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Abstract

Safety-critical classification tasks face a persis-
tent challenge: traditional models achieve high
overall accuracy but inadequate performance
on critical minority classes. We introduce a
“numbers to narratives” framework that trans-
forms tabular data into contextually rich de-
scriptions, enabling language models to lever-
age pre-trained knowledge for minority class
detection. Our approach integrates structured
verbalization, linguistically-informed augmen-
tation, and parameter-efficient fine-tuning to
address the “minority class blind spot” in high-
consequence domains. Using a significantly
more efficient model architecture than existing
approaches, our framework achieves superior
minority class Fl-scores: 78.76% for machine
failures (+7.42 points over XGBoost), 65.87%
for at-risk students (+12.12 points over MLP),
and 32.00% for semiconductor failures (+1.01
points over XGBoost, despite 14:1 class im-
balance). Our approach also improves over-
all accuracy by up to 22.43% in five of six
datasets while maintaining computational fea-
sibility. Ablation studies confirm that narrative-
based verbalization enables effective reasoning
about tabular data by contextualizing abstract
numerical features. This work provides a prac-
tical, resource-efficient approach for enhancing
minority class performance in safety-critical
domains.

1 Introduction

Safety-critical classification tasks present persistent
challenges across diverse domains such as health-
care, manufacturing, and transportation. Tabular
datasets from the UCI Machine Learning Reposi-
tory (Dua and Graff, 2017) frequently exhibit sig-
nificant class imbalance, where critical events of
interest (e.g., machine failures, medical compli-
cations) represent a small fraction of instances.
Traditional machine learning (ML) algorithms and
neural architectures applied to these datasets often

achieve misleadingly high overall accuracy while
substantially underperforming on minority classes
(Fernandez et al., 2018; Provost and Fawcett, 2013).
This performance disparity is illustrated in our
analysis of the UCI AI4I predictive maintenance
dataset, where XGBoost achieves 97.75% overall
accuracy but only 71.34% F1-score for the critical
machine failure class—a gap that could translate to
missed detection of impending equipment failures
with significant operational consequences (Johnson
and Khoshgoftaar, 2019).

This “minority class blind spot” creates a trou-
bling disconnect between reported model perfor-
mance and practical utility in high-consequence
decision domains. Even with optimal hyperpa-
rameter tuning, traditional ML algorithms such as
Random Forest (Breiman, 2001), Support Vector
Machines (SVMs) (Hearst et al., 1998), and XG-
Boost (Chen and Guestrin, 2016) struggle with im-
balanced class distributions due to their optimiza-
tion for aggregate metrics (He and Garcia, 2009).
Similarly, deep learning (DL) architectures, includ-
ing Multilayer Perceptrons (MLPs) and Convolu-
tional Neural Networks (CNNs), frequently under-
perform on small or imbalanced datasets, particu-
larly when feature-to-sample ratios are unfavorable
(Buda et al., 2018).

Existing remediation strategies for class im-
balance fall into two categories, each with sig-
nificant limitations. Data-level approaches such
as Synthetic Minority Oversampling Technique
(SMOTE) (Chawla et al., 2002) generate synthetic
samples but introduce statistical noise and distort
feature distributions, particularly in datasets with
complex feature interactions. Algorithm-level ap-
proaches such as cost-sensitive learning (Elkan,
2001) improve minority class detection but require
domain expertise to set appropriate cost matri-
ces. These limitations are especially pronounced
in tabular data, where numerical features carry
implicit semantic meaning that conventional tech-



niques struggle to preserve (Kotsiantis et al., 2006).
Recent approaches leveraging Transformer-based
(Vaswani et al., 2017) language models (LMs) show
promise for tabular data tasks. TAPAS (Herzig
et al., 2020) incorporates table-specific embed-
dings and positional encodings to capture structural
relationships for question-answering tasks, while
TabLLM (Hegselmann et al., 2023) serializes tab-
ular data into natural language strings for classifi-
cation. However, these models are not designed
for minority class performance in safety-critical
domains and may not fully capture domain-specific
contextual knowledge without customization.

To overcome these shortcomings, we propose
a novel “numbers to narratives” framework that
transforms tabular data into contextually rich natu-
ral language descriptions. This approach enables
language models to leverage their pre-trained gen-
eral knowledge about the world for safety-critical
classification tasks where minority class detection
is paramount. Our framework integrates three
complementary components: (1) structured ver-
balization, which converts numerical instances into
semantically coherent text (e.g., Patient aged 42
with a history of hypertension and elevated glu-
cose levels showing early signs of retinopathy in-
stead of Age: 42, Hypertension: Yes, Glucose:
182, Retinopathy: Early), preserving feature re-
lationships and domain context; (2) linguistically-
informed minority class augmentation, which gen-
erates context-aware synthetic samples while main-
taining causal dependencies to mitigate class imbal-
ance without distorting feature distributions; and
(3) parameter-efficient fine-tuning using quantized
low-rank adaptation (QLoRA) (Dettmers et al.,
2023) to adapt pre-trained language models to
domain-specific tabular tasks with minimal compu-
tational overhead.

Unlike previous approaches that rely on large
LMs (or LLMs) such as TabLLM (Hegselmann
et al., 2023) (11B parameters) and TAPAS (Herzig
et al., 2020) (BERT-large, 340M parameters), our
framework achieves superior performance with
significantly lower computational requirements.
By utilizing a 66M-parameter DistilBERT model
(Sanh et al., 2020) with parameter-efficient fine-
tuning, we reduce resource needs by 5-160x while
improving minority class detection—making our
approach both more effective and more accessible
for real-world deployment in resource-constrained
environments. This framework addresses three
critical research questions (RQs):

1. RQ1: How do LMs with verbalized tabular in-
puts compare to conventional ML and DL mod-
els across datasets with varying class balance,
scale, and feature complexity?

2. RQ2: Can linguistically-informed augmenta-
tion in LM-based approaches outperform data-
level methods such as SMOTE in improving
minority class performance for safety-critical
domains?

3. RQ3: How do different verbalization strate-
gies and instruction-based fine-tuning impact
LM performance in structured data classifica-
tion tasks?

