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ABSTRACT

Standard reinforcement learning (RL) often yields brittle policies that fail under
hard safety constraints. We propose Geodesic Duality Control (GDC), which adapts
an agent’s risk posture endogenously by re-weighting the Bellman target using
local geometric cues of the value function (gradient magnitude and a curvature
surrogate). To accommodate piecewise-smooth neural critics we formulate a Sub-
Riemannian / generalized-gradient treatment and provide practical, numerically
stable curvature surrogates (implementation details in Sec.[2.3|and App.[B). Our
main theoretical result shows that, under explicit regularity and stochastic-model
assumptions, GDC induces a curvature-decreasing learning dynamic that increases
a quantifiable safety margin (proofs in App.[A). We validate the mechanism with
proof-of-concept experiments—including a hard-boundary safety environment
(Optimal-Trap), targeted ablations, and a computational-cost study on Humanoid-
Safety—to confirm the intended geometric risk posture. We do not claim broad
empirical superiority on all benchmarks; rather, the paper’s primary contribution is
theoretical, with key components validated empirically.

1 INTRODUCTION

Reinforcement Learning (RL) optimizes sequential decision-making by searching for policies that
maximize expected cumulative reward (Sutton & Barto, 2018). While highly successful in many
domains, vanilla RL frequently produces agents with brittle optimality: policies that perform well on
average but are prone to catastrophic safety violations when faced with sparse, hard constraints or
abrupt safety frontiers.

Existing safe-RL approaches take distinct, but related, philosophies (Cen et al.,|2024; /Cheng et al.,
2023; |Dati et al., 2024} |Gu et al., 2024; |[Kim et al., [2024; |Lei et al., 2024} Ma et al.,|2021; [Thananjeyan
et al.}2021;|Yao et al.,[2023)). Constrained RL (e.g., CPO, PCPO) enforces global cumulative cost
budgets (Achiam et al., [2017;|Schulman et al.| [2015). Risk-sensitive methods (e.g., CVaR-based
objectives) reshape the return distribution to penalize tails (Chow & Ghavamzadeh, 2015;|Singh et al.|
2020; [Wang et al.| 2023). Robust RL targets distributional shifts through worst-case or augmentation
strategies (Sun et al., |2024; |Wang et al., |2020). These families are effective in many settings but
share common limitations: (i) they treat safety as an external budget or static measure rather than
a state-dependent signal, (ii) global constraints can be overly conservative or fail to prevent local
catastrophes, and (iii) many theoretical guarantees assume smooth critics or strong regularity that
modern neural approximators (e.g., ReLU networks) do not satisfy (Clarkel |1983b).

To address these gaps we present Geodesic Duality Control (GDC). Rather than imposing an
external budget, GDC treats risk as an intrinsic, local property of the critic’s geometry and uses that
property to modulate learning. Concretely, GDC computes a local risk metric (s, a; Q) from the
critic () (combining gradient norm and a curvature surrogate) and maps « to a smooth weight o(Q)
that continuously re-weights the Bellman target between reward-seeking and penalty-avoidance. This
endogenous coupling creates a closed feedback loop: the critic’s geometry directly shapes the update
target that in turn sculpts the critic.

Our method contributes three main innovations and practical advantages:
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1. Endogenous geometry-aware risk weighting. Unlike global-budget or static-risk ap-
proaches, GDC directly embeds local geometric information into the Bellman target, en-
abling the agent to increase caution precisely where the value landscape indicates brittleness.

2. Theory for piecewise-smooth critics. We develop a Sub-Riemannian / generalized-gradient
formalism that accommodates non-smooth neural critics and prove that, under explicit
regularity and stochastic assumptions, the induced learning dynamic is equivalent (in the
mean-field sense) to a curvature-decreasing geometric flow that enlarges a quantifiable safety
margin. Technical statements and proofs appear in App.

3. Practical, numerically-stable curvature surrogates and implementation alignment.
We provide concrete algorithms (damped Lanczos / power-iteration with Tikhonov regu-
larization, finite-difference fallbacks, and optional mollification) to estimate curvature in
piecewise-smooth critics, and we explicitly analyze how implementation choices (e.g., using
a lagged/target critic for stability) affect theoretical claims. These recipes keep computa-
tional overhead modest while preserving the intended geometric effect (see Sec. and

Sec.[d).

Throughout the paper we emphasize transparency and scope: the theoretical contributions are primary;
experiments are targeted proof-of-concept studies chosen to stress the phenomena our theory predicts
(including a hard-boundary safety test and ablations). We report a computational-cost study on
a high-dimensional Humanoid-Safety task but do not assert comprehensive empirical dominance
over all existing safe-RL baselines across every benchmark. The remainder of the paper presents
the formalism (Sec. E]) implementation details and curvature estimators (Sec. @]) experimental
validation (Sec.[5), and full technical proofs and sensitivity analyses in the appendix.

2 THE GDC FRAMEWORK: ENDOGENOUS GEOMETRIC RISK WEIGHTING

2.1 PRELIMINARIES

We consider a standard Markov Decision Process (MDP) defined by the tuple (S, A, P, R,7),
where S is the state space, A is the action space, P : S x A — A(S) is the transition kernel,
R : S x A—Ris the reward, and v € [0, 1) is the discount factor. The goal is to find a policy 7
maximizing the expected return J(7) = E. [ > ;) 7' R(s;, a;)]. The action-value function is
Q7 (s,a) = ]EW[Z?EO Y R(s¢, a4) | S0 =S, ag = a] (Sutton & Barto, 2018 |Cai et al., [2022).

2.2 THE CORE MECHANISM OF GDC

At the heart of GDC is a simple philosophy: risk is not an external constraint but an intrinsic, local
property of the value function’s geometry. GDC perceives this geometry and reacts to it via three
components: a geometric risk metric x, an endogenous switch o, and a geometry-aware Bellman
operator T¢.

1. The Geometric Risk Metric x. A complete local risk profile should capture both first-order
steepness and second-order curvature. Relying on only one of them leads to blind spots (e.g., missing
sharp drops after flat plateaus or ignoring steep non-curved descents). We therefore define:

Definition 2.1 (Geometric Risk Metric k). For a critic () and state s, the local risk at action a is
k(s,a) = HVGHQ(S, a)H2 +c max(O, —/\min(H(fI(Q(s, a)))), 2.1

Steepness (Gradient) Concavity (Hessian)

where VI and HX are the gradient and Hessian of @ restricted to the action horizontal directions

D, (see|Section 2.3} formal details in|Section D.1|). Here Ay is the minimum eigenvalue, and ¢ > 0

is a weight.

