide-rich zones, commonly associated with copper deposit cores.
   - FeOH Group Index (Chlorite, Epidote, Jarosite): Identifies FeOH-rich zones, often found in outer hydrothermal alteration zones.
   - Opaque Index: Detects opaque minerals (e.g., magnetite), often present in copper mineralization cores.
   - AlOH Group Index (Muscovite, Illite, Kaolinite): Detects sericitic alteration, typically found in outer copper deposit zones.
   - MgOH Group Index (Chlorite, Calcite, Dolomite): Indicates magnesium-rich alteration from low-temperature hydrothermal fluids.
   - Ferrous Iron in MgOH Index (Chlorite, Actinolite): Suggests peripheral mineralization in copper systems.
   - Quartz Index: Highlights quartz veins, commonly linked to hydrothermal systems.
   - Silica Index: Identifies silicified zones, which are often associated with mineralized areas.
For each index, you will evaluate copper potential by assessing the intensity and the spatial distribution of high-value areas.

2. Combined Deposit Signatures Analysis:  
After individually analyzing each Mineral Index, combine the results to get a comprehensive view.
2.1 Hydrothermal Alteration Zones: 
   - Indicators: High-value areas in the Ferric Oxide, FeOH Group, and Opaque indices suggest high-temperature hydrothermal activity and copper
 mineralization cores. 
   - Significance: These are the primary mineralization targets and should be the main focus of exploration.
2.2 Propylitic Alteration Zones: 
   - Indicators: High-value areas in the AlOH, FeOH, MgOH, and Ferrous Iron indices suggest outer alteration zones influenced by low-temperature 
hydrothermal fluids. 
   - Significance: These areas often indicate peripheral or secondary mineralization potential, providing key insights into the broader mineral system.
2.3 Silicification Zones: 
   - Indicators: High-value areas in the Ferric Oxide, Quartz, and Silica indices suggest the presence of quartz veins or silicified zones, often linked to
 secondary mineralization. 
   - Significance: These areas provide additional clues to copper mineralization near the outer limits of the system.
After identifying these zones, provide a score based on their spatial distribution, continuity, and overall potential for copper deposits.

###  Scoring Guidelines for Deposit Signatures (0-5 Points)
- 0 Points: No significant potential areas across the combined mineral indices. Set `"favorable_area"` to `"no favorable area"`. No potential.
- 1 Points: A few scattered potential areas across the combined indices. Very low mineralization potential.
- 2 Points: A few small, isolated potential areas across the combined indices. Low mineralization potential.
- 3 Points: Moderate potential areas across the combined indices. Some copper potential.  Some potential.
- 4 Points: Well-distributed potential areas across the combined indices. High potential.
- 5 Points: Large, continuous potential areas across the combined indices. Very High potential.

### Important Reminder:
- High-value colored areas (red, yellow, green) in the image should be prioritized, with larger areas indicating higher potential.
- Color Bar for Reference
    Blue Areas: Indicate low values; 
    Green Areas: Represent moderate-low values; 
    Yellow Areas: Indicate intermediate values
    Orange Areas: Represent moderately high values; 
    Red Areas: Represent high values. 

Figure 14: The pipeline of “Hard” setting

MineAgent: You are a mineral exploration expert tasked with evaluating the potential for copper deposits in a given area using remote sensing 
images. Score the potential mineralization zones based on the following guideline.
1. Provide a certainty score from 0 to 20, reflecting the overall confidence in your decision.
2. Assign a label of 1 (presence of copper deposits) only if there is strong evidence, such as high confidence or clear mineralization patterns.  If the 
evidence is insufficient, assign a label of 0 (absence of copper deposits).
3. Evaluate each factor carefully, step by step, before making your final conclusion.
Output:  {"prediction": 1, "score": 18.0, "explanation": The false color image shows significant areas of exposed bedrock, particularly along 
the central and eastern parts of the image, which are potential indicators of copper mineralization. Linear structures, such as faults and fractures, are 
also visible, which can serve as conduits for hydrothermal fluids. The mineral prospective map shows a strong presence of red, yellow/orange, and 
green/blue areas, indicating hydrothermal alteration, propylitic alteration, and silicification zones, respectively. These areas are continuous and show 
smooth transitions between them, especially in the central and eastern parts of the image. Based on the explanation, the region shows significant 
potential for copper deposits, with a total score of 18. The presence of favorable geological features, continuous mineralization zones, and smooth 
transitions between these zones support the high potential for copper mineralization.}