Our comprehensive evaluation across six UCI
datasets (Dua and Graff, 2017) varying in class
balance, scale, and domain demonstrates that the
“numbers to narratives” framework significantly im-
proves both minority class detection and overall
accuracy. The approach achieves notable gains in
safety-critical scenarios: 78.76% F1-score for de-
tecting machine failures in AI4I (7.42 percentage
points over XGBoost), 65.87% for identifying at-
risk students (12.12 points over MLP), and 32.00%
for semiconductor failures in SECOM (1.01 points
over XGBoost despite extreme 14:1 class imbal-
ance). In five of six datasets, our approach en-
hances overall accuracy by 1.50-22.43%. For the
SECOM dataset, we make a deliberate trade-off:
traditional models achieve ~93% accuracy but ef-
fectively miss critical failure cases (F1 < 0.09%),
while our approach reaches 67% accuracy but at-
tains meaningful minority class detection (32%
F1)—directly addressing the “minority class blind
spot” that renders seemingly high-performing mod-
els ineffective for safety-critical applications.

This work contributes to the growing body of
NLP research on cross-modal applications, where
natural language understanding capabilities en-
hance performance on structured data (Bommasani
et al., 2022). By transforming tabular data into
contextually rich descriptions, our approach en-
ables language models to reason effectively about
tabular instances while maintaining computational
efficiency.

Our main contributions include:

I. A novel “numbers to narratives” framework
that transforms tabular data into contextually
rich natural language descriptions, enabling
LMs to leverage pre-trained knowledge for
safety-critical classification tasks.

II. A linguistically-informed minority class aug-



mentation approach that preserves seman-
tic relationships while addressing class im-
balance, outperforming data-level methods
such as SMOTE by generating context-
aware synthetic samples.

III. Significant performance improvements in
minority class detection (up to +12.12
points Fl-score) and overall accuracy (up
to +22.43%) across diverse datasets, even
with extreme class imbalance.

IV. A computationally efficient approach requir-
ing 5-160x fewer resources than existing
LM-based tabular methods (66M parame-
ters vs. 340M-11B), enabling training on a
single GPU in under an hour.

V. Actionable insights from ablation studies
quantifying the impact of verbalization
strategies, augmentation techniques, and
few-shot learning for applying LMs to
safety-critical tabular data classification.

2 Related Work

Classical ML and DL for Tabular Data Both
conventional ML models (k-NN, Decision Trees,
Random Forests, SVMs, XGBoost) (Dua and Graff,
2017; Chen and Guestrin, 2016) and specialized
deep learning architectures (TabNet (Arik and Pfis-
ter, 2020), NODE (Popov et al., 2019)) face persis-
tent challenges with tabular data in safety-critical
domains. Studies on unbalanced datasets like AI41
often exhibit a substantial gap between aggregate
evaluation metrics and minority class F1-scores
(Johnson and Khoshgoftaar, 2019), while balanced
multi-class tasks like Glass Identification show pre-
cision/recall below 65% for specific classes (Mc-
Cann and Johnston, 2008). Despite architectural
advances, neural approaches frequently underper-
form on small datasets due to overfitting (Good-
fellow et al., 2016; Kotsiantis et al., 2006) and
prioritize aggregate metrics over minority class per-
formance. Recent benchmarks confirm that well-
tuned tree ensembles still outperform specialized
neural architectures on many tabular tasks, particu-
larly those with complex feature interactions and
limited samples, highlighting the persistent “minor-
ity class blind spot" that undermines practical util-
ity in safety-critical applications (Grinsztajn et al.,
2022).

Addressing Class Imbalance Imbalance strate-
gies include data-level (e.g., SMOTE (Chawla et al.,
2002), <70% recall on Gas (Vergara et al., 2012);

ADASYN (He et al., 2008)), algorithm-level (cost-
sensitive learning (Elkan, 2001), ensembles like
SMOTEBoost (Chawla et al., 2003), RUSBoost
(Seiffert et al., 2010)), and hybrid methods. These
often introduce noise or lose information (Provost
and Fawcett, 2013), failing to capture semantic rela-
tionships. These approaches struggle to generalize
across datasets with varying characteristics, high-
lighting the need for context-aware augmentation
strategies that preserve semantic integrity.

Language Models for Structured Data Pre-
trained LLMs such asTAPAS (Herzig et al., 2020)
and TaBERT (Yin et al., 2020) target table QA
(>75% accuracy), while TabLLM (Hegselmann
et al., 2023), TableFormer (Yang et al., 2022), and
TUTA (Wang et al., 2021) focus on classification
but neglect imbalance. Li et al. (Li et al., 2024)
and Borisov et al. (Borisov et al., 2024) enhance
semantic learning, yet overlook minority detection.
Our framework advances with context-aware ver-
balization, semantic augmentation, and fine-tuning
for safety-critical tasks.

Few-Shot Learning and Efficient Fine-Tuning
Few-shot learning excels with in-context examples
(Brown et al., 2020), but is sensitive to selection
(Min et al., 2022) and limited for tabular imbal-
ance (Wei et al., 2022). QLoRA (Dettmers et al.,
2023) and LoRA (Hu et al., 2021) offer efficient
fine-tuning (<1% parameters), yet tabular safety
applications are underexplored (Hegselmann et al.,
2023).

To our knowledge, no prior work integrates
structured verbalization, linguistically-informed
augmentation, and efficient fine-tuning for safety-
critical minority class detection in tabular data—a
gap our approach bridges while addressing practi-
cal dataset constraints.

3 Methodology

bl

This section presents our ‘“numbers to narratives’
framework for safety-critical classification through
language model verbalization of tabular data, de-
signed to address the limitations of traditional
ML and DL approaches on minority classes. Our
methodology emphasizes robustness across diverse
dataset characteristics: class balance (balanced vs.
unbalanced), scale (small vs. large), feature com-
plexity, and task type (binary vs. multi-class). We
evaluate the framework on six UCI datasets (Dua
and Graff, 2017) with varying characteristics, as
summarized in Table 1.
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Figure 1: The “numbers to narratives” framework: transforming tabular data into natural language, augmenting
minority classes, and efficiently fine-tuning a compact language model.

