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a b s t r a c t

In this work, a new human face recognition algorithm based on bidirectional two dimensional principal

component analysis (B2DPCA) and extreme learning machine (ELM) is introduced. The proposed

method is based on curvelet image decomposition of human faces and a subband that exhibits a

maximum standard deviation is dimensionally reduced using an improved dimensionality reduction

technique. Discriminative feature sets are generated using B2DPCA to ascertain classification accuracy.

Other notable contributions of the proposed work include significant improvements in classification

rate, up to hundred folds reduction in training time and minimal dependence on the number of

prototypes. Extensive experiments are performed using challenging databases and results are

compared against state of the art techniques.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Face recognition has attracted research community during the
last few decades as it is the most common visual pattern in our
environment. Significant development in this area has facilitated
emergence of wide range of face recognition systems for com-
mercial and law enforcement applications. Typical applications
include driver’s license, passports, voter registration card,
human–computer interaction, database security, law enforce-
ment, and virtual reality. Face recognition is non-intrusive, i.e.,
images can be captured, identified or verified even without the
knowledge and physical interaction of the subject. Moreover, an
expert is not required to analyze or interpret the results and data
can be easily collected using simple image acquisition devices.
Humans recognize faces with natural ease, however, automated
face recognition is very challenging since faces belong to a class of
natural objects that do not lend themselves to simple geometric
interpretations. The advantage of computer-aided face recogni-
tion is its ability to handle large number of faces; whereas, a
human brain has limited memory. Despite massive intricacies, the
human visual system efficiently discriminates and recognizes
faces. Aging, changes in facial hair, illumination, viewpoint
ll rights reserved.
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variations, and cluttered background are the major challenges
tackled by an automatic face recognition system.

A fully automated face recognition system must reliably per-
form three subtasks: face detection, feature extraction and recog-
nition/identification. In the past, the problem of automatic face
recognition has been addressed in different fashions; some
researchers introduced the use of localized faces for feature
extraction and classification [1]. On the other hand, a few
schemes isolate these subtasks to simplify automated face recog-
nition, enhance the assessment and advancement of individual
component techniques. The use of localized face portion improves
classification accuracy, however, such localization requires an
additional module that increases the computational complexity.
Once faces are localized, the recognition task is greatly simplified
since background clutter and erroneous information is elimi-
nated. To imitate real-life scenarios, some databases are deliber-
ately generated at different time instances in presence of
cluttered background and at varying levels of scale. In such
situations, manual face localization will obliterate the objective
of these datasets. To rigorously test the performance of our
algorithm, challenging face databases have been used without
prior face localization and our principal focus is on the develop-
ment of a new and efficient feature extraction method based on
global image content, i.e., face and non-face portions.

Automatic face recognition systems are classified into two
broad categories, namely, constituent and face based recogni-
tion [2]. Constituent face recognition is based on relationship
between human facial features such as eyes, nose, mouth and
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Fig. 1. Sample images of a subject from FERET database.

Fig. 2. Sample images of a subject from Faces94 database.
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facial boundary [3]. This approach significantly relies on the
accuracy of facial feature detection. Reliable extraction of facial
features is an extremely complicated task since human faces have
similar features with subtle changes in size and geometry that
make them different from one another. Due to aforementioned
complications researchers have proposed face based recognition
systems [4] wherein a human face is treated as a two-dimensional
intensity pattern and recognition is achieved through detection
and matching of its statistical properties. In this work, we focus
on face based recognition and briefly discuss some of the well
established techniques in literature.

To improve speed and accuracy of a face recognition system
various dimensionality reduction techniques have been devel-
oped. Kirby et al. [5] represented human faces as a linear
combination of weighted eigenvectors using principal component
analysis (PCA). PCA based face recognition systems suffer from
poor discriminatory power and high computational load, there-
fore, to eliminate these limitations Bartlett et al. [6] proposed the
use of independent component analysis (ICA). In [7], authors
proposed the use of linear discriminant analysis (LDA) to max-
imize the ratio of between-class scatter matrix and the within-
class scatter matrix for improved face recognition. An eigenspace
based adaptive approach that utilizes a specific kind of genetic
algorithm called evolutionary pursuit (EP) [8] and elastic bunch
graph matching (EBGM) [9] have also been proposed to generate
an optimal set of projection axes. Bach et al. [10] proposed the use
of kernel Hilbert space for ICA to adaptively generate nonlinear
functions and to obtain a robust algorithm with regards to
variations in source density, degree of non-Gaussianity, and
presence of outliers. A kernel machine-based discriminant analy-
sis method [11] that deals with nonlinear distribution of the face
pattern has also been used for improved representation of faces
under variations in viewpoint, illumination and facial expression.
To enhance the discriminative power of extracted features and to
achieve superior face recognition researchers have also proposed
the use of Bayesian framework [12,13] and support vector
machines (SVM) [14,15].

