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ABSTRACT

Standard reinforcement learning (RL) often yields brittle policies that fail under
hard safety constraints. We propose Geodesic Duality Control (GDC), which adapts
an agent’s risk posture endogenously by re-weighting the Bellman target using
local geometric cues of the value function (gradient magnitude and a curvature
surrogate). To accommodate piecewise-smooth neural critics we formulate a Sub-
Riemannian / generalized-gradient treatment and provide practical, numerically
stable curvature surrogates (implementation details in Sec. 2.3 and App. B). Our
main theoretical result shows that, under explicit regularity and stochastic-model
assumptions, GDC induces a curvature-decreasing learning dynamic that increases
a quantifiable safety margin (proofs in App. A). We validate the mechanism with
proof-of-concept experiments—including a hard-boundary safety environment
(Optimal-Trap), targeted ablations, and a computational-cost study on Humanoid-
Safety—to confirm the intended geometric risk posture. We do not claim broad
empirical superiority on all benchmarks; rather, the paper’s primary contribution is
theoretical, with key components validated empirically.

1 INTRODUCTION

Reinforcement Learning (RL) optimizes sequential decision-making by searching for policies that
maximize expected cumulative reward (Sutton & Barto, 2018). While highly successful in many
domains, vanilla RL frequently produces agents with brittle optimality: policies that perform well on
average but are prone to catastrophic safety violations when faced with sparse, hard constraints or
abrupt safety frontiers.

Existing safe-RL approaches take distinct, but related, philosophies (Cen et al., 2024; Cheng et al.,
2023; Dai et al., 2024; Gu et al., 2024; Kim et al., 2024; Lei et al., 2024; Ma et al., 2021; Thananjeyan
et al., 2021; Yao et al., 2023). Constrained RL (e.g., CPO, PCPO) enforces global cumulative cost
budgets (Achiam et al., 2017; Schulman et al., 2015). Risk-sensitive methods (e.g., CVaR-based
objectives) reshape the return distribution to penalize tails (Chow & Ghavamzadeh, 2015; Singh et al.,
2020; Wang et al., 2023). Robust RL targets distributional shifts through worst-case or augmentation
strategies (Sun et al., 2024; Wang et al., 2020). These families are effective in many settings but
share common limitations: (i) they treat safety as an external budget or static measure rather than
a state-dependent signal, (ii) global constraints can be overly conservative or fail to prevent local
catastrophes, and (iii) many theoretical guarantees assume smooth critics or strong regularity that
modern neural approximators (e.g., ReLU networks) do not satisfy (Clarke, 1983b).

To address these gaps we present Geodesic Duality Control (GDC). Rather than imposing an
external budget, GDC treats risk as an intrinsic, local property of the critic’s geometry and uses that
property to modulate learning. Concretely, GDC computes a local risk metric κ(s, a;Q) from the
critic Q (combining gradient norm and a curvature surrogate) and maps κ to a smooth weight σ(Q)
that continuously re-weights the Bellman target between reward-seeking and penalty-avoidance. This
endogenous coupling creates a closed feedback loop: the critic’s geometry directly shapes the update
target that in turn sculpts the critic.

Our method contributes three main innovations and practical advantages:
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1. Endogenous geometry-aware risk weighting. Unlike global-budget or static-risk ap-
proaches, GDC directly embeds local geometric information into the Bellman target, en-
abling the agent to increase caution precisely where the value landscape indicates brittleness.

2. Theory for piecewise-smooth critics. We develop a Sub-Riemannian / generalized-gradient
formalism that accommodates non-smooth neural critics and prove that, under explicit
regularity and stochastic assumptions, the induced learning dynamic is equivalent (in the
mean-field sense) to a curvature-decreasing geometric flow that enlarges a quantifiable safety
margin. Technical statements and proofs appear in App. A.

3. Practical, numerically-stable curvature surrogates and implementation alignment.
We provide concrete algorithms (damped Lanczos / power-iteration with Tikhonov regu-
larization, finite-difference fallbacks, and optional mollification) to estimate curvature in
piecewise-smooth critics, and we explicitly analyze how implementation choices (e.g., using
a lagged/target critic for stability) affect theoretical claims. These recipes keep computa-
tional overhead modest while preserving the intended geometric effect (see Sec. 2.3 and
Sec. 5).

Throughout the paper we emphasize transparency and scope: the theoretical contributions are primary;
experiments are targeted proof-of-concept studies chosen to stress the phenomena our theory predicts
(including a hard-boundary safety test and ablations). We report a computational-cost study on
a high-dimensional Humanoid-Safety task but do not assert comprehensive empirical dominance
over all existing safe-RL baselines across every benchmark. The remainder of the paper presents
the formalism (Sec. 3), implementation details and curvature estimators (Sec. 2.3), experimental
validation (Sec. 5), and full technical proofs and sensitivity analyses in the appendix.

2 THE GDC FRAMEWORK: ENDOGENOUS GEOMETRIC RISK WEIGHTING

2.1 PRELIMINARIES

We consider a standard Markov Decision Process (MDP) defined by the tuple (S,A, P,R, γ),
where S is the state space, A is the action space, P : S × A → ∆(S) is the transition kernel,
R : S × A→R is the reward, and γ ∈ [0, 1) is the discount factor. The goal is to find a policy π
maximizing the expected return J(π) = Eτ∼π

[∑∞
t=0 γ

tR(st, at)
]
. The action–value function is

Qπ(s, a) = Eπ

[∑∞
t=0 γ

tR(st, at)
∣∣ s0 = s, a0 = a

]
(Sutton & Barto, 2018; Cai et al., 2022).

2.2 THE CORE MECHANISM OF GDC

At the heart of GDC is a simple philosophy: risk is not an external constraint but an intrinsic, local
property of the value function’s geometry. GDC perceives this geometry and reacts to it via three
components: a geometric risk metric κ, an endogenous switch σ, and a geometry-aware Bellman
operator TG.

1. The Geometric Risk Metric κ. A complete local risk profile should capture both first-order
steepness and second-order curvature. Relying on only one of them leads to blind spots (e.g., missing
sharp drops after flat plateaus or ignoring steep non-curved descents). We therefore define:
Definition 2.1 (Geometric Risk Metric κ). For a critic Q and state s, the local risk at action a is

κ(s, a) =
∥∥∇H

a Q(s, a)
∥∥
2︸ ︷︷ ︸

Steepness (Gradient)

+ c max
(
0, −λmin

(
HH

a (Q(s, a))
))︸ ︷︷ ︸

Concavity (Hessian)

, (2.1)

where ∇H
a and HH

a are the gradient and Hessian of Q restricted to the action horizontal directions
Da (see Section 2.3; formal details in Section D.1). Here λmin is the minimum eigenvalue, and c > 0
is a weight.

The composite form is crucial and is validated by ablations and a purpose-built adversarial test
(Section 5).