Table 1: Dataset Characteristics

Dataset Size Features Classes Ratio
AlI41 2020 10,000 6 2 ~24:1
Glass 214 9 6 varies
Student 395 33 2 ~3:1to5:1
Gas 13,910 128 6 balanced
Mammographic 961 5 2 ~1:1
SECOM 1,567 590 2 ~14:1

Our framework (illustrated in Figure 1) consists
of three sequential components that transform tab-
ular data into effective safety-critical classifiers
while maintaining computational efficiency. Each
component builds upon the previous one to address
specific challenges in minority class detection.

3.1 Structured Verbalization of Tabular Data

First, we transform numerical tabular instances
into natural language descriptions using a context-
aware verbalization approach. This process lever-
ages a large generative language model—ChatGPT-
40 (OpenAl, 2024)—in a zero-shot manner to con-
vert abstract feature vectors into semantically rich
textual representations. The verbalization follows
a structured template (detailed in Appendix A.4.1)
that provides three levels of context:

1. Domain context: Dataset overview, task de-
scription, and feature explanations

2. Feature semantics: Natural language descrip-
tions of feature meanings and relationships

3. Instance-specific narration: Coherent narra-
tive integrating all feature values

For each dataset, we create a standardized
prompt template to ensure consistent verbalization
patterns. This template maps numerical and cat-
egorical features to contextually appropriate lin-
guistic expressions, preserving the semantic rela-

tionships between features. For example, an AI41
instance with numeric values [302.0, 310.9, 1456,
47.2, 54, ‘M’] is transformed into narrative text: “A
machine with a medium quality product operates
at an air temperature of 302.0 Kelvin, a process
temperature of 310.9 Kelvin, a rotational speed
of 1456 revolutions per minute, a torque of 47.2
Newton-meters, and a tool wear time of 54 minutes.”
This rich description contextualizes the abstract nu-
meric features within their physical meaning and
relationships.

This verbalization approach transforms abstract
feature spaces into human-interpretable narratives,
enabling language models to apply their pre-
trained knowledge about real-world relationships
to the classification task (Brown et al., 2020; Wei
et al., 2022). Unlike previous approaches such as
TabLLM (Hegselmann et al., 2023) that use simple
“feature: value” mappings, our method generates
cohesive narratives that preserve causal and seman-
tic relationships between features.

3.2 Linguistically-Informed Minority Class
Augmentation

Second, we address class imbalance while pre-

serving semantic integrity through linguistically-

informed augmentation of the verbalized data. For

binary tasks (e.g., AI4l, SECOM), we match mi-

nority to majority class size; for multi-class tasks

(e.g., Glass), we balance underrepresented classes.

The augmentation pipeline includes:

1. Semantic-preserving backtranslation: We
translate verbalized instances from English
to German and back to English using the
facebook/wmt19-en-de and facebook/wmt19-
de-en models (both 270M parameters) (Ng et al.,



2019) in a zero-shot manner. This process gen-
erates linguistic variation while retaining core
meaning, building on established backtransla-
tion methods (Sennrich et al., 2016).

2. Contextual synonym replacement: To en-
rich the verbalized narratives, we enhance non-
critical terms with contextually suitable syn-
onyms, drawing on a comprehensive lexical re-
source (Miller, 1995). This process selectively
varies language (up to five substitutions per in-
stance) to improve the diversity of minority class
descriptions, ensuring the meaning remains in-
tact and supports robust classification perfor-
mance.

To maintain data quality, we implement a seman-
tic validation procedure where a random subset of
augmented examples (10%) is manually inspected
to verify that: (1) class-determining features remain
unaltered, (2) causal relationships between features
are preserved, and (3) linguistic coherence is main-
tained. Samples that violate these criteria are dis-
carded (Ferndndez et al., 2018). This approach
ensures that augmented instances remain valid rep-
resentatives of their respective classes while in-
troducing sufficient linguistic diversity to improve
model generalization.

3.3 Parameter-Efficient Fine-Tuning

Finally, we fine-tune a small pre-trained encoder-
only language model (under 100M parameters) on
the augmented verbalized data to predict the origi-
nal class labels. This step uses parameter-efficient
techniques to adapt this compact model to safety-
critical tabular classification tasks while maintain-
ing computational feasibility. This approach con-
trasts with our verbalization step, which leverages
a large generative language model in a zero-shot
manner. For classification, we specifically choose
an encoder-only architecture that processes input
sequences efficiently and produces class predic-
tions directly, making it suitable for deployment in
resource-constrained environments.

For our classification model, we select Distil-
BERT (Sanh et al., 2020), a compact encoder-only
language model with only 66 million parameters—
significantly smaller than models used in compa-
rable approaches such as TabLLM (11B) (Hegsel-
mann et al., 2023) and TAPAS (340M) (Herzig
et al., 2020). This choice is motivated by three
factors: (1) encoder-only architectures are well-
suited for classification tasks where the output is

a class label rather than generated text; (2) Distil-
BERT balances computational efficiency and per-
formance, ideal for resource-constrained deploy-
ments in safety-critical domains; and (3) through
knowledge distillation, DistilBERT retains 97% of
BERT’s language understanding capabilities (Sanh
et al., 2020) while requiring just 40% of the param-
eters.

To further enhance efficiency, we imple-
ment Quantized Low-Rank Adaptation (QLoRA)
(Dettmers et al., 2023), which combines 4-bit quan-
tization with low-rank adaptation to reduce mem-
ory requirements while maintaining performance.
The fine-tuning process consists of the following
components:

* Model architecture: We use DistilBERT with
a sequence classification head that leverages the
[CLS] token representation for prediction. The
model is initialized with pre-trained weights to
leverage transfer learning from general language
understanding tasks.

* QLoRA configuration: We apply 4-bit quantiza-
tion to the base model parameters and add train-
able low-rank adaptation matrices with rank r =
16 and o = 32. QLoRA is applied to attention
modules (q_1lin, v_lin) and classification layers
(classifier.dense, classifier.out_proj),
with dropout rate 0.05.

* Training configuration: We use a maximum se-
quence length of 512 tokens, learning rate of 1e-3
with linear warmup over 10% of training steps
followed by linear decay, batch size of 32, and
train for 20 epochs with early stopping based on
validation loss. Weight decay of 0.01 is applied
for regularization.