Transform based approaches have been proposed to improve
the performance of a face recognition system for images with
high dimensionality. Face images are transformed into a new
domain followed by application of PCA or other dimensionality
reduction techniques. Development of enhanced multiresolution
analysis techniques have encouraged research community to
apply these tools to achieve a high level of class separability in
pattern recognition applications. Common wavelet based face
recognition architectures include wavelet based PCA [16], wavelet
based LDA [17], wavelet based kernel association memory (kAM)
[18] and wavelet based modular weighted PCA [19]. Emergence of
curvelets [20] that offer enhanced directional and edge represen-
tation has prompted researchers to apply them to several areas of
image processing. Curvelet based PCA [21], curvelet based LDA
[21] and curvelet based PCAþLDA [21] are some recent curvelet
based face recognition approaches. The ingrained limitations of
existing face recognition algorithms include large sensitivity to
viewpoint variations, number of prototypes, and slow classifica-
tion speed. This work combines curvelet transform with bidirec-
tional two dimensional principal component analysis (B2DPCA)
and extreme learning machine (ELM) to eliminate the inherent
shortcomings of previous methods. We performed extensive
experiments to demonstrate superiority of our proposed techni-
que over existing state-of-the-art methods. A few sample images
of one of the subject from FERET [22] and Faces94 [23] database is
shown in Figs. 1 and 2, respectively.

The remainder of the paper is divided into five sections.
Section 2 discusses feature extraction using curvelet transform,
followed by a discussion of B2DPCA in Section 3. ELM classifier is
presented in Section 4 and the proposed method is detailed in
Section 5. Experimental results are discussed in Section 6 fol-
lowed by concluding remarks.
2. Curvelet based feature extraction

Fourier series decomposes a periodic function into sum of
simple oscillating functions, i.e., sines and cosines. In a Fourier
series sparsity is destroyed due to discontinuities and therefore
numerous terms are required to precisely reconstruct a disconti-
nuity. Multiresolution analysis tools were developed to overcome
inherent limitations of Fourier series. Many fields of contempor-
ary science and technology benefit from multiresolution analysis
tools for maximum throughput, efficient resource utilization and
accuracy. Multiresolution tools render robust behavior to study
information content of images and signals in presence of noise
and uncertainty.

Wavelet transform is a renowned multiresolution analysis tool
that conveys accurate temporal and spatial information. Wavelet
transform has been profusely used to address problems in data
compression, pattern recognition and computer vision. Wavelets
better represent objects with point singularities in 1D and 2D
space but fail to deal with singularities along curves in 2D.
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Discontinuities in 2D are spatially distributed which leads to
extensive interaction between wavelet expansion coefficients.
Therefore, wavelet representation does not offer sufficient spar-
seness for image analysis. In recent times, research community
has witnessed intense efforts towards development of better
directional and decomposition tools, namely, ridgelets [24] and
contourlets [25].

Curvelet transform [26] is designed and targeted to represent
smooth objects with discontinuity along a general curve. Curvelet
transform overcomes shortcomings of existing multiresolution
analysis schemes and offers improved directional capacity to
represent edges and other singularities along curves. Curvelets
are redundant bases that optimally represent 2D curves and
outperform wavelets in situations that require optimal sparse
representation of objects with edges, representation of wave
propagators, image reconstruction with missing data, etc. In
addition to scale and location, curvelet bases also capture infor-
mation about orientation that fulfills parabolic anisotropic scaling
law width¼ length2 [26]. A curvelet is a combination of radial and
angular window in frequency domain, defined in a polar coordi-
nate system. This representation is constructed as a product of
two windows, i.e., the angular and the radial dyadic frequential
coronas. The angular window corresponds to a Radon transform
(directional analysis) and the radial dyadic window emulates a
bandpass filter whose cut off frequency extracts image informa-
tion that follows a parabolic anisotropic scaling law [26]. Curvelet
bases were designed to entirely cover the frequency domain, in
contrast to other directional multiscale representations such as
the Gabor transform [27] that result in a loss of information.

