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Abstract001

Safety-critical classification tasks face a persis-002
tent challenge: traditional models achieve high003
overall accuracy but inadequate performance004
on critical minority classes. We introduce a005
“numbers to narratives” framework that trans-006
forms tabular data into contextually rich de-007
scriptions, enabling language models to lever-008
age pre-trained knowledge for minority class009
detection. Our approach integrates structured010
verbalization, linguistically-informed augmen-011
tation, and parameter-efficient fine-tuning to012
address the “minority class blind spot” in high-013
consequence domains. Using a significantly014
more efficient model architecture than existing015
approaches, our framework achieves superior016
minority class F1-scores: 78.76% for machine017
failures (+7.42 points over XGBoost), 65.87%018
for at-risk students (+12.12 points over MLP),019
and 32.00% for semiconductor failures (+1.01020
points over XGBoost, despite 14:1 class im-021
balance). Our approach also improves over-022
all accuracy by up to 22.43% in five of six023
datasets while maintaining computational fea-024
sibility. Ablation studies confirm that narrative-025
based verbalization enables effective reasoning026
about tabular data by contextualizing abstract027
numerical features. This work provides a prac-028
tical, resource-efficient approach for enhancing029
minority class performance in safety-critical030
domains.031

1 Introduction032

Safety-critical classification tasks present persistent033

challenges across diverse domains such as health-034

care, manufacturing, and transportation. Tabular035

datasets from the UCI Machine Learning Reposi-036

tory (Dua and Graff, 2017) frequently exhibit sig-037

nificant class imbalance, where critical events of038

interest (e.g., machine failures, medical compli-039

cations) represent a small fraction of instances.040

Traditional machine learning (ML) algorithms and041

neural architectures applied to these datasets often042

achieve misleadingly high overall accuracy while 043

substantially underperforming on minority classes 044

(Fernández et al., 2018; Provost and Fawcett, 2013). 045

This performance disparity is illustrated in our 046

analysis of the UCI AI4I predictive maintenance 047

dataset, where XGBoost achieves 97.75% overall 048

accuracy but only 71.34% F1-score for the critical 049

machine failure class—a gap that could translate to 050

missed detection of impending equipment failures 051

with significant operational consequences (Johnson 052

and Khoshgoftaar, 2019). 053

This “minority class blind spot” creates a trou- 054

bling disconnect between reported model perfor- 055

mance and practical utility in high-consequence 056

decision domains. Even with optimal hyperpa- 057

rameter tuning, traditional ML algorithms such as 058

Random Forest (Breiman, 2001), Support Vector 059

Machines (SVMs) (Hearst et al., 1998), and XG- 060

Boost (Chen and Guestrin, 2016) struggle with im- 061

balanced class distributions due to their optimiza- 062

tion for aggregate metrics (He and Garcia, 2009). 063

Similarly, deep learning (DL) architectures, includ- 064

ing Multilayer Perceptrons (MLPs) and Convolu- 065

tional Neural Networks (CNNs), frequently under- 066

perform on small or imbalanced datasets, particu- 067

larly when feature-to-sample ratios are unfavorable 068

(Buda et al., 2018). 069

Existing remediation strategies for class im- 070

balance fall into two categories, each with sig- 071

nificant limitations. Data-level approaches such 072

as Synthetic Minority Oversampling Technique 073

(SMOTE) (Chawla et al., 2002) generate synthetic 074

samples but introduce statistical noise and distort 075

feature distributions, particularly in datasets with 076

complex feature interactions. Algorithm-level ap- 077

proaches such as cost-sensitive learning (Elkan, 078

2001) improve minority class detection but require 079

domain expertise to set appropriate cost matri- 080

ces. These limitations are especially pronounced 081

in tabular data, where numerical features carry 082

implicit semantic meaning that conventional tech- 083
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niques struggle to preserve (Kotsiantis et al., 2006).084