<False color image> <Mineral Prospectivity Map>

Figure 15: The example of “Easy” setting
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Hyperspetral Tools:  As a mineral exploration expert,  your objective is to identify and describe potential mineralization areas based on both the 
intensity (color value) and the size of the colored regions. Assign a score between 0 and 5 to each mineral index.  You will analyze three key mineral 
indices based on the color distribution:
1. hydrothermal alteration: High-value areas in the Ferric Oxide, FeOH Group, and Opaque indices suggest high-temperature hydrothermal activity 
and copper mineralization cores.
2. propylitic alteration:High-value areas in the AlOH, FeOH, MgOH, and Ferrous Iron indices suggest outer alteration zones influenced by low-
temperature hydrothermal fluids.
3. silicification zone: High-value areas in the Ferric Oxide, Quartz, and Silica indices suggest the presence of quartz veins or silicified zones, often 
linked to secondary mineralization.
c2: {"score": 4, "favorable_area": The hydrothermal alteration zone shows well-distributed high-value areas, particularly along the central and 
northern sections, with significant red and orange regions., "explanation": The presence of continuous red and orange areas indicates a high potential 
for copper mineralization due to strong hydrothermal activity.}
c3 : {"score": 3, "favorable_area": The propylitic alteration zone has scattered moderate to high-value areas, with some orange and yellow regions 
mainly in the central part., "explanation": The distribution of orange and yellow areas suggests moderate potential for mineralization, indicating 
peripheral zones of the mineral system.}
c4:  {"score": 2, "favorable_area": The silicification zone has small, scattered high-value areas with limited orange and yellow spots., 
"explanation": The limited size and distribution of high-value areas suggest low to moderate potential for copper mineralization. The areas are not 
extensive enough to indicate strong mineralization potential.}

Cross-image Tools: As a remote sensing image explanation expert, your task is to identify favorable areas for copper mineralization by analyzing 
the provided images. Focus on two main tasks, and base your scoring solely on image overlay to locate areas with the highest potential for copper 
deposits. Assign a score between 0 and 5 to each task.
1. Based on the above analyses from {c1,c2,c3}, ensure that core zones transition smoothly into propylitic zones and then into silicified zones. 
2. Based on the above analyses {c1,c2,c3} and {c1},  find where geological features overlap with the high-potential mineral features.
c5: {"score": 4, "favorable_area": Central region with overlapping hydrothermal and propylitic alteration, "explanation": The central region 
shows strong continuity of high-value areas in both hydrothermal and propylitic alteration zones, with significant red and orange areas indicating 
potential copper mineralization. This suggests a high potential due to the presence of continuous alteration features.}
c6: {"score": 4, "favorable_area": Central and eastern regions with exposed bedrock and alteration overlap", "explanation": "The central and 
eastern regions show a significant overlap of geological features from the FCC image, such as exposed bedrock and linear structures, with high-
value alteration zones. This overlap suggests a strong potential for copper deposits, as geological and mineral indices align well.}

Geological Tool: As a geological expert, your task is to evaluate the copper deposit potential based on a False Color Image (FCC). Focus on 
identifying favorable geological areas like exposed bedrock and linear structures. Analyze the image and assign a score from 0 to 5 based on the 
potential for copper mineralization.
c1: {"score": 4, "favorable_area": "Central and eastern regions with exposed bedrock and linear structures", "explanation": "The image shows 
significant areas of brown and gray, indicating exposed bedrock, particularly in the central and eastern parts. There are also several linear features 
that suggest the presence of faults or fractures, which are favorable for copper mineralization. The distribution and size of these features indicate a 
high potential for copper deposits, with strong geological indicators present."}