2.1. Continuous time curvelet transform

A number of algorithmic implementation strategies [28–30]
based on curvelet’s original architecture have been proposed. Lets
consider a 2D space R2, with a spatial variable x and a frequency-
domain variable o, and let r and y represent polar coordinates in
frequency-domain. W(r) is used for radial partition, therefore its
argument is positive. Whereas, V(t) is used for angular partition
and since the angle is assumed to take in both positive and
negative values its argument is real. All derivatives of the
windows exist and hence they are positive and compactly
supported by arguments rA ½1=2,1� and tA ½�1,1�. For every
jZ j0, a frequency window Uj in the Fourier domain is defined as

Ujðr,yÞ ¼ 2�3j=4Wð2�jrÞV
2bj=2cy

2p

 !
, ð1Þ

where bj=2c is the integral part of j/2. The support of Uj in polar
coordinate system is a wedge (gray region in Fig. 3) defined by the
~2 j

~2 j/2

Fig. 3. Space–frequency tiling
support of W and V. A wedge spans an angle of Oð2ð�j=2Þ
Þ and

covers a width of Oð2ðj=2Þ
Þ. The windows W and V obey the

following essential conditions in order to ensure a tight frame
property:

Xþ1
j ¼ �1

W2ð2�jrÞ ¼ 1, rA ð3=4,3=2Þ, ð2Þ

Xþ1
l ¼ �1

V2ðt�lÞ ¼ 1, tAð�1=2,1=2Þ: ð3Þ

The window W(r) covers the radial variable r in a multiscale
manner. In Eq. (2), these windows are scaled by different powers
of 2. When j approaches �1, the support of Wð2jrÞ, i.e., the set
where the function is not zero goes to1, and when j approaches
þ1, the support goes to 0. Summation of j from �1 to þ1
covers the range ½0,1�. In this paper, r is selected as (3/4, 3/2),
whereas, in general any interval such as ðZ,2�ZÞ can be chosen,
since the sum in j can be shifted with any integer shift without
affecting the meaning of its summation. The window V(t) covers
the interval [�1,1] and thus Eq. (3) ensures that the square of its
integer shift adds to 1. The index l of Eq. (3) ranges from �1 to
þ1 because the argument of the function V( ) in Eq. (1) can be
arbitrarily large. In Eq. (3), t spans from (�1/2, 1/2), however, in
principle any interval of length 1 can be selected.

Curvelets are defined (as function of x¼ ðx1,x2Þ) at scale 2�j,
orientation yl, and position xðj,lÞk ¼ R�1

yl
ðk12�j,k22�j=2

Þ by jj,k,lðxÞ ¼

jjðRyl
ðx�xðj,lÞk ÞÞ, where Ry is an orthogonal rotation matrix. A curvelet

coefficient is evaluated by computing the inner product of an element
f AL2ðR2Þ and a curvelet jj,k,l:

cj,k,l ¼/f ,jj,k,lS¼
Z

R2

f ðxÞjj,k,l dx: ð4Þ

Curvelet transform also contains coarse scale elements similar to
wavelet theory. For k1,k2AZ, we define a coarse level curvelet as

jj0 ,kðxÞ ¼jj0 ,kðx�2�j0 Þk, ĵj0ðoÞ ¼ 2�j0 W0ð2
�j0 jojÞ: ð5Þ

Curvelet transform is composed of fine-level directional ele-
ments ðjj,k,lÞjZ j0 ,k,l and coarse-scale isotropic father wavelet
ðfj0 ,kÞk. Key components of the construction are summarized in
Fig. 3, left hand side represents the induced tiling of the Fourier
frequency plane and the image on the right shows the associated
spatial Cartesian grid at a given scale and orientation. The wedges
are a consequence of Fourier plane partitioning in radial (con-
centric circles) and angular divisions. Concentric circles decom-
pose the image in multiple scales (used for bandpassing the
image) and angular divisions correspond to different angles or
orientation. Therefore, to address a particular wedge we need to
define both its scale and angle. Plancherel’s theorem is applied in
~2 -j

~2 -j/2

in Curvelet domain [26].



Fig. 4. Wrapping a segment around the origin [31]: (a) original and (b) wrapped.
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Eq. (6) to express cj,k,l as an integral over the entire frequency
plane.

cj,k,l ¼
1

ð2pÞ2

Z
f̂ ðoÞĵj,k,lðoÞ do¼ 1

ð2pÞ2

Z
f̂ ðoÞUjðRyi

oÞei/xðj,lÞ
k

,oS do:

ð6Þ

2.2. Fast discrete curvelet transform

New implementations of fast discrete curvelet transform
(FDCT) are ideal for deployment in large-scale scientific applica-
tions due to their numerical isometry and an utmost 10 folds
computational complexity as compared to FFT operating on a
similar sized data. In our research work we used FDCT via
wrapping [26] for image analysis.
�
 Compute 2D FFT coefficients and obtain Fourier samples
f̂ ½n1,n2� where �n=2on1 and n2on=2.

�
 For each scale j and angle l, form the product ~Uj,l½n1,n2�f̂ ½n1,n2�.

�
 Wrap this product around the origin and obtain ~f j,l½n1,n2� ¼

Wð ~Uj,l f̂ Þ ½n1,n2�, where the range of n1, n2 and y, respectively,
are 0on1oL1,j, 0on1oL2,j and ð�p=4,p=4Þ.