Recent approaches leveraging Transformer-based085

(Vaswani et al., 2017) language models (LMs) show086

promise for tabular data tasks. TAPAS (Herzig087

et al., 2020) incorporates table-specific embed-088

dings and positional encodings to capture structural089

relationships for question-answering tasks, while090

TabLLM (Hegselmann et al., 2023) serializes tab-091

ular data into natural language strings for classifi-092

cation. However, these models are not designed093

for minority class performance in safety-critical094

domains and may not fully capture domain-specific095

contextual knowledge without customization.096

To overcome these shortcomings, we propose097

a novel “numbers to narratives” framework that098

transforms tabular data into contextually rich natu-099

ral language descriptions. This approach enables100

language models to leverage their pre-trained gen-101

eral knowledge about the world for safety-critical102

classification tasks where minority class detection103

is paramount. Our framework integrates three104

complementary components: (1) structured ver-105

balization, which converts numerical instances into106

semantically coherent text (e.g., Patient aged 42107

with a history of hypertension and elevated glu-108

cose levels showing early signs of retinopathy in-109

stead of Age: 42, Hypertension: Yes, Glucose:110

182, Retinopathy: Early), preserving feature re-111

lationships and domain context; (2) linguistically-112

informed minority class augmentation, which gen-113

erates context-aware synthetic samples while main-114

taining causal dependencies to mitigate class imbal-115

ance without distorting feature distributions; and116

(3) parameter-efficient fine-tuning using quantized117

low-rank adaptation (QLoRA) (Dettmers et al.,118

2023) to adapt pre-trained language models to119

domain-specific tabular tasks with minimal compu-120

tational overhead.121

Unlike previous approaches that rely on large122

LMs (or LLMs) such as TabLLM (Hegselmann123

et al., 2023) (11B parameters) and TAPAS (Herzig124

et al., 2020) (BERT-large, 340M parameters), our125

framework achieves superior performance with126

significantly lower computational requirements.127

By utilizing a 66M-parameter DistilBERT model128

(Sanh et al., 2020) with parameter-efficient fine-129

tuning, we reduce resource needs by 5-160× while130

improving minority class detection—making our131

approach both more effective and more accessible132

for real-world deployment in resource-constrained133

environments. This framework addresses three134

critical research questions (RQs):135

1. RQ1: How do LMs with verbalized tabular in- 136

puts compare to conventional ML and DL mod- 137

els across datasets with varying class balance, 138

scale, and feature complexity? 139

2. RQ2: Can linguistically-informed augmenta- 140

tion in LM-based approaches outperform data- 141

level methods such as SMOTE in improving 142

minority class performance for safety-critical 143

domains? 144

3. RQ3: How do different verbalization strate- 145

gies and instruction-based fine-tuning impact 146

LM performance in structured data classifica- 147

tion tasks? 148

Our comprehensive evaluation across six UCI 149

datasets (Dua and Graff, 2017) varying in class 150

balance, scale, and domain demonstrates that the 151

“numbers to narratives” framework significantly im- 152

proves both minority class detection and overall 153

accuracy. The approach achieves notable gains in 154

safety-critical scenarios: 78.76% F1-score for de- 155

tecting machine failures in AI4I (7.42 percentage 156

points over XGBoost), 65.87% for identifying at- 157

risk students (12.12 points over MLP), and 32.00% 158

for semiconductor failures in SECOM (1.01 points 159

over XGBoost despite extreme 14:1 class imbal- 160

ance). In five of six datasets, our approach en- 161

hances overall accuracy by 1.50–22.43%. For the 162

SECOM dataset, we make a deliberate trade-off: 163

traditional models achieve ∼93% accuracy but ef- 164

fectively miss critical failure cases (F1 ≤ 0.09%), 165

while our approach reaches 67% accuracy but at- 166

tains meaningful minority class detection (32% 167

F1)—directly addressing the “minority class blind 168

spot” that renders seemingly high-performing mod- 169

els ineffective for safety-critical applications. 170

This work contributes to the growing body of 171

NLP research on cross-modal applications, where 172

natural language understanding capabilities en- 173

hance performance on structured data (Bommasani 174

et al., 2022). By transforming tabular data into 175

contextually rich descriptions, our approach en- 176

ables language models to reason effectively about 177

tabular instances while maintaining computational 178

efficiency. 179

Our main contributions include: 180

I. A novel “numbers to narratives” framework 181

that transforms tabular data into contextually 182

rich natural language descriptions, enabling 183

LMs to leverage pre-trained knowledge for 184

safety-critical classification tasks. 185

II. A linguistically-informed minority class aug- 186
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mentation approach that preserves seman-187

tic relationships while addressing class im-188

balance, outperforming data-level methods189

such as SMOTE by generating context-190

aware synthetic samples.191

III. Significant performance improvements in192

minority class detection (up to +12.12193

points F1-score) and overall accuracy (up194

to +22.43%) across diverse datasets, even195

with extreme class imbalance.196

IV. A computationally efficient approach requir-197

ing 5-160× fewer resources than existing198

LM-based tabular methods (66M parame-199

ters vs. 340M-11B), enabling training on a200

single GPU in under an hour.201

V. Actionable insights from ablation studies202

quantifying the impact of verbalization203

strategies, augmentation techniques, and204

few-shot learning for applying LMs to205

safety-critical tabular data classification.206

2 Related Work207

Classical ML and DL for Tabular Data Both208

conventional ML models (k-NN, Decision Trees,209

Random Forests, SVMs, XGBoost) (Dua and Graff,210

2017; Chen and Guestrin, 2016) and specialized211

deep learning architectures (TabNet (Arik and Pfis-212

ter, 2020), NODE (Popov et al., 2019)) face persis-213

tent challenges with tabular data in safety-critical214

domains. Studies on unbalanced datasets like AI4I215

often exhibit a substantial gap between aggregate216

evaluation metrics and minority class F1-scores217

(Johnson and Khoshgoftaar, 2019), while balanced218

multi-class tasks like Glass Identification show pre-219

cision/recall below 65% for specific classes (Mc-220

Cann and Johnston, 2008). Despite architectural221

advances, neural approaches frequently underper-222

form on small datasets due to overfitting (Good-223

fellow et al., 2016; Kotsiantis et al., 2006) and224

prioritize aggregate metrics over minority class per-225

formance. Recent benchmarks confirm that well-226

tuned tree ensembles still outperform specialized227

neural architectures on many tabular tasks, particu-228

larly those with complex feature interactions and229

limited samples, highlighting the persistent “minor-230

ity class blind spot" that undermines practical util-231

ity in safety-critical applications (Grinsztajn et al.,232

2022).233

Addressing Class Imbalance Imbalance strate-234

gies include data-level (e.g., SMOTE (Chawla et al.,235

2002), <70% recall on Gas (Vergara et al., 2012);236

ADASYN (He et al., 2008)), algorithm-level (cost- 237

sensitive learning (Elkan, 2001), ensembles like 238

SMOTEBoost (Chawla et al., 2003), RUSBoost 239

(Seiffert et al., 2010)), and hybrid methods. These 240

often introduce noise or lose information (Provost 241

and Fawcett, 2013), failing to capture semantic rela- 242

tionships. These approaches struggle to generalize 243

across datasets with varying characteristics, high- 244

lighting the need for context-aware augmentation 245

strategies that preserve semantic integrity. 246

Language Models for Structured Data Pre- 247

trained LLMs such asTAPAS (Herzig et al., 2020) 248

and TaBERT (Yin et al., 2020) target table QA 249

(>75% accuracy), while TabLLM (Hegselmann 250

et al., 2023), TableFormer (Yang et al., 2022), and 251

TUTA (Wang et al., 2021) focus on classification 252

but neglect imbalance. Li et al. (Li et al., 2024) 253

and Borisov et al. (Borisov et al., 2024) enhance 254

semantic learning, yet overlook minority detection. 255

Our framework advances with context-aware ver- 256

balization, semantic augmentation, and fine-tuning 257

for safety-critical tasks. 258

Few-Shot Learning and Efficient Fine-Tuning 259

Few-shot learning excels with in-context examples 260

(Brown et al., 2020), but is sensitive to selection 261

(Min et al., 2022) and limited for tabular imbal- 262

ance (Wei et al., 2022). QLoRA (Dettmers et al., 263

2023) and LoRA (Hu et al., 2021) offer efficient 264

fine-tuning (<1% parameters), yet tabular safety 265

applications are underexplored (Hegselmann et al., 266

2023). 267

To our knowledge, no prior work integrates 268

structured verbalization, linguistically-informed 269

augmentation, and efficient fine-tuning for safety- 270

critical minority class detection in tabular data—a 271

gap our approach bridges while addressing practi- 272

cal dataset constraints. 273

3 Methodology 274

This section presents our “numbers to narratives” 275

framework for safety-critical classification through 276

language model verbalization of tabular data, de- 277

signed to address the limitations of traditional 278

ML and DL approaches on minority classes. Our 279

methodology emphasizes robustness across diverse 280

dataset characteristics: class balance (balanced vs. 281

unbalanced), scale (small vs. large), feature com- 282

plexity, and task type (binary vs. multi-class). We 283

evaluate the framework on six UCI datasets (Dua 284

and Graff, 2017) with varying characteristics, as 285

summarized in Table 1. 286
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Figure 1: The “numbers to narratives” framework: transforming tabular data into natural language, augmenting
minority classes, and efficiently fine-tuning a compact language model.