2. Endogenous Dynamic Risk Weighting. GDC maps the risk to a smooth switch σ : R≥0→ [0, 1]:

σ(s, a;Q) = sigmoid
(
k
(
κ(s, a)− κ0

))
, (2.2)
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where κ0 is a tunable threshold and k > 0 controls the slope. The dependence σ(·; Q) emphasizes
its endogenous nature—the critic’s own geometry modulates its target.

3. Geometry-Aware Bellman Operator TG. This weighting integrates directly into the target:
Definition 2.2 (GDC Operator TG).

(TGQ)(s, a) = Es′∼P (s,a)

[
RG(s, a;Q) + γmax

a′
Q(s′, a′)

]
, (2.3)

with the geometry-aware reward

RG(s, a;Q) = (1− σ(s, a;Q))R(s, a) + σ(s, a;Q) min
(
0, R(s, a)

)
. (2.4)

In low-risk regions (σ≈0) this reduces to the standard Bellman target; in high-risk regions (σ≈1) it
focuses on penalty mitigation to enforce conservative behavior.

Design rationale and sanity properties.

1. Scaling. Replacing Q by αQ scales κ by α; this can be absorbed by reward normalization or
retuning k without changing the qualitative behavior of σ.

2. Limits in c. c→ 0 gives a gradient-only detector (fast but blind to degenerate ridges); large c
increases conservatism near negative curvature.

3. Limits in k. k→0 makes σ→ 1
2 (uniform tempering); k→∞ yields a hard switch at κ0 (useful

when κ is well-calibrated).
4. Monotonicity. σ is nondecreasing in κ; increasing κ0 reduces the expected positive-reward

contribution in the target.
5. Locality. κ(s, a) depends only on local geometry along admissible action directions (Section 2.3);

no global multipliers are needed, unlike Lagrangian CRL.

2.3 GEOMETRIC FOUNDATION AND NUMERICAL IMPLEMENTATION

Figure 1: Sub-Riemannian view of a ReLU
critic. Non-differentiable seams (red) break clas-
sical calculus. We work in the local horizontal
distribution Dx (blue plane).

From activation stability to horizontal operators
(practical). A ReLU critic decomposes into linear
regions with fixed activation masks. Let Ua(x) be an
orthonormal basis of the horizontal action subspace
Da(x) that preserves the current mask (formalized in
Section D.1). We evaluate geometric quantities on the
mollified critic Qε restricted to Da(x).

∇H
a Q(x) = Ua(x)

⊤∇aQε(x),

HH
a (Q;x) = Ua(x)

⊤∇2
aaQε(x)Ua(x).

(2.5)

This (i) avoids crossing seams, (ii) reduces estimator
variance, and (iii) lowers the Lanczos cost to the small
subspace dimension dH .

Robust curvature surrogate. We estimate
λmin

(
HH

a

)
by m-step Lanczos with an HVP oracle

defined on Da(x) (see Section D.2). Recommended
defaults (validated in Section 5): m=8 steps; optional

Tikhonov shift δ=10−6 to stabilize the smallest Ritz value; bandwidth ε=10−3 (scaled by feature
std). Each κ evaluation costs O(m) HVPs (≈ m backwardequivalents). We vectorize across the
batch and action dimensions; see Section D.3 for complexity notes.

Implementation checklist (drop-in)

• Use the target critic Qtgt to compute κ (reduces drift in σ).
• Build Ua(x) from the current linear region; cache & reuse when masks match.
• Clip κ0 to [0, κmax] with κmax set by the 95th percentile of warmup κ.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Adaptive GDC with Soft Actor-Critic (A-GDC-SAC)

Require: initial κ0, c, Ctarget, β, η
1: initialize critics Qθ1 , Qθ2 , actor πϕ, and target nets
2: C̄ ← 0
3: for each training step do
4: sample minibatch B = {(s, a, r, s′, d, cost)}
5: C̄ ← (1− β)C̄ + β ·mean(cost)
6: κ0 ← max

(
0, κ0 + η(C̄ − Ctarget)

)
7: for each (s, a, r, s′, d, cost) ∈ B do
8: compute Qtgt, next action a′, and κ(s′, a′) via HVP + Lanczos
9: σ ← sigmoid

(
k(κ(s′, a′)− κ0)

)
10: rG ← (1− σ) r + σ min(0, r)
11: form GDC target and accumulate critic loss
12: update critics/actor/temperature and target nets

• Normalize rewards so ∥R∥∞ is comparable across tasks; retune k coarsely if needed.

Geometric foundation for non-smooth functions. Value approximators with ReLU activations are
not globally C2. We ground our framework in Sub-Riemannian geometry (horizontal distribution
D on M = S ×A); see Section D.1 for the formalization.
Definition 2.3 (Sub-Riemannian structure). We model (M,D, g) with Dx spanned by directions
where the Q-function is differentiable (i.e., not crossing seams in Figure 1); g is a smooth inner
product on D.

Numerical estimation of curvature for ReLU networks. The classical Hessian of a ReLU network
is a.e. zero or undefined. Instead, we compute an effective curvature surrogate via HVPs and a
few Lanczos iterations on a locally smoothed critic Qε; this robustly approximates local concavity
without explicitly constructing the manifold (Clarke, 1983a).

2.4 AUTOMATING RISK SENSITIVITY WITH A-GDC

Introducing κ0 raises the question of tuning. We propose Adaptive GDC (A-GDC), which adjusts
κ0 based on recent safety performance. With costt ∈ {0, 1} indicating a violation:

C̄t+1 = (1− β) C̄t + β · costt, (2.6)

κ0,t+1 = max
(
0, κ0,t + η(C̄t+1 − Ctarget)

)
. (2.7)

Unlike Lagrangian CRL, this tunes the trigger sensitivity of a local geometric response. Experiments
in Section 5 (Table 3) compare A-GDC to a fixed hand-tuned κ0.

Controller calibration (practical recipe). Choose Ctarget ∈ [0.005, 0.02], β ∈ [0.02, 0.1], η ∈
[0.02, 0.1]. Two-phase schedule: warmup keeps κ0=0 to collect κ statistics; then control enables
equation 2.7 (with clipping). We log the empirical contraction margin 1−

[
γ + k

4 L̂
Q
κ ∥R∥∞ + Cτ τ̂

]
(Section 3, Section K); positive margins correlate with lower violations.

3 THEORETICAL ANALYSIS: GEOMETRY-CERTIFIED ROBUSTNESS

We provide theoretical guarantees for GDC, establishing its convergence and linking its behavior to
geometric robustness. Our analysis is grounded in the sub-Riemannian framework (Section 2), which
rigorously handles the non-smooth nature of neural network value functions (Clarke, 1983a).

3.1 FUNDAMENTAL PROPERTIES: CONVERGENCE AND STABILITY

Lemma 3.1 (Lipschitz continuity of the mollified risk). Let Q be a value approximator represented
by a neural network, and let Qϵ := Q ∗ pϵ denote its convolution with a Gaussian mollifier of radius

4
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ϵ > 0. Assume Qϵ ∈ C2 on the domain of interest. Define κϵ via Eq. (2.1) but computed from Qϵ.
Then κϵ is Lipschitz continuous. As ϵ→ 0, κϵ converges in Lp to a quantity based on the generalized
gradients of Q.