The composite form is crucial and is validated by ablations and a purpose-built adversarial test

(Section ).
2. Endogenous Dynamic Risk Weighting. GDC maps the risk to a smooth switch o : R>o— [0, 1]:
o(s,a;Q) = sigmoid(k(fi(s7 a) — Iio)), (2.2)
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where K is a tunable threshold and & > 0 controls the slope. The dependence o (-; ()) emphasizes
its endogenous nature—the critic’s own geometry modulates its target.

3. Geometry-Aware Bellman Operator 7. This weighting integrates directly into the target:
Definition 2.2 (GDC Operator 7¢).

(TGQ) (S, a) = IEs’fvP(s,a) RG(Sa a; Q) + ’YH}IE}XQ(SI7 a,) :| ) (2.3)
with the geometry-aware reward
Re(s,a;Q) = (1 —o(s,a;Q)) R(s,a) + o(s,a; Q) min(0, R(s,a)). (2.4)

In low-risk regions (o = 0) this reduces to the standard Bellman target; in high-risk regions (c~1) it
focuses on penalty mitigation to enforce conservative behavior.

Design rationale and sanity properties.

1. Scaling. Replacing () by a@ scales by «; this can be absorbed by reward normalization or
retuning k without changing the qualitative behavior of o.

2. Limits in c. ¢— 0 gives a gradient-only detector (fast but blind to degenerate ridges); large ¢
increases conservatism near negative curvature.

3. Limits in k. £ — 0 makes 0 — % (uniform tempering); k — oo yields a hard switch at kg (useful
when k is well-calibrated).

4. Monotonicity. o is nondecreasing in «; increasing kg reduces the expected positive-reward
contribution in the target.

5. Locality. (s, a) depends only on local geometry along admissible action directions ;
no global multipliers are needed, unlike Lagrangian CRL.

2.3  GEOMETRIC FOUNDATION AND NUMERICAL IMPLEMENTATION

Hustration of the Sub-Riemannian Framework From activation stability to horizontal operators
(practical). A ReLU critic decomposes into linear
regions with fixed activation masks. Let U, (z) be an
orthonormal basis of the horizontal action subspace
D, (x) that preserves the current mask (formalized in
Section D.T)). We evaluate geometric quantities on the

3 mollified critic Q. restricted to Dy ().

VfQ(Z‘) = Ua(x)Tana(x)v
Hy'(Q;2) = Ua(2) " V3,Qc(2) Ua(2).

This (i) avoids crossing seams, (ii) reduces estimator
Figure 1: Sub-Riemannian view of a ReLU variance, and (iii) lowers the Lanczos cost to the small
critic. Non-differentiable seams (red) break clas- subspace dimension dg.
sical calculus. We work in the local horizontal
distribution D, (blue plane). Robust

2.5)

curvature surrogate. We estimate
/\min(H f ) by m-step Lanczos with an HVP oracle
defined on D, (x) (see(Section D.2). Recommended
defaults (validated in[Section 5): m =8 steps; optional
Tikhonov shift § =107° to stabilize the smallest Ritz value; bandwidth e =103 (scaled by feature
std). Each k evaluation costs O(m) HVPs (= m backwardequivalents). We vectorize across the

batch and action dimensions; see for complexity notes.

* Use the farget critic Qs to compute  (reduces drift in o).
* Build U, (z) from the current linear region; cache & reuse when masks match.
* Clip kg t0 [0, Kmax]| With Kmax set by the 95th percentile of warmup «.
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Algorithm 1 Adaptive GDC with Soft Actor-Critic (A-GDC-SAC)
Require: initial kg, ¢, Ciarget, 55 1)
I: initialize critics Qp, , Qp,, actor Ty, and target nets

2: C+0
3: for each training step do

4: sample minibatch B = {(s,a,r,s’,d, cost)}

5: C + (1—-p)C + 3 - mean(cost)

6: ko <+ max(0, ko + 7(C — Clarger))

7: for each (s,a,r,s',d, cost) € B do

8: compute @, next action a’, and (s, a’) via HVP + Lanczos
9: o < sigmoid(k(k(s', a’) — ko))

10: rg < (1 —o0)r+ o min(0,r)

11: form GDC target and accumulate critic loss

12: update critics/actor/temperature and target nets

* Normalize rewards so || R|| is comparable across tasks; retune k coarsely if needed.

Geometric foundation for non-smooth functions. Value approximators with ReLLU activations are
not globally C2. We ground our framework in Sub-Riemannian geometry (horizontal distribution
Don M =S x A); see[Section D.I|for the formalization.

Definition 2.3 (Sub-Riemannian structure). We model (M, D, g) with D,, spanned by directions
where the Q-function is differentiable (i.e., not crossing seams in[Figure 1); g is a smooth inner
product on D.

Numerical estimation of curvature for ReLU networks. The classical Hessian of a ReL.U network
is a.e. zero or undefined. Instead, we compute an effective curvature surrogate via HVPs and a
few Lanczos iterations on a locally smoothed critic (). ; this robustly approximates local concavity
without explicitly constructing the manifold (Clarke} |1983a).

2.4 AUTOMATING RISK SENSITIVITY WITH A-GDC

Introducing kg raises the question of tuning. We propose Adaptive GDC (A-GDC), which adjusts
ko based on recent safety performance. With cost; € {0, 1} indicating a violation:

C’t—'rl = (1 - ,8) ét + B + COSty, (26)
Ko,t+1 = max(O, Kot + U(ét+1 - Ctarget))- 2.7

Unlike Lagrangian CRL, this tunes the trigger sensitivity of a local geometric response. Experiments
in (Table [3) compare A-GDC to a fixed hand-tuned x.

Controller calibration (practical recipe). Choose Cier € [0.005,0.02], 8 € [0.02,0.1], n €
[0.02,0.1]. Two-phase schedule: warmup keeps xo=0 to collect  statistics; then control enables
(with clipping). We log the empirical contraction margin 1 — [y + ¥L?||R|| + C,7]

equation
S ; positive margins correlate with lower violations.