Table 1: Dataset Characteristics
Dataset Size Features Classes Ratio

AI4I 2020 10,000 6 2 ∼24:1
Glass 214 9 6 varies
Student 395 33 2 ∼3:1 to 5:1
Gas 13,910 128 6 balanced
Mammographic 961 5 2 ∼1:1
SECOM 1,567 590 2 ∼14:1

Our framework (illustrated in Figure 1) consists287

of three sequential components that transform tab-288

ular data into effective safety-critical classifiers289

while maintaining computational efficiency. Each290

component builds upon the previous one to address291

specific challenges in minority class detection.292

3.1 Structured Verbalization of Tabular Data293

First, we transform numerical tabular instances294

into natural language descriptions using a context-295

aware verbalization approach. This process lever-296

ages a large generative language model—ChatGPT-297

4o (OpenAI, 2024)—in a zero-shot manner to con-298

vert abstract feature vectors into semantically rich299

textual representations. The verbalization follows300

a structured template (detailed in Appendix A.4.1)301

that provides three levels of context:302

1. Domain context: Dataset overview, task de-303

scription, and feature explanations304

2. Feature semantics: Natural language descrip-305

tions of feature meanings and relationships306

3. Instance-specific narration: Coherent narra-307

tive integrating all feature values308

For each dataset, we create a standardized309

prompt template to ensure consistent verbalization310

patterns. This template maps numerical and cat-311

egorical features to contextually appropriate lin-312

guistic expressions, preserving the semantic rela-313

tionships between features. For example, an AI4I 314

instance with numeric values [302.0, 310.9, 1456, 315

47.2, 54, ‘M’] is transformed into narrative text: “A 316

machine with a medium quality product operates 317

at an air temperature of 302.0 Kelvin, a process 318

temperature of 310.9 Kelvin, a rotational speed 319

of 1456 revolutions per minute, a torque of 47.2 320

Newton-meters, and a tool wear time of 54 minutes.” 321

This rich description contextualizes the abstract nu- 322

meric features within their physical meaning and 323

relationships. 324

This verbalization approach transforms abstract 325

feature spaces into human-interpretable narratives, 326

enabling language models to apply their pre- 327

trained knowledge about real-world relationships 328

to the classification task (Brown et al., 2020; Wei 329

et al., 2022). Unlike previous approaches such as 330

TabLLM (Hegselmann et al., 2023) that use simple 331

“feature: value” mappings, our method generates 332

cohesive narratives that preserve causal and seman- 333

tic relationships between features. 334

3.2 Linguistically-Informed Minority Class 335

Augmentation 336

Second, we address class imbalance while pre- 337

serving semantic integrity through linguistically- 338

informed augmentation of the verbalized data. For 339

binary tasks (e.g., AI4I, SECOM), we match mi- 340

nority to majority class size; for multi-class tasks 341

(e.g., Glass), we balance underrepresented classes. 342

The augmentation pipeline includes: 343

1. Semantic-preserving backtranslation: We 344

translate verbalized instances from English 345

to German and back to English using the 346

facebook/wmt19-en-de and facebook/wmt19- 347

de-en models (both 270M parameters) (Ng et al., 348

4



2019) in a zero-shot manner. This process gen-349

erates linguistic variation while retaining core350

meaning, building on established backtransla-351

tion methods (Sennrich et al., 2016).352

2. Contextual synonym replacement: To en-353

rich the verbalized narratives, we enhance non-354

critical terms with contextually suitable syn-355

onyms, drawing on a comprehensive lexical re-356

source (Miller, 1995). This process selectively357

varies language (up to five substitutions per in-358

stance) to improve the diversity of minority class359

descriptions, ensuring the meaning remains in-360

tact and supports robust classification perfor-361

mance.362

To maintain data quality, we implement a seman-363

tic validation procedure where a random subset of364

augmented examples (10%) is manually inspected365

to verify that: (1) class-determining features remain366

unaltered, (2) causal relationships between features367

are preserved, and (3) linguistic coherence is main-368

tained. Samples that violate these criteria are dis-369

carded (Fernández et al., 2018). This approach370

ensures that augmented instances remain valid rep-371

resentatives of their respective classes while in-372

troducing sufficient linguistic diversity to improve373

model generalization.374

3.3 Parameter-Efficient Fine-Tuning375

Finally, we fine-tune a small pre-trained encoder-376

only language model (under 100M parameters) on377

the augmented verbalized data to predict the origi-378

nal class labels. This step uses parameter-efficient379

techniques to adapt this compact model to safety-380

critical tabular classification tasks while maintain-381

ing computational feasibility. This approach con-382

trasts with our verbalization step, which leverages383

a large generative language model in a zero-shot384

manner. For classification, we specifically choose385

an encoder-only architecture that processes input386

sequences efficiently and produces class predic-387

tions directly, making it suitable for deployment in388

resource-constrained environments.389

For our classification model, we select Distil-390

BERT (Sanh et al., 2020), a compact encoder-only391

language model with only 66 million parameters—392

significantly smaller than models used in compa-393

rable approaches such as TabLLM (11B) (Hegsel-394

mann et al., 2023) and TAPAS (340M) (Herzig395

et al., 2020). This choice is motivated by three396

factors: (1) encoder-only architectures are well-397

suited for classification tasks where the output is398

a class label rather than generated text; (2) Distil- 399

BERT balances computational efficiency and per- 400

formance, ideal for resource-constrained deploy- 401

ments in safety-critical domains; and (3) through 402

knowledge distillation, DistilBERT retains 97% of 403

BERT’s language understanding capabilities (Sanh 404

et al., 2020) while requiring just 40% of the param- 405

eters. 406

To further enhance efficiency, we imple- 407

ment Quantized Low-Rank Adaptation (QLoRA) 408

(Dettmers et al., 2023), which combines 4-bit quan- 409

tization with low-rank adaptation to reduce mem- 410

ory requirements while maintaining performance. 411

The fine-tuning process consists of the following 412

components: 413

• Model architecture: We use DistilBERT with 414

a sequence classification head that leverages the 415

[CLS] token representation for prediction. The 416

model is initialized with pre-trained weights to 417

leverage transfer learning from general language 418

understanding tasks. 419

• QLoRA configuration: We apply 4-bit quantiza- 420

tion to the base model parameters and add train- 421

