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Abstract

As AI research surges in both impact and vol-
ume, conferences have imposed submission lim-
its to maintain paper quality and alleviate orga-
nizational pressure. In this work, we examine
the fairness of desk-rejection systems under sub-
mission limits and reveal that existing practices
can result in substantial inequities. Specifically,
we formally define the paper submission limit
problem and identify a critical dilemma: when
the number of authors exceeds three, it becomes
impossible to reject papers solely based on ex-
cessive submissions without negatively impacting
innocent authors. Thus, this issue may unfairly af-
fect early-career researchers, as their submissions
may be penalized due to co-authors with signif-
icantly higher submission counts, while senior
researchers with numerous papers face minimal
consequences. To address this, we propose an
optimization-based fairness-aware desk-rejection
mechanism and formally define two fairness met-
rics: worst-case fairness and average fairness. We
prove that optimizing worst-case fairness is NP-
hard, whereas average fairness can be efficiently
optimized via linear programming. Through case
studies, we demonstrate that our proposed sys-
tem ensures greater equity than existing methods,
including those used in CVPR 2025, offering a
more socially just approach to managing exces-
sive submissions in AI conferences.
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1. Introduction
We are living in an era shaped by the unprecedented advance-
ments of Artificial Intelligence (AI), where transformative
breakthroughs have emerged across various domains in just
a few years. A key driving force behind AI’s rapid progress
is the prevalence of top conferences held frequently through-
out the year, offering dynamic platforms to present many of
the field’s most influential papers. For example, ResNet (He
et al., 2016), a foundational milestone in deep learning
with over 250,000 citations, was first introduced at CVPR
2016. Similarly, the Transformer architecture (Vaswani
et al., 2017), the backbone of modern large language models,
emerged at NeurIPS 2017. More recently, diffusion mod-
els (Ho et al., 2020), which represent the state-of-the-art in
image generation, were presented at NeurIPS 2020, while
CLIP (Radford et al., 2021), a leading model for image-text
pretraining, was showcased at ICML 2021. These ground-
breaking contributions from top-tier conferences have sig-
nificantly accelerated the advancement of AI, enriching both
theoretical insights and practical applications.

As AI continues to expand its applications and capabilities
in real-world domains such as dialogue systems (Schulman
et al., 2022; Achiam et al., 2023; Anthropic, 2024), image
generation (Ho et al., 2020; Song et al., 2021), and video
generation (Ho et al., 2022; Blattmann et al., 2023), its
immense potential for commercialization has raised grow-
ing enthusiasm in AI research. This enthusiasm has led to
a rapid, rocket-like increase in the number of AI-related
papers in 2024, as witnessed by recent studies (Stanford,
2024). A direct consequence of this surge is the significant
rise in submissions to AI conferences, which has placed a
heavy burden on program committees tasked with select-
ing papers for acceptance. To address these challenges and
maintain the quality of accepted papers, many leading con-
ferences have introduced submission limits per author. In
2025, a wide range of leading AI conferences, including
CVPR, ICCV, AAAI, WSDM, IJCAI, and KDD, introduced
submission limits per author in their guidelines, ranging
from a maximum of x = 7 to x = 25. Table 1 provides
an overview of these submission limits across major AI
conferences.

However, such a desk-rejection mechanism may result in un-
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Table 1. In this table, we summarize the submission limits of top
conferences in recent years. For details of each conference website,
we refer the readers to Section D in the Appendix. Some confer-
ences (CVPR, ICCV, WSDM, KDD) employ a conventional desk-
reject algorithm (Algorithm 2), where papers are desk-rejected
once an author has registered more than x (the submission limit)
papers. We denote the absence of a limit with “N/A”.

Conference Name Year Submission Limit
CVPR 2025 25
CVPR 2024 N/A
ICCV 2025 25
ICCV 2023 N/A
AAAI 2023-2025 10
AAAI 2022 N/A

WSDM 2021-2025 10
WSDM 2020 N/A
IJCAI 2021-2025 8
IJCAI 2020 6
IJCAI 2018-2019 10
IJCAI 2017 N/A
KDD 2024-2025 7
KDD 2023 N/A

intended negative societal impacts due to the Matthew effect
in the research community (Bol et al., 2018), as illustrated
in Figure 1. Recent research has shown that the impact of
a setback (e.g., a paper rejection) is often much greater for
early-career researchers than for senior researchers (Wang
et al., 2019; Sun et al., 2023), which shows that the effect
of a desk rejection can vary significantly depending on the
author’s career stage. For instance, as illustrated in Fig-
ure 2, consider the case of a young student submitting their
only draft to the conference, co-authored with a renowned
researcher who submits numerous papers annually. If the
paper is desk-rejected due to exceeding submission limits,
the senior researcher might view this as a neglectable in-
convenience. In contrast, the rejection could have severe
consequences for the student, as the paper might be crucial
for applying to graduate programs, securing employment,
or forming a chapter of their thesis. This disparity in the
impact of desk rejections may worsen the Matthew effect
in the AI community by disproportionately disadvantaging
researchers with only one or two submitted papers, while
having little effect on prolific senior researchers. Such out-
comes raise important concerns about fairness and equity in
current desk-rejection policies.

