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ABSTRACT

Recently, Multimodal Large Language Models (MLLMs) have demonstrated ex-
ceptional capabilities in visual understanding and reasoning across various vision-
language tasks. However, we found that MLLMs cannot process effectively from
fine-grained medical image data in the traditional Visual Question Answering
(VQA) pipeline, as they do not exploit the captured features and available medical
knowledge fully, results in MLLMs usually performing poorly in zero-shot medi-
cal disease recognition. Fortunately, this limitation does not indicate that MLLMs
are fundamentally incapable of addressing fine-grained recognition tasks. From
a feature representation perspective, MLLMs demonstrate considerable potential
for tackling such challenging problems. Thus, to address this challenge, we pro-
pose LLaVA-RadZ, a simple yet effective framework for zero-shot medical dis-
ease recognition via utilizing the existing MLLM features. Specifically, we design
an end-to-end training strategy, termed Decoding-Side Feature Alignment Train-
ing (DFAT) to take advantage of the characteristics of the MLLM decoder archi-
tecture and incorporate modality-specific tokens tailored for different modalities.
Additionally, we introduce a Domain Knowledge Anchoring Module (DKAM) to
exploit the intrinsic medical knowledge of large models, which mitigates the cat-
egory semantic gap in image-text alignment. Extensive experiments demonstrate
that our LLaVA-RadZ significantly outperforms traditional MLLMs in zero-shot
disease recognition, achieving the comparable performance to the well-established
and highly-optimized CLIP-based approaches.

1 INTRODUCTION

With the rapid advancement of deep learning technologies, an increasing number of studies have
focused on their applications in medical disease diagnosis, yielding remarkable results (Chan et al.,
2020; Jamshidi et al., 2020; Lee et al., 2022; Tran et al., 2021). However, these approaches typi-
cally rely on high-quality annotations provided by clinical experts. Unlike natural image datasets,
annotating medical images is both costly and time-consuming. To address this challenge, recent
research has explored methods based on paired medical images and textual reports, leveraging con-
trastive learning techniques. By minimizing the distance between paired samples while maximizing
the distance between unpaired ones, these CLIP-based approaches enable zero-shot disease recog-
nition, thereby reducing reliance on extensive medical data annotation to a certain extent. In our
in-depth investigation of advanced zero-shot disease recognition methods in the medical domain,
several representative CLIP-based models (Lai et al., 2024; Wu et al., 2023; Zhang et al., 2023b;
Phan et al., 2024) have achieved significant performance improvements leveraging the capabilities
of Large Language Models (LLMs) or incorporate expert domain knowledge to some extent, rather
than fully leveraging the models’ intrinsic understanding capabilities.

Recently, Multimodal Large Language Models (MLLMs) (Achiam et al., 2023; Team et al., 2023;
Liu et al., 2023; Huang et al., 2024; 2025; You et al., 2025) have demonstrated remarkable capabili-
ties across various user-oriented vision-language tasks, such as image comprehension and reasoning,
offering new possibilities for zero-shot disease recognition in medical applications. Among these,
LLaVA-Med (Li et al., 2024a) has exhibited exceptional domain-specific medical knowledge in
dialogue-based tasks, indicating that it possesses a certain degree of medical expertise. However,
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Figure 1: Comparison of Feature Distributions among MAVL, LLaVA-Medft, and LLaVA-RadZ on
the RSNA Dataset.

Figure 2: Framework comparison of traditional CLIP-based methods, MLLM VQA pipeline, and
the proposed LLaVA-RadZ.

a recent study (Zhang et al., 2024) found that MLLMs, i.e., LLaVA (Liu et al., 2023)) performed
significantly worse than CLIP (Radford et al., 2021) on standard image classification tasks.

To further validate this observation, we conducted zero-shot classification experiments using multi-
ple MLLMs on five medical imaging datasets (see Tab. 1). The experimental results are consistent
with previous findings, confirming that MLLMs exhibit suboptimal performance in image classi-
fication, particularly when dealing with complex medical images. To enhance the generalization
capability of MLLMs in radiology disease recognition tasks, we employed a fine-tuning strategy
and performed supervised fine-tuning on the MIMIC-CXR dataset (Johnson et al., 2019). Addi-
tionally, inspired by the work of (Zhang et al., 2024), we incorporated a series of optimizations.
While these improvements yielded performance gains, the results remained inferior compared to
CLIP-based models. This phenomenon raises a critical question: Can MLLMs effectively perform
zero-shot disease recognition?

As shown in Fig. 1, we visualize the feature distributions of MAVL (Phan et al., 2024), LLaVA-
Medft (fine-tuned by the same dataset of our LLaVA-RadZ) and LLaVA-RadZ on the RSNA (Shih
et al., 2019) dataset. The results indicate that MLLM exhibits strong feature extraction capabilities,
comparable to the well-established MAVL in the domain. However, in the disease recognition task,
MAVL significantly outperforms fine-tuned LLaVA-Med. We hypothesize that this performance gap
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arises because MLLMs fail to fully utilize the extracted features for effective disease identification
via traditional VQA pipeline.

Inspired by this, we propose a simple yet effective LLaVA-RadZ framework for zero-shot disease
recognition using the MLLM features. Our proposed framework has the fundamental difference
compared with previous CLIP-base methods and traditional MLLM VQA pipeline. As shown in
Fig. 2, we design a dedicated MLLM feature-based framework to address zero-shot medical disease
recognition. Our proposed framework effectively leverages pre-trained MLLM representations to
overcome the inherent limitations of the traditional VQA pipeline on this task. Specifically, firstly,
we introduce a new training strategy, Decoding-Side Feature Alignment Training (DFAT). Specif-
ically, we introduce special tokens for both image and text modalities and leverage the autoregres-
sive generation capability of the decoder architecture to extract global representations of images and
texts. Additionally, we incorporate a cross-modal contrastive loss to optimize the model’s ability
to learn discriminative features. Furthermore, to mitigate the semantic category gap encountered
during fine-grained alignment between medical images and textual reports, we design a Domain
Knowledge Anchoring Module (DKAM). DKAM utilizes the model’s intrinsic medical knowledge
to extract the semantic information underlying disease categories, constructing disease description
vectors that serve as an intermediary bridge to facilitate the alignment between medical images and
textual reports, thereby establishing a stable relationship. To further enhance the correlation among
medical images, textual reports, and disease categories, a category knowledge-guided loss strength-
ens the association between similar images and corresponding textual reports.

Our main contributions can be summarized as follows.