�
 Apply inverse 2D FFT to each ~f j,l and save discrete curvelet

coefficients.

In the first two stages Fourier frequency plane of the image is
divided into radial and angular wedges owing to the parabolic
relationship between a curvelet’s length and width, as demonstrated
in Fig. 3. Each wedge corresponds to curvelet coefficient at a
particular scale and angle. Step 3 is essentially required to re-index
the data around the origin as shown in Fig. 4. Finally, inverse FFT is
applied to collect discrete curvelet coefficients in the spatial domain.
Interested readers are requested to refer to [26] for additional
mathematical details. In this work, a curvelet subband that demon-
strates a maximum standard deviation is selected as an initial feature
vector to represent each image. Dimensionality of feature vectors is
reduced through application of our proposed B2DPCA algorithm.
3. Bidirectional two-dimensional principal component
analysis

Karhunen–Loeve expansion, also known as principal component
analysis (PCA), is a data representation technique widely used in
pattern recognition and compression schemes. Pioneering work by
Kirby and Sirovich [5] used PCA for enhanced representation of face
images, however, PCA fails to capture minor variance unless they are
explicitly accounted in the training data. Wiskott et al. [9] proposed a
bunch graph matching technique to overcome limitations and flaws
of linear PCA. Yang et al. [32], proposed two dimensional PCA for
image representation. As opposed to PCA, 2DPCA is based on 2D
matrices rather than 1D vectors. Therefore, image matrix does not
need to be vectorized prior to feature extraction. Instead an image
covariance matrix is directly computed using original image matrices.

Let X denote a q dimensional unitary column vector. To project
a p� q image matrix A to X; linear transformation Y¼AX is used
which results into a p dimensional projected vector Y. The total
scatter of the projected samples is determined to measure the
discriminatory power of the projection vector X. The total scatter
is characterized by the trace of Sx, i.e., covariance matrix of the
projected feature vectors; JðXÞ ¼ trðSxÞ, where tr( ) represents the
trace of Sx:

Sx ¼ E½Y�EðYÞ�½Y�EðYÞ�T ¼ E½ðA�EAÞX�½ðA�EAÞX�T , ð7Þ

trðSxÞ ¼ XT ½EðA�EAÞT ðA�EAÞ�X: ð8Þ

Gt ¼ E½ðA�EAÞT ðA�EAÞ� is a non-negative q� q image covariance
matrix. If there are M training samples, the ath image sample is
denoted by p� q matrix Aa:

Gt ¼
1

M

XM
a ¼ 1

ðAa� �AÞ
T
ðAa� �AÞ, ð9Þ

JðXÞ ¼ XT GtX, ð10Þ

where �A represents an average image of all the training samples. The
unitary vector Xopt that maximizes the generalized total scatter
criterion J(X) is called the optimal projection axes. Xopt represents a
collection of M orthonormal eigenvectors X1,X2, . . . . . . ,XM of Gt

corresponding to M largest eigenvalues. Hence, dimensionality of
every image Aa is reduced by post multiplying and pre-multiplying
the image with optimal projection axes as XT

optAaXopt .
A limitation of 2DPCA based recognition is its operability along

row direction only. Zhang and Zhou [33] proposed (2D)2 PCA
based on an assumption that the training images are zero mean
and thus, image covariance matrix can be computed using outer
product of row/column image vectors. In [33], two image covar-
iance matrices GtRow and GtCol are calculated by representing
Eq. (9) initially in terms of row vectors of Aa and �A, and repeating
the similar operation for column vectors. The optimal projection
axes of GtRow and GtCol are evaluated and labeled as X1opt and Z1opt.
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It is worth mentioning that both Gt and GtRow are evaluated along
rows and hence their projection axes Xopt and X1opt are similar. A
dimensionally reduced image of Aa is evaluated as ZT

1optAaX1opt [33].
Our dimensionality reduction algorithm operates indepen-

dently along row and column directions (shown in Fig. 5) in
order to better preserve the neighborhood relationship and to
generate distinctive feature sets. Our proposed technique closely
follows the work of [32] and generates an image covariance
matrix Gta and further optimizes it exploiting optimal project
axes. Once optimal projection axes Xopta is calculated, the dimen-
sionality of every image Aa is reduced along its columns to
generate new image sets Ab using Eq. (11). The newly generated
image sets are subsequently treated as a fresh database and a
latest image covariance matrix Gtb and optimal projection axes
Xoptb are evaluated. Finally, every new image Ab is pre-multiplied
by XT

optb using Eq. (12). Hence, unlike traditional 2DPCA, a two fold
approach is adopted in our proposed B2DPCA algorithm to reduce
image dimensionality. We present the major implementation
steps for computation of B2DPCA in Algorithm 1 for clarity and
better readability:

Ab ¼ AaXopta, ð11Þ

AY ¼ XT
optbAb: ð12Þ

Algorithm 1. Proposed B2DPCA algorithm.