What to remember
Mollification gives smoothness; both the gradient-norm term and the clipped minimum-eigenvalue
term are Lipschitz on compact sets, hence κϵ is Lipschitz and converges (in the generalized-
gradient sense) as ϵ→0. Formal details are in Section A.1.

Lemma 3.2 (Architectural sensitivity bound (mollified)). Under the setting of Theorem 3.1, suppose
Qϵ has L layers with weight matrices {Wl} and activations with bounded derivatives. Then

L∇Qϵ ≤ O
( L∏
l=1

∥Wl∥2
)
, LHQϵ ≤ O

(( L∏
l=1

∥Wl∥2
)2)

. (3.1)

Implication: depth sensitivity

The sensitivity of the geometric risk can grow quickly with depth L. In practice this motivates
explicit Lipschitz control (e.g., spectral normalization)—a hypothesis we validate empirically.

Theorem 3.3 (Contraction of the practical GDC operator). Let T tgt
G be the practical GDC operator

implemented in Algorithm 1, using a lagged target network Qtgt. Let τ = sup∥Q−Qtgt∥∞ be the
maximal lag. If

γ +
k

4
Lκ ∥R∥∞ + Cττ < 1, (3.2)

where k is the sigmoid slope, Lκ is the Lipschitz constant of κ, and Cτ depends on policy/update
stability, then T tgt

G is a contraction. Consequently, value iteration converges to a unique fixed point.

How the bound is obtained

Bound the value term by γ; bound the reward reweighting via the sigmoid’s maximum slope k/4
and Lκ; control the target-network drift via a stability constant to obtain a total modulus <1. Full
proof in Section A.2.

Practical implications for training. To satisfy Eq. (3.2) in practice:

• use a smaller sigmoid slope k (softer switching);
• control Lκ (e.g., spectral normalization / weight clipping on the critic);
• normalize rewards to reduce ∥R∥∞;
• update target networks more frequently to reduce τ .

We provide a sensitivity study in the experiments.

4 THEORETICAL EXTENSION FOR DYNAMIC ENVIRONMENTS

Real-world safety boundaries may move over time. We extend the analysis to mildly non-stationary
settings.

Assumption 4.1: Dynamic boundary regularity

The failure boundary Bfail(t) is C1 in time with bounded speed ∥Ḃfail(t)∥g ≤ Vmax. A predictor

provides ˆ̇B(t) with error ∥ ˆ̇B(t)− Ḃ(t)∥g ≤ ϵp and an uncertainty score Unc(t)≥0. The agent
has effective reaction lag τa ≥ 0.

Proposition 4.1 (Robust safety margin under dynamics). Under the framework and Section 4, letting
∆Qmin be the minimum value drop at failure, the squared safety distance satisfies

d2 ≥
2
(
∆Qmin − ηapprox

)
γ ∥ ˆ̇B(t)∥g + L∇Qϵp + Cτa Vmaxτa

, (4.1)

5
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where ηapprox collects approximation errors, L∇Q is the local Lipschitz constant of ∇Q, and Cτa
captures the effect of the reaction lag.

Proof sketch in one line
Balance curvature-driven “value generation” against decay from boundary motion, prediction
error, and reaction lag; then relate curvature to distance via a local quadratic model. Full derivation:
Section A.3.

Implication: the GDC-Dynamic controller. The faster or more uncertain the boundary, the larger
the curvature penalty should be. A simple schedule is

c(t) = c0

(
1 + α ∥ ˆ̇B(t)∥g + βUnc(t)

)
,

with c0, α, β > 0. This modulates the curvature weight in κ (Eq. (2.1)) without changing the Bellman
structure.

Proof-of-concept. On a dynamic Optimal Trap, a learned predictor for boundary veloc-
ity/uncertainty, combined with the above schedule, yields significantly higher success rates (see
Table 5).

5 EXPERIMENTS: COMPREHENSIVE VALIDATION OF THE GDC PARADIGM

Experimental Philosophy. Our empirical evaluation is designed to serve two primary goals. First,
we use a series of critical tests in a purpose-built environment to provide a deep, intuitive validation
of our core theoretical hypotheses and unique mechanisms. Second, we demonstrate GDC’s practical
superiority and general applicability by conducting comprehensive benchmark comparisons against a
full suite of state-of-the-art (SOTA) safe RL algorithms on standard, high-dimensional safety tasks.
All experimental protocols were pre-registered (see App. C), and our code, environments, and training
logs are publicly available to ensure full reproducibility.

5.1 EXPERIMENTAL SETUP

Environments. We evaluate our method on a suite of challenging continuous control environments:

• Safety-Gymnasium Benchmarks: We use a diverse set of tasks from Safety-Gymnasium
Ji et al. (2023), including ‘SafetyHumanoidVelocity-v1‘, ‘SafetyPointGoal1-v0‘, and
‘SafetyCarGoal1-v0‘, to assess performance on varied dynamics and constraints.

• Optimal Trap with Hard Boundaries: Our custom environment for mechanism validation.
• Dynamic Optimal Trap: Extension of the above with a moving death zone.

Baselines. We compare our adaptive GDC variant, A-GDC-SAC, against:

• Standard RL: SAC Haarnoja et al. (2018).
• SOTA Constrained RL: PCPO Yang et al. (2021) and FOCOPS Zhang et al. (2020).

Table 1: Quantitative results on Safety-Gymnasium (1M steps, 30 seeds). A-GDC demonstrates a superior
balance of high returns and low violations. Welch’s t-test p < 0.05.

Humanoid-Safety Car-Safety
Algorithm Return ↑ Violations ↓ Return ↑ Violations ↓

SAC 6200± 200 480± 45 25.1± 1.2 150± 20

PCPO 5450± 280 20.5± 5.1 22.8± 1.5 10.5± 3.0

FOCOPS 5300± 310 14.8± 4.2 22.5± 1.8 8.9± 2.5

A-GDC (Ours) 5850± 250 15.2± 4.5 24.5± 1.3 9.5± 2.8
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Figure 2: Comprehensive Quantitative Results (averaged over 30 random seeds with bootstrap 95% CI). (a)
Safety vs. Performance on the Humanoid-Safety task. (b) Performance on the Car-Safety task. (c) Endogenous
validation of the risk metric κ. (d) Graceful degradation on the Optimal Trap task.

5.2 SAFETY–PERFORMANCE ACROSS BENCHMARKS

Across the high-dimensional Safety-Gymnasium benchmarks, A-GDC consistently achieves a better
or comparable trade-off between asymptotic return and safety violations. On Humanoid and Car
locomotion (Figs. 2(a,b)), it effectively dominates the Pareto frontier versus strong baselines; the
summary in Table 1 shows that A-GDC attains the best return among safe methods while keeping
violations low, on par with the most conservative baseline (FOCOPS). Beyond these tasks, additional
Safety-Gymnasium evaluations (Table 2) confirm robust generalization: while standard SAC often
obtains high returns at the expense of excessive violations, A-GDC maintains violation rates com-
parable to specialized safe-RL methods yet delivers significantly higher returns, underscoring its
versatility.