• We analyze the limitations of current MLLMs in addressing complex fine-grained medical
disease recognition tasks, investigate the underlying causes of these constraints, and pro-
pose a novel end-to-end feature-based MLLM framework to mitigate these challenges. To
the best of our knowledge, we are the first work in the field of medical disease recognition
to explore how to use MLLM features directly to solve complex recognition problems.

• We propose the tailored training strategy DFAT, and incorporate a cross-modal contrastive
loss to optimize the model’s ability to achieve effective alignment between visual and tex-
tual features. Furthermore, we design a DKAM to leverage MLLM’s intrinsic medical
knowledge and effectively mitigate semantic gap in image-text alignment, thereby enhanc-
ing category-level alignment.

• We conduct extensive experiments on multiple large-scale radiology diagnosis datasets,
validating the potential of LLaVA-RadZ in zero-shot disease recognition tasks.

2 APPROACH

2.1 CAN MED-LLMS BE GOOD MEDICAL CLASSIFIERS?

Previous studies have explored the classification capabilities of multimodal large language models
(MLLMs), revealing that their performance on image classification tasks is often limited. For exam-
ple, (Zhang et al., 2024) investigates the performance differences in classification between MLLMs
and CLIP, focusing on factors such as inference strategies, training approaches, and datasets. In-
spired by this work, we extend the exploration to zero-shot tasks in the medical domain. Unlike
natural images and text, the relationship between medical images and reports is more complex.
We seek to investigate whether large medical models, leveraging domain-specific knowledge, can
achieve superior performance on medical zero-shot tasks.

We first evaluated two open-source MLLMs, i.e., LLaVA-1.5 (Liu et al., 2023) and LLaVA-Med (Li
et al., 2024a), on five medical datasets in a zero-shot classification setting. The evaluation followed
a general large-model classification approach, where the model selects the correct category from
a set of candidate options. As shown in Tab. 1, these models demonstrated limited performance
in disease classification tasks and failed to accurately identify various medical conditions. Given
the potential knowledge limitations of these models, we further assessed the performance of more
powerful proprietary MLLMs ( i.e., Qwen2.5-Max (Yang et al., 2024), Gemini-Pro (Team et al.,
2023), and GPT-4o (Achiam et al., 2023)) on zero-shot medical disease recognition tasks. As shown
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in table 1, these models exhibited superior classification capabilities. However, they still lagged
behind the state-of-the-art domain-specific methods in medical classification.

To enhance the generalization ability of MLLMs in radiology disease identification, we conducted
Supervised Fine-Tuning (SFT) on LLaVA-1.5 (Liu et al., 2023) and LLaVA-Med (Li et al., 2024a)
using the publicly available MIMIC-CXR dataset (Johnson et al., 2019). Surprisingly, the fine-tuned
models did not achieve consistent performance improvements across the five datasets. In some
cases, their classification performance even deteriorated. Further analysis of the model outputs
revealed that MLLMs did not always focus on disease-specific information in radiology reports.
Instead, they tended to overlearn the textual structures and linguistic patterns of the reports, which
limited their classification capability. To mitigate this issue, we incorporated the Chain-of-Thought
(CoT) prompting strategy and adjusted the model’s reasoning approach, inspired by the methodology
of (Zhang et al., 2024), to optimize the model’s decision-making process. This approach led to
moderate improvements in classification performance on medical datasets. Although the models
have not yet reached optimal performance, the results suggest that MLLMs still hold significant
potential for zero-shot medical disease recognition.

2.2 MOTIVATION

As previously discussed, despite possessing a certain level of domain knowledge, medical MLLMs
have not yet demonstrated remarkable performance in zero-shot medical tasks. Even with further
instruction tuning, their performance remains inferior to that of existing vision-language models
(VLMs). However, it is noteworthy that modifying the inference strategy leads to significant perfor-
mance improvements, suggesting that MLLMs are indeed capable of capturing medical image and
text features. Nevertheless, these features have yet to be fully exploited.

To address this limitation, we propose the LLaVA-RadZ framework, introducing a novel end-to-end
training strategy, Decoding-Side Feature Alignment Training (DFAT). This approach leverages the
unique properties of the MLLM decoder architecture while incorporating modality-specific special
tokens to facilitate effective interaction between medical images and textual features, ultimately
achieving more robust cross-modal alignment. As illustrated in Fig. 1, we compare the feature dis-
tribution of our model with MAVL (Phan et al., 2024), the current state-of-the-art method, on the
RSNA (Shih et al., 2019) dataset. The results clearly demonstrate that our model achieves better
clustering of intra-class samples while enhancing inter-class separation, validating the effectiveness
of our approach. Furthermore, we introduce the Domain Knowledge Anchor Module (DKAM),
which harnesses the intrinsic medical knowledge of LLMs to bridge the semantic gap between im-
ages and text, enabling more precise disease classification.

2.3 THE PROPOSED LLAVA-RADZ

We aim to learn generalizable medical image representations from radiology reports to enhance
various downstream medical image recognition tasks, particularly when labeled data is scarce. The
overall framework is illustrated in Fig. 3. Given a pair of medical images and reports, the image
and text are first passed through separate visual and text encoders to obtain their respective encoded
features. These encoded features and specially designed tokens are then fed into a language model
to obtain the final feature representation. The features are mapped into a common representational
space via an MLP projection layer and optimized with the InfoNCE loss. Furthermore, we propose
a Domain Knowledge Anchor Module (DKAM), which leverages domain knowledge inherent in the
model to guide the alignment of text and image features at the category level.

2.3.1 END-TO-END TRAINING STRATEGY

Currently, most MLLMs employ generation-based training objectives for instruction fine-tuning.
Although this approach effectively captures the features of medical images and textual reports, its
performance in zero-shot tasks remains suboptimal, as it fails to fully leverage these features. To
address this issue, we propose a novel training strategy, Decoding-Side Feature Alignment Training
(DFAT), as illustrated in Fig. 3.

We consider a training dataset consisting of N pairs of medical image-text samples, denoted as
Strain = {(X1,Y1), . . . , (XN ,YN )}. The medical image Xi ∈ RH×W×3 , with H and W repre-
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Figure 3: The LLaVA-RadZ framework consists of three components. (A) Construct a category
semantic vector repository using the domain knowledge anchoring module (DKAM). (B) Encode
medical images and text, appending ⟨ImgCls⟩ and ⟨TxtCls⟩ tokens before feeding them into the
LLM. (C) Extract global and local features, optimizing with cross-entropy loss, while leveraging the
semantic repository for category-level alignment.

senting the height and width of the image, respectively. Yi refers to the corresponding medical text
report associated with the image.