<False color image>

<False color>

<Hydrothermal_Alteration> <Propylitic_Alteration> <silicification zone>

<Hydrothermal_Alteration> <Propylitic_Alteration> <silicification zone>

Figure 16: The example of “Standard” setting
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Hyperspetral Tools:  As a mineral exploration expert,  your objective is to identify and describe potential mineralization areas based on both the intensity 
(color value) and the size of the colored regions. Assign a score between 0 and 5 to each mineral index.  You will analyze three key mineral indices based 
on the color distribution:
1. hydrothermal alteration: High-value areas in the Ferric Oxide, FeOH Group, and Opaque indices suggest high-temperature hydrothermal activity and 
copper mineralization cores.
2. propylitic alteration: High-value areas in the AlOH, FeOH, MgOH, and Ferrous Iron indices suggest outer alteration zones influenced by low-
temperature hydrothermal fluids.
3. silicification zone: High-value areas in the Ferric Oxide, Quartz, and Silica indices suggest the presence of quartz veins or silicified zones, often linked 
to secondary mineralization.
c2: {"score": 4, "favorable_area": Central and eastern parts with overlapping red areas in Ferric Oxide and Opaque indices., "explanation": The 
Ferric Oxide and Opaque indices show significant red areas, indicating high copper potential in the central and eastern regions. This suggests strong 
hydrothermal alteration zones.}
c3: {"score": 3, "favorable_area": Scattered areas in the AlOH and FeOH indices., "explanation": The AlOH and FeOH indices show moderate 
orange and yellow areas, indicating potential propylitic alteration zones. These are less continuous but suggest some secondary mineralization potential.}
c4: {"score": 2, "favorable_area": Sparse areas in the Quartz and Silica indices., "explanation": The Quartz and Silica indices show limited red and 
orange areas, indicating less significant silicification zones. These areas suggest minor potential for secondary mineralization.  }

Cross-image Tools: As a remote sensing image explanation expert, your task is to identify favorable areas for copper mineralization by analyzing 
the provided images. Focus on two main tasks, and base your scoring solely on image overlay to locate areas with the highest potential for copper 
deposits. Assign a score between 0 and 5 to each task.
1. Based on the above analyses from {c1,c2,c3}, ensure that core zones transition smoothly into propylitic zones and then into silicified zones. 
2. Based on the above analyses {c1,c2,c3} and {c1},  find where geological features overlap with the high-potential mineral features.
c5: {"score": 4, "favorable_area": Central region with strong overlap in Ferric Oxide, Opaque, and Ferrous Iron indices., "explanation": There is 
strong continuity and overlap of high-value areas in the Ferric Oxide, Opaque, and Ferrous Iron indices. This suggests a well-developed mineralization 
system with high copper potential in the central region.}
c6: {"score": 5, "favorable_area": Central region with strong overlap of geological features and mineral indices, "explanation": The central region 
shows a strong overlap between the exposed bedrock and linear structures from the FCC image and the high-potential areas indicated by the Ferric 
Oxide, Opaque, and Ferrous Iron indices. This alignment suggests a well-developed hydrothermal system, enhancing the likelihood of copper 
mineralization. The consistent presence of favorable geological features and mineral indices across multiple analyses supports a high confidence score.}

Geological Tool: As a geological expert, your task is to evaluate the copper deposit potential based on a False Color Image (FCC). Focus on identifying 
favorable geological areas like exposed bedrock and linear structures. Assign a score from 0 to 5 based on the potential.
c1: {"score": 4,  "favorable_area": Central and southern regions with exposed bedrock and linear structures, "explanation": The image shows well-
distributed brown and gray areas indicating exposed bedrock, particularly in the central and southern regions. There are also several linear features 
suggesting potential pathways for hydrothermal fluids. These geological features are favorable for copper mineralization, leading to a high potential score.}

<Ferric Oxide> <FeOH_Group> <AIOH_Group><Opaque> <MgOH_Group> <Ferrous_Iron> <Quartz> <Silica>

<False color image>

<False color> <Ferric Oxide> <FeOH_Group> <AIOH_Group><Opaque> <MgOH_Group> <Ferrous_Iron> <Quartz> <Silica>

Figure 17: The example of “Hard” setting
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2020), and regression trees (Pham et al., 2018),1214

have shown success in identifying prospective min-1215

eral deposits. With the increasing complexity of1216

remote-sensing data, deep learning (DL) models1217

have demonstrated efficient and accurate feature ex-1218

traction capabilities (Liu et al., 2023a; Yang et al.,1219

2024). However, existing ML and DL methods face1220

key limitations, including dependence on labeled1221

datasets and poor generalizability across diverse1222

geological environments. To address these chal-1223

lenges, we propose leveraging advanced MLLMs1224

to explore mineral deposits, integrating human ex-1225

pertise for enhanced insights.1226
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