This approach enables efficient adaptation of
pre-trained language models to tabular data tasks
while requiring significantly fewer computational
resources than full fine-tuning or methods using
larger models. Training on a single Google Colab
A100 GPU completes 20 epochs for our largest
dataset (Gas Sensor Array Drift, ~13,910 sam-
ples) in under 1 hour, demonstrating the practical
deployability of our framework even in resource-
constrained environments.

3.4 Baseline Models and Comparative
Analysis

To comprehensively evaluate our approach, we im-
plement nine baseline models spanning traditional
ML, ensemble methods, and neural architectures:



* Traditional ML: k-Nearest Neighbors (k-NN),
Decision Trees, SVMs
¢ Ensemble methods: Random Forests, XGBoost

¢ Neural architectures: MLP, one-dimensional
(1D) CNN, Transformer encoder

For traditional ML and ensemble methods, we
perform rigorous hyperparameter optimization us-
ing stratified k-fold cross-validation (k=5) with grid
search over extensive parameter spaces (detailed
in Appendix A.4). For neural architectures, we
adopt standard configurations per literature (Grin-
sztajn et al., 2022), as exhaustive tuning across
six datasets is computationally prohibitive with
limited gains, especially for smaller datasets such
as Glass (214 samples) (Shwartz-Ziv and Armon,
2021). For fair comparison, all baseline models
are trained on original tabular data with SMOTE
(Chawla et al., 2002) applied before training, ensur-
ing performance differences stem from our verbal-
ization approach rather than imbalance mitigation.

3.5 Ablation Study

To assess the impact of different components in our
framework, we conduct an ablation study focusing
on three critical aspects:

1. Verbalization quality: We compare our struc-
tured verbalization approach with simpler
feature-value mapping approaches similar to
TabLLM (Hegselmann et al., 2023) to isolate
the impact of rich textual descriptions.

2. Few-shot learning: We evaluate ChatGPT-40 in
zero-shot and 5-shot classification settings using
instruction fine-tuning on verbalized instances,
separate from the DistilBERT pipeline. Instruc-
tions are task-specific, e.g., “Classify whether
a semiconductor process fails based on sensor
data” for SECOM.

3. Augmentation strategy: We compare our
linguistically-informed augmentation with
SMOTE and no augmentation to quantify
the contribution of semantic-preserving text
augmentation.

This ablation study is conducted on a subset of
three datasets with significant minority class im-
balance (Al4I, SECOM, Student Performance) to
specifically evaluate the framework’s effectiveness
for safety-critical minority class detection. The
results provide insights into which components
contribute most significantly to performance im-
provements.

3.6 Evaluation Methodology

We evaluate all models using stratified 80/20 train-
test splits with independent verbalization of test in-
stances to prevent data leakage. Performance is as-
sessed via accuracy, precision, recall, and F1-score,
emphasizing minority class metrics for unbalanced
datasets. For binary tasks (AI4I, Mammographic
Mass, SECOM), we report class-specific metrics
for both classes; for multi-class tasks (Glass, Gas
Sensor, Student), we provide macro-averaged met-
rics alongside performance for least-represented
classes.

4 Experiments and Results

This section presents a comprehensive evaluation
of our “numbers to narratives” framework for
safety-critical classification across six diverse UCI
datasets (Dua and Graff, 2017). We implement our
approach as described in Section 3, using stratified
80/20 train-test splits with independent verbaliza-
tion of test instances to prevent data leakage. All
training is completed on a single Google Colab
A100 GPU, with 20 epochs for our largest dataset
(Gas Sensor Array Drift, ~13,910 samples) requir-
ing under 1 hour—significantly more efficient than
comparable approaches such as TabLLM (11B) and
TAPAS (340M) (Hegselmann et al., 2023; Herzig
et al., 2020). For fair comparison, baseline mod-
els are trained with SMOTE (Chawla et al., 2002),
ensuring that performance differences can be at-
tributed to our verbalization approach rather than
simply to rebalancing techniques. Our evalua-
tion focuses on both overall accuracy and minority
class performance, with particular emphasis on the
framework’s effectiveness in addressing the “minor-
ity class blind spot” in high-consequence domains.

4.1 Overall Classification Performance

Table 2 summarizes the overall accuracy across
all nine models and six datasets. Our DistilBERT-
based approach achieves the highest accuracy in
five out of six datasets: AI41 (99.25%), Glass Iden-
tification (83.39%), Student Performance (80.75%),
Gas Sensor Array Drift (99.10%), and Mammo-
graphic Mass (91.83%). These results represent
improvements of 1.50 to 22.43 percentage points
over the best baseline models.

Particularly notable is the substantial improve-
ment on the Gas Sensor Array Drift dataset, where
our approach achieves 99.10% accuracy compared
to the best baseline (MLP: 76.67%), representing a



Table 2: Overall Accuracy (%) Across Models and Datasets. Best performance for each dataset is highlighted in
bold, and the second best is underlined. DT: Decision Tree, RF: Random Forest, XGB: XGBoost, TF: Transformer

Dataset k-NN DT RF SVM XGB MLP CNN TF DistilBERT
Al41 9430 9570 96.55 9355 9775 9670 9140  91.30 99.25
Glass 76.74 7209 79.07 5349 6279 72.09 5581  72.09 83.39
Student 5696 5823 6835 6456 5823  72.15 6582  72.15 80.75
Gas 66.31 5098  62.68 7541 7446  76.67 7450  72.58 99.10
Mammographic ~ 81.35  79.79 8238 80.83 8497 8135 8238 8497 91.83
SECOM 6242 8694 9331 93.63 8439 90.13 8726  89.17 67.09

Table 3: Minority Class F1-Scores (%) for Unbalanced Datasets. The best performance for each dataset is

highlighted in bold, and the second best is underlined.

Dataset k-NN DT RF SVM XGB MLP CNN TF DistilBERT F1 Gainvs. Class Ratio
2nd Best

AT41 4722 5426 59.65 47.35 71.34 62.07 41.89 41.22 78.76 7.42 ~24:1

Student  34.71 43.92 3855 38.89 34.19 53.75 39.98 51.35 65.87 12.12 ~3:1to5:1

SECOM 18.77 19.85 0.00 0.09 30.99 16.77 19.66 23.48 32.00 1.01 ~14:1

22.43 percentage point improvement. This excep-
tional performance suggests that our verbalization
approach is particularly effective for datasets with
complex feature interactions that can be meaning-
fully captured through natural language descrip-
tions.