Specifically, we design special tokens for both image and text modalities, where < ImgCls i >(i =
0, .., 4) denotes image feature tokens and < TxtCls i >(i = 0, .., 8) denotes text feature tokens.
These special tokens are attached to the image prompt Xprompt and the text prompt Yprompt, re-
spectively. The image prompt Xprompt has a format similar to “What disease is indicated by the
chest X-ray?”, while the text prompt Yprompt follows a format such as “What disease is described
in this text?”. By appending special tokens, we obtain the modified prompts X̃prompt and Ỹprompt,
which is represented as:

X̃prompt = Xprompt +< ImgCls i >(i=0,..,4), (1)

Ỹprompt = Yprompt +< TxtCls i >(i=0,..,8). (2)

When an image and its corresponding prompt X̃prompt are input into the MLLM F to generate
a response R̂img. Similarly, when a text sample and its corresponding feature extraction prompt
Ỹprompt are provided as input, the model produces a response R̂txt. This process can be formally
expressed as:

R̂i
img = F(Xi , X̃prompt), R̂i

txt = F(Yi , Ỹprompt). (3)

Due to the autoregressive nature of the decoder architecture, when the LLM processes visual and
textual information to generate responses, its internal representations are stored in the designated
special tokens. Specifically, we extract the penultimate layer embedding h̃img corresponding to the
special token < ImgCls i >, which stores the global image features Hglobal

img ∈ RB×I×K . Here,
B denotes the number of image-text pairs in each batch, I represents the number of special image
tokens, and K is the dimension of the shared embedding space. After applying a pooling operation
followed by an MLP projection layer γimg, we obtain the global image feature representation Xg ∈
RB×K . The local image feature Xl ∈ RB×K is obtained by pooling the hidden states of all tokens
except those corresponding to special tokens, followed by an MLP projection layer γimg:

Xg = γimg(AvgPool(Hglobal
img )), Xl = γimg(AvgPool(H local

img )). (4)
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Similarly, we extract the global text representation Yg ∈ RB×K and the local text representation
Yl ∈ RB×K using the same methodology:

Yg = γtxt(AvgPool(Hglobal
txt )), Yl = γtxt(AvgPool(H local

txt )). (5)

To further enhance fine-grained alignment across different modalities, we introduce a cross-modal
contrastive loss, LCA. Specifically, for the i -th image-text pair (Xi ,Yi) in a batch, we alternately
align the global and local features of images and texts. This procedure yields two symmetric,
temperature-normalized InfoNCE objectives: one aligns global image features with local text fea-
tures, and the other aligns local image features with global text features. These objectives maximize
the mutual information between image-text pairs in the latent space.

For the alignment between global image features and local text features, we calculate two similarity
matrices, SXg→Yl

i and S
Yl→Xg

i , with the following computation:

S
Xg→Yl
i =

Xg,i · Y T
l,i

τ
, S

Yl→Xg

i =
Yl,i ·XT

g,i

τ
. (6)

where τ is the temperature hyperparameter. Subsequently, we compute the contrastive loss between
the global image and the local text, with the following formula:

L
Xg→Yl,i

CA = − log
exp

(
S

Xg→Yl
i

)∑B
k=1 exp

(
S

Xg→Yl

k

) , L
Yl→Xg,i

CA = − log
exp

(
S

Yl→Xg

i

)∑B
k=1 exp

(
S

Yl→Xg

k

) . (7)

L
Xg→Yl
CA =

1

2

B∑
i=1

(
L

Xg→Yl,i

CA + L
Yl→Xg,i

CA

)
. (8)

Similarly, for the alignment between local image features and global text features, we compute the
contrastive loss between the local image and global text.

L
Xl→Yg

CA = −1

2

B∑
i=1

(
log

exp
(
S

Xl→Yg

i

)∑B
k=1 exp

(
S

Xl→Yg

k

) + log
exp

(
S

Yg→Xl
i

)∑B
k=1 exp

(
S

Yg→Xl

k

)). (9)

Finally, we obtain our cross-modal contrastive loss LCA.

LCA =
1

2

(
L

Xg→Yl
CA + L

Xl→Yg

CA

)
. (10)

2.3.2 DOMAIN KNOWLEDGE ANCHOR MODULE

In aligning medical images with text reports, we observed that the critical entity of the medical
disease categories was merely encoded as features by the model, without considering the underlying
semantics. To address this limitation and further enhance fine-grained alignment capabilities, we
introduce the Domain Knowledge Anchoring Module (DKAM). Initially, we leverage the inherent
medical domain expertise of an LLM to generate descriptive explanations for each disease category.
These generated disease descriptions serve as an intermediary bridge to guide the alignment between
medical images and text reports. Specifically, we input the disease list Dlist from the training dataset
along with a designed prompt template Kprompt into the LLM F . This process is formally expressed
as:

R̂dis = F(Dlist,Kprompt). (11)

By fully harnessing the LLM’s exceptional semantic understanding, we prompt the model to explore
the underlying semantics of the disease categories and discern their distinctions, ultimately produc-
ing a refined disease description. The features extracted from the LLM’s response are then mapped
via a multi-layer perceptron (MLP) to yield the disease description vector D̂ , which is represented
as:

D̂ = γdis
(
R̂dis

)
. (12)

Subsequently, we introduce the Category of Knowledge-guided Contrastive Loss LCG . Specifically,
we calculate the cross-entropy loss between the disease description vector D̂ and the global features
of both the images Xg and the text Yg . This design encourages the model to better capture the
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Table 1: Comparison of zero-shot disease classification performance of public MLLMs and LLaVA-
based exploratory methods across five medical benchmarks. “ft” denotes supervised fine-tuning with
LoRA, “CoT” refers to zero-shot chain-of-thought prompting templates, and “Inference” represents
CLIP inference strategies. The best results are highlighted in bold and the second-best results are
underlined.