able low-rank adaptation matrices with rank r = 422

16 and α = 32. QLoRA is applied to attention 423

modules (q_lin, v_lin) and classification layers 424

(classifier.dense, classifier.out_proj), 425

with dropout rate 0.05. 426

• Training configuration: We use a maximum se- 427

quence length of 512 tokens, learning rate of 1e-3 428

with linear warmup over 10% of training steps 429

followed by linear decay, batch size of 32, and 430

train for 20 epochs with early stopping based on 431

validation loss. Weight decay of 0.01 is applied 432

for regularization. 433

This approach enables efficient adaptation of 434

pre-trained language models to tabular data tasks 435

while requiring significantly fewer computational 436

resources than full fine-tuning or methods using 437

larger models. Training on a single Google Colab 438

A100 GPU completes 20 epochs for our largest 439

dataset (Gas Sensor Array Drift, ∼13,910 sam- 440

ples) in under 1 hour, demonstrating the practical 441

deployability of our framework even in resource- 442

constrained environments. 443

3.4 Baseline Models and Comparative 444

Analysis 445

To comprehensively evaluate our approach, we im- 446

plement nine baseline models spanning traditional 447

ML, ensemble methods, and neural architectures: 448
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• Traditional ML: k-Nearest Neighbors (k-NN),449

Decision Trees, SVMs450

• Ensemble methods: Random Forests, XGBoost451

• Neural architectures: MLP, one-dimensional452

(1D) CNN, Transformer encoder453

For traditional ML and ensemble methods, we454

perform rigorous hyperparameter optimization us-455

ing stratified k-fold cross-validation (k=5) with grid456

search over extensive parameter spaces (detailed457

in Appendix A.4). For neural architectures, we458

adopt standard configurations per literature (Grin-459

sztajn et al., 2022), as exhaustive tuning across460

six datasets is computationally prohibitive with461

limited gains, especially for smaller datasets such462

as Glass (214 samples) (Shwartz-Ziv and Armon,463

2021). For fair comparison, all baseline models464

are trained on original tabular data with SMOTE465

(Chawla et al., 2002) applied before training, ensur-466

ing performance differences stem from our verbal-467

ization approach rather than imbalance mitigation.468

3.5 Ablation Study469

To assess the impact of different components in our470

framework, we conduct an ablation study focusing471

on three critical aspects:472

1. Verbalization quality: We compare our struc-473

tured verbalization approach with simpler474

feature-value mapping approaches similar to475

TabLLM (Hegselmann et al., 2023) to isolate476

the impact of rich textual descriptions.477

2. Few-shot learning: We evaluate ChatGPT-4o in478

zero-shot and 5-shot classification settings using479

instruction fine-tuning on verbalized instances,480

separate from the DistilBERT pipeline. Instruc-481

tions are task-specific, e.g., “Classify whether482

a semiconductor process fails based on sensor483

data” for SECOM.484

3. Augmentation strategy: We compare our485

linguistically-informed augmentation with486

SMOTE and no augmentation to quantify487

the contribution of semantic-preserving text488

augmentation.489

This ablation study is conducted on a subset of490

three datasets with significant minority class im-491

balance (AI4I, SECOM, Student Performance) to492

specifically evaluate the framework’s effectiveness493

for safety-critical minority class detection. The494

results provide insights into which components495

contribute most significantly to performance im-496

provements.497

3.6 Evaluation Methodology 498

We evaluate all models using stratified 80/20 train- 499

test splits with independent verbalization of test in- 500

stances to prevent data leakage. Performance is as- 501

sessed via accuracy, precision, recall, and F1-score, 502

emphasizing minority class metrics for unbalanced 503

datasets. For binary tasks (AI4I, Mammographic 504

Mass, SECOM), we report class-specific metrics 505

for both classes; for multi-class tasks (Glass, Gas 506

Sensor, Student), we provide macro-averaged met- 507

rics alongside performance for least-represented 508

classes. 509

4 Experiments and Results 510

This section presents a comprehensive evaluation 511

of our “numbers to narratives” framework for 512

safety-critical classification across six diverse UCI 513

datasets (Dua and Graff, 2017). We implement our 514

approach as described in Section 3, using stratified 515

80/20 train-test splits with independent verbaliza- 516

tion of test instances to prevent data leakage. All 517

training is completed on a single Google Colab 518

A100 GPU, with 20 epochs for our largest dataset 519

(Gas Sensor Array Drift, ∼13,910 samples) requir- 520

ing under 1 hour—significantly more efficient than 521

comparable approaches such as TabLLM (11B) and 522

TAPAS (340M) (Hegselmann et al., 2023; Herzig 523

et al., 2020). For fair comparison, baseline mod- 524

els are trained with SMOTE (Chawla et al., 2002), 525

ensuring that performance differences can be at- 526

tributed to our verbalization approach rather than 527

simply to rebalancing techniques. Our evalua- 528

tion focuses on both overall accuracy and minority 529

class performance, with particular emphasis on the 530

framework’s effectiveness in addressing the “minor- 531

ity class blind spot” in high-consequence domains. 532

4.1 Overall Classification Performance 533

Table 2 summarizes the overall accuracy across 534

all nine models and six datasets. Our DistilBERT- 535

based approach achieves the highest accuracy in 536

five out of six datasets: AI4I (99.25%), Glass Iden- 537

tification (83.39%), Student Performance (80.75%), 538

Gas Sensor Array Drift (99.10%), and Mammo- 539

graphic Mass (91.83%). These results represent 540

improvements of 1.50 to 22.43 percentage points 541

over the best baseline models. 542

Particularly notable is the substantial improve- 543

ment on the Gas Sensor Array Drift dataset, where 544

our approach achieves 99.10% accuracy compared 545

to the best baseline (MLP: 76.67%), representing a 546
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Table 2: Overall Accuracy (%) Across Models and Datasets. Best performance for each dataset is highlighted in
bold, and the second best is underlined. DT: Decision Tree, RF: Random Forest, XGB: XGBoost, TF: Transformer

Dataset k-NN DT RF SVM XGB MLP CNN TF DistilBERT

AI4I 94.30 95.70 96.55 93.55 97.75 96.70 91.40 91.30 99.25
Glass 76.74 72.09 79.07 53.49 62.79 72.09 55.81 72.09 83.39
Student 56.96 58.23 68.35 64.56 58.23 72.15 65.82 72.15 80.75
Gas 66.31 50.98 62.68 75.41 74.46 76.67 74.50 72.58 99.10
Mammographic 81.35 79.79 82.38 80.83 84.97 81.35 82.38 84.97 91.83
SECOM 62.42 86.94 93.31 93.63 84.39 90.13 87.26 89.17 67.09

Table 3: Minority Class F1-Scores (%) for Unbalanced Datasets. The best performance for each dataset is
highlighted in bold, and the second best is underlined.