INPUT: Input images AN�N , MAZþ

OUTPUT: M �M output matrix AY

1: Compute non-negative image covariance matrix by

Gta ¼
1
M

PM
a ¼ 1ðAa� �AÞ

T
ðAa� �AÞ

2: The trace of the covariance matrix characterizes total scatter

JðXÞ ¼ XT GtaX

3: Xopta ¼ fX1,X2, . . . ,XMg where Xi represents a principal

orthogonal vector
4: Reduce dimensionality along columns: Ab ¼ AaXopta

5: The image covariance matrix for Ab is determined as

Gtb ¼ ð1=MÞ
PM

a ¼ 1ðAb�
�AbÞ

T
ðAb�

�AbÞ

6: Using total scatter criterion (step-2), compute Xoptb

comprising of M largest eigenvectors

7: Row-wise dimension reduction by AY ¼ XT
optbAb

4. Extreme learning machine

Feedforward neural networks are ideal classifiers for nonlinear
mappings that utilize gradient descent approach for weights and
bias optimization. The important factors that influence the
performance of a traditional neural learning algorithm include:
�
 A small value of learning parameter �r causes the learning
algorithm to converge slowly whereas a higher value leads to
instability and divergence to a local minima.

�
 Neural networks may be over-trained using back propagation

(BP) and generate inferior generalization performance.

�
 Gradient descent based learning is an extremely time consum-

ing process for most applications.

To overcome innate slow learning ability of traditional opti-
mization techniques, Haung et al. [34] proposed ELM to train a
single-hidden layer feedforward neural network (SLFNN) as
shown in Fig. 6. A random selection of input weights and the
hidden layer biases transforms the training of SLFNN into a linear
system. Consequently, the output weights (linking the hidden
layer and output layer) can be analytically determined through a
simple generalized inverse operation of the hidden layer output
matrices. In ELM, an infinitely differentiable activation function
facilitates random assignment of input weights and hidden layer
biases. Consider a collection of N distinct samples ðxi,tiÞ where
xi ¼ ½xi1,xi2, . . . ,xin�

T ARn and ti ¼ ½ti1,ti2, . . . ,tim�
T ARm, an ELM with

L hidden nodes and an activation function xðxÞ is modeled as

XL

i ¼ 1

gixiðxnÞ ¼
XL

i ¼ 1

gixiðwixnþbiÞ ¼ on, n¼ 1,2, . . . ,N, ð13Þ

where wi ¼ ½wi1,wi2, . . . ,win�
T and gi ¼ ½gi1,gi2, . . . ,giL�

T represent

input and hidden layer weight vectors, respectively. The ELM
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reliably approximates N samples with minimum error:

XL

i ¼ 1

gixiðwixnþbiÞ ¼ tn, n¼ 1,2, . . . ,N: ð14Þ

Eq. (14) can also be represented as dg¼ t, d¼ ðw1, . . . ,

wL,b1, . . . ,bL,x1, . . . ,xNÞ, such that the ith column of d is the output
of the ith hidden node with respect to the inputs x1,x2, . . . ,xN . If

the activation function xðxÞ is infinitely differentiable, it is proved
that the number of hidden nodes are such that L5N. The training
of ELM requires minimization of an error function E:

E¼
XN

n ¼ 1

XL

i ¼ 1

gixiðwixnþbiÞ�tn

 !2

) E¼ Jdg�tJ: ð15Þ

In classical neural networks d is determined using gradient
descent optimization wherein the input weights wi, hidden layer
weights gi and bias parameters bi are iteratively tuned at a
learning rate r. A small value of r causes the learning algorithm
to converge slowly, whereas, a higher value leads to instability
and divergence to a local minima. To avoid such instability and
divergence to a local minima, ELM incorporates a minimum norm
least-square solution. Therefore, instead of tuning the entire
network parameters, input weights and bias parameters are
randomly allocated and the problem is curtailed to a least-square
solution of dg¼ t. The hidden layer output matrix d is a non-
square matrix and the norm least-square solution reduces to
g¼ d�t, where d� represents Moore–Penrose generalized inverse
of d. An infinitely small training error is achieved using ELM since
Table 1
Mean standard deviation of curvelet subbands in various databases.