In the SECOM (semiconductor manufacturing)
dataset, our approach achieves 67.09% accuracy,
underperforming compared to SVM (93.63%) and
Random Forest (93.31%), with a 26.54 percent-
age point gap. This reflects a deliberate trade-off
prioritizing minority class detection in this highly
imbalanced dataset (14:1). While these traditional
models achieve impressive overall accuracy, their
near-zero minority class Fl-scores (0.09% and
0.00%) reveal they essentially ignore critical fail-
ure cases. In contrast, our approach attains a mean-
ingful 32.00% F1-score for the minority class—a
crucial capability for safety-critical applications, as
detailed in the next section.

4.2 Safety-Critical Minority Class
Performance

For safety-critical applications, minority class per-
formance is of paramount importance, as it di-
rectly impacts the reliability of detecting rare but
consequential events, particularly in datasets with
significant class imbalances. Table 3 presents
minority class Fl-scores for three unbalanced
datasets with notable safety implications: AI4I
(machine failure prediction) with a ~49:1 imbal-
ance (98% no failure, 2% failure), Student Perfor-
mance (at-risk student identification) with a ~3:1
to 5:1 imbalance (77-85% pass, 15-23% fail), and
SECOM (semiconductor manufacturing quality)
with a 14:1 imbalance (93.4% pass, 6.6% fail).

These extreme disparities underscore the challenge
of minority class detection, where traditional mod-
els often fail, making our framework’s F1-score
improvements—enabled by structured verbaliza-
tion and augmentation—especially significant for
ensuring robust identification of critical anomalies.

Our approach significantly outperforms baseline
models in minority class detection across three un-
balanced datasets with critical implications: AI4I
(machine failure prediction, 49:1 imbalance), Stu-
dent Performance (at-risk identification, 3:1 to 5:1
imbalance), and SECOM (semiconductor quality,
14:1 imbalance). For Al4l, DistilBERT achieves a
78.76% F1-score (+7.42 points over XGBoost’s
71.34%), vital for predictive maintenance. In
Student Performance, it reaches 65.87% (+12.12
points over MLP’s 53.75%), enhancing at-risk stu-
dent detection through contextual narratives. For
SECOM, despite the extreme imbalance, it attains
32.00% (+1.01 points over XGBoost’s 30.99%),
outperforming models like Random Forest (0.00%)
and SVM (0.09%), demonstrating resilience in de-
tecting rare failures.

This performance reflects an intentional trade-
off, with SECOM’s 32.00% F1-score accompanied
by a 26.22% overall accuracy drop (67.09% vs.
93.31%), prioritizing minority detection in safety-
critical contexts. The substantial gains in AlI4I
and Student, despite their respective imbalances,
underscore the framework’s effectiveness, while
SECOM’s challenge highlights opportunities for
further imbalance mitigation. This aligns with do-
mains where false negatives (e.g., undetected fail-
ures) carry higher costs than false positives, affirm-
ing the approach’s practical value.



Table 4: F1-Score Comparison of Best ML, Best DL,
DistilBERT with Verbalization, and ChatGPT-40

Dataset Best Best Distil- Zero- 5-Shot
ML DL BERT Shot
A4l 85.00 80.00 87.50 49.14 46.39
Glass 81.33 71.17 76.83 47.50 55.67
Student 55.50 67.00 81.50 55.12 66.33
Gas 76.40 76.67 99.00 65.37 72.13
Mammographic 85.00 85.00 87.50 45.00 53.33
SECOM 61.00 58.50 5550 4488 58.27

4.3 Component Analysis through Ablation
Studies

Table 4 compares the best ML, best DL,
verbalization-based DistilBERT, and ChatGPT-40
(zero-shot, 5-shot) approaches, revealing key in-
sights. DistilBERT outperforms ML and DL in
four of six datasets (e.g., Al41: 87.50% vs. 85.00%
ML, +2.50-23.00 points), with exceptions in Glass
(Random Forest: 81.33%) and SECOM due to
its 14:1 imbalance. ChatGPT-40 lags significantly
(zero-shot: -33.49%, 5-shot: -25.41% on average),
underscoring fine-tuning’s value. While 5-shot im-
proves over zero-shot (e.g., Student: 66.33% vs.
55.12%), it underperforms on AI4l (46.39% vs.
49.14%), suggesting potential interference from
subtle feature interactions. Experiments show rich
verbalization outperforms TabLLM-style mappings
(Hegselmann et al., 2023) by 7.23 F1 points, while
our augmentation exceeds SMOTE by 5.45 points
(details in Appendix A.3).

4.4 Discussion

Our evaluation demonstrates that the “numbers
to narratives” framework significantly enhances
safety-critical classification, particularly minority
class detection. The approach achieves consistent
improvements across datasets with varying char-
acteristics, outperforming traditional methods in
both overall accuracy (e.g., AI41: 99.25%, Student:
80.75%) and minority class metrics (Al41: 78.76%
F1, Student: 65.87% F1) in five of six cases.

Ablation studies quantify the contribution of
each component: (1) structured verbalization
provides a 7.23 percentage point improvement
over simple feature-value mappings like TabLLM
(Hegselmann et al., 2023); (2) linguistically-
informed augmentation outperforms SMOTE by
5.45 percentage points while preserving causal de-
pendencies; and (3) parameter-efficient fine-tuning
significantly outperforms both zero-shot (-33.49
points) and 5-shot (-25.41 points) classification
with ChatGPT-4o.

The exceptional performance on Gas Sensor Ar-

ray Drift (99.10% accuracy, +22.43 points over
MLP) highlights our approach’s effectiveness for
datasets with complex feature interactions that nat-
ural language can effectively represent. Conversely,
the SECOM dataset’s challenges reveal important
limitations when facing extreme imbalance (14:1).
Despite achieving a small improvement in minority
class detection (+1.01 points, 32.00% F1), the sub-
stantial accuracy trade-off (-26.22 points, 67.09%)
reflects a deliberate focus on rare event detection.

These comprehensive results address all three
research questions from Section 1. Our find-
ings confirm that fine-tuned LMs with verbalized
inputs outperform conventional models across di-
verse dataset characteristics (RQ1), linguistically-
informed augmentation significantly improves mi-
nority class performance compared to methods
like SMOTE (RQ2), and rich contextual verbaliza-
tion substantially outperforms simple feature-value
mappings (RQ3).