Dataset CheXpert ChestXray-14 COVIDx CXR-2 RSNA Pneumonia SIIM-ACR
Method Model AUC ↑ F1 ↑ ACC ↑ AUC ↑ F1 ↑ ACC ↑ AUC ↑ F1 ↑ ACC ↑ AUC ↑ F1 ↑ ACC ↑ AUC ↑ F1 ↑ ACC ↑

MLLM

LLaVA-1.5 (7B) (Liu et al., 2023) - 7.50 8.28 - 3.33 6.92 - 53.14 50.28 - 40.53 55.34 - 23.66 50.36
LLavA-Med (7B) (Li et al., 2024a) - 6.87 8.94 - 8.02 6.78 - 34.90 50.03 - 18.58 50.00 - 21.91 49.90
Qwen2.5-Max (Yang et al., 2024) - 32.23 67.97 - 19.04 76.19 - 75.91 76.81 - 43.58 43.59 - 64.70 72.57
Gemini-Pro (Team et al., 2023) - 35.01 76.08 - 14.16 77.78 - 62.84 62.90 - 44.23 51.43 - 61.43 72.03
GPT-4o (Achiam et al., 2023) - 45.85 81.14 - 19.85 81.55 - 50.93 77.08 - 54.20 65.33 - 64.57 72.11

Explorative Methods

LLaVA-1.5-7Bft - 10.61 19.62 - 7.85 19.06 - 27.74 25.18 - 43.60 34.80 - 52.37 50.95
LLavA-Med-7Bft - 14.25 31.46 - 9.00 21.43 - 27.42 24.09 - 46.72 38.88 - 53.11 57.68
LLavA-Med-7Bft + CoT (Zhang et al., 2024) - 8.90 26.23 - 8.33 20.46 - 27.12 26.55 - 49.59 43.80 - 54.06 51.07
LLavA-Med-7Bft + Inference (Zhang et al., 2024) 71.00 44.85 75.45 64.30 21.73 70.86 71.07 69.84 60.39 77.51 69.85 72.90 71.25 68.26 71.27

Ours LLaVA-RadZft 73.36 48.59 82.15 72.61 27.91 84.64 84.36 77.53 74.58 86.98 76.18 83.28 89.92 79.57 84.38

Table 2: Comparison of performance with other SOTA methods on four medical datasets for the
zero-shot classification task, with AUC, F1, and ACC scores reported. The best results are high-
lighted in bold and the second-best results are underlined.

Method ChestXray-14 COVIDx CXR-2 RSNA Pneumonia SIIM-ACR
AUC ↑ F1 ↑ ACC ↑ AUC ↑ F1 ↑ ACC ↑ AUC ↑ F1 ↑ ACC ↑ AUC ↑ F1 ↑ ACC ↑

ConVIRT (Zhang et al., 2022) 53.15 12.38 57.88 62.78 71.23 63.84 79.21 55.67 75.08 64.25 42.87 53.42
GLoRIA (Huang et al., 2021) 55.92 14.20 59.47 64.52 70.78 60.21 70.37 48.19 70.54 54.71 40.39 47.15

BioViL (Boecking et al., 2022) 57.82 15.64 61.33 61.40 70.92 58.20 84.12 54.59 74.43 70.28 46.45 68.22
CheXzero (Tiu et al., 2022) 66.99 21.99 65.38 73.13 76.13 71.45 85.13 61.49 78.34 84.60 65.97 77.34
MedKLIP (Wu et al., 2023) 72.33 24.18 79.40 76.28 76.54 71.96 86.57 63.28 79.97 89.79 72.73 83.99
MAVL (Phan et al., 2024) 73.50 26.25 82.77 83.86 81.73 78.07 86.91 63.41 82.42 92.04 77.95 87.14

Ours 72.61 27.91 84.64 84.36 77.53 74.58 86.98 76.18 83.28 89.92 79.57 84.38

semantic relationships among images, text, and disease categories during training, achieving a more
robust category-level alignment.

S img-disease
i =

Xg,i ·DT

τ
, S txt-disease

i =
Yg,i ·DT

τ
. (13)

Ltxt
CG,i = − log

exp
(
S txt-disease
i

)∑N
k=1 exp

(
S txt-disease
k

) , Limg
CG,i = − log

exp
(
S img-disease
i

)∑N
k=1 exp

(
S img-disease
k

) . (14)

Here, N represents the number of disease categories, B denotes the number of medical image-text
pairs in each batch, and τ is the temperature hyperparameter. The final category of knowledge-
guided loss is as follows:

LCG =
1

2

B∑
i=1

(
Ltxt

CG,i + Limg
CG,i

)
. (15)

By combining the category knowledge-guided loss and the cross-modal contrastive loss, the final
objective function is defined as follows:

Ltotal = λLCA + (1− λ)LCG, (16)

where λ is a balancing factor used to adjust the weights of the two losses, and it is set to 0.5 by
default.

3 EXPERIMENTS

In this section, we first provide an overview of the dataset employed in our experiments, including
those used for pre-training and the various downstream tasks. Subsequently, we outline the imple-
mentation details and describe the baselines considered for comparison.

3.1 DATASET

In our experiments, we pre-trained the model using the MIMIC-CXR dataset (Johnson et al., 2019).
For downstream tasks, we primarily evaluated the model’s performance in medical disease clas-
sification using multiple benchmark datasets, including ChestX-ray14 (Wang et al., 2017), RSNA
Pneumonia (Shih et al., 2019), SIIM-ACR Pneumothorax (sii, 2019), CheXpert (Irvin et al., 2019),
and COVIDx CXR-2 (Pavlova et al., 2022). Detailed information on these datasets can be found in
the supplementary material.
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Table 3: Comparison of performance with other SOTA methods at different data portions for fine-
tuning classification task. AUC scores are reported. The best results are highlighted in bold and the
second-best results are underlined.

Method RSNA Pneumonia Pneumothorax COVIDx CXR-2
1% 10% 100% 1% 10% 100% 1% 10% 100%

Scratch 68.94 83.31 87.12 53.11 76.18 87.48 85.11 93.65 98.86
ConVIRT (Zhang et al., 2022) 78.86 85.42 87.64 72.39 80.41 91.67 90.30 97.74 99.70
GLoRIA (Huang et al., 2021) 79.13 85.59 87.83 75.85 86.20 91.89 92.74 97.18 99.54

BioViL (Boecking et al., 2022) 80.27 86.04 88.29 70.29 79.45 88.05 92.39 98.39 99.68
MedKLIP (Wu et al., 2023) 82.11 87.14 88.58 85.24 89.91 93.02 95.58 98.77 99.77
MAVL (Phan et al., 2024) 86.09 87.90 88.94 91.53 93.00 94.48 97.18 99.15 99.90

Ours 88.23 88.57 89.49 88.42 89.96 94.50 98.32 99.80 99.96

Figure 4: Effect of Special Token Numbers and Hidden Layer Depth on ChestXray-14 Classification.

3.2 EVALUATION METRICS

For the zero-shot classification task, we employ standard classification evaluation metrics, including
Accuracy, AUC score, and F1 score. The macro-average metrics are reported for all diseases present
in the target dataset.