In response to the challenges posed by paper-limit-based
desk-rejection systems, this work investigates an important
and practical problem: ensuring fairness in desk-rejection
systems for AI conferences under submission limits. As
illustrated in Figure 3, our goal is to design a fair desk-

Students Professor

Conference

··· ···

Figure 1. The Matthew Effect in the AI community. This figure
illustrates the worsening Matthew Effect in the AI community,
where senior researchers tend to have a significantly higher number
of submissions, while junior researchers have relatively few.

rejection system that prioritizes rejecting submissions from
authors with many papers while protecting those with fewer
submissions, particularly early-career researchers. Our key
contributions are as follows:

• We formally define the paper submission limit problem
in desk-rejection systems and prove that an ideal sys-
tem that rejects papers solely based on each author’s
excessive submissions is mathematically impossible
when there are more than three authors.

• We introduce two fairness metrics: worst-case fairness
and average fairness. We formulate the fairness-aware
paper submission limit problem as an integer program-
ming problem. We formally prove that optimizing
worst-case fairness is NP-hard, while the average fair-
ness optimization problem can be solved efficiently
using any off-the-shelf linear programming solver.

• Through case studies, we demonstrate that our pro-
posed system achieves greater fairness compared to
existing approaches used in top AI conferences such
as CVPR 2025, promoting social justice and fostering
a more inclusive ML research community.

Roadmap. Our paper is organized as follows: In Sec-
tion 2, we review related literature. In Section 3, we present
the key definition of the paper submission limit problem.
In Section 4, we show that no algorithm can reach the
ideal desk-rejection system without unfair collective pun-
ishments. In Section 5, we present our new fairness-aware
desk-rejection system. In Section 6, we show by case studies
that our system is better than existing systems. In Section 8,
we present our conclusions and discuss future directions.
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Figure 2. The unfairness of desk rejection based on submission limits. Left: A careless mistake. In this scenario, a young student
submits the only paper, co-authored with a professor who submits numerous papers, and carelessly exceeds the submission limit. The
paper, which may aim to apply to graduate programs, secure employment, or form a chapter of the thesis, is very important for the
student but may not be for the professor. Right: The desk rejection. If the paper is desk-rejected due to submission limits, it poses a
minor inconvenience to the professor, and the professor can shrug about it due to his remaining papers. However, it could have severe
consequences for the students, as the paper is crucial for the student’s future plans.

2. Related Works
2.1. Desk Reject Mechanism

A wide range of desk-rejection mechanisms have been de-
veloped to reduce the human effort involved in the peer-
review process (Ansell & Samuels, 2021). One of the
most widely adopted desk-rejection rules is rejecting pa-
pers that violate anonymity requirements (Jefferson et al.,
2002; Tennant, 2018). This rule is crucial for maintaining
unbiased evaluations of researchers from diverse institu-
tions and career levels while preventing conflicts of interest.
Another common mechanism addresses duplicate and dual
submissions (Stone, 2003; Leopold, 2013), alleviating the
duplication of reviewer efforts across multiple venues and
upholding ethical publication standards. Additionally, pla-
giarism (King & ChatGPT, 2023; Elali & Rachid, 2023) is a
major concern in desk rejections at AI conferences, as it un-
dermines the integrity of the academic community, violates
intellectual property rights, and compromises the original-
ity and credibility of research. In response to the growing
number of submissions to AI conferences, new types of
desk-rejection rules have recently emerged (Leyton-Brown
et al., 2024). For example, IJCAI 2020 and NeurIPS 2020
implemented a fast desk-rejection mechanism, allowing area
chairs to reject papers based on a quick review of the abstract
and main content to manage the review workload. However,
this approach introduced noise and sometimes resulted in
the rejection of generally good papers, leading to its reduced
prevalence compared to more systematic mechanisms like
enforcing submission limits, which is the main focus of this
paper. To the best of our knowledge, limited literature has
explored these emerging desk-rejection techniques, and our
work is among the first to formally study the desk-rejection

mechanism based on maximum submission limits.