Database Scale¼1 Scale¼2

l1 l2 l3 l4 l5 l6 l7 l8

FERET 63.3 3.7 3.7 3.1 3.7 3.5 3.6 3.1 3.7

Faces94 74.6 4.9 4.3 3.6 3.9 5.0 4.5 3.4 3.4

JAFFE 87.2 6.7 6.9 3.7 4.4 6.7 6.9 3.7 4.3

GTech 68.9 3.0 2.8 4.9 4.6 3.3 3.3 5.5 5.4

ORL 56.1 5.1 3.9 6.1 5.9 3.9 3.5 5.4 5.3

Sheffield 51.0 5.2 3.4 4.0 5.1 7.8 4.4 3.6 4.8

Fig. 7. (a) Original FERET image, (b) curvelet subband at scale¼1, (
it represents a least-square solution of the linear system:

Jdĝ�tJ¼ Jdd�t�tJ�mingJdg�tJ: ð16Þ

5. Proposed face recognition algorithm

The proposed method is based on image decomposition of
curvelet transform and uses dimensionally reduced coefficients
for recognition. Distinctive feature sets generated using B2DPCA
are used to train and test an ELM classifier. A block schematic
diagram of our proposed algorithm is shown in Fig. 8.

Images from each database are converted into gray level image
with a two fold reduction in image size. Each database is randomly
divided into training and testing set so that 40–45% of images of each
subject are used as prototypes and remaining images are used during
testing phase. Curvelet transform is used to generate initial feature
vectors since it offers superior performance in presence of singula-
rities in higher dimension, and enhances localization of higher
frequency components with minimized aliasing effects. Input images
are resized to R�C, since analogous image sizes support generation
of curvelet feature vectors with identical level of global information.
Furthermore, curvelet decomposition of all images within each
database is computed at three scales and eight angular orientations
thus, generating 25 distinct subbands.

The standard deviation of every subband is calculated and a
subband that exhibits highest standard deviation is selected as an
initial feature vector of size U�V, where U � V 5R� C. In con-
trast to the most recent work in literature [21] that uses two
subbands, we have selected only one subband since the difference
between standard deviations of the coarsest curvelet subband and
the next coarser subband is quite significant. This noteworthy
disparity in standard deviations is consistent for all the tested
databases as shown in Table 1. The proposed approach is based on
selecting a subband with the utmost standard deviation which
leads to momentous savings in computational cost during dimen-
sionality reduction. The curvelet transform of all images in every
dataset is evaluated and standard deviation of all the curvelet
subbands is determined. It is noticed that approximate curvelet
subband holds the maximum standard deviation amongst all 25
curvelet subbands. Fig. 7 justifies our approach of selecting only
one subband, i.e., curvelet subband at scale¼1 and is in agree-
ment with the results presented in Table 1.
c–j) curvelet subbands at scale¼2 and 8 angular orientations.
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B2DPCA is used to generate unique feature sets and to
minimize computational complexity of our framework. Yang
et al.’s [32] 2DPCA calculates a single covariance matrix to reduce
the image dimensionality along its rows and columns, respec-
tively, whereas, in our proposed approach image dimensionality
along orthogonal directions is reduced independently of each
axis. The intermediate features are extracted by initially reducing
dimension of initial feature matrix, i.e., selected curvelet subband
along its columns. Later dimensionality of intermediate features
is reduced along its rows in order to generate a final feature set,
each of size U0 � V 0, where U0 � V 05U � V (refer to Section 3 for
implementation details of B2DPCA). The modified approach used
in this paper helps us to preserve critical neighborhood informa-
tion between adjoining pixels and to generate distinctive features.
For each dataset, dimensionally reduced curvelet feature sets are
randomly selected for training of an ELM, whereas, remaining
features of the same dataset are used to judge the separability of
our framework. Note that we do not assume any a priori knowl-
edge of the scene, background, face location, and illumination
conditions. Our scheme belongs to the class of recognition
techniques, which are based on global content represen-
tation without any requirement to locate the most probable
location of a face in an image using automated face detection
module or manual cropping to simplify the complicated task of
recognition.
Table 2
Comparative accuracy for YALE and ORL face database.
6. Experiments and results

Extensive experiments are performed using our proposed
method on seven distinguishing face databases: FERET, Faces94,
JAFFE [35], Georgia Tech [36], Sheffield [37], ORL [38] and
YALE [6]. These are the most commonly used databases to
evaluate and compare the performance of various face recogni-
tion algorithms. Before divulging into experimental details and
results, we will briefly describe the databases used to vigorously
test our algorithm.
Method YALE ORL

Standard eigenface [5] 76 92.2

Waveletface [16] 83.3 92.5

Curveletface [21] 82.6 94.5

Waveletface þ PCA [16] 84 94.5

Waveletface þ LDA [17] 84.6 94.7

Waveletface þ weighted modular PCA [19] 83.6 95

Curveletface þ LDA [21] 83.5 95.6

Waveletface þ KAM [18] 84 96.6

Curveletface þ PCA [21] 83.9 96.6

Curveletface þ PCA þ LDA [21] 92 97.7

Curveletface þ B2DPCA þ ELM 99.7 99.9

Table 3
Average recognition rates (%) for Sheffield and FERET database.