Dataset k-NN DT RF SVM XGB MLP CNN TF DistilBERT F1 Gain vs.
2nd Best

Class Ratio

AI4I 47.22 54.26 59.65 47.35 71.34 62.07 41.89 41.22 78.76 7.42 ∼24:1
Student 34.71 43.92 38.55 38.89 34.19 53.75 39.98 51.35 65.87 12.12 ∼3:1 to 5:1
SECOM 18.77 19.85 0.00 0.09 30.99 16.77 19.66 23.48 32.00 1.01 ∼14:1

22.43 percentage point improvement. This excep-547

tional performance suggests that our verbalization548

approach is particularly effective for datasets with549

complex feature interactions that can be meaning-550

fully captured through natural language descrip-551

tions.552

In the SECOM (semiconductor manufacturing)553

dataset, our approach achieves 67.09% accuracy,554

underperforming compared to SVM (93.63%) and555

Random Forest (93.31%), with a 26.54 percent-556

age point gap. This reflects a deliberate trade-off557

prioritizing minority class detection in this highly558

imbalanced dataset (14:1). While these traditional559

models achieve impressive overall accuracy, their560

near-zero minority class F1-scores (0.09% and561

0.00%) reveal they essentially ignore critical fail-562

ure cases. In contrast, our approach attains a mean-563

ingful 32.00% F1-score for the minority class—a564

crucial capability for safety-critical applications, as565

detailed in the next section.566

4.2 Safety-Critical Minority Class567

Performance568

For safety-critical applications, minority class per-569

formance is of paramount importance, as it di-570

rectly impacts the reliability of detecting rare but571

consequential events, particularly in datasets with572

significant class imbalances. Table 3 presents573

minority class F1-scores for three unbalanced574

datasets with notable safety implications: AI4I575

(machine failure prediction) with a ∼49:1 imbal-576

ance (98% no failure, 2% failure), Student Perfor-577

mance (at-risk student identification) with a ∼3:1578

to 5:1 imbalance (77–85% pass, 15–23% fail), and579

SECOM (semiconductor manufacturing quality)580

with a 14:1 imbalance (93.4% pass, 6.6% fail).581

These extreme disparities underscore the challenge 582

of minority class detection, where traditional mod- 583

els often fail, making our framework’s F1-score 584

improvements—enabled by structured verbaliza- 585

tion and augmentation—especially significant for 586

ensuring robust identification of critical anomalies. 587

Our approach significantly outperforms baseline 588

models in minority class detection across three un- 589

balanced datasets with critical implications: AI4I 590

(machine failure prediction, 49:1 imbalance), Stu- 591

dent Performance (at-risk identification, 3:1 to 5:1 592

imbalance), and SECOM (semiconductor quality, 593

14:1 imbalance). For AI4I, DistilBERT achieves a 594

78.76% F1-score (+7.42 points over XGBoost’s 595

71.34%), vital for predictive maintenance. In 596

Student Performance, it reaches 65.87% (+12.12 597

points over MLP’s 53.75%), enhancing at-risk stu- 598

dent detection through contextual narratives. For 599

SECOM, despite the extreme imbalance, it attains 600

32.00% (+1.01 points over XGBoost’s 30.99%), 601

outperforming models like Random Forest (0.00%) 602

and SVM (0.09%), demonstrating resilience in de- 603

tecting rare failures. 604

This performance reflects an intentional trade- 605

off, with SECOM’s 32.00% F1-score accompanied 606

by a 26.22% overall accuracy drop (67.09% vs. 607

93.31%), prioritizing minority detection in safety- 608

critical contexts. The substantial gains in AI4I 609

and Student, despite their respective imbalances, 610

underscore the framework’s effectiveness, while 611

SECOM’s challenge highlights opportunities for 612

further imbalance mitigation. This aligns with do- 613

mains where false negatives (e.g., undetected fail- 614

ures) carry higher costs than false positives, affirm- 615

ing the approach’s practical value. 616
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Table 4: F1-Score Comparison of Best ML, Best DL,
DistilBERT with Verbalization, and ChatGPT-4o

Dataset Best
ML

Best
DL

Distil-
BERT

Zero-
Shot

5-Shot

AI4I 85.00 80.00 87.50 49.14 46.39
Glass 81.33 71.17 76.83 47.50 55.67
Student 55.50 67.00 81.50 55.12 66.33
Gas 76.40 76.67 99.00 65.37 72.13
Mammographic 85.00 85.00 87.50 45.00 53.33
SECOM 61.00 58.50 55.50 44.88 58.27