(Section 3| [Section KJ)

3 THEORETICAL ANALYSIS: GEOMETRY-CERTIFIED ROBUSTNESS

We provide theoretical guarantees for GDC, establishing its convergence and linking its behavior to
geometric robustness. Our analysis is grounded in the sub-Riemannian framework (Section 2), which
rigorously handles the non-smooth nature of neural network value functions (Clarke, | 1983al).

3.1 FUNDAMENTAL PROPERTIES: CONVERGENCE AND STABILITY

Lemma 3.1 (Lipschitz continuity of the mollified risk). Let Q) be a value approximator represented
by a neural network, and let Q¢ = Q * p. denote its convolution with a Gaussian mollifier of radius
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e > 0. Assume Q° € C? on the domain of interest. Define k¢ via|Eq. (2.1)|but computed from Q°.
Then k€ is Lipschitz continuous. As ¢ — 0, k€ converges in LP to a quantity based on the generalized
gradients of Q.

What to remember

Mollification gives smoothness; both the gradient-norm term and the clipped minimum-eigenvalue
term are Lipschitz on compact sets, hence ¢ is Lipschitz and converges (in the generalized-

gradient sense) as € — 0. Formal details are in[Section A T}

Lemma 3.2 (Architectural sensitivity bound (mollified)). Under the setting of[Theorem 3.1} suppose
Q° has L layers with weight matrices {W;} and activations with bounded derivatives. Then

L L
Lvg <O([[IWilh),  Zug- < O(([TIWil)*). G.1)
L

=1 =1

Implication: depth sensitivity

The sensitivity of the geometric risk can grow quickly with depth L. In practice this motivates
explicit Lipschitz control (e.g., spectral normalization)—a hypothesis we validate empirically.

Theorem 3.3 (Contraction of the practical GDC operator). Let Tég' be the practical GDC operator

implemented in|Algorithm 1| using a lagged target network Qg Let T = sup||Q — Qg||oc be the
maximal lag. If

k
v+ 1 L, ||R|lco +Cr7m < 1, (3.2)

where k is the sigmoid slope, L,; is the Lipschitz constant of k, and C; depends on policy/update
stability, then Tégt is a contraction. Consequently, value iteration converges to a unique fixed point.

How the bound is obtained

Bound the value term by ~y; bound the reward reweighting via the sigmoid’s maximum slope k/4
and L,; control the target-network drift via a stability constant to obtain a total modulus < 1. Full

proof in|Section A.

Practical implications for training. To satisfy [Eq. (3.2)|in practice:

* use a smaller sigmoid slope k (softer switching);

e control L, (e.g., spectral normalization / weight clipping on the critic);
* normalize rewards to reduce || R||co;

* update target networks more frequently to reduce 7.

We provide a sensitivity study in the experiments.

4 THEORETICAL EXTENSION FOR DYNAMIC ENVIRONMENTS

Real-world safety boundaries may move over time. We extend the analysis to mildly non-stationary
settings.

Assumption 4.1: Dynamic boundary regularity

The failure boundary By (¢) is C* in time with bounded speed ||Bfm-1(t) lg < Vinax. A predictor

provides B(t) with error || B(t) — B(t)||, < €, and an uncertainty score Unc(t) > 0. The agent
has effective reaction lag 7, > 0.

Proposition 4.1 (Robust safety margin under dynamics). Under the framework and letting
AQmin be the minimum value drop at failure, the squared safety distance satisfies

d2 > _ 2(Acgmin - napprox)
Y ”B(t)”g =+ LVQEP + CTa VinaxTa

4.1
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where Napprox collects approximation errors, Ly is the local Lipschitz constant of VQ, and C-,
captures the effect of the reaction lag.

Proof sketch in one line

Balance curvature-driven “value generation” against decay from boundary motion, prediction
error, and reaction lag; then relate curvature to distance via a local quadratic model. Full derivation:

Section A.3!

Implication: the GDC-Dynamic controller. The faster or more uncertain the boundary, the larger
the curvature penalty should be. A simple schedule is

e(t) = co(1+alB)l,+ 8 Unc(t)),

with ¢, a, 8 > 0. This modulates the curvature weight in x (Eq. (2.1)) without changing the Bellman
structure.

Proof-of-concept. On a dynamic Optimal Trap, a learned predictor for boundary veloc-
ity/uncertainty, combined with the above schedule, yields significantly higher success rates (see

5 EXPERIMENTS: COMPREHENSIVE VALIDATION OF THE GDC PARADIGM

Experimental Philosophy. Our empirical evaluation is designed to serve two primary goals. First,
we use a series of critical tests in a purpose-built environment to provide a deep, intuitive validation
of our core theoretical hypotheses and unique mechanisms. Second, we demonstrate GDC’s practical
superiority and general applicability by conducting comprehensive benchmark comparisons against a
full suite of state-of-the-art (SOTA) safe RL algorithms on standard, high-dimensional safety tasks.
All experimental protocols were pre-registered (see App.[C), and our code, environments, and training
logs are publicly available to ensure full reproducibility.

5.1 EXPERIMENTAL SETUP

Environments. We evaluate our method on a suite of challenging continuous control environments:

* Safety-Gymnasium Benchmarks: We use a diverse set of tasks from Safety-Gymnasium
(2023), including ‘SafetyHumanoidVelocity-v1°‘, ‘SafetyPointGoall-v0‘, and
‘SafetyCarGoall-v0°, to assess performance on varied dynamics and constraints.

* Optimal Trap with Hard Boundaries: Our custom environment for mechanism validation.

* Dynamic Optimal Trap: Extension of the above with a moving death zone.

Baselines. We compare our adaptive GDC variant, A-GDC-SAC, against:

» Standard RL: SAC Haarnoja et al.[(2018)).
* SOTA Constrained RL: PCPO |Yang et al. (2021) and FOCOPS [Zhang et al.|(2020).

Table 1: Quantitative results on Safety-Gymnasium (1M steps, 30 seeds). A-GDC demonstrates a superior
balance of high returns and low violations. Welch’s t-test p < 0.05.