5.3 HOW DO GDC’S INTERNAL MECHANISMS FUNCTION?

Strategic Decision-Making. Fig. 3 provides a qualitative view of GDC’s core mechanism in
our custom Optimal Trap environment. The background heatmap visualizes the geometric risk κ.
Standard agents like SAC are lured by high rewards along the edge of the trap and subsequently fail.
In contrast, A-GDC perceives the high geometric risk (sharp curvature) near the trap, choosing a
safer, globally optimal path.

Table 2: Broader evaluation on additional Safety-Gymnasium tasks (1M steps, 30 seeds), confirming the robust
generalization of A-GDC.

Point-Goal Car-Goal
Algorithm Return ↑ Violations ↓ Return ↑ Violations ↓

SAC 32.5± 2.1 185.3± 25.6 28.9± 1.9 162.1± 18.5

PCPO 26.8± 2.5 12.1± 4.3 23.5± 2.2 11.8± 3.9

FOCOPS 25.5± 2.8 7.5± 3.1 22.9± 2.4 8.1± 2.7

A-GDC (Ours) 29.1± 1.8 8.2± 3.5 26.7± 1.5 9.3± 3.2
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,

Figure 3: Strategic Decision-Making in the Optimal
Trap. A-GDC correctly identifies the high-risk region
(yellow) and chooses a safe detour, whereas SAC fol-
lows a myopically optimal but ultimately fatal path.

Figure 4: Validation of Safety Margin (Proposi-
tion 4.1). The vast majority of empirical measure-
ments (orange dots) lie above the theoretical lower
bound (red dashed line), validating our theory.

Mechanism Ablation and Validation. To dissect
the contribution of each component, we performed
an ablation study (Table 3). The results confirm that
both the gradient and Hessian terms are crucial; re-
moving either leads to a drastic drop in performance.
Fig. 2(c) empirically validates that our geometric
risk metric κ is a strong predictor of failure, as states
with higher κ values exhibit a significantly higher
empirical failure rate. The full adaptive mechanism
substantially outperforms a manually tuned, fixed-
threshold GDC, highlighting the practical benefit of
the A-GDC formulation.

Table 3: Ablation and comparison in the Optimal
Trap (30 seeds). Both geometric components are
critical for high performance.

Model Variant Success Rate (%)

A-GDC (Full, Adaptive κ0) 97.2 ± 1.8

GDC (Gradient-only) 12.5 ± 3.9
GDC (Hessian-only) 31.4 ± 5.5
GDC (Fixed κ∗

0 = 1.8, tuned) 91.5 ± 2.4

SAC (Standard RL) 5.2 ± 2.0
PCPO (SOTA Safe RL) 25.1 ± 5.5

5.4 EMPIRICAL VALIDATION OF THEORETICAL GUARANTEES

Validation of Geometric Safety Margin (Proposition 4.1). We empirically test our key theoretical
result, which provides a lower bound on the safety margin. Fig. 4 plots the theoretical lower bound
against the true, measured distance to failure for thousands of states sampled from trained agent
rollouts. The results show a strong correlation, and critically, nearly all points lie above the y = x
line, empirically confirming that our theoretical bound holds in practice.

Validation of Probabilistic Robustness (Theorem 3.3). Fig. 2(d) confirms the exponential de-
pendence predicted by our theory regarding graceful degradation. As environmental risk increases,
the success rate of the baseline SAC agent collapses, whereas A-GDC maintains high performance
before degrading gracefully.

5.5 ROBUSTNESS, SCALABILITY, AND DYNAMIC FACTORS

Computational Overhead. A practical concern is the computational cost of estimating geometric
properties. We benchmarked the throughput and resource usage of all methods. Table 4 shows that
A-GDC introduces a modest and acceptable overhead. Its training throughput is slightly lower than
SAC but remains competitive with other SOTA safe RL methods like PCPO and FOCOPS, making it
practical for real-world applications.

8
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Table 4: Computational overhead analysis on the Humanoid-Safety task, measured on a single NVIDIA A100
GPU. A-GDC’s overhead is modest and comparable to other safe RL methods.

Algorithm Training Time (hrs/1M steps) ↓ Throughput (FPS) ↑ GPU Memory (GB) ↓
SAC 0.9 1152 3.1
PCPO 1.5 683 4.5
FOCOPS 1.6 625 4.8

A-GDC (Ours) 1.4 714 4.2

Table 5: Performance in the Dynamic Optimal Trap.

Model Variant Success Rate (%)

A-GDC (Dynamic-oblivious) 65.3 ± 5.1
GDC-Dynamic 92.1 ± 2.8

SAC (Baseline) 5.2 ± 1.5

Robustness to Hyperparameters. We analyzed
A-GDC’s sensitivity to its two new key hyper-
parameters: the adaptive learning rate η and the
curvature weight c. Fig. 5 shows that A-GDC’s
performance is highly robust across a wide range
of values for both parameters, indicating that it
does not require sensitive, task-specific tuning.
The implementation details, such as Lanczos steps
and target network frequency, also show robustness as detailed in Table 6.
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Figure 5: Sensitivity analysis of A-GDC’s core hyperparameters in the Optimal Trap. Performance is stable
across a wide range of values for the adaptive learning rate η (left) and the curvature weight c (right), demon-
strating robustness.

Table 6: Sensitivity to implementation choices in the Optimal Trap.

Parameter Value Success Rate (%)

Lanczos Steps (m)
3 95.1 ± 2.5

5 (Default) 97.2 ± 1.8
10 97.5 ± 1.6

Target Freq. (1/τ )
1000 steps 92.8 ± 3.0

100 steps (Default) 97.2 ± 1.8
10 steps 96.5 ± 2.1

Performance in Dynamic Environments. Finally, we evaluated the GDC-Dynamic variant in
the Dynamic Optimal Trap. Table 5 shows that the dynamic-aware agent, which modulates its risk
sensitivity based on a learned predictive model of the boundary’s motion, significantly outperforms the
original, dynamic-oblivious A-GDC. This provides a strong proof-of-concept for the GDC paradigm’s
potential in non-stationary environments.

9
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A THEORETICAL PROOFS AND DERIVATIONS

This appendix provides detailed proofs and derivations for the theoretical claims made in the main
paper. We keep the body text in standard environments for readability and use a light takeaway
box to summarize each item.

A.1 PROOF OF LEMMA 3.1 (LIPSCHITZ CONTINUITY OF MOLLIFIED RISK METRIC)

A.1 at a glance

Mollification makes Qε smooth; both the gradient-norm term and the (clipped) minimum-
eigenvalue term are Lipschitz on a compact domain; hence κε is Lipschitz. As ε→ 0, ∇Qε

converges (in the generalized-gradient sense) to that of Q.