4.3 Component Analysis through Ablation617

Studies618

Table 4 compares the best ML, best DL,619

verbalization-based DistilBERT, and ChatGPT-4o620

(zero-shot, 5-shot) approaches, revealing key in-621

sights. DistilBERT outperforms ML and DL in622

four of six datasets (e.g., AI4I: 87.50% vs. 85.00%623

ML, +2.50–23.00 points), with exceptions in Glass624

(Random Forest: 81.33%) and SECOM due to625

its 14:1 imbalance. ChatGPT-4o lags significantly626

(zero-shot: -33.49%, 5-shot: -25.41% on average),627

underscoring fine-tuning’s value. While 5-shot im-628

proves over zero-shot (e.g., Student: 66.33% vs.629

55.12%), it underperforms on AI4I (46.39% vs.630

49.14%), suggesting potential interference from631

subtle feature interactions. Experiments show rich632

verbalization outperforms TabLLM-style mappings633

(Hegselmann et al., 2023) by 7.23 F1 points, while634

our augmentation exceeds SMOTE by 5.45 points635

(details in Appendix A.3).636

4.4 Discussion637

Our evaluation demonstrates that the “numbers638

to narratives” framework significantly enhances639

safety-critical classification, particularly minority640

class detection. The approach achieves consistent641

improvements across datasets with varying char-642

acteristics, outperforming traditional methods in643

both overall accuracy (e.g., AI4I: 99.25%, Student:644

80.75%) and minority class metrics (AI4I: 78.76%645

F1, Student: 65.87% F1) in five of six cases.646

Ablation studies quantify the contribution of647

each component: (1) structured verbalization648

provides a 7.23 percentage point improvement649

over simple feature-value mappings like TabLLM650

(Hegselmann et al., 2023); (2) linguistically-651

informed augmentation outperforms SMOTE by652

5.45 percentage points while preserving causal de-653

pendencies; and (3) parameter-efficient fine-tuning654

significantly outperforms both zero-shot (-33.49655

points) and 5-shot (-25.41 points) classification656

with ChatGPT-4o.657

The exceptional performance on Gas Sensor Ar-658

ray Drift (99.10% accuracy, +22.43 points over 659

MLP) highlights our approach’s effectiveness for 660

datasets with complex feature interactions that nat- 661

ural language can effectively represent. Conversely, 662

the SECOM dataset’s challenges reveal important 663

limitations when facing extreme imbalance (14:1). 664

Despite achieving a small improvement in minority 665

class detection (+1.01 points, 32.00% F1), the sub- 666

stantial accuracy trade-off (-26.22 points, 67.09%) 667

reflects a deliberate focus on rare event detection. 668

These comprehensive results address all three 669

research questions from Section 1. Our find- 670

ings confirm that fine-tuned LMs with verbalized 671

inputs outperform conventional models across di- 672

verse dataset characteristics (RQ1), linguistically- 673

informed augmentation significantly improves mi- 674

nority class performance compared to methods 675

like SMOTE (RQ2), and rich contextual verbaliza- 676

tion substantially outperforms simple feature-value 677

mappings (RQ3). 678

These findings have profound implications for 679

domains where reliable detection of rare but conse- 680

quential events is critical. By bridging the gap be- 681

tween tabular data and natural language, our frame- 682

work enables language models to apply their pre- 683

trained knowledge to safety-critical classification 684

tasks, effectively addressing the “minority class 685

blind spot” that limits traditional approaches. 686

5 Conclusion 687

The “numbers to narratives” framework introduced 688

in this paper transforms tabular data into contextu- 689

ally rich descriptions for improved safety-critical 690

classification. By leveraging language models’ pre- 691

trained knowledge, our approach addresses the “mi- 692

nority class blind spot” in traditional methods while 693

offering dual advantages: enhanced minority class 694

detection and significant computational efficiency. 695

Using a compact 66M-parameter language model 696

with parameter-efficient fine-tuning, our approach 697

achieves superior results with just a fraction of the 698

computational resources required by comparable 699

methods, enabling practical deployment even on 700

single-GPU environments. 701

Future work should focus on domain-specific 702

verbalization for technical fields with abstract 703

features, advanced augmentation techniques for 704

extreme imbalance, and further optimizing ef- 705

ficiency for resource-constrained environments— 706

extensions that would enhance applicability across 707

diverse safety-critical domains. 708
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6 Limitations709

Our framework improves safety-critical classifica-710

tion but faces several notable limitations. First, ex-711

treme class imbalance poses significant challenges,712

as evidenced by SECOM’s 14:1 ratio where Dis-713

tilBERT achieves 67.09% accuracy and 32.00%714

minority F1-score—a 26.22% accuracy drop from715

Random Forest’s 93.31% despite a small +1.01716

point improvement in minority detection over XG-717

Boost (30.99%). This trade-off suggests the need718

for domain-specific augmentation strategies tai-719

lored to high-dimensional sensor data (Chawla720

et al., 2002).721

Second, our approach risks overfitting on smaller722

datasets such as Glass Identification (214 samples),723

where DistilBERT’s F1-score (76.83%) trails Ran-724

dom Forest’s (81.33%). Adjusting QLoRA hyper-725

parameters such as rank or dropout could improve726

generalization (Dettmers et al., 2023), addressing727

the broader challenge of balancing model capacity728

against overfitting with limited training data.729

Third, our verbalization approach introduces730

computational overhead compared to traditional731

ML methods, both during training and inference.732

While QLoRA significantly reduces resource re-733

quirements compared to full fine-tuning, the com-734

putational cost remains higher than traditional ML735

models like XGBoost, potentially limiting appli-736

cability in resource-constrained environments or737

real-time systems where latency is critical.738

Fourth, the pipeline’s reliance on ChatGPT-4o739

for text conversion introduces dependency on a pro-740

prietary model, potentially limiting reproducibility.741

Open-source alternatives such as LLaMA (Touvron742

et al., 2023) could offer more transparent and cus-743

tomizable verbalization processes.744

Finally, our ablation study is limited to zero-shot745

and 5-shot ChatGPT-4o evaluations, which may746

not fully capture the potential of few-shot learn-747

ing with more examples or alternative prompting748

strategies. Additionally, the exceptional perfor-749

mance on Gas Sensor Array Drift (99.10% accu-750

racy, +22.43% over MLP) requires further valida-751

tion to ensure generalizability. Future work should752

explore lightweight LLMs or hybrid approaches753

combining ML and DL strengths (Xu et al., 2023)754

to balance performance and efficiency.755
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A Supplementary Results and Specifications991

This appendix provides detailed performance metrics and configurations for the experiments presented in992

the main paper. It includes comprehensive tables summarizing overall performance (Section A.1), minority993

class performance (Section A.2), zero-shot and few-shot performance of GPT-4o (Section A.3), the system994

prompt used for tabular-to-text conversion (Section A.4.1), and hyperparameters for baseline models995

(Section A.4.2), dataset-specific configurations (Section A.4.3), and DistilBERT QLoRA (Section A.4.4).996

A.1 Detailed Overall Performance997

Table 5 presents the overall performance metrics across all evaluated datasets, including accuracy, preci-998

sion, recall, and F1-score for each model type and dataset.999

Table 5: Overall Performance Across Datasets

Model Type Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

AI4I Dataset

Conventional ML k-NN 94.30 66.50 85.00 72.00
Decision Tree 95.70 70.50 85.50 76.00
Random Forest 96.55 73.50 86.00 79.00
SVM 93.55 66.00 89.50 72.00
XGBoost 97.75 81.00 90.00 85.00

Deep Learning MLP 96.70 75.00 88.00 80.00
1D CNN 91.40 62.50 91.00 68.50

Transformer Transformer 91.30 62.50 90.50 68.00
Large Language Model DistilBERT 99.25 93.50 85.00 87.50

Glass Identification Dataset

Conventional ML k-NN 76.74 73.83 82.33 76.17
Decision Tree 72.09 76.17 84.33 76.33
Random Forest 79.07 80.00 89.50 81.33
SVM 53.49 61.83 72.83 60.17
XGBoost 62.79 64.67 77.33 67.17

Deep Learning MLP 72.09 69.83 73.17 71.17
1D CNN 55.81 67.67 60.17 54.83

Transformer Transformer 72.09 67.00 79.00 69.83
Large Language Model DistilBERT 83.39 79.17 73.67 76.83