2.2. The Competitive Race in AI Publication

Due to the rapid increase in submissions to AI conferences
in recent years (Stanford, 2024), concerns about the intense
competition in these conferences are growing. As Bengio
Yoshua noted (Bengio, 2020): “It is more competitive, ev-
erything is happening fast and putting a lot of pressure on
everyone. The field has grown exponentially in size. Stu-
dents are more protective of their ideas and in a hurry to put
them out, by fear that someone else would be working on
the same thing elsewhere, and in general, a PhD ends up
with at least 50% more papers than what I gather it was 20 or
30 years ago.” Consequently, paper acceptance has become
increasingly critical in AI job applications (Ahmed, 2022;
Besiroglu et al., 2024), as having more papers is now the
norm. Therefore, it is crucial to establish fair and practical
guidelines for desk rejections (Teixeira da Silva et al., 2018),
ensuring that every group of authors is treated equitably in
AI conferences.

2.3. Fairness System Design

Fairness (Francez, 2012; Mehrabi et al., 2021) is a key prin-
ciple of social justice, reflecting the absence of bias toward
individuals or groups based on inherent characteristics. Due
to its profound societal impact, fairness has become an
essential consideration in the design of algorithms across
various computer systems that interact with human factors.
In recommender systems, fairness can manifest in various
forms, such as item fairness (Zhang et al., 2021; Ge et al.,
2021), which ensures that items from different categories or
with varying levels of prior exposure are recommended equi-
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tably, and user fairness (Li et al., 2021a;b), which guarantees
that all users, regardless of their backgrounds or preferences,
have equal opportunities to access relevant content. These
fairness measures help balance opportunities for both users
and retailers, fostering equity in the recommendation pro-
cess. In candidate selection systems (Gilliland, 1993; Wang
et al., 2020), fairness ensures that all candidates are eval-
uated solely on merit, independent of factors such as race,
gender, or socio-economic background, promoting equality
and ensuring that the selection processes are inclusive. In
information access systems (Ekstrand et al., 2022), includ-
ing job search (Wu et al., 2022), ranking (Yang et al., 2023),
music discovery (Melchiorre et al., 2021), and selection
problems (Emelianov et al., 2020), fairness guarantees that
all individuals can access the information they need without
discrimination, ensuring equal opportunities for users to
make informed decisions. Similarly, in dialog systems (Guo
et al., 2022; Gallegos et al., 2024), fairness ensures that
language models avoid generating biased text or making
inappropriate word-context associations related to social
groups, supporting equitable and respectful interactions.
Moreover, recent research has investigated group fairness in
peer review processes for AI conferences, highlighting the
importance of equitable evaluation for submissions (Aziz
et al., 2023). Despite the widespread focus on fairness in
algorithmic design, the fairness of desk-rejection mecha-
nisms remains an open question and serves as the primary
motivation for this paper.

3. Preliminary
In this section, we first introduce the notations in Section 3.1.
Then, we present the general problem formulation in Sec-
tion 3.2.

3.1. Notations

For any positive integer n, we use [n] to denote the set
{1, 2, . . . , n}. We use N+ to represent the set of all positive
integers. For two sets B and C, we denote the set difference
as B\C := {x ∈ B : x /∈ C}. For a vector x ∈ Rd, Diag(d)
denotes a diagonal matrix X ∈ Rd×d, where the diagonal
entries satisfy Xi,i = xi for all i ∈ [d], and all off-diagonal
entries are zero. We use 1n to denote an n-dimensional
column vector with all entries equal to one.

3.2. Problem Formulation

In this section, we further introduce the actual problem we
will investigate in this paper, where we begin with introduc-
ing the definition for three kinds of authors that will appear
later in our discussion.

Definition 3.1 (Submission Limit Problem). Let A =
{a1, a2, . . . , an} denote the set of n authors, and let P =

Professor B

Protect Reject

Student Professor A

Conference

··· ···

Figure 3. Our research objective. This figure presents the goal of
our study: creating a more equitable desk-rejection system. Con-
sider Professor A, who has carelessly submitted numerous papers
exceeding the submission limit, collaborating with another senior
researcher (Professor B) with many submissions, and a young
student with only one paper. Our proposed system prioritizes desk-
rejecting papers from authors with a large number of submissions
first, thereby increasing the student’s chances of having their pa-
per accepted. This approach aims to mitigate the disparity in the
impact of desk rejections and promote fairness.

{p1, p2, . . . , pm} denote the set of m papers. Each author
ai ∈ A has a subset of papers Pi ⊆ P , and each paper
pj ∈ P is authored by a subset of authors Aj ⊆ A. For
each author, ai ∈ A, let Ci denote the set of all coauthors
of ai and let x ∈ N+ denote the maximum number of papers
each author can submit.

The goal is to find a subset S ⊆ P of papers (to keep) such
that for every ai ∈ A,

|{pj ∈ S : ai ∈ Aj}|︸ ︷︷ ︸
#remained papers of author ai

≤ x.

or equivalently find a subset S ⊆ P of papers (to reject