3.3 ZERO-SHOT EVALUATION

As shown in Tab. 2, we compare the performance of established methods in the field on the zero-shot
classification task for radiological diseases, evaluated on four officially released test datasets. Our
findings demonstrate that, compared to conventional CLIP-style models such as ConVIRT (Zhang
et al., 2022), GLoRIA (Huang et al., 2021), BioViL (Boecking et al., 2022), and CheXzero (Tiu
et al., 2022), our approach exhibits significant advantages. Even when compared to state-of-the-art
models incorporating external models or domain-specific expert knowledge, our method remains
highly competitive. Specifically, on the multi-class dataset ChestXray-14, our model surpasses the
supervised learning method MAVL (Phan et al., 2024) by 1.87% in accuracy. Moreover, on the
RSNA Pneumonia dataset, we achieve a 12.77% improvement in F1 score. These results indicate
that multimodal large language models (MLLMs) possess strong feature extraction capabilities, fur-
ther underscoring their immense potential in medical disease classification tasks.

3.4 FINE-TUNING EVALUATION

Consistent with previous studies (Phan et al., 2024; Wu et al., 2023), we fine-tune the model on
downstream datasets using 1%, 10%, and 100% of the available data and further evaluate its perfor-
mance. Tab. 3 presents the fine-tuning results across three datasets, demonstrating that our model
consistently maintains a competitive advantage. Notably, when fine-tuned with only 1% data, our
proposed LLaVA-RadZ outperforms the MAVL (Phan et al., 2024) model by 2.14% on the RSNA
Pneumonia and by 1.14% on COVIDx. Even when fine-tuned with 100% data, our model continues
to deliver performance improvements. This enhancement is likely attributed to our decoder-side
alignment training strategy, which effectively captures global modality information and leverages
the interaction between global and local features to achieve fine-grained cross-modal alignment,
further strengthening the model’s disease recognition capability.
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Table 4: Ablation study of DKAM on ChestXray-14.
D1 represents a semantic vector library of 75 medical
entities, and D2 represents a semantic vector library of
14 disease categories.

# DKAM D1 D2 AUC ↑ F1 ↑ ACC ↑
a 69.31 27.30 82.32
b ✓ ✓ 68.67 25.73 81.84
c ✓ ✓ 72.61 27.91 84.64

Table 5: Ablation study of feature representations on
ChestXray-14.

# Global Local Prompt AUC ↑ F1↑ ACC↑
a ✓ 67.14 25.11 77.82
b ✓ ✓ 68.29 26.42 78.63
c ✓ ✓ 70.13 26.22 82.50
d ✓ ✓ ✓ 72.61 27.91 84.64

3.5 ABLATION STUDY

Ablation Study of DKAM. To validate the effectiveness of our proposed Domain Knowledge An-
chor Module (DKAM), we conducted an ablation study on the ChestXray-14 dataset. With DKAM
incorporated, we further investigated the impact of different category semantic vector repositories
on the model’s fine-grained alignment capability. Consistent with the previous MedKLIP study, we
selected 75 primary medical entities from the MIMIC-CXR dataset. However, unlike MedKLIP, we
leveraged the model’s intrinsic domain knowledge to construct a category semantic vector reposi-
tory, denoted as D1. Additionally, we built a disease-specific semantic vector repository for the 14
medical disease categories present in the MIMIC-CXR training dataset, denoted as D2.

As shown in Tab. 4 (a vs. c), the introduction of DKAM significantly enhances model performance.
Using disease category semantics as an intermediary facilitates more precise alignment between
medical images and textual descriptions at the category level. Further comparisons in Tab. 4 (b vs.
c) demonstrate that, compared to a larger repository of medical entities, a semantic vector repository
focusing on primary disease categories provides stronger guidance for image-text alignment. More-
over, additional medical entities in D1, such as tip, tube, PICC, and device, may introduce noise and
negatively impact alignment at the disease category level. This adverse effect is corroborated by the
comparative results in Tab. 4 (a vs. b).

Ablation Study of Special Tokens. As shown in Tab. 1, we have demonstrated the effectiveness of
the Decoding-Side Feature Alignment Training (DFAT) strategy. To further investigate the design
of the critical special tokens integral to this approach, we conducted an in-depth analysis on the
ChestXray-14 dataset. As illustrated in Fig. 4, we observed that the number of text and image
tokens significantly influences model performance, with both an excessive and an insufficient count
potentially resulting in a loss of modal information. Moreover, our study indicates that the optimal
global features are not stored in the final hidden layer but rather in the penultimate layer, which
may be attributed to the loss of fine-grained information due to deeper feature aggregation, thereby
affecting overall performance.

Ablation Study of Features. During the process of cross-modal alignment, we conducted a detailed
analysis of the impact of global and local features on model performance, and further investigated the
effectiveness of using prompts, as shown in Tab. 5. The experimental results indicate that utilizing
only local features yields the poorest performance, while relying solely on global features provides
a certain advantage over local features. This may be attributed to the fact that the specially designed
tokens for each modality can more precisely capture the global information of the corresponding
modality. Moreover, the combination of global and local features achieves the best performance.
Additionally, the incorporation of prompts further enhances the model’s ability to capture feature
information.

4 CONCLUSION

This paper proposes a simple yet effective framework, LLaVA-RadZ, for zero-shot medical dis-
ease recognition. First, we introduce an end-to-end decoding-side feature alignment training strat-
egy to leverage the characteristics of the MLLM architecture and effectively store modality-related
information. Additionally, we employ cross-modal contrastive learning to optimize feature align-
ment across modalities, enhancing the model’s cross-modal understanding capabilities. Further-
more, we propose a domain knowledge anchoring Module to facilitate category-level alignment
between medical images and textual descriptions. Experimental results demonstrate that LLaVA-
RadZ achieves outstanding performance across multiple benchmarks, highlighting the significant
potential of MLLMs in tackling zero-shot radiological disease recognition tasks.

9
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A RELATED WORK

Multi-modal Large Language Models. Inspired by the exceptional reasoning capabilities of
large language models (LLMs), researchers are actively exploring ways to extend these abilities
to the visual domain, driving advancements in multimodal LLMs. With the release of GPT-4 (Vi-
sion) (Achiam et al., 2023) and Gemini (Team et al., 2023), these models have demonstrated remark-
able multimodal understanding and generation capabilities, further fueling research in this field.