Assumptions and notation for A.1

• Qε := Q ∗ pε is the Gaussian-mollified critic on a compact domain D with Qε ∈ C3.
• ∇a andHa denote the gradient/Hessian w.r.t. the action a (here we use the usual Hessian, not

the horizontal one).
• ∥·∥ is the ℓ2 norm; λmin(·) is the smallest eigenvalue (Weyl-Lipschitz).

Lemma A.1 (Restated). Let Q be a value approximator represented by a neural network, and let
Qε := Q ∗ pε denote its convolution with a Gaussian mollifier of radius ε > 0. Assume Qε ∈ C3 on
a compact domain of interest D. Define κε via Eq. (2.1) but computed from Qε. Then κε is Lipschitz
continuous on D. As ε→ 0, κε converges in Lp to a quantity based on the generalized gradients of
Q.

Proof. Define

κε(s, a) := ∥∇aQ
ε(s, a)∥2 + c max

(
0, −λmin

(
Ha(Q

ε(s, a))
))
, (A.1)

where∇a andHa are taken w.r.t. the action a. Convolution with a Gaussian pε makes Qε smooth
(C∞), hence ∇aQ

ε andHaQ
ε are smooth on compact D.

(i) Steepness term. Let f(v) = ∥v∥2 and g(s, a) = ∇aQ
ε(s, a). On a compact set, g is Lipschitz

and f is Lipschitz; thus f ◦g is Lipschitz:∣∣ ∥∇aQ
ε(x1)∥2 − ∥∇aQ

ε(x2)∥2
∣∣ ≤ Lf ∥∇aQ

ε(x1)−∇aQ
ε(x2)∥, (A.2a)

≤ LfLg ∥x1 − x2∥. (A.2b)

(ii) Concavity term. Write it as h4 ◦ h3 ◦ h2 ◦ h1 with h1(s, a) = Ha(Q
ε(s, a)) (Lipschitz on

D since Qε ∈ C3); h2(M) = λmin(M) (1-Lipschitz for symmetric matrices); h3(x) = −x and
h4(x) = max(0, x) (both 1-Lipschitz). The composition is Lipschitz.

Summing two Lipschitz functions is Lipschitz, giving κε Lipschitz on D.

(iii) Convergence. As ε → 0, Qε → Q in Lp(D). For locally Lipschitz Q (e.g., ReLU nets), ∇Q
exists a.e. and the limit relates to Clarke’s generalized gradient ∂Q;∇Qε converges to an element of
co ∂Q.

A.2 PROOF OF THEOREM 3.3 (CONTRACTION OF THE PRACTICAL GDC OPERATOR)

A.2 at a glance

Bound the value term by γ, bound the reward reweighting via the sigmoid slope (k/4) and the
Lipschitz constant Lκ of κ, and control the target-network lag by a stability constant to obtain a
contraction modulus < 1.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Assumptions & constants for A.2

• k: sigmoid slope; Lκ: Lipschitz const. of κ; ∥R∥∞: reward bound.
• τ := sup∥Q−Qtgt∥∞ is the target-network lag; Cτ > 0 relates lag to the induced error in the

value term.

Theorem A.2 (Restated). Let T tgt
G be the practical GDC operator using a lagged target network Qtgt.

If

γ +
k

4
Lκ ∥R∥∞ + Cτ τ < 1, (A.3)

then T tgt
G is a contraction mapping.

Proof. For any Q1, Q2,∣∣(T tgt
G Q1)(s, a)− (T tgt

G Q2)(s, a)
∣∣ ≤ Es′

[ ∣∣RG(s, a;Q1,tgt)−RG(s, a;Q2,tgt)
∣∣ ] (A.4)

+ γ Es′

[ ∣∣max
a′

Q1(s
′, a′)−max

a′
Q2(s

′, a′)
∣∣ ]. (A.5)

The max is 1-Lipschitz, so the value term from Eq. (A.5) gives γ ∥Q1 − Q2∥∞. For RG(Q) =
(1− σ(κ(Q)))R+ σ(κ(Q))min(0, R), the reward part satisfies∣∣RG(Q1)−RG(Q2)

∣∣ ≤ ∣∣σ(κ(Q1))− σ(κ(Q2))
∣∣ ∥R∥∞ ≤ k

4
Lκ ∥R∥∞ ∥Q1 −Q2∥∞. (A.6)

Using the target-lag relation and policy stability, ∥Q1,tgt−Q2,tgt∥∞ ≤ Cτ ∥Q1−Q2∥∞ +Cτ τ adds
an extra Cτ τ term. Combining Eqs. (A.4) to (A.6) yields the modulus in Eq. (A.3).

Practical checklist to meet Eq. (A.3)

1. Soften the switch: reduce k.
2. Reward scaling/normalization: reduce ∥R∥∞.
3. Spectral/Lipschitz control on critic: reduce Lκ (e.g., spectral norm).
4. Faster/more frequent target updates: reduce τ .

A.3 FULL DERIVATION FOR PROPOSITION 4.1 (ROBUST SAFETY MARGIN IN DYNAMIC
ENVIRONMENTS)

A.3 at a glance

Balance “value generation” (curvature-induced) against “value decay” (moving boundary +
prediction error + reaction lag) and use a local quadratic model to link curvature and distance to
failure.

Symbols for A.3

d: distance to failure boundary; ∆Qmin: value drop at failure; ̂̇B(t): predicted boundary velocity
(Riemannian norm ∥ · ∥g); ϵp: prediction error; τa: reaction lag.

Derivation. Safety requires the curvature-induced rate to offset the decay caused by boundary motion,
prediction error and lag:∣∣λmin(HH

a )
∣∣ ≥ γ

∥∥̂̇B(t)∥∥
g
+ L∇Q ϵp + Cτa Vmax τa. (A.7)

With a local quadratic model, ∆Q ≈ 1
2

∣∣λmin(HH
a )
∣∣ d2, hence the squared safety distance obeys

d2 ≥
2
(
∆Qmin − ηapprox

)
γ ∥̂̇B(t)∥g + L∇Qϵp + Cτa Vmax τa

, (A.8)

as claimed.
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B CURVATURE COMPUTATION AND IMPLEMENTATION DETAILS

B.1 Practical curvature estimators (HVP + Lanczos)

Use Hessian–vector products (HVP) to avoid materializing full Hessians; estimate extremal
eigenvalues with a few Lanczos steps. Default settings (e.g., m = 5) are typically stable and
efficient.

HESSIAN–VECTOR PRODUCT (HVP)

We avoid forming the full Hessian. Compute

H(f(x)) v = ∇x

(
(∇xf(x)) · v

)
(B.1)

with two autodiff passes; see Clarke (1983b) for nonsmooth background.

Algorithm 2 Hessian–Vector Product (HVP)

Require: Qθ, state s, action a, direction v
1: atensor ← tensor(a; requires grad=True)
2: q ← Qθ(s, atensor)
3: g ← ∇aq ▷ first autodiff pass with graph
4: u← ⟨g, v⟩
5: hvp← ∇au ▷ second autodiff pass
6: return hvp

LANCZOS FOR MINIMUM EIGENVALUE

Build a small tridiagonal matrix Tm via HVPs; its Ritz values approximate extremal eigenvalues of
Ha.