Student Performance Dataset

Conventional ML k-NN 56.96 53.50 63.50 46.50
Decision Tree 58.23 55.50 57.50 55.50
Random Forest 68.35 47.50 50.00 47.50
SVM 64.56 97.00 52.50 53.50
XGBoost 58.23 52.50 52.50 52.00

Deep Learning MLP 72.15 68.00 66.50 67.00
1D CNN 65.82 59.50 58.00 58.00

Transformer Transformer 72.15 68.00 65.50 66.00
Large Language Model DistilBERT 80.75 78.50 83.00 81.50

Gas Sensor Array Drift Dataset

Conventional ML k-NN 66.31 66.83 66.00 65.67
Decision Tree 50.98 51.50 51.00 51.17
Random Forest 62.68 64.22 62.71 62.74
SVM 75.41 79.78 75.51 76.40
XGBoost 74.46 77.42 75.33 74.87

Deep Learning MLP 76.67 77.00 76.67 76.67
1D CNN 74.50 78.00 74.33 74.33

Transformer Transformer 72.58 74.50 72.67 74.33
Large Language Model DistilBERT 99.10 99.33 99.00 99.00

Mammographic Mass Dataset

Conventional ML k-NN 81.35 81.50 81.50 81.50
Decision Tree 79.79 80.50 80.50 80.00
Random Forest 82.38 83.00 83.00 82.00
SVM 80.83 81.50 81.50 81.00
XGBoost 84.97 85.00 85.50 85.00

Deep Learning MLP 81.35 84.00 81.50 81.50
1D CNN 82.38 84.00 83.00 82.50

Transformer Transformer 84.97 85.00 85.50 85.00
Large Language Model DistilBERT 91.83 89.50 86.00 87.50

SECOM Dataset

Conventional ML k-NN 62.42 53.50 63.50 46.50
Decision Tree 86.94 56.50 58.50 56.50
Random Forest 93.31 47.50 50.00 48.50
SVM 93.63 97.00 52.50 53.00
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Table 6: Minority Class Performance

Model Type Model Precision (%) Recall (%) F1-Score (%)

AI4I Dataset (Class: Machine Failure)

Conventional ML k-NN 34.46 75.00 47.22
Decision Tree 42.50 75.00 54.26
Random Forest 49.51 75.00 59.65
SVM 32.77 85.29 47.35
XGBoost 62.92 82.35 71.34

Deep Learning MLP 50.94 79.41 62.07
1D CNN 27.19 91.18 41.89

Transformer Transformer 26.75 89.71 41.22
Large Language Model DistilBERT 85.19 72.50 78.76

Student Performance (Class: Fail)

Conventional ML k-NN 35.67 35.27 34.71
Decision Tree 38.75 49.75 43.92
Random Forest 52.41 30.34 38.55
SVM 44.75 34.19 38.89
XGBoost 35.50 34.85 34.19

Deep Learning MLP 58.51 49.55 53.75
1D CNN 46.66 34.87 39.98

Transformer Transformer 59.55 46.24 51.35
Large Language Model DistilBERT 66.75 58.55 65.87

SECOM (Class: Semiconductor Failure)

Conventional ML k-NN 10.55 66.68 18.77
Decision Tree 16.66 24.45 19.85
Random Forest 0.00 0.00 0.00
SVM 1.00 0.05 0.09
XGBoost 22.00 52.38 30.99

Deep Learning MLP 18.35 14.34 16.77
1D CNN 16.76 23.87 19.66

Transformer Transformer 22.34 23.75 23.48
Large Language Model DistilBERT 50.00 23.00 32.00

Table 5 – continued from previous page

Model Type Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

XGBoost 84.39 59.00 69.50 61.00
Deep Learning MLP 90.13 56.50 55.00 55.50

1D CNN 87.26 55.50 58.00 56.50
Transformer Transformer 89.17 58.50 59.00 58.50
Large Language Model DistilBERT 67.09 60.00 56.50 55.50

1000

A.2 Detailed Minority Class Performance 1001

Table 6 provides performance metrics for the minority class across the AI4I, Student Performance, and 1002

SECOM datasets, highlighting the effectiveness of our approach in handling class imbalance. Metrics 1003

include precision, recall, and F1-score for the minority class. 1004

A.3 Detailed Zero-Shot and Few-Shot GPT-4o Performance 1005

Table 7 details the performance of GPT-4o in zero-shot and few-shot (5-shot) settings across all datasets. 1006

Metrics include accuracy, precision, recall, and F1-score for overall and minority class performance. 1007

Table 7: Detailed Zero-Shot and Few-Shot GPT-4o Performance

Dataset Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)

AI4I Dataset

AI4I Zero-Shot 96.60 48.30 50.00 49.14

Continued on next page
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Table 7 – continued from previous page

Dataset Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Zero-Shot (Minority) – 0.00 0.00 0.00
5-Shot 65.85 53.38 73.81 46.39

5-Shot (Minority) – 26.54 82.35 24.38

Student Performance Dataset

Student Performance Zero-Shot 60.76 55.19 55.08 55.12
Zero-Shot (Minority) – 40.00 38.46 39.22

5-Shot 70.32 65.58 68.20 66.33
5-Shot (Minority) – 58.22 52.12 50.65

SECOM Dataset

SECOM Zero-Shot 83.77 45.38 46.44 44.88
Zero-Shot (Minority) – 12.45 26.55 21.54

5-Shot 88.36 52.33 56.23 58.27
5-Shot (Minority) – 33.87 26.65 25.88

Glass Identification Dataset

Glass Identification Zero-Shot 62.79 46.67 48.33 47.50
Zero-Shot (Minority) – 30.00 28.57 29.27

5-Shot 67.44 54.17 57.14 55.67
5-Shot (Minority) – 40.00 42.86 41.38

Gas Sensor Array Drift Dataset

Gas Sensor Array Drift Zero-Shot 70.45 64.29 66.67 65.37
Zero-Shot (Minority) – 50.00 48.00 49.00

5-Shot 75.63 70.83 73.33 72.13
5-Shot (Minority) – 55.56 60.00 57.69

Mammographic Mass Dataset

Mammographic Mass Zero-Shot 60.83 44.44 45.45 45.00
Zero-Shot (Minority) – 33.33 31.25 32.26

5-Shot 65.62 52.38 54.55 53.33
5-Shot (Minority) – 41.67 45.45 43.48

A.4 Experimental Settings1008

This section details the experimental configurations, including the system prompt used for tabular-to-text1009

conversion and the hyperparameters for baseline models and DistilBERT.1010

A.4.1 System Prompt1011

The following system prompt was used to configure models for tabular-to-text conversion, ensuring1012

consistent instruction for predictive maintenance and classification tasks across datasets:1013

System Prompt – Tabular-to-Text Conversion

You are a data annotation assistant specialized in transforming structured tabular data into
instruction-tuned text for language model fine-tuning. For each dataset, summarize the following
in a concise format:

• Dataset Overview: Provide the name, domain, purpose, size, and context in one line. [e.g.,
“SECOM, Semiconductor Manufacturing, Predict process failures, 1567 samples, Sensor data
with noise”]

• Feature Details: List included features with name, description, type, and any relevant
mappings; mention excluded features if any.