To bridge the gap between vision encoders and LLMs, BLIP-2 (Li et al., 2023a) introduces a Q-
Former that transforms image features into a format compatible with LLMs, enabling seamless
integration with text embeddings. LLaVA (Liu et al., 2023) and MiniGPT-4 (Zhu et al., 2023)
further enhance generalization and task performance by leveraging large-scale multimodal pretrain-
ing, followed by instruction tuning for specific applications. In the medical domain, LLMs have
shown immense potential for advancing research and practical applications. Med-Flamingo (Moor
et al., 2023) extends Flamingo to the medical field by pretraining on multimodal knowledge sources
spanning multiple medical disciplines. LLaVA-Med (Li et al., 2024a) refines image-text pairs from
PMC-15M (Zhang et al., 2023a) and trains a biomedical-specialized MLLM using a limited dataset,
building upon the pre-trained parameters of LLaVA. Similarly, Med-PaLM (Singhal et al., 2023)
fine-tunes PaLM (Chowdhery et al., 2023) using domain-specific medical instructions, demonstrat-
ing strong performance under human evaluation frameworks. Other notable models, such as Chat-
Doctor (Li et al., 2023b) and Med-Alpaca (Han et al., 2023), have been tailored for medical question-
answering and dialogue applications.

Despite the significant progress of MLLMs, several challenges remain (McKinzie et al., 2024; Tong
et al., 2024; Zhang et al., 2024; He et al., 2025). Recent studies (Zhang et al., 2024; He et al., 2025)
highlight the suboptimal performance of MLLMs in image classification, particularly in fine-grained
category recognition. We find that this issue is especially pronounced in the medical domain, where
precise classification is crucial for medical applications. To address these shortcomings, we are
refining traditional MLLM training paradigms to enhance classification performance and improve
fine-grained category comprehension.

Prompt Engineering. Prompting enhances the ability of pre-trained large language models (LLMs)
to understand tasks by incorporating language instructions into the input text (Mondal et al., 2024;
Shao et al., 2024; Liu et al., 2024; Li et al., 2024b). Recently, prompt-based techniques have also
been applied to vision-language models to improve performance. In medical vision-language mod-
els (VLMs), GloRIA (Huang et al., 2021) generates a set of textual prompts to describe potential
subtypes, severity levels, and anatomical locations for each disease category. MedKLIP (Wu et al.,
2023) enhances model performance by retrieving descriptions of medical entities from the UMLS
knowledge base (Bodenreider, 2004). CARZero (Lai et al., 2024) introduces a prompt-alignment
strategy based on LLMs, integrating prompt templates into the training dataset to ensure alignment
during both training and inference. MAVL (Phan et al., 2024) uses visual descriptions of pathologi-
cal features to guide the model in effectively detecting diseases in medical images.

Although these approaches have successfully improved model performance through prompt-based
strategies, they all rely on external models or expert knowledge, without fully leveraging the model’s
intrinsic understanding capabilities. Fortunately, recent research on LLaVA-Med (Li et al., 2024a)
has demonstrated remarkable domain-specific conversational abilities, proving that it possesses a
certain level of medical knowledge. Building upon LLaVA-Med (Li et al., 2024a), we further ex-
plore the feasibility of utilizing the model’s inherent comprehension to enhance zero-shot medical
classification performance.

B DATASET DETAILS

MIMIC-CXR v2 (Johnson et al., 2019). In our experiments, we pre-trained the model using the
MIMIC-CXR, a publicly available collection of chest radiographs paired with corresponding radi-
ology text reports. The MIMIC-CXR dataset comprises 377, 110 images corresponding to 227,835
radiographic studies from 65,379 patients. Since all downstream tasks utilize frontal-view images,
we exclude all lateral-view images from the dataset. Moreover, we selectively retain only the find-
ings and impressions sections from these reports.
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ChestX-ray14 (Wang et al., 2017). ChestX-ray14 consists of 112, 120 frontal-view chest X-ray im-
ages from 30,805 unique patients, collected between 1992 and 2015. The official test set, comprising
22, 433 images, has been meticulously annotated by board-certified radiologists. For evaluation pur-
poses, we restrict our testing to the official test set.

RSNA Pneumonia (Shih et al., 2019). RSNA Pneumonia includes over 260, 000 frontal-view chest
X-rays with annotated pneumonia masks, collected by the Radiological Society of North America
(RSNA). This dataset supports both pneumonia segmentation and classification tasks (Wu et al.,
2023; Phan et al., 2024). We partition the dataset into training, validation, and test sets with a ratio
of 0.6/0.2/0.2, respectively.

SIIM-ACR Pneumothorax (sii, 2019). SIIM-ACR Pneumothorax contains 12,954 chest X-ray im-
ages, along with image-level pneumothorax annotations and pixel-level segmentation masks where
pneumothorax is present. Like the RSNA Pneumonia dataset, it can be used for both classification
and segmentation tasks. We divide the dataset into training, validation, and test sets with a ratio of
0.6/0.2/0.2.

CheXpert (Irvin et al., 2019). CheXpert contains 224,316 chest X-ray images from 65,240 patients,
collected by Stanford Hospital. The official test set includes images from 500 patients, annotated
through consensus by five board-certified radiologists. We evaluated all disease categories in this
test dataset.

COVIDx CXR-2 (Pavlova et al., 2022) and COVID Rural (Desai et al., 2020). The COVIDx
CXR-2 and COVID Rural are designed for evaluating COVID-19 diagnosis. COVIDx CXR-
2 (Pavlova et al., 2022) consists of 29,986 images from 16,648 COVID-19 patients, each labeled
with a classification tag. The dataset is split into training, validation, and test sets with a ratio of
0.7/0.2/0.1, used for evaluating classification performance. The COVID Rural dataset contains over
200 chest X-ray images with annotated segmentation masks, used for the COVID-19 segmentation
task. This dataset is partitioned into training, validation, and test sets with a ratio of 0.6/0.2/0.2.

C MEDICAL CATEGORY SEMANTIC VECTOR LIBRARY

We draw inspiration from the work of MedKLIP (Wu et al., 2023) and incorporate 75 frequently
occurring medical entities from clinical reports as input to our model. By designing prompts, we
stimulate the model’s intrinsic medical knowledge, enabling it to infer the semantic representations
of various entity categories. The resulting semantic descriptions of these 75 medical entities are
presented in table 7.

Furthermore, to achieve a more precise representation of major disease categories, we construct
a dedicated disease semantic vector library, which facilitates a more nuanced understanding of
disease-related semantics. The generated disease descriptions are detailed in table 6.

D IMPLEMENTATION DETAILS

Unless otherwise specified, we use LLaVA-Med (Li et al., 2024a) as the foundational MLLM F .
We employ the LoRA strategy for parameter-efficient fine-tuning, with training managed via the
DeepSpeed engine.