Number of components Sheffield FERET

PCAþLDA Proposed PCAþLDA Proposed

5 93.89 93.99 77.42 92.27

10 96.11 99.31 80.65 93.03

15 97.78 99.80 77.41 93.08

20 99.44 99.91 87.09 90.46

25 99.44 100 90.32 97.83

30 98.88 100 75.8 99.09

35 98.46 100 88.17 96.09

40 97.12 100 80.64 99.70

45 97.77 100 67.20 98.74

50 97.22 100 66.67 99.63
6.1. Databases

The FERET database was sponsored by the Department of
Defense in order to develop a system with automatic face
recognition capability to be employed for assistance in security,
intelligence and law enforcement. The final corpus consists of
14,051 eight-bit grayscale images of human heads with views
ranging from frontal to left and right profiles, see [22] for more
details.

Faces94 database was generated at the University of Essex and
contains a series of 20 images per individual. Faces94 database is
a wide-ranging database that contains images of 152 distinctive
individuals. The database contains images of people of various
racial origins, mainly first year undergraduate students, so the
majority of individuals are between 18 and 20 years old. Older
staff members and students are also included in the database
where some individuals are wearing glasses and/or beards.

A Japanese female facial expression (JAFFE) database is also
used to rigorously test the performance of our proposed method.
The database contained 220 images of varying facial expressions
posed by 10 Japanese female models.

Georgia Tech database contains images of 50 people and
contains 15 color images for every subject. Most of the images
are captured in two different sessions to take into account the
variations in illumination conditions, facial expression, and
appearance. Additionally images are acquired at varying scales
and orientations.
Sheffield face Database consists of 564 images of 20 indivi-
duals. The database consist of images of individuals with mixed
race, gender and appearance. Each individual is imaged in a range
of poses from left/right profiles to frontal views with small
angular rotations between successive images. The database has
been pre-cropped so that the image size is uniformly reduced to
112�92, hence, background information is eliminated from input
images and only the central characteristics of the face are
retained.

ORL face database contains 10 different images for each of the
40 distinctive subjects. Subjects are imaged at different times,
with varying lighting conditions, facial expressions and facial
details. All images are captured against a dark homogeneous
background with the subjects in an upright, frontal position with
a small tolerance for side movement.

Yale face database contains 165 grayscale images of 15
individuals. There are 11 images per subject, one per different
facial expression or configuration: center-light, with glasses,
happy, left-light, without glasses, normal, right-light, sad, sleepy,
surprised, and winking.
6.2. Comparative results

All Images are resized with a 2 fold dimension reduction and
converted from RGB to gray level image. In all databases 40–45% of
images of each subject are used as prototypes and the remaining
images for testing purposes. Both the testing and training image
sets are decomposed using curvelet transform at three scales and
eight different angles. Approximate curvelet coefficients are dimen-
sionally reduced using B2DPCA, vectorized, trained and tested using
ELM. Fast learning and testing speed offered by ELM enabled us to
repeat the experiments several times; every experiment is executed
100 times for each database and average results are reported.
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We have compared our ELM based recognition scheme (50 hidden
neurons) against methods utilizing kNN of neighborhood size 5.

A comparative study of recognition performance of various
techniques using ORL and Yale face databases is presented based
Table 4
Average recognition rates (%) for ORL and GTech database.

Number of components ORL GTech

PCAþLDA Proposed PCAþLDA Proposed

5 79.12 94.05 88.32 89.14

10 89.16 99.56 71 93.53

15 94.21 98.19 90.33 97.43

20 98.33 99.73 95.65 97.09

25 97.5 99.56 96.34 96.81

30 97.5 99.94 94.67 97

35 98.42 99.96 96 97.42

40 96.67 99.99 96 97.71

45 97.45 100 94 97.6

50 97.52 100 93 97.87
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Fig. 9. Average recognition rate (y-axis) vs. number of principal components (x-axis) for

prototypes and (d) 70% Prototypes.
on 60 principal components. It is evident from the results
presented in Table 2 that our proposed method outperforms
existing wavelet and/or curvelet based face recognition architec-
tures. In the remaining experiments for simplicity we have only
compared our results with a curvelet based PCAþLDA [21]
approach.