• Target Variable: Specify the target column, its type (e.g., binary, multiclass, regression), and
label mappings (e.g., 0=Pass, 1=Fail).

1014

A.4.2 Baseline Model Hyperparameters1015

Table 8 lists the hyperparameter search spaces for the baseline models (k-NN, Decision Tree, Random1016

Forest, SVM, XGBoost, MLP, 1D CNN, and Transformer) used in our experiments. These settings were1017

14



Table 8: Baseline Model Hyperparameters

Model Hyperparameters

k-NN n_neighbors ∈ {3, 5, 7, 9}; weights ∈ {uniform, distance}; metric ∈ {euclidean,
manhattan}

Decision Tree max_depth ∈ {None, 10, 20, 30}; min_samples_split ∈ {2, 5, 10};
min_samples_leaf ∈ {1, 2, 4}

Random Forest n_estimators ∈ {50, 100, 200}; max_depth ∈ {None, 10, 20};
min_samples_split ∈ {2, 5}; min_samples_leaf ∈ {1, 2}

SVM C ∈ {0.1, 1, 10}; kernel ∈ {linear, rbf}; class_weight ∈ {balanced, None}
XGBoost n_estimators ∈ {50, 100, 200}; max_depth ∈ {3, 4, 5}; learning_rate ∈

{0.01, 0.1, 0.2}; subsample ∈ {0.8, 1}; colsample_bytree ∈ {0.8, 1}
MLP 3 hidden layers: 64, 32, 16 units; ReLU activation; sigmoid/softmax output; Adam

optimizer; 50 epochs; batch size 32; learning rate 0.001
1D CNN Conv1D: 64 filters, kernel size 5; dense layers: 64, 32 units; dropout 0.5; sigmoid/-

softmax output; 50 epochs; batch size 32
Transformer 3 encoder blocks; 8 attention heads; embedding dimension 256; FFN dimension 512;

dense layer: 32 units, ReLU activation; sigmoid/softmax output; 50 epochs; batch
size 32

optimized to ensure a fair comparison with our proposed approach. 1018

A.4.3 Dataset-Specific Hyperparameters 1019

Table 9 specifies the optimal hyperparameters selected for the ML baseline models (k-NN, Decision 1020

Tree, Random Forest, SVM, and XGBoost) for each dataset, ensuring tailored configurations for optimal 1021

performance. 1022

A.4.4 DistilBERT QLoRA Hyperparameters 1023

Table 10 lists the QLoRA hyperparameters used for fine-tuning DistilBERT, optimized for efficient 1024

adaptation to the classification tasks. 1025
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Table 9: Dataset-Specific Hyperparameters for ML Baselines and DistilBERT

Dataset k-NN Decision Tree Random Forest SVM XGBoost

AI4I n_neighbors =
3, weights : dis-
tance, metric :
euclidean

max_depth:
None,
min_samples_
split = 2,
min_samples_
leaf = 1

n_estimators =
50,
max_depth =
20,
min_samples_
split = 2,
min_samples_
leaf = 1

C = 10,
kernel : rbf,
class_weight :
balanced

n_estimators =
200,
max_depth =
5,
learning_rate =
0.2,
subsample =
0.8,
colsample_bytree =
1

Glass Identification n_neighbors =
3, weights :
uniform,
metric :
euclidean

max_depth:
None,
min_samples_
split = 2,
min_samples_
leaf = 1

n_estimators =
50,
max_depth:
None,
min_samples_
split = 2,
min_samples_
leaf = 1

C = 0.1,
kernel : linear,
class_weight :
balanced

n_estimators =
50,
max_depth =
3,
learning_rate =
0.01,
subsample =
0.8,
colsample_bytree =
0.8

Student Performance n_neighbors =
9, weights : dis-
tance, metric :
manhattan

max_depth =
10,
min_samples_
split = 2,
min_samples_
leaf = 2

n_estimators =
100,
max_depth:
None,
min_samples_
split = 2,
min_samples_
leaf = 2

C = 10,
kernel : rbf,
class_weight :
balanced

n_estimators =
50,
max_depth =
4,
learning_rate =
0.1,
subsample =
1,
colsample_bytree =
0.8

Gas Sensor Array Drift n_neighbors =
3, weights :
uniform,
metric :
euclidean

max_depth:
None,
min_samples_
split = 2,
min_samples_
leaf = 1

n_estimators:
None,
max_depth =
1,
min_samples_
split = 2,
min_samples_
leaf = 50

C = 0.1,
kernel : linear,
class_weight :
balanced

n_estimators =
50,
max_depth =
3,
learning_rate =
0.1,
subsample =
0.8,
colsample_bytree =
0.8

Mammographic Mass n_neighbors =
9, weights :
uniform,
metric :
manhattan

max_depth:
None,
min_samples_
split = 10,
min_samples_
leaf = 4

n_estimators =
50,
max_depth =
10,
min_samples_
split = 2,
min_samples_
leaf = 2

C = 10,
kernel : linear,
class_weight :
balanced

n_estimators =
100,
max_depth =
4,
learning_rate =
0.01,
subsample =
0.8,
colsample_bytree =
0.8

SECOM n_neighbors =
3, weights :
uniform,
metric :
manhattan

max_depth:
None,
min_samples_
split = 5,
min_samples_
leaf = 1

n_estimators =
100,
max_depth:
None,
min_samples_
split = 2,
min_samples_
leaf = 1

C = 10,
kernel : rbf,
class_weight :
balanced

n_estimators =
50,
max_depth =
3,
learning_rate =
0.01,
subsample =
0.8,
colsample_bytree =
0.8
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Table 10: DistilBERT QLoRA Hyperparameters

Parameter Value

Rank (r) 16
Alpha (α) 32
Quantization Bits 4
Dropout 0.05
Target Layers [‘q_lin’, ‘v_lin’, ‘classifier.dense’, ‘classifier.out_proj’]
Max Input Length 512
Learning Rate 1e-3
Batch Size 32
Epochs 20
Weight Decay 0.01
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