Humanoid-Safety Car-Safety
Algorithm Return 1 Violations | Return 1 Violations |
SAC 6200 + 200 480 + 45 25.1+1.2 150 4+ 20
PCPO 5450 £+ 280 20.5 + 5.1 228+ 1.5 10.5£3.0
FOCOPS 5300 4+ 310 14.8 +4.2 225+1.8 89+25
A-GDC (Ours) | 5850 = 250 152445 \ 24.5+ 1.3 9.5+ 2.8




Under review as a conference paper at ICLR 2026

(a) Humanoid-Safety: return vs. violations (b) Car-Safety: return vs. violations
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~ ~ 26
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2 ?é 8
=3 Y =] X
&, 5600 1 (oY £, %%7
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5200 9 FOCOPS FOCOPS
A-GDC (Ours) 20 4 > A-GDC (Ours)
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(c) Endogenous risk prediction (d) Graceful degradation as risk increases
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Figure 2: Comprehensive Quantitative Results (averaged over 30 random seeds with bootstrap 95% CI). (a)
Safety vs. Performance on the Humanoid-Safety task. (b) Performance on the Car-Safety task. (¢) Endogenous
validation of the risk metric . (d) Graceful degradation on the Optimal Trap task.

5.2 SAFETY-PERFORMANCE ACROSS BENCHMARKS

Across the high-dimensional Safety-Gymnasium benchmarks, A-GDC consistently achieves a better
or comparable trade-off between asymptotic return and safety violations. On Humanoid and Car
locomotion (Figs. [2[a,b)), it effectively dominates the Pareto frontier versus strong baselines; the
summary in Table %shows that A-GDC attains the best return among safe methods while keeping
violations low, on par with the most conservative baseline (FOCOPS). Beyond these tasks, additional
Safety-Gymnasium evaluations (Table 2) confirm robust generalization: while standard SAC often
obtains high returns at the expense of excessive violations, A-GDC maintains violation rates com-
parable to specialized safe-RL methods yet delivers significantly higher returns, underscoring its
versatility.

5.3 How Do GDC’s INTERNAL MECHANISMS FUNCTION?

Strategic Decision-Making. Fig. [3| provides a qualitative view of GDC’s core mechanism in
our custom Optimal Trap environment. The background heatmap visualizes the geometric risk «.
Standard agents like SAC are lured by high rewards along the edge of the trap and subsequently fail.
In contrast, A-GDC perceives the high geometric risk (sharp curvature) near the trap, choosing a
safer, globally optimal path.

Table 2: Broader evaluation on additional Safety-Gymnasium tasks (1M steps, 30 seeds), confirming the robust
generalization of A-GDC.

Point-Goal Car-Goal
Algorithm Return 1 Violations | Return 1 Violations |
SAC 325+ 2.1 185.3 + 25.6 289+1.9 162.1 +18.5
PCPO 26.8 + 2.5 12.1+£4.3 23.5+2.2 11.8+3.9
FOCOPS 25.5+ 2.8 75+3.1 229424 8.1£27
A-GDC (Ours) ‘ 29.1+1.8 8.2+35 ‘ 26.7+ 1.5 9.3+3.2
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(a) Strategic Decision-Making in the Optimal Trap
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Figure 3: Strategic Decision-Making in the Optimal tion.T). The vast majority of empirical measure-
Trap. A-GDC correctly identifies the high-risk region ments (orange dots) lie above the theoretical lower
(yellow) and chooses a safe detour, whereas SAC fol- bound (red dashed line), validating our theory.

lows a myopically optimal but ultimately fatal path.

Mechanism Ablation and Validation. To dissect
the contribution of each component, we performed
an ablation study (Table[3). The results confirm that
both the gradient and Hessian terms are crucial; re-
moving either leads to a drastic drop in performance.
Fig. Pc) empirically validates that our geometric
risk metric £ is a strong predictor of failure, as states  A.GDC (Full, Adaptive ro) 972+ 1.8
with higher x values exhibit a significantly higher

Table 3: Ablation and comparison in the Optimal
Trap (30 seeds). Both geometric components are
critical for high performance.

Model Variant Success Rate (%)

empirical failure rate. The full adaptive mechanism GDC (Gradient-only) 12.5+3.9
substantially outperforms a manually tuned, fixed- GDC (Hesswn—only) 314 £55
threshold GDC, highlighting the practical benefit of GDC (Fixed xg = 1.8, tuned) 91.5 £ 2.4
the A-GDC formulation. SAC (Standard RL) 52420

PCPO (SOTA Safe RL) 251+£55

5.4 EMPIRICAL VALIDATION OF THEORETICAL GUARANTEES

Validation of Geometric Safety Margin (Propositiond.I). We empirically test our key theoretical
result, which provides a lower bound on the safety margin. Fig. ] plots the theoretical lower bound
against the true, measured distance to failure for thousands of states sampled from trained agent
rollouts. The results show a strong correlation, and critically, nearly all points lie above the y = z
line, empirically confirming that our theoretical bound holds in practice.

Validation of Probabilistic Robustness (Theorem [3.3). Fig. 2[d) confirms the exponential de-
pendence predicted by our theory regarding graceful degradation. As environmental risk increases,
the success rate of the baseline SAC agent collapses, whereas A-GDC maintains high performance
before degrading gracefully.

5.5 ROBUSTNESS, SCALABILITY, AND DYNAMIC FACTORS

Computational Overhead. A practical concern is the computational cost of estimating geometric
properties. We benchmarked the throughput and resource usage of all methods. Table[d]shows that
A-GDC introduces a modest and acceptable overhead. Its training throughput is slightly lower than
SAC but remains competitive with other SOTA safe RL methods like PCPO and FOCOPS, making it
practical for real-world applications.
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Table 4: Computational overhead analysis on the Humanoid-Safety task, measured on a single NVIDIA A100
GPU. A-GDC'’s overhead is modest and comparable to other safe RL methods.

Algorithm Training Time (hrs/1M steps) |  Throughput (FPS)  GPU Memory (GB) |
SAC 0.9 1152 3.1
PCPO 1.5 683 4.5
FOCOPS 1.6 625 4.8
A-GDC (Ours) 1.4 714 4.2

Robustness to Hyperparameters. We analyzed Table 5: Performance in the Dynamic Optimal Trap.

A-GDC'’s sensitivity to its two new key hyper-

parameters: the adaptive learning rate 7 and the =~ Model Variant Success Rate (%)
curvature weight c. Fig. [5]shows that A-GDC’s  A-GDC (Dynamic-oblivious) 653 + 5.1
performance is highly robust across a wide range  GDC-Dynamic 92.1+28

of values for both parameters, indicating that it
does not require sensitive, task-specific tuning.
The implementation details, such as Lanczos steps
and target network frequency, also show robustness as detailed in Table 6]

SAC (Baseline) 52£15

100 Sensitivity to Adaptive Learning Rate n Sensitivity to Curvature Weight ¢

98

N —

94

Success Rate (%)

92

o0 107 1072 107" 0 2 4 6 8 10

Adaptive Learning Rate n (log scale) Curvature Weight ¢

Figure 5: Sensitivity analysis of A-GDC’s core hyperparameters in the Optimal Trap. Performance is stable
across a wide range of values for the adaptive learning rate n (left) and the curvature weight ¢ (right), demon-
strating robustness.