For optimization, we utilize the AdamW optimizer with a learning rate of 2e-5 and no weight decay.
A cosine learning rate decay schedule is applied, with 3% of the total training steps allocated for
warm-up. The number of special tokens for images < ImgCls > is set to 4, while the number of
special tokens for text < TxtCls > is set to 8. The temperature hyperparameter τ is configured as
0.05, and the loss weight coefficient λ is set to 0.5. Furthermore, the batch size per GPU is set to 64.

E USE OF LLMS

This paper employed large language models (i.e., ChatGPT, Claude) solely for language editing and
polishing purposes, including but not limited to grammar checking, expression optimization, and text
refinement. All core research content, including experimental design, data analysis, and conclusion
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derivation, was carried out independently by the authors. The authors take full responsibility for the
entire content of this paper and have thoroughly verified and validated all AI-assisted modifications.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Semantic Descriptions of 14 Medical Disease Categories

Disease Description
Fibrosis Fibrosis refers to excessive deposition of collagen and extracellular ma-

trix during abnormal tissue repair after inflammation or injury, lead-
ing to the replacement of normal lung tissue with reticular or band-
like high-density shadows, commonly seen in the lower and peripheral
lungs. Imaging may show honeycombing and traction bronchiectasis.
Clinically, patients often present with progressive dyspnea, dry cough,
and reduced exercise tolerance.

Edema Pulmonary edema refers to the abnormal accumulation of fluid in the
pulmonary interstitium and alveoli, usually caused by cardiogenic or
non-cardiogenic factors. Imaging shows patchy or ’bat-wing’ dis-
tributed heterogeneous high-density shadows in the middle or entire
lung, often accompanied by Kerley lines and cardiac enlargement. Clin-
ically, patients typically experience acute dyspnea, cough, cyanosis, and
bilateral lung crackles.

Pneumothorax Pneumothorax refers to the presence of air in the pleural cavity, leading
to partial or complete lung collapse. Imaging typically shows a low-
density black air space along the pleura, with a clear demarcation from
the normal lung tissue, along with lung collapse. In tension pneumotho-
rax, mediastinal shift may occur. Clinically, patients often present with
sudden unilateral chest pain, dyspnea, and decreased breath sounds,
sometimes accompanied by subcutaneous emphysema.

Cardiomegaly Cardiomegaly refers to the enlargement of the heart due to hyperten-
sion, cardiomyopathy, or valvular disease, causing chamber dilation or
wall thickening. Imaging shows significant cardiac enlargement with
an expanded and smooth contour, often marked by an increased cardio-
thoracic ratio, potentially accompanied by pulmonary congestion and
bronchial congestion. Clinically, patients may experience reduced ex-
ercise tolerance, dyspnea, lower limb edema, and arrhythmias.

Atelectasis Atelectasis refers to the collapse of part or all of the lung tissue due
to airway obstruction, external thoracic pressure, or intrapulmonary
pathology. Imaging shows increased local lung density, volume reduc-
tion, bronchial displacement, and visceral pleural traction, commonly
affecting the lower lobes. Clinically, patients may exhibit rapid shallow
breathing, localized decreased or absent breath sounds, and a history of
recent surgery or inadequate airway clearance.

Nodule A lung nodule is a localized lesion with a diameter of less than 3 cm.
Imaging typically shows a round or oval localized density, with either
well-defined or spiculated edges. Some nodules may contain calcifica-
tions or low-density necrotic areas. Clinically, most patients are asymp-
tomatic, but growing or malignant nodules may present with cough and
hemoptysis.

Emphysema Emphysema is a chronic obstructive pulmonary disease caused by
the permanent destruction of alveolar walls and airspace enlargement.
Imaging shows scattered or diffuse low-density areas in both lungs, re-
duced lung markings, often with bullae or cystic lesions, a flattened di-
aphragm, and hyperinflated lungs. Clinically, patients typically have a
history of chronic cough, sputum production, and progressive dyspnea,
often associated with smoking or long-term occupational exposure.

No Finding No finding refers to the absence of radiographic abnormalities detected
in the chest X-ray.
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Table 6: Semantic Descriptions of 14 Medical Disease Categories

Disease Description
Mass A mass refers to an abnormal localized tissue overgrowth. Imaging

shows a focal high-density lesion, which may have regular or irreg-
ular shapes with spiculated margins, often accompanied by internal
necrosis, calcification, or hemorrhage. Surrounding features may in-
clude bronchial distortion or lymphadenopathy. Clinically, patients may
present with cough, weight loss, or hemoptysis, requiring further patho-
logical examination.

Pleural Thickening Pleural thickening refers to fibrotic or calcified pleural changes due to
chronic inflammation, infection, or asbestos exposure. Imaging shows
localized or diffuse thickening along the pleural surface, appearing
as streaky or patchy high-density shadows, sometimes with nodular
changes. Clinically, patients may be asymptomatic, but a history of
pleuritis or exposure to harmful substances is often present.

Effusion Pleural effusion refers to the abnormal accumulation of fluid in the pleu-
ral cavity, which may be caused by infection, heart failure, malignancy,
or other inflammatory diseases. Typically seen in the lower lung fields
and posterior chest cavity, imaging shows a homogeneous or layered
fluid density with a clear meniscus sign, with CT revealing low-density
regions. Severe effusion may cause lung compression or bronchial dis-
placement. Clinically, patients may present with dyspnea, chest pain,
and cough, with physical signs of reduced breath sounds, dull percus-
sion, and abnormal auscultation.

Infiltration Infiltration refers to localized or diffuse high-density changes in lung
tissue due to inflammation, infection, or malignancy. Imaging typi-
cally shows patchy or ill-defined high-density areas, sometimes with
a ground-glass appearance or consolidation, occasionally accompanied
by air bronchograms or bronchial wall thickening. Clinically, patients
may present with cough, fever, dyspnea, and fatigue, often with elevated
inflammatory markers.

Pneumonia Pneumonia refers to lung parenchyma inflammation caused by bacteria,
viruses, fungi, or other microorganisms, leading to alveolar filling with
inflammatory exudates. Imaging shows localized or patchy consolida-
tion with irregular margins, often accompanied by air bronchograms,
pleural reaction, and mild pleural effusion. Clinically, patients present
with fever, cough, sputum production, chest pain, and fatigue, with ele-
vated white blood cell counts and inflammatory markers.