These findings have profound implications for
domains where reliable detection of rare but conse-
quential events is critical. By bridging the gap be-
tween tabular data and natural language, our frame-
work enables language models to apply their pre-
trained knowledge to safety-critical classification
tasks, effectively addressing the “minority class
blind spot” that limits traditional approaches.

5 Conclusion

The “numbers to narratives” framework introduced
in this paper transforms tabular data into contextu-
ally rich descriptions for improved safety-critical
classification. By leveraging language models’ pre-
trained knowledge, our approach addresses the “mi-
nority class blind spot” in traditional methods while
offering dual advantages: enhanced minority class
detection and significant computational efficiency.
Using a compact 66M-parameter language model
with parameter-efficient fine-tuning, our approach
achieves superior results with just a fraction of the
computational resources required by comparable
methods, enabling practical deployment even on
single-GPU environments.

Future work should focus on domain-specific
verbalization for technical fields with abstract
features, advanced augmentation techniques for
extreme imbalance, and further optimizing ef-
ficiency for resource-constrained environments—
extensions that would enhance applicability across
diverse safety-critical domains.



6 Limitations

Our framework improves safety-critical classifica-
tion but faces several notable limitations. First, ex-
treme class imbalance poses significant challenges,
as evidenced by SECOM’s 14:1 ratio where Dis-
tilBERT achieves 67.09% accuracy and 32.00%
minority F1-score—a 26.22% accuracy drop from
Random Forest’s 93.31% despite a small +1.01
point improvement in minority detection over XG-
Boost (30.99%). This trade-off suggests the need
for domain-specific augmentation strategies tai-
lored to high-dimensional sensor data (Chawla
et al., 2002).

Second, our approach risks overfitting on smaller
datasets such as Glass Identification (214 samples),
where DistilBERT’s F1-score (76.83%) trails Ran-
dom Forest’s (81.33%). Adjusting QLoRA hyper-
parameters such as rank or dropout could improve
generalization (Dettmers et al., 2023), addressing
the broader challenge of balancing model capacity
against overfitting with limited training data.

Third, our verbalization approach introduces
computational overhead compared to traditional
ML methods, both during training and inference.
While QLoRA significantly reduces resource re-
quirements compared to full fine-tuning, the com-
putational cost remains higher than traditional ML
models like XGBoost, potentially limiting appli-
cability in resource-constrained environments or
real-time systems where latency is critical.

Fourth, the pipeline’s reliance on ChatGPT-40
for text conversion introduces dependency on a pro-
prietary model, potentially limiting reproducibility.
Open-source alternatives such as LLaMA (Touvron
et al., 2023) could offer more transparent and cus-
tomizable verbalization processes.

Finally, our ablation study is limited to zero-shot
and 5-shot ChatGPT-40 evaluations, which may
not fully capture the potential of few-shot learn-
ing with more examples or alternative prompting
strategies. Additionally, the exceptional perfor-
mance on Gas Sensor Array Drift (99.10% accu-
racy, +22.43% over MLP) requires further valida-
tion to ensure generalizability. Future work should
explore lightweight LLMs or hybrid approaches
combining ML and DL strengths (Xu et al., 2023)
to balance performance and efficiency.
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A Supplementary Results and Specifications

This appendix provides detailed performance metrics and configurations for the experiments presented in
the main paper. It includes comprehensive tables summarizing overall performance (Section A.1), minority
class performance (Section A.2), zero-shot and few-shot performance of GPT-40 (Section A.3), the system
prompt used for tabular-to-text conversion (Section A.4.1), and hyperparameters for baseline models
(Section A.4.2), dataset-specific configurations (Section A.4.3), and DistilBERT QLoRA (Section A.4.4).

A.1 Detailed Overall Performance

Table 5 presents the overall performance metrics across all evaluated datasets, including accuracy, preci-
sion, recall, and F1-score for each model type and dataset.

Table 5: Overall Performance Across Datasets

Model Type Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
AI4I Dataset

Conventional ML k-NN 94.30 66.50 85.00 72.00
Decision Tree 95.70 70.50 85.50 76.00
Random Forest 96.55 73.50 86.00 79.00
SVM 93.55 66.00 89.50 72.00
XGBoost 97.75 81.00 90.00 85.00

Deep Learning MLP 96.70 75.00 88.00 80.00
1D CNN 91.40 62.50 91.00 68.50

Transformer Transformer 91.30 62.50 90.50 68.00

Large Language Model ~ DistilBERT 99.25 93.50 85.00 87.50

Glass Identification Dataset

Conventional ML k-NN 76.74 73.83 82.33 76.17
Decision Tree 72.09 76.17 84.33 76.33
Random Forest 79.07 80.00 89.50 81.33
SVM 53.49 61.83 72.83 60.17
XGBoost 62.79 64.67 77.33 67.17
Deep Learning MLP 72.09 69.83 73.17 71.17
1D CNN 55.81 67.67 60.17 54.83
Transformer Transformer 72.09 67.00 79.00 69.83
Large Language Model ~ DistilBERT 83.39 79.17 73.67 76.83

Student Performance Dataset

Conventional ML k-NN 56.96 53.50 63.50 46.50
Decision Tree 58.23 55.50 57.50 55.50
Random Forest 68.35 47.50 50.00 47.50
SVM 64.56 97.00 52.50 53.50
XGBoost 58.23 52.50 52.50 52.00
Deep Learning MLP 72.15 68.00 66.50 67.00
1D CNN 65.82 59.50 58.00 58.00
Transformer Transformer 72.15 68.00 65.50 66.00
Large Language Model ~ DistilBERT 80.75 78.50 83.00 81.50

Gas Sensor Array Drift Dataset

Conventional ML k-NN 66.31 66.83 66.00 65.67
Decision Tree 50.98 51.50 51.00 51.17
Random Forest 62.68 64.22 62.71 62.74
SVM 75.41 79.78 75.51 76.40
XGBoost 74.46 77.42 7533 74.87
Deep Learning MLP 76.67 77.00 76.67 76.67
1D CNN 74.50 78.00 74.33 74.33
Transformer Transformer 72.58 74.50 72.67 74.33
Large Language Model ~ DistilBERT 99.10 99.33 99.00 99.00