Table 6: Sensitivity to implementation choices in the Optimal Trap.

Parameter Value Success Rate (%)
3 95.1£25

Lanczos Steps (m) 5 (Default) 97.2 + 1.8
10 975+t 1.6

1000 steps 92.8 £3.0

Target Freq. (1/7) 100 steps (Default) 97.2 + 1.8
10 steps 96.5 £ 2.1

Performance in Dynamic Environments. Finally, we evaluated the GDC-Dynamic variant in
the Dynamic Optimal Trap. Table [5|shows that the dynamic-aware agent, which modulates its risk
sensitivity based on a learned predictive model of the boundary’s motion, significantly outperforms the
original, dynamic-oblivious A-GDC. This provides a strong proof-of-concept for the GDC paradigm’s
potential in non-stationary environments.
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A THEORETICAL PROOFS AND DERIVATIONS

This appendix provides detailed proofs and derivations for the theoretical claims made in the main
paper. We keep the body text in standard environments for readability and use a light takeaway
box to summarize each item.

A.1 PROOF OF LEMMA 3.1 (LIPSCHITZ CONTINUITY OF MOLLIFIED RISK METRIC)

A.1 at a glance

Mollification makes () smooth; both the gradient-norm term and the (clipped) minimum-
eigenvalue term are Lipschitz on a compact domain; hence x° is Lipschitz. As ¢ — 0, VQ°
converges (in the generalized-gradient sense) to that of ().

Assumptions and notation for A.1

* (Q° := Q * p. is the Gaussian-mollified critic on a compact domain D with Q¢ € C3.

* V, and H, denote the gradient/Hessian w.r.t. the action a (here we use the usual Hessian, not
the horizontal one).

* ||| is the €2 norm; Apin () is the smallest eigenvalue (Weyl-Lipschitz).

Lemma A.1 (Restated). Let QQ be a value approximator represented by a neural network, and let
Q° = Q * p. denote its convolution with a Gaussian mollifier of radius £ > 0. Assume Q° € C> on
a compact domain of interest D. Define k¢ via[Eq. (2.1)| but computed from Q¢. Then k° is Lipschitz
continuous on D. As € — 0, kK converges in LP to a quantity based on the generalized gradients of

Q.

Proof. Define

K (s,a) = | Va@Q(s,a)||* + ¢ max(0, —Amin(Ha(Q%(s,0)))), (A1)

where V, and H,, are taken w.r.t. the action a. Convolution with a Gaussian p. makes Q¢ smooth
(C*°), hence V,Q° and H,Q° are smooth on compact D.

(i) Steepness term. Let f(v) = ||v|® and g(s,a) = V,Q* (s, a). On a compact set, g is Lipschitz
and f is Lipschitz; thus fog is Lipschitz:

| IVa@F (z)|” = [Va@QF (@2)[1?| < Ly [VaQ (21) — VaQF (22|, (A.2a)
< LyLy||lz1 — 22| (A.2b)

(ii) Concavity term. Write it as hgo hgo hoo hy with hy(s,a) = H,(Q%(s,a)) (Lipschitz on
D since QF € C3); ha(M) = Amin(M) (1-Lipschitz for symmetric matrices); hg(x) = —z and
ha(xz) = max(0, z) (both 1-Lipschitz). The composition is Lipschitz.

Summing two Lipschitz functions is Lipschitz, giving x* Lipschitz on D.

(iii) Convergence. As ¢ — 0, Q° — @ in LP(D). For locally Lipschitz Q (e.g., ReLU nets), VQ
exists a.e. and the limit relates to Clarke’s generalized gradient 0Q); VQ° converges to an element of
co 0Q). O

A.2 PROOF OF THEOREM 3.3 (CONTRACTION OF THE PRACTICAL GDC OPERATOR)

A.2 at a glance

Bound the value term by ~, bound the reward reweighting via the sigmoid slope (k/4) and the
Lipschitz constant L, of x, and control the target-network lag by a stability constant to obtain a
contraction modulus < 1.
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Assumptions & constants for A.2

* k: sigmoid slope; L,: Lipschitz const. of x; || R||co: reward bound.
* 7 = sup||Q — Q|| is the target-network lag; C- > 0 relates lag to the induced error in the
value term.

Theorem A.2 (Restated). Let Tégt be the practical GDC operator using a lagged target network Qg;.
If
k
v+ ZLH [RBlle + Cr7 < 1, (A.3)

then Tégt is a contraction mapping.
Proof. For any ()1, Q2,
(TEQu)(s.0) = (TEQ)(s,0)] < Eo|
+ 'yIES{

Ra (5. ; Quugt) — Ro (5, 0; Qe | (A4)
max Q1(s',a") — max Qa2(s',a)| ] (A.5)

The max is 1-Lipschitz, so the value term from [Eq. (A.5)] gives v ||Q1 — Q2]|o- For Rg(Q) =
(1-0(x(Q)))R+ o(x(Q)) min(0, R), the reward part satisfies

|Rc(Q1) = Ra(Q2)] < |o(5(Q1)) — o(5(Q2))] Rl < %LHIIRIIooll&—QzHoo. (A.6)

Using the target-lag relation and policy stability, ||Q1,g — Q2,gtlloc < Cr ||Q1 — Q2||oc + C 7 adds
an extra C- 7 term. Combining [Egs. (A-4)]to[(A.6)|yields the modulus in[Eq. (A. O

Practical checklist to meet Eq. (A.3)

1. Soften the switch: reduce k.

2. Reward scaling/normalization: reduce || R||so-

3. Spectral/Lipschitz control on critic: reduce L, (e.g., spectral norm).
4. Faster/more frequent target updates: reduce 7.

A.3 FULL DERIVATION FOR PROPOSITION 4.1 (ROBUST SAFETY MARGIN IN DYNAMIC
ENVIRONMENTS)

A.3 at a glance

Balance “value generation” (curvature-induced) against “value decay” (moving boundary +
prediction error + reaction lag) and use a local quadratic model to link curvature and distance to
failure.