The recognition accuracy achieved for Sheffield and FERET
databases using varying number of principal components is
compared with the curvelet based PCAþLDA approach [21] in
Table 3, whereas, results obtained for ORL and GTech databases
are listed in Table 4. The recognition achieved using our proposed
method consistently outperform PCAþLDA based approach for
Sheffield, FERET, ORL and GTech datasets. The improvements in
accuracy are mainly pronounced for FERET database making it
obvious that our method is suitable to deal with challenging
databases (views ranging from front to left and right profiles at
varying orientations). It is worth mentioning that increasing the
number of principal components does not necessarily increase the
accuracy and the use of localized information for face recognition
may be exploited to generate improved results.
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In addition to improved accuracy, our proposed method is also
independent of the number of prototypes in comparison to other face
recognition algorithms. Recognition rates obtained for ORL database
at 30%, 40%, 60% and 70% prototypes are plotted in Fig. 9 (y-axis
denotes the accuracy and x-axis denotes the number of principal
components). In order to avoid within-scatter matrix singular cases,
authors in [21] extracted curvelet coefficients at four scales. In
contrast, our proposed method is robust and free of the singularity
issues, i.e., independent of the scales of curvelet decomposition that
radically degrade precision of the PCAþLDA based method.

Table 5 compares average recognition rates (AVR) and time
complexity for Faces94 database. Results clearly validate our
claim that the proposed method achieves superior recognition
at hundred folds faster speed than state-of-the-art technique [21],
and is suitable for real-time applications. In addition to improve-
ments in classification time, our system also achieves significant
savings in computational time during dimensionality reduction
stage since only one subband is utilized as a feature matrix.

In order to emphasize the benefits of our proposed dimension-
ality reduction technique, i.e., B2DPCA, we compared the accuracy
achieved using Yang’s 2DPCA [32] against our approach. In both
situations we used an ELM classifier to train our system and to
ascertain recognition rate. In Table 6, average recognition rates
obtained for FERET database are compared for varying principal
components. It is worth mentioning that the number of principal
components are represented in the form of square of integers
because of operational behavior of 2DPCA that simultaneously
reduces dimensions along rows and columns using a single
set of optimized eigenvectors (refer to Section 3 for details). The
Table 5
Average recognition rates (%) and time complexity for Faces94 database.

Number of components PCþLDA Proposed

AVR (%) Time (s) AVR (%) Time (s)

10 92.17 30.74 94.92 0.1329

20 97.28 30.67 98.91 0.1340

30 99.29 31.55 99.54 0.1343

40 99.29 33.17 99.55 0.1321

50 99.29 33.36 99.87 0.1348

Table 6
Average recognition rates (%) for FERET database using 2DPCA and B2DPCA.

Number of components 2DPCAþELM B2DPCAþELM

AVR (%) AVR (%)

4 49.7 51.06

9 83.12 77.93

16 78.15 93.91

25 94.13 97.83

36 99.25 99.74

49 99.78 99.63

Table 7
Average recognition rates (%) for JAFFE database at varying number of neurons.

Neurons

Components 35 40 45 50 55 60 STD

5 92.56 92.92 92.97 92.95 92.62 92.55 0.2047

10 99.80 99.78 99.93 99.77 99.81 99.75 0.0641

15 99.01 99.07 99.01 98.98 99.04 98.94 0.0454

20 99.97 99.95 99.96 99.97 99.89 99.95 0.0299

25 100 100 100 100 100 100 0
improvements in accuracy using our proposed dimensionality
reduction technique are apparent from the results.

Experiments are also carried out by varying the number of
hidden neurons from 35 to 60 in intervals of 5, however,
negligible variations in accuracy are observed, as indicated by
the recognition rates and standard deviation (STD) in Table 7. The
results represent a significantly improved behavior as compared
to traditional classification schemes whose correctness is greatly
attributed to various parameters, for example, neighborhood size
for a kNN classifier. To further emphasize the advantages asso-
ciated with the use of an ELM classifier, we classified B2DPCA
reduced feature vectors using a kNN and ELM classifier with five
neighbors and 50 hidden neurons, respectively. Improved recog-
nition accuracy is achieved using ELM in comparison with kNN at
varying number of principal components, as presented in Fig. 10.
7. Conclusion

In this paper an efficient human face recognition technique based
on curvelet feature subspace is proposed. The curvelet transform is
used to compute sparse features with improved directionality in
higher dimension. These sparse features are dimensionally reduced
using B2DPCA to generate distinctive feature sets. Finally, these
features are input to an ELM to analytically learn an optimal model.
Experimental results corroborate our claim that the proposed method
achieves improved recognition at a substantially faster rate against
existing techniques. In addition, our proposed method is independent
of the number of prototypes used for training, scales of curvelet
decomposition and the number of hidden neurons. In future, we
would like to explore the use of localized features integrated with the
curvelet based global information on recognition accuracy and
classification speed. Law enforcement, border security, video surveil-
lance and database security applications can potentially benefit from
our proposed recognition scheme.
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