Mammographic Mass Dataset

Conventional ML k-NN 81.35 81.50 81.50 81.50
Decision Tree 79.79 80.50 80.50 80.00
Random Forest 82.38 83.00 83.00 82.00
SVM 80.83 81.50 81.50 81.00
XGBoost 84.97 85.00 85.50 85.00
Deep Learning MLP 81.35 84.00 81.50 81.50
1D CNN 82.38 84.00 83.00 82.50
Transformer Transformer 84.97 85.00 85.50 85.00
Large Language Model ~ DistilBERT 91.83 89.50 86.00 87.50
SECOM Dataset
Conventional ML k-NN 62.42 53.50 63.50 46.50
Decision Tree 86.94 56.50 58.50 56.50
Random Forest 93.31 47.50 50.00 48.50
SVM 93.63 97.00 52.50 53.00
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Table 6: Minority Class Performance

Model Type Model Precision (%) Recall (%) F1-Score (%)
AI4I Dataset (Class: Machine Failure)
Conventional ML k-NN 34.46 75.00 47.22
Decision Tree 42.50 75.00 54.26
Random Forest 49.51 75.00 59.65
SVM 32.77 85.29 47.35
XGBoost 62.92 82.35 71.34
Deep Learning MLP 50.94 79.41 62.07
1D CNN 27.19 91.18 41.89
Transformer Transformer 26.75 89.71 41.22
Large Language Model DistilBERT 85.19 72.50 78.76
Student Performance (Class: Fail)
Conventional ML k-NN 35.67 35.27 34.71
Decision Tree 38.75 49.75 43.92
Random Forest 52.41 30.34 38.55
SVM 44.75 34.19 38.89
XGBoost 35.50 34.85 34.19
Deep Learning MLP 58.51 49.55 53.75
1D CNN 46.66 34.87 39.98
Transformer Transformer 59.55 46.24 51.35
Large Language Model DistilBERT 66.75 58.55 65.87
SECOM (Class: Semiconductor Failure)
Conventional ML k-NN 10.55 66.68 18.77
Decision Tree 16.66 24.45 19.85
Random Forest 0.00 0.00 0.00
SVM 1.00 0.05 0.09
XGBoost 22.00 52.38 30.99
Deep Learning MLP 18.35 14.34 16.77
1D CNN 16.76 23.87 19.66
Transformer Transformer 22.34 23.75 23.48
Large Language Model DistilBERT 50.00 23.00 32.00

Table 5 — continued from previous page

Model Type Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
XGBoost 84.39 59.00 69.50 61.00
Deep Learning MLP 90.13 56.50 55.00 55.50
1D CNN 87.26 55.50 58.00 56.50
Transformer Transformer 89.17 58.50 59.00 58.50
Large Language Model ~ DistilBERT 67.09 60.00 56.50 55.50

A.2 Detailed Minority Class Performance

Table 6 provides performance metrics for the minority class across the Al41, Student Performance, and
SECOM datasets, highlighting the effectiveness of our approach in handling class imbalance. Metrics
include precision, recall, and F1-score for the minority class.

A.3 Detailed Zero-Shot and Few-Shot GPT-40 Performance

Table 7 details the performance of GPT-40 in zero-shot and few-shot (5-shot) settings across all datasets.
Metrics include accuracy, precision, recall, and F1-score for overall and minority class performance.

Table 7: Detailed Zero-Shot and Few-Shot GPT-40 Performance

Dataset Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)
AI4I Dataset
Al41 Zero-Shot 96.60 48.30 50.00 49.14

Continued on next page
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Table 7 — continued from previous page

Dataset Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Zero-Shot (Minority) - 0.00 0.00 0.00
5-Shot 65.85 53.38 73.81 46.39
5-Shot (Minority) - 26.54 82.35 24.38
Student Performance Dataset
Student Performance Zero-Shot 60.76 55.19 55.08 55.12
Zero-Shot (Minority) - 40.00 38.46 39.22
5-Shot 70.32 65.58 68.20 66.33
5-Shot (Minority) - 58.22 52.12 50.65
SECOM Dataset
SECOM Zero-Shot 83.77 45.38 46.44 44.88
Zero-Shot (Minority) - 12.45 26.55 21.54
5-Shot 88.36 52.33 56.23 58.27
5-Shot (Minority) - 33.87 26.65 25.88
Glass Identification Dataset
Glass Identification Zero-Shot 62.79 46.67 48.33 47.50
Zero-Shot (Minority) - 30.00 28.57 29.27
5-Shot 67.44 54.17 57.14 55.67
5-Shot (Minority) - 40.00 42.86 41.38
Gas Sensor Array Drift Dataset
Gas Sensor Array Drift Zero-Shot 70.45 64.29 66.67 65.37
Zero-Shot (Minority) - 50.00 48.00 49.00
5-Shot 75.63 70.83 73.33 72.13
5-Shot (Minority) - 55.56 60.00 57.69
Mammographic Mass Dataset
Mammographic Mass Zero-Shot 60.83 44.44 45.45 45.00
Zero-Shot (Minority) - 33.33 31.25 32.26
5-Shot 65.62 52.38 54.55 53.33
5-Shot (Minority) - 41.67 4545 4348

A.4 Experimental Settings

This section details the experimental configurations, including the system prompt used for tabular-to-text
conversion and the hyperparameters for baseline models and DistilBERT.

A.4.1 System Prompt

The following system prompt was used to configure models for tabular-to-text conversion, ensuring
consistent instruction for predictive maintenance and classification tasks across datasets:

System Prompt — Tabular-to-Text Conversion

You are a data annotation assistant specialized in transforming structured tabular data into
instruction-tuned text for language model fine-tuning. For each dataset, summarize the following
in a concise format:

* Dataset Overview: Provide the name, domain, purpose, size, and context in one line. [e.g.,
“SECOM, Semiconductor Manufacturing, Predict process failures, 1567 samples, Sensor data
with noise”’]

* Feature Details: List included features with name, description, type, and any relevant
mappings; mention excluded features if any.

» Target Variable: Specify the target column, its type (e.g., binary, multiclass, regression), and
label mappings (e.g., 0=Pass, 1=Fail).

\.