Symbols for A.3

d: distance to failure boundary; AQmin: value drop at failure; B (t): predicted boundary velocity
(Riemannian norm || - ||4); €p: prediction error; 7,: reaction lag.

J

Derivation. Safety requires the curvature-induced rate to offset the decay caused by boundary motion,
prediction error and lag:

Puin(He)| = v [BO|, + Lvo ey + Cr, Vinax Ta- (A7)
With a local quadratic model, AQ = % |)\min(7-£f )| d?, hence the squared safety distance obeys
d2 > 2(AQmin - napprox)

Y 1B@)lg + Lyvoep + Cr, Vinax Ta

as claimed. O

(A.8)

)
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B CURVATURE COMPUTATION AND IMPLEMENTATION DETAILS

B.1 Practical curvature estimators (HVP + Lanczos)

Use Hessian—vector products (HVP) to avoid materializing full Hessians; estimate extremal
eigenvalues with a few Lanczos steps. Default settings (e.g., m = 5) are typically stable and
efficient.

HESSIAN-VECTOR PRODUCT (HVP)

We avoid forming the full Hessian. Compute

H(f(2)v = Vai(Vaf(2)) - v) (B.1)
with two autodiff passes; see (1983b) for nonsmooth background.

Algorithm 2 Hessian—Vector Product (HVP)

Require: )y, state s, action a, direction v
1: Gensor ¢ tensor(a; requires_grad=True)

2 g+ QG(S atensor)

3: g4+ Vaq > first autodiff pass with graph
4: u <+ (g,v)

5: hvp + V,u > second autodiff pass
6: return hvp

LANCZOS FOR MINIMUM EIGENVALUE

Build a small tridiagonal matrix 7,,, via HVPs; its Ritz values approximate extremal eigenvalues of
Ha.

Algorithm 3 Lanczos (min-eigenvalue estimate)

Require: HVP oracle HVP(s, a, -), iterations m
1: vy + rand_unit(), Bo + 0,v9 + 0, T}, < O
2: for j = 1tomdo

3: w; < HVP(s,a,v;)

4: Q<= ijvj

S wj — wj — ;v — fi_1vj-1 > re-orthogonalize
6: B [Jwjl|

7: if B; < 107 then

8: break

9 w41 wi/B;

10: Fill T}, on the diagonal with «; and off-diagonal with 3;
11: Compute eigenvalues of T}, and return Ayin (7))

Implementation recipe (defaults)

» Smoothing bandwidth: Gaussian mollifier ¢ = 103 (scaled by feature std).
« Lanczos steps: m € [5, 8]; early stop if 8; < 10~%; optional Tikhonov shift § = 1075.
* Horizontal subspace (optional): build U, and use restricted HVP w — U, (V2,Q.[U,w]).

|

Complexity and stability notes

¢ Cost: each x evaluation is O(m) HVPs (&~ m backprop equivalents); vectorize across batch.

« Stability: normalize inputs and rewards; add small diagonal shift to 7}, if needed; monitor the
decay of j;.

* Notation consistency: use ¢ for bandwidth; ||-|| for norms; Ay (+) for the minimal eigenvalue.

J
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C EXPERIMENTAL PROTOCOLS

C.1 What’s inside this section

Environment specs, shared architectures, and hyperparameters used across experiments.

ENVIRONMENT DETAILS

Key properties of all environments are listed in The cost signal for Safety-Gymnasium tasks
is binary.

Table 7: Details of experimental environments.

Environment State Dim  Action Dim  Reward Function Cost Signal
Humanoid-Velocity-v1 46 8 Forward velocity Fall detection
Car-Goall-v0 26 2 Goal distance Hazard zone contact
Point-Goal1-v0 18 2 Goal distance Hazard zone contact
Optimal Trap (Custom) 2 2 Goal distance Hard boundary crossing

NETWORK ARCHITECTURES

All algorithms use identical MLPs for fairness.

Table 8: Shared network architectures for all algorithms.

Network Layer Configuration Activation

Actor (Policy) [Input, 256, 256, Output] ReLU (hidden), Tanh (output)
Critic (Q-Value) [Input, 256, 256, Output] ReLU (hidden), Linear (output)

HYPERPARAMETER SETTINGS

A comprehensive list is provided in[Table 9] Baselines are tuned per their original papers; we use 30
random seeds.
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Table 9: Comprehensive hyperparameter settings for all experiments.

Parameter A-GDC (Ours) SAC PCPO FOCOPS
Common RL Parameters
Optimizer Adam Adam Adam Adam
Learning Rate (Actor & Critic) 3e-4 3e-4 3e-4 3e-4
Replay Buffer Size 1,000,000 1,000,000 1,000,000 1,000,000
Batch Size 256 256 256 256
Discount Factor () 0.99 0.99 0.99 0.99
Target Smoothing Coeff () 0.005 0.005 0.005 0.005
Algorithm-Specific Parameters
Initial Temperature () 0.2 (auto) 0.2 (auto) N/A N/A
Initial Risk Threshold (o) 0.0 N/A N/A N/A
Adaptive Rate (7)) le-2 N/A N/A N/A
Cost EMA Decay (5) 0.05 N/A N/A N/A
Curvature Weight (¢) 1.0 N/A N/A N/A
Lanczos Steps (m) 5 N/A N/A N/A
Sigmoid Slope (k) 1.0 N/A N/A N/A
Target Cost (Ciarget) 0.01 N/A N/A N/A
Cost Limit (d) N/A N/A 25 25
KL Constraint () N/A N/A 0.01 N/A
Lagrangian Init (\o) N/A N/A 1.0 N/A
Lagrangian Init () N/A N/A N/A 1.0

D DETAILS FOR[SECTION 2t GEOMETRY AND NUMERICS

D.1 HORIZONTAL OPERATORS AND SUB-RIEMANNIAN FORMALIZATION

Definition D.1 (Activation-stable neighborhood and horizontal subspace). Let fy be a ReLU critic
implementing Q(s,a) = fo(s,a). For x = (s,a), a direction d € Rl is activation-stable at x if
there exists p > 0 such that for all t € [—p, p), the ReLU activation mask of fo(s,a + td) equals that
att = 0. The horizontal action subspace is

D, (x) = {d € R . dis activation-stable at x}.
Let Uy(z) € RMIXH have orthonormal columns spanning Dy (x) and Py(z) = Uy (2)U, ().