Consolidation Consolidation refers to the complete filling of alveolar spaces with liq-
uid, pus, blood, or cellular material, replacing the normal air content.
Imaging shows homogeneous, dense, well-defined opacities, often with
air bronchograms and pleural reactions, sometimes with minimal pleu-
ral effusion. Clinically, patients often have fever, cough, sputum pro-
duction, chest pain, and dyspnea, with significantly elevated inflamma-
tory markers.
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Table 7: Semantic Descriptions of 75 Medical Categories

Disease Description
normal Indicates that the structure appears within standard parameters without

signs of pathology.
clear The imaging reveals no obscuring abnormalities, ensuring clear visual-

ization of the structure.
sharp Boundaries are precisely defined, accentuating the distinct separation

between tissues.
sharply The structure is rendered with exceptional clarity, facilitating detailed

evaluation.
unremarkable No significant deviations or abnormalities are observed in the examined

area.
intact The structure remains whole and undamaged, with no disruption de-

tected.
stable The tissue exhibits consistent appearance over time without progressive

changes.
free Presence of extraluminal air in unexpected locations, possibly indicat-

ing a perforation.
effusion Accumulation of fluid between the pleural layers, often reflecting an

underlying pathology.
opacity An area of increased radiodensity that obscures normal lung markings,

suggesting fluid or tissue replacement.
pneumothorax Air present in the pleural space that may lead to partial or complete lung

collapse.
edema Diffuse fluid accumulation within lung tissue, frequently associated

with cardiac or inflammatory issues.
atelectasis Collapse of lung segments resulting in volume loss and increased local

density.
tube A medical tube visible on imaging, such as for drainage or airway man-

agement.
consolidation Region where alveolar air is replaced by fluid or cells, producing homo-

geneous density.
process Denotes an active pathological condition altering the tissue’s normal

appearance.
abnormality A generic term for any deviation from normal structure suggestive of

disease.
enlarge Indicates that a structure appears larger than typical normal values.
tip The distal or pointed end of a structure or medical device.
low Underinflation of the lungs, often implying a restrictive process.
pneumonia Inflammatory infection of lung parenchyma, typically showing consol-

idation and air bronchograms.
line A linear structure that may represent a fissure, pleural interface, or arti-

fact.
congestion Increased blood or fluid accumulation in tissues, often indicating im-

paired circulation.
catheter A slender, flexible tube inserted for drainage or medication delivery,

visible in imaging.
cardiomegaly An enlarged cardiac silhouette, frequently associated with chronic heart

conditions.
fracture A break or discontinuity in bone structure evident on radiographs.
air Regions of radiolucency indicating the presence of gaseous content.
tortuous Describes a vessel or structure exhibiting excessive curvature or wind-

ing.
lead The foremost or guiding portion of a device or anatomical feature.
disease A general term for any pathological process affecting normal tissue

function.
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Table 7: Semantic Descriptions of 75 Medical Categories

Disease Description
calcification Deposition of calcium salts within tissue, appearing as bright foci on

imaging.
prominence An area that appears more pronounced than surrounding tissues, sug-

gesting an increase in size or density.
device Any implanted or externally applied apparatus used for diagnostic or

therapeutic purposes.
engorgement Excessive filling of vessels or tissues with blood, leading to a swollen

appearance.
picc A long, thin catheter introduced via a peripheral vein and advanced into

the central circulation for long-term therapy.
clip A small metallic or plastic fastener used during surgery to secure tissues

or vessels.
elevation An upward displacement or raised position of an anatomical structure

relative to its usual location.
expand Describes a structure that appears dilated or increased in volume.
nodule A small, rounded lesion typically less than 3 cm in diameter that can be

benign or malignant.
wire A thin, flexible metallic strand often used in surgical fixation or as part

of medical devices.
fluid The presence of liquid within tissues or cavities, altering the normal

radiographic appearance.
degenerative Changes in tissue structure resulting from chronic wear, aging, or re-

peated stress.
pacemaker An implanted device that regulates heart rhythm, visible through its

leads and generator.
thicken Describes a structure that appears denser or more layered, possibly due

to fibrotic changes.
marking Visible patterns or lines that may represent vascular or connective tissue

features.
scar Fibrotic tissue that replaces normal parenchyma following injury, typi-

cally seen as an irregular opacity.
hyperinflate Denotes lungs that are over-expanded, often with increased radiolu-

cency and flattened diaphragms.
blunt Loss of sharp definition in anatomical borders, leading to a less distinct

appearance.
loss Indicates a reduction or absence of normal tissue volume or density.
widen Suggests that a structure or space is broader than the standard measure-

ment.
collapse A significant reduction or complete loss of volume in lung tissue due to

obstruction or injury.
density Reflects the compactness of a tissue, with higher density appearing

whiter on radiographs.
emphysema A chronic condition marked by alveolar wall destruction and abnormal

enlargement of air spaces.
aerate Indicates that the lung tissue is adequately filled with air, supporting

effective gas exchange.
mass A malignant tumor arising from lung tissue, typically presenting as an

irregular mass with possible cavitation.
crowd Compaction of airways and vessels, often due to volume loss or infiltra-

tive processes.
infiltrate Diffuse or patchy opacities in the lung that suggest inflammation, infec-

tion, or neoplastic involvement.
obscure Describes anatomical structures that are not clearly visualized, often

due to overlapping tissues or technical factors.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: Semantic Descriptions of 75 Medical Categories

Disease Description
deformity An abnormal shape or structure resulting from congenital anomalies,

trauma, or disease progression.
hernia The protrusion of an organ or tissue through an abnormal opening in the

surrounding structure.
drainage The process or presence of fluid removal from a body cavity, often via

an inserted tube.
distention Abnormal expansion or swelling of a structure due to accumulation of

fluid or gas.
shift Displacement of anatomical structures from their usual positions, indi-

cating mass effect or volume change.
stent A small mesh tube used to maintain the patency of a vessel or duct.
pressure The force exerted per unit area by fluids or tissues, which can influence

organ function.
lesion Any abnormal area of tissue that deviates from the standard architecture,

potentially indicative of pathology.
finding A generic term for an observed abnormality or noteworthy feature on

imaging.
borderline The heart appears at the upper limit of normal size, without clear evi-

dence of enlargement.
hardware Any implanted or externally attached device used for diagnostic, thera-

peutic, or supportive purposes.
dilation The widening or expansion of a hollow structure, often reflecting in-

creased internal pressure.
chf A clinical syndrome characterized by the heart’s reduced pumping abil-

ity, leading to systemic fluid accumulation.
redistribution A shift in the normal pattern of blood or air distribution within the lungs,

often due to altered hemodynamics.
aspiration Inhalation of foreign material into the airways, potentially leading to

inflammatory or infectious complications.
rare diseases Conditions that occur infrequently in the population and often require

specialized diagnostic and management approaches.
Covid-19 An infectious disease caused by the SARS-CoV-2 virus, with a broad

spectrum of respiratory and systemic manifestations.
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