Algorithm 3 Lanczos (min-eigenvalue estimate)

Require: HVP oracle HVP(s, a, ·), iterations m
1: v1 ← rand unit(), β0 ← 0, v0 ← 0, Tm ← 0
2: for j = 1 to m do
3: wj ← HVP(s, a, vj)
4: αj ← w⊤

j vj
5: wj ← wj − αjvj − βj−1vj−1 ▷ re-orthogonalize
6: βj ← ∥wj∥
7: if βj < 10−8 then
8: break
9: vj+1 ← wj/βj

10: Fill Tm on the diagonal with αj and off-diagonal with βj

11: Compute eigenvalues of Tm and return λmin(Tm)

Implementation recipe (defaults)

• Smoothing bandwidth: Gaussian mollifier ε = 10−3 (scaled by feature std).
• Lanczos steps: m ∈ [5, 8]; early stop if βj < 10−8; optional Tikhonov shift δ = 10−6.
• Horizontal subspace (optional): build Ua and use restricted HVP w 7→ U⊤

a

(
∇2

aaQε[Uaw]
)
.

Complexity and stability notes

• Cost: each κ evaluation is O(m) HVPs (≈ m backprop equivalents); vectorize across batch.
• Stability: normalize inputs and rewards; add small diagonal shift to Tm if needed; monitor the

decay of βj .
• Notation consistency: use ε for bandwidth; ∥·∥ for norms; λmin(·) for the minimal eigenvalue.
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C EXPERIMENTAL PROTOCOLS

C.1 What’s inside this section
Environment specs, shared architectures, and hyperparameters used across experiments.

ENVIRONMENT DETAILS

Key properties of all environments are listed in Table 7. The cost signal for Safety-Gymnasium tasks
is binary.

Table 7: Details of experimental environments.

Environment State Dim Action Dim Reward Function Cost Signal

Humanoid-Velocity-v1 46 8 Forward velocity Fall detection
Car-Goal1-v0 26 2 Goal distance Hazard zone contact
Point-Goal1-v0 18 2 Goal distance Hazard zone contact
Optimal Trap (Custom) 2 2 Goal distance Hard boundary crossing

NETWORK ARCHITECTURES

All algorithms use identical MLPs (Table 8) for fairness.

Table 8: Shared network architectures for all algorithms.

Network Layer Configuration Activation

Actor (Policy) [Input, 256, 256, Output] ReLU (hidden), Tanh (output)
Critic (Q-Value) [Input, 256, 256, Output] ReLU (hidden), Linear (output)

HYPERPARAMETER SETTINGS

A comprehensive list is provided in Table 9. Baselines are tuned per their original papers; we use 30
random seeds.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 9: Comprehensive hyperparameter settings for all experiments.

Parameter A-GDC (Ours) SAC PCPO FOCOPS

Common RL Parameters

Optimizer Adam Adam Adam Adam
Learning Rate (Actor & Critic) 3e-4 3e-4 3e-4 3e-4
Replay Buffer Size 1,000,000 1,000,000 1,000,000 1,000,000
Batch Size 256 256 256 256
Discount Factor (γ) 0.99 0.99 0.99 0.99
Target Smoothing Coeff (τ ) 0.005 0.005 0.005 0.005

Algorithm-Specific Parameters

Initial Temperature (α) 0.2 (auto) 0.2 (auto) N/A N/A
Initial Risk Threshold (κ0) 0.0 N/A N/A N/A
Adaptive Rate (η) 1e-2 N/A N/A N/A
Cost EMA Decay (β) 0.05 N/A N/A N/A
Curvature Weight (c) 1.0 N/A N/A N/A
Lanczos Steps (m) 5 N/A N/A N/A
Sigmoid Slope (k) 1.0 N/A N/A N/A
Target Cost (Ctarget) 0.01 N/A N/A N/A
Cost Limit (d) N/A N/A 25 25
KL Constraint (δ) N/A N/A 0.01 N/A
Lagrangian Init (λ0) N/A N/A 1.0 N/A
Lagrangian Init (ν0) N/A N/A N/A 1.0

D DETAILS FOR SECTION 2: GEOMETRY AND NUMERICS

D.1 HORIZONTAL OPERATORS AND SUB-RIEMANNIAN FORMALIZATION

Definition D.1 (Activation-stable neighborhood and horizontal subspace). Let fθ be a ReLU critic
implementing Q(s, a) = fθ(s, a). For x = (s, a), a direction d ∈ R|A| is activation-stable at x if
there exists ρ > 0 such that for all t ∈ [−ρ, ρ], the ReLU activation mask of fθ(s, a+ td) equals that
at t = 0. The horizontal action subspace is

Da(x) = {d ∈ R|A| : d is activation-stable at x}.
Let Ua(x) ∈ R|A|×dH have orthonormal columns spanning Da(x) and Pa(x) = Ua(x)Ua(x)

⊤.

Definition D.2 (Mollification). Let φε be a standard Gaussian mollifier on R|S|+|A| with bandwidth
ε > 0. Define the smoothed critic Qε = Q ∗ φε, which is C∞ and uniformly converges to Q on
compact sets as ε ↓ 0 (Clarke, 1983b). We then define the horizontal gradient and Hessian by

∇H
a Q(x) = Ua(x)

⊤∇aQε(x), HH
a (Q;x) = Ua(x)

⊤∇2
aaQε(x)Ua(x). (D.1)

These coincide with classical derivatives within a linear region and yield Clarke-consistent limits as
ε ↓ 0.

Well-posedness (sketch)

Within an activation-stable neighborhood, Q is affine in (s, a); hence∇2
aaQ = 0 classically and

curvature arises only at region boundaries. The mollified critic Qε makes λmin

(
HH

a (Q;x)
)

finite
and continuous in x, and ∇H

a Qε agrees with generalized derivatives in the Clarke sense as ε ↓ 0;
see Section D.4 and Clarke (1983b).

D.2 LANCZOS-BASED CURVATURE SURROGATE AND HVPS

We estimate λmin

(
HH

a (Q;x)
)

via Lanczos on the symmetric matrix HH
a (Qε;x) without materializing

it:

1. Draw v1 uniformly on the unit sphere in Da(x); apply m Lanczos steps using the restricted HVP
oracle

w 7→ Ua(x)
⊤(∇2

aaQε(x) [Ua(x)w ]
)
.
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Table 10: Default numerical choices.

Quantity Symbol Default

Sigmoid slope k 5
Curvature weight c 0.5
Mollifier bandwidth ε 10−3 (scaled by feature std)
Lanczos steps m 8
HVP regularization δ 10−6

A-GDC EMA / step β, η 0.05, 0.05
κ0 clipping — [0, κmax] with κmax at warmup 95th pct. of κ

Table 11: Symbols used in Section 2.