Definition D.2 (Mollification). Let . be a standard Gaussian mollifier on RIS Al with bandwidth
€ > 0. Define the smoothed critic Q. = @Q * ., which is C°° and uniformly converges to ) on
compact sets as € | 0 (Clarkel |1983D)). We then define the horizontal gradient and Hessian by

VIQ(z) = Ua(2) "VaQe(z),  HI(Qiz) = Ua(z)"V2,Q:(2) Us(a). (D.1)

These coincide with classical derivatives within a linear region and yield Clarke-consistent limits as
el 0.

Well-posedness (sketch)

Within an activation-stable neighborhood, @ is affine in (s, a); hence V2,Q = 0 classically and
curvature arises only at region boundaries. The mollified critic (). makes )\min(H f (@ x)) finite
and continuous in z, and VZ Q). agrees with generalized derivatives in the Clarke sense as ¢ | 0;

see and [Clarke]| (1983Db).

D.2 LANCZOS-BASED CURVATURE SURROGATE AND HVPs

We estimate Amin( HZ (Q; x)) via Lanczos on the symmetric matrix H? (Q.; ) without materializing
it

1. Draw v; uniformly on the unit sphere in D, (x); apply m Lanczos steps using the restricted HVP
oracle
w = Ug(2) T (V2,Q:(2) [Ug(z)w]).
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Table 10: Default numerical choices.

Quantity Symbol Default
Sigmoid slope k 5
Curvature weight c 0.5
Mollifier bandwidth e 1073 (scaled by feature std)
Lanczos steps m 8
HVP regularization 0 107°
A-GDC EMA / step B,m 0.05, 0.05
ko clipping — [0, Kmax] With £max at warmup 95th pct. of &
Table 11: Symbols used in[Section 2]
Symbol Meaning
Da(x) Horizontal action subspace at =(s, a) (Definition D.1)
Uo(z), Pa(z) Orthonormal basis / projector of Dg ()
Q- Mollified critic (Definition D.2)
vE gH Horizontal gradient / Hessian (Eq. (D.1))
K(s,a) Geometric risk

o(s,a;Q) Endogenous switch (Eq. (2.2))
Ta GDC operator (Eq. (2.3))
[z]—, [z]+ min(0, z) and max(0, )

2. Take the smallest Ritz value as Xmin. Optionally Tikhonov-regularize Xmin < Xmin — § with
small § > 0 for numerical stability.

The HVP is computed by standard reverse-on-forward AD; restricting to D, lowers variance and
cost.

D.3 DEFAULT NUMERICAL CHOICES AND COMPLEXITY

Unless noted otherwise, we use the following defaults (robust across tasks in[Section J).

Complexity and stability notes

Cost. Each « evaluation uses O(m) HVPs restricted to D, (each HVP =2 one backprop), adding
~ m extra backprops per target (default m==8). Minibatch vectorization amortizes the cost.
Stability. Normalize inputs/rewards; add small diagonal shift to 7}, if needed; monitor the decay
of ﬂj 0

Notation consistency. Use ¢ for bandwidth;

-|| for norms; Apin () for the minimal eigenvalue.

D.4 CLARKE-CONSISTENCY OF HORIZONTAL OPERATORS (PROOF SKETCH)

Let {e,} | 0. By standard properties of mollifiers (Clarke| [1983b)), Q., — @ uniformly on compacts
and VQ., — 0Q in the sense of graphs. Since U, () is locally constant within an activation-stable

neighborhood (Definition D.1J), we obtain
VfQin (z) = Ua(x)Tansn () — an(x)

in the Painlevé—Kuratowski sense. Similarly, the Rayleigh quotient for HX (Q., ; z) converges to a
generalized second-order directional derivative, and the minimal eigenvalue along D, is well-defined
as a limit inferior. This justifies using Apin (H, f ) as a concavity surrogate.
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D.5 NOTATION TABLE FOR[SECTION 2]
E PROOFS AND DETAILS FOR SECTION@

E.1 PROOF OF[HEOREM 3.1

E.1 at a glance

On compact sets the mollified critic (). is smooth; the horizontal gradient and the clipped
minimum-eigenvalue map are Lipschitz, hence «° is Lipschitz and converges (as € | 0) to a
Clarke-consistent quantity.

Fix a compact set X'. By standard properties of mollifiers (Clarkel [1983a)), Q. € C* and Q. —Q
uniformly on X as ¢ | 0. Let U,(x) denote the orthonormal basis of the horizontal subspace

(Definition D.T)), locally constant within an activation-stable neighborhood. Then
T = Vngs (z) =U, (x)Tans (z)

is Lipschitz with constant bounded by sup,c||Ua(z) " V2,Qc(2) Ua(:z:)HOp. The minimum-
eigenvalue map M +— Apin(M) is 1-Lipschitz in operator norm (Weyl’s inequality), and = —
max (0, z) does not increase Lipschitz constants; hence x — «°(x) is Lipschitz on X. For conver-
gence, since VQ. — dQ and V2Q. converges to generalized second-order directional derivatives
(in the sense of graphs), both terms of x° converge in LP? to their Clarke-consistent limits.

E.2 FROM ARCHITECTURAL NORMS TO L%

E.2 at a glance

For a depth- L network, the Lipschitz constants of the horizontal gradient and Hessian scale with

the product of spectral norms; this yields an explicit bound on L% used in and

For weight matrices {W,}%_, and C'* activations with bounded derivatives,

L L 2
Lyg. < CI[IWill2,  Luq. < C'(H ||W£||2>

=1 =1

by the chain rule. Writing
k(@) = V3 Qe(2) 2 + ¢ [-Amin( H (Qe2))]
and linearizing along a path from @ to Q5 gives
Q) () — K@, (2)| < Lvq. [|Q1 — @2llee + ¢ Lnq. [|Q1 — Q2l|so- (E.1)

Therefore L2 < Lyq. + ¢ Lyq., which in turn admits the spectral-norm product bounds stated in
(Absolute constants absorb activation smoothness and mollifier bandwidth.)

E.3 PROOF OF THEOREM [3.3]

E.3 at a glance

Bound the reward term using the global slope of the sigmoid (k/4) and LY, bound the value
term by the 1-Lipschitz max operator and the target lag 7, and combine to obtain a contraction

whenever [Eq. (A-3)|holds.