A.4.2 Baseline Model Hyperparameters

Table 8 lists the hyperparameter search spaces for the baseline models (k-NN, Decision Tree, Random
Forest, SVM, XGBoost, MLP, 1D CNN, and Transformer) used in our experiments. These settings were
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Table 8: Baseline Model Hyperparameters

Model Hyperparameters
k-NN n_neighbors € {3,5,7,9}; weights € {uniform, distance}; metric € {euclidean,
manhattan }

Decision Tree  maxz_depth € {None, 10, 20, 30}; min_samples_split € {2,5,10};
min_samples_leaf € {1,2,4}

Random Forest n_estimators €  {50,100,200}; maz_depth € {None, 10, 20};
min_samples_split € {2,5}; min_samples_leaf € {1,2}

SVM C € {0.1,1,10}; kernel € {linear, rbf}; class_weight € {balanced, None}

XGBoost n_estimators € {50,100,200}; maz_depth € {3,4,5}; learning_rate €
{0.01,0.1,0.2}; subsample € {0.8,1}; colsample_bytree € {0.8,1}

MLP 3 hidden layers: 64, 32, 16 units; ReLU activation; sigmoid/softmax output; Adam
optimizer; 50 epochs; batch size 32; learning rate 0.001

1D CNN Conv1D: 64 filters, kernel size 5; dense layers: 64, 32 units; dropout 0.5; sigmoid/-
softmax output; 50 epochs; batch size 32

Transformer 3 encoder blocks; 8 attention heads; embedding dimension 256; FFN dimension 512;
dense layer: 32 units, ReLU activation; sigmoid/softmax output; 50 epochs; batch
size 32

optimized to ensure a fair comparison with our proposed approach.

A.4.3 Dataset-Specific Hyperparameters

Table 9 specifies the optimal hyperparameters selected for the ML baseline models (k-NN, Decision
Tree, Random Forest, SVM, and XGBoost) for each dataset, ensuring tailored configurations for optimal
performance.

A.4.4 DistiBERT QLoRA Hyperparameters

Table 10 lists the QLoRA hyperparameters used for fine-tuning DistilBERT, optimized for efficient
adaptation to the classification tasks.
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Table 9: Dataset-Specific Hyperparameters for ML Baselines and DistilBERT

Dataset | k-NN | Decision Tree | Random Forest | SVM | XGBoost
Al41 n_neighbors = | maz_depth: n_estimators =| C = 10, | n_estimators =
3, weights : dis- | None, 50, kernel rbf, | 200,
tance, metric : | min_samples_ | max_depth = | class_weight : | maz_depth =
euclidean split = 2, | 20, balanced 5,
min_samples_ | min_samples_ learning_rate =
leaf =1 split = 2, 0.2,
min_samples_ subsample =
leaf =1 0.8,
colsample_bytree =
1
Glass Identification n_neighbors = | max_depth: n_estimators =| C = 0.1, | n_estimators =
3, weights None, 50, kernel : linear, | 50,
uniform, min_samples_ | max_depth: class_weight : | max_depth =
metric split = 2, | None, balanced 3,
euclidean min_samples_ | min_samples_ learning_rate =
leaf =1 split = 2, 0.01,
min_samples_ subsample =
leaf =1 0.8,
colsample_bytree =
0.8
Student Performance n_neighbors = | max_depth = | n_estimators =| C = 10, | n_estimators =
9, weights : dis- | 10, 100, kernel rbf, | 50,
tance, metric : | min_samples_ | max_depth: class_weight : | max_depth =
manhattan split = 2, | None, balanced 4,
min_samples_ | min_samples_ learning_rate =
leaf =2 split = 2, 0.1,
min_samples_ subsample =
leaf =2 1,
colsample_bytree =
0.8
Gas Sensor Array Drift | n_neighbors = | max_depth: n_estimators: C = 0.1, | n_estimators =
3, weights None, None, kernel : linear, | 50,
uniform, min_samples_ | max_depth = | class_weight : | max_depth =
metric split = 2,| 1, balanced 3,
euclidean min_samples_ | min_samples_ learning_rate =
leaf =1 split = 2, 0.1,
min_samples_ subsample =
leaf = 50 0.8,
colsample_bytree =
0.8
Mammographic Mass n_neighbors = | max_depth: n_estimators =| C = 10, | n_estimators =
9, weights None, 50, kernel : linear, | 100,
uniform, min_samples_ | max_depth = | class_weight : | max_depth =
metric split = 10, | 10, balanced 4,
manhattan min_samples_ | min_samples_ learning_rate =
leaf =4 split = 2, 0.01,
min_samples_ subsample =
leaf =2 0.8,
colsample_bytree =
0.8
SECOM n_neighbors = | max_depth: n_estimators =| C = 10, | n_estimators =
3, weights None, 100, kernel rbf, | 50,
uniform, min_samples_ | max_depth: class_weight : | max_depth =
metric split = 5, | None, balanced 3,
manhattan min_samples_ | min_samples_ learning_rate =
leaf =1 split = 2, 0.01,

min_samples_
leaf =1

subsample
0.8,

colsample_bytree =

0.8

16



Table 10: DistilBERT QLoRA Hyperparameters

Parameter Value
Rank (r) 16
Alpha (o) 32
Quantization Bits 4
Dropout 0.05
Target Layers [‘q_lin’, “v_lin’, ‘classifier.dense’, ‘classifier.out_proj’]
Max Input Length 512
Learning Rate le-3
Batch Size 32
Epochs 20
Weight Decay 0.01

17



	Introduction
	Related Work
	Methodology
	Structured Verbalization of Tabular Data
	Linguistically-Informed Minority Class Augmentation
	Parameter-Efficient Fine-Tuning
	Baseline Models and Comparative Analysis
	Ablation Study
	Evaluation Methodology

	Experiments and Results
	Overall Classification Performance
	Safety-Critical Minority Class Performance
	Component Analysis through Ablation Studies
	Discussion

	Conclusion
	Limitations
	Supplementary Results and Specifications
	Detailed Overall Performance
	Detailed Minority Class Performance
	Detailed Zero-Shot and Few-Shot GPT-4o Performance
	Experimental Settings
	System Prompt
	Baseline Model Hyperparameters
	Dataset-Specific Hyperparameters
	DistilBERT QLoRA Hyperparameters