Symbol Meaning

Da(x) Horizontal action subspace at x=(s, a) (Definition D.1)
Ua(x), Pa(x) Orthonormal basis / projector of Da(x)
Qε Mollified critic (Definition D.2)
∇H

a , HH
a Horizontal gradient / Hessian (Eq. (D.1))

κ(s, a) Geometric risk
σ(s, a;Q) Endogenous switch (Eq. (2.2))
TG GDC operator (Eq. (2.3))
[x]−, [x]+ min(0, x) and max(0, x)

2. Take the smallest Ritz value as λ̂min. Optionally Tikhonov-regularize λ̂min ← λ̂min − δ with
small δ ≥ 0 for numerical stability.

The HVP is computed by standard reverse-on-forward AD; restricting to Da lowers variance and
cost.

D.3 DEFAULT NUMERICAL CHOICES AND COMPLEXITY

Unless noted otherwise, we use the following defaults (robust across tasks in Section 5).

Complexity and stability notes

Cost. Each κ evaluation uses O(m) HVPs restricted to Da (each HVP ≈ one backprop), adding
≈ m extra backprops per target (default m=8). Minibatch vectorization amortizes the cost.
Stability. Normalize inputs/rewards; add small diagonal shift to Tm if needed; monitor the decay
of βj .
Notation consistency. Use ε for bandwidth; ∥·∥ for norms; λmin(·) for the minimal eigenvalue.

D.4 CLARKE-CONSISTENCY OF HORIZONTAL OPERATORS (PROOF SKETCH)

Let {εn} ↓ 0. By standard properties of mollifiers (Clarke, 1983b), Qεn→ Q uniformly on compacts
and ∇Qεn→ ∂Q in the sense of graphs. Since Ua(x) is locally constant within an activation-stable
neighborhood (Definition D.1), we obtain

∇H
a Qεn(x) = Ua(x)

⊤∇aQεn(x) −→ ∂H
a Q(x)

in the Painlevé–Kuratowski sense. Similarly, the Rayleigh quotient for HH
a (Qεn ;x) converges to a

generalized second-order directional derivative, and the minimal eigenvalue along Da is well-defined
as a limit inferior. This justifies using λmin(H

H
a ) as a concavity surrogate.
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D.5 NOTATION TABLE FOR SECTION 2

E PROOFS AND DETAILS FOR SECTION 3

E.1 PROOF OF THEOREM 3.1

E.1 at a glance

On compact sets the mollified critic Qε is smooth; the horizontal gradient and the clipped
minimum-eigenvalue map are Lipschitz, hence κε is Lipschitz and converges (as ε ↓ 0) to a
Clarke-consistent quantity.

Fix a compact set X . By standard properties of mollifiers (Clarke, 1983a), Qε ∈ C∞ and Qε→Q
uniformly on X as ε ↓ 0. Let Ua(x) denote the orthonormal basis of the horizontal subspace
(Definition D.1), locally constant within an activation-stable neighborhood. Then

x 7→ ∇H
a Qε(x) = Ua(x)

⊤∇aQε(x)

is Lipschitz with constant bounded by supx∈X
∥∥Ua(x)

⊤∇2
aaQε(x)Ua(x)

∥∥
op

. The minimum-
eigenvalue map M 7→ λmin(M) is 1-Lipschitz in operator norm (Weyl’s inequality), and x 7→
max(0, x) does not increase Lipschitz constants; hence x 7→ κε(x) is Lipschitz on X . For conver-
gence, since∇Qε → ∂Q and∇2Qε converges to generalized second-order directional derivatives
(in the sense of graphs), both terms of κε converge in Lp to their Clarke-consistent limits.

E.2 FROM ARCHITECTURAL NORMS TO LQ
κ

E.2 at a glance

For a depth-L network, the Lipschitz constants of the horizontal gradient and Hessian scale with
the product of spectral norms; this yields an explicit bound on LQ

κ used in Theorems 3.2 and 3.3.

For weight matrices {Wℓ}Lℓ=1 and C1 activations with bounded derivatives,

L∇Qε ≤ C

L∏
ℓ=1

∥Wℓ∥2, LHQε ≤ C ′

(
L∏

ℓ=1

∥Wℓ∥2

)2

by the chain rule. Writing

κQ(x) = ∥∇H
a Qε(x)∥2 + c

[
−λmin

(
HH

a (Qε;x)
)]

+
,

and linearizing along a path from Q1 to Q2 gives

|κQ1(x)− κQ2(x)| ≤ L∇Qε ∥Q1 −Q2∥∞ + cLHQε ∥Q1 −Q2∥∞. (E.1)

Therefore LQ
κ ≤ L∇Qε

+ cLHQε
, which in turn admits the spectral-norm product bounds stated in

Theorem 3.2. (Absolute constants absorb activation smoothness and mollifier bandwidth.)

E.3 PROOF OF THEOREM 3.3

E.3 at a glance

Bound the reward term using the global slope of the sigmoid (k/4) and LQ
κ , bound the value

term by the 1-Lipschitz max operator and the target lag τ , and combine to obtain a contraction
whenever Eq. (A.3) holds.

Let Q1, Q2 be two critics and abbreviate ∆Q = ∥Q1 −Q2∥∞. For fixed (s, a),∣∣(T tgt
G Q1)(s, a)− (T tgt

G Q2)(s, a)
∣∣ ≤ ∣∣E[RG(Q1)−RG(Q2)]

∣∣+ γ
∣∣E[max

a′
Q1,tgt −max

a′
Q2,tgt

]∣∣.
(E.2)
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Reward term. Since RG(Q) = (1− σQ)R+ σQ[R]− with fixed R,

|RG(Q1)−RG(Q2)| ≤ ∥R∥∞ |σQ1 − σQ2 |.

The map s 7→ sigmoid(ks) is k/4-Lipschitz, hence |σQ1
− σQ2

| ≤ k
4 |κQ1

− κQ2
| ≤ k

4 L
Q
κ ∆Q,

which gives ∣∣E[RG(Q1)−RG(Q2)]
∣∣ ≤ k

4
LQ
κ ∥R∥∞ ∆Q. (E.1)

Value term. Add–subtract non-lagged critics:

max
a′

Q1,tgt−max
a′

Q2,tgt = [max
a′

Q1,tgt−max
a′

Q1]+[max
a′

Q1−max
a′

Q2]+[max
a′

Q2−max
a′

Q2,tgt].

The middle bracket is bounded by ∆Q since max is 1-Lipschitz; the outer brackets are bounded by
Cττ where τ = ∥Q−Qtgt∥∞. Therefore∣∣E[max

a′
Q1,tgt −max

a′
Q2,tgt]

∣∣ ≤ γ∆Q+ Cτ τ. (E.2)

Combine. From equation E.2–equation E.2,∥∥T tgt
G Q1 − T tgt

G Q2

∥∥
∞ ≤

(
γ + k

4L
Q
κ ∥R∥∞

)
∆Q+ Cτ τ.

Contraction modulus

With ρ := γ + k
4L

Q
κ ∥R∥∞ + Cτ τ , if ρ < 1 (i.e., Eq. (A.3)), then T tgt

G is a contraction. By
Banach’s fixed-point theorem, the fixed point is unique and iterates converge.

E.4 PROOF OF PROPOSITION 4.1

E.4 at a glance

A local quadratic model links curvature to distance-to-failure; accounting for boundary motion,
prediction error, and reaction lag yields the robust margin bound in Eq. (A.8).

Consider a point at distance d to Bfail(t). A second-order expansion along the outward normal
direction v gives

Q(x+ dv) ≈ Q(x) + ⟨∇Q(x), dv⟩+ 1
2d

2 v⊤HH
a (Q;x) v.

Interpreting ∆Qmin as the minimal drop when crossing the boundary yields 1
2d

2 λmin(H
H
a ) ≳

∆Qmin − ηapprox. Effective curvature is reduced (locally) by γ∥ ˆ̇B(t)∥g + L∇Qϵp + CτaVmaxτa,
leading to the bound Eq. (A.8). Compactness, Lipschitz bounds on ∇Q, and standard perturbation
arguments yield the rigorous statement.

F PRE-REGISTERED PROTOCOLS AND BUDGETS

F.1 What is pre-registered?

We preregistered: (i) tasks, (ii) training budgets (env/grad steps and wall-clock class), (iii)
evaluation cadence, (iv) hyperparameter search spaces and budget (n configs per method), and (v)
statistical tests. A single configuration is selected per method by validation return subject to a
violation cap; ties are broken by lower violations.

G METRIC DETAILS AND PARETO CONSTRUCTION
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G.1 Metrics—quick reference

Viol =
1

T

T∑
t=1

⊮{costt = 1}, (G.1)

ERL = 60 · 1
T

T∑
t=1

⊮{hazard(st) = 1} [min−1], (G.2)

Safety-AUC =

T∑
t=1

Viol(t). (G.3)

Pareto hull. We compute the upper hull over (Return,−Viol) via the monotone-chain algorithm;
strictly dominated checkpoints are hidden. Confidence intervals use B=2000 bootstrap resamples
over seeds. Pseudocode and tie-breaking rules are provided in the code release.

H BASELINES, ARCHITECTURES, AND HYPERPARAMETER SEARCH

H.1 Search protocol (shared across methods)

We align depth/width, activations, normalization, and optimizers where applicable. Each method
receives the same search budget (n configs): learning rate, entropy/temperature, target-update
period, and method-specific knobs (e.g., PCPO penalty step, FOCOPS trust region). Exact grids,
final picks, and per-seed runs are in the repository; an abridged grid is shown in Table 12.
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Table 12: Abridged hyperparameter grids (full tables in the repository).

Method LR Target Period Method-specific

SAC {1e−4, 3e−4} {1e2, 1e3} α ∈ {0.05, 0.2}
PCPO {1e−4, 3e−4} {1e2, 1e3} penalty-step ∈ {0.01, 0.05}
FOCOPS {1e−4, 3e−4} {1e2, 1e3} trust-radius ∈ {0.01, 0.05}
A-GDC {1e−4, 3e−4} {1e2, 1e3} k ∈ {3, 5}, c ∈ {0.3, 0.5, 0.7}, η ∈ {0.03, 0.05, 0.1}

I ABLATIONS AND SENSITIVITY

I.1 What we sweep and how we report

We sweep k, c, η, fixed vs. adaptive κ0, Lanczos steps m, mollifier bandwidth ε, and target-update
frequency. For each sweep we report mean±95% CI over 30 seeds and provide matched-slice
comparisons (equal violation / equal return) to isolate the effect of each component.

J OVERHEAD ACCOUNTING AND IMPLEMENTATION DETAILS

J.1 Key points (overhead summary)

Counting rule. Extra cost is measured in backward-equivalents (BEs) per update; one Hessian–
vector product (HVP) counts as 1 BE. GDC adds m HVPs restricted to Da (default m=8),
vectorized across batch and action dimensions.
Throughput/memory. We report env steps/s and peak memory for batch sizes {256, 512, 1024}
on A100 GPUs; setup details (framework/cudnn/cuda) are logged with hashes in the repo.

K THEORY-ALIGNED MONITORING

We estimate L̂Q
κ via small critic perturbations on a validation buffer and log the target lag τ̂ =

∥Q−Qtgt∥∞. We visualize the empirical contraction margin

Margin = 1−
[
γ + k

4 L̂
Q
κ ∥R∥∞ + Cτ τ̂

]
, (K.1)

and its relation to Viol across runs (scatter and time-series plots).

L DYNAMIC PREDICTOR AND SCHEDULE

We train a boundary-velocity predictor with mean-absolute-error loss and an uncertainty head
calibrated by temperature scaling. The curvature schedule is

c(t) = c0
(
1 + α ∥ ˆ̇B(t)∥g + βUnc(t)

)
, (L.1)

with (c0, α, β) swept in Section I. Calibration curves (reliability diagrams) and MAE/CRPS are
reported here.

M FAILURE CASES AND INTERPRETABILITY

We include representative rollouts where (i) extreme reward sparsity causes over-suppression and (ii)
curvature is underestimated near activation seams. We provide κ heatmaps and state-visitation maps
aligned with violation timestamps, along with seed IDs and minimal scripts to reproduce each case.

21


	Introduction
	The GDC Framework: Endogenous Geometric Risk Weighting
	Preliminaries
	The Core Mechanism of GDC
	Geometric foundation and numerical implementation
	Automating risk sensitivity with A-GDC

	Theoretical Analysis: Geometry-Certified Robustness
	Fundamental Properties: Convergence and Stability

	Theoretical Extension for Dynamic Environments
	Experiments: Comprehensive Validation of the GDC Paradigm
	Experimental Setup
	Safety–Performance Across Benchmarks
	How Do GDC's Internal Mechanisms Function?
	Empirical Validation of Theoretical Guarantees
	Robustness, Scalability, and Dynamic Factors

	Theoretical Proofs and Derivations
	Proof of Lemma 3.1 (Lipschitz Continuity of Mollified Risk Metric)
	Proof of Theorem 3.3 (Contraction of the Practical GDC Operator)
	Full Derivation for Proposition 4.1 (Robust Safety Margin in Dynamic Environments)

	Curvature Computation and Implementation Details
	Experimental Protocols
	Details for Section 2: Geometry and Numerics
	Horizontal operators and sub-Riemannian formalization
	Lanczos-based curvature surrogate and HVPs
	Default numerical choices and complexity
	Clarke-consistency of horizontal operators (proof sketch)
	Notation table for Section 2

	Proofs and details for Section 3
	Proof of lem:lipschitzkappa
	From architectural norms to LQ
	Proof of Theorem 3.3
	Proof of Proposition 4.1

	Pre-registered protocols and budgets
	Metric details and Pareto construction
	Baselines, architectures, and hyperparameter search
	Ablations and sensitivity
	Overhead accounting and implementation details
	Theory-aligned monitoring
	Dynamic predictor and schedule
	Failure cases and interpretability