Let Q1, Q2 be two critics and abbreviate AQ = ||Q1 — Q2] For fixed (s, a),

(T Qu) (5, ) = (T Q2)(5,0)| < [BIRa(@1) — Ra(@a)]] +7 B [max Qu g1 — max Qo] |
(E.2)
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Reward term. Since Rg(Q) = (1 — 0g)R + o¢[R]- with fixed R,
[Ra(Q1) — Ra(Q2)] < [|Rlloo [og, — 0qul-
The map s ~ sigmoid(ks) is k/4-Lipschitz, hence |og, — 0g,| < ¥ |kg, — ko,| < £ L2 AQ,
which gives
k

[E[Rc(Q1) = Ra(Q)]] < 7 L Rl AQ. (E.1)

Value term. Add-—subtract non-lagged critics:
Max Q1 gt —Max Qa,tgr = [MAX Q1 pg —Max Q1]+ [max Q1 —max Qo] +[max Q2 —max Qo,vgt).

The middle bracket is bounded by A(@ since max is 1-Lipschitz; the outer brackets are bounded by
Cr7 where 7 = ||Q — Qigt || 0o- Therefore

[E[max Q1 tgr — max Qs ue]| <7 AQ + Cr 7. (E.2)

Combine. From equation [E-2}-equation[E.2]

7651 - T @all. < (74 4L21RI<)AQ+ €, v

Contraction modulus

With p =~ + 2LZ||R||« + C; 7, if p < 1 (i.e.,[Eq. (A.3)), then 75" is a contraction. By
Banach’s fixed-point theorem, the fixed point is unique and iterates converge.

E.4 PROOF OF PROPOSITION [4.1]

E.4 at a glance

A local quadratic model links curvature to distance-to-failure; accounting for boundary motion,
prediction error, and reaction lag yields the robust margin bound in [Eq. (A:8)]

Consider a point at distance d to Bg,;(t). A second-order expansion along the outward normal
direction v gives

Q(z + dv) = Q(z) + (VQ(x),dv) + 3d® v  HY (Q; z) v.

~

Interpreting AQmin as the minimal drop when crossing the boundary yields %dQ Amin (HH) >

AQmin — Napprox- Effective curvature is reduced (locally) by 7\\B(t)||g + Lygep + Cr, VinaxTa,
leading to the bound[Eq. (A-8)] Compactness, Lipschitz bounds on V@, and standard perturbation
arguments yield the rigorous statement.

F PRE-REGISTERED PROTOCOLS AND BUDGETS

F.1 What is pre-registered?

We preregistered: (i) tasks, (ii) training budgets (env/grad steps and wall-clock class), (iii)
evaluation cadence, (iv) hyperparameter search spaces and budget (n configs per method), and (v)
statistical tests. A single configuration is selected per method by validation return subject to a
violation cap; ties are broken by lower violations.

G METRIC DETAILS AND PARETO CONSTRUCTION

19



Under review as a conference paper at ICLR 2026

G.1 Metrics—quick reference

Viol = ;é“‘{costt =1}, (G.1)
1 & .
ERL = 60 - T ;H‘{hazard(st) =1} [min™"], (G.2)
T
Safety-AUC = ZViol(t). (G.3)
t=1

Pareto hull. 'We compute the upper hull over (Return, —Viol) via the monotone-chain algorithm;
strictly dominated checkpoints are hidden. Confidence intervals use B=2000 bootstrap resamples
over seeds. Pseudocode and tie-breaking rules are provided in the code release.

H BASELINES, ARCHITECTURES, AND HYPERPARAMETER SEARCH

H.1 Search protocol (shared across methods)

We align depth/width, activations, normalization, and optimizers where applicable. Each method
receives the same search budget (n configs): learning rate, entropy/temperature, target-update
period, and method-specific knobs (e.g., PCPO penalty step, FOCOPS trust region). Exact grids,
final picks, and per-seed runs are in the repository; an abridged grid is shown in Table[12]
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Table 12: Abridged hyperparameter grids (full tables in the repository).

Method LR Target Period Method-specific
SAC {le—4,3e—4}  {le2,1e3} o € {0.05,0.2}
PCPO {le—4,3e—4}  {le2,1e3} penalty-step € {0.01,0.05}
FOCOPS {le—4,3e—4}  {le2,1e3} trust-radius € {0.01,0.05}

A-GDC  {le—4,3e—4}  {le2,1e3} k€ {3,5}.c€ {0.3,0.5,0.7}.n € {0.03,0.05,0.1}

I ABLATIONS AND SENSITIVITY

1.1 What we sweep and how we report

We sweep k, ¢, n, fixed vs. adaptive k¢, Lanczos steps m, mollifier bandwidth e, and target-update
frequency. For each sweep we report mean+95% CI over 30 seeds and provide matched-slice
comparisons (equal violation / equal return) to isolate the effect of each component.

J OVERHEAD ACCOUNTING AND IMPLEMENTATION DETAILS

J.1 Key points (overhead summary)

Counting rule. Extra cost is measured in backward-equivalents (BEs) per update; one Hessian—
vector product (HVP) counts as 1 BE. GDC adds m HVPs restricted to D, (default m=38),
vectorized across batch and action dimensions.

Throughput/memory. We report env steps/s and peak memory for batch sizes {256, 512, 1024}
on A100 GPUs; setup details (framework/cudnn/cuda) are logged with hashes in the repo.

K THEORY-ALIGNED MONITORING

We estimate ZS via small critic perturbations on a validation buffer and log the target lag 7 =
|Q — Qugt |l co- We visualize the empirical contraction margin

Margin = 1 — [’y + 5 LQ Rl + C- 7, (K.1)

and its relation to Viol across runs (scatter and time-series plots).

L DYNAMIC PREDICTOR AND SCHEDULE

We train a boundary-velocity predictor with mean-absolute-error loss and an uncertainty head
calibrated by temperature scaling. The curvature schedule is

c(t) = co(1+ || B(t)] 4 + B Unc(t)), L.1)

with (cg, «, 3) swept in Calibration curves (reliability diagrams) and MAE/CRPS are
reported here.

M  FAILURE CASES AND INTERPRETABILITY

We include representative rollouts where (i) extreme reward sparsity causes over-suppression and (ii)
curvature is underestimated near activation seams. We provide s heatmaps and state-visitation maps
aligned with violation timestamps, along with seed IDs and minimal scripts to reproduce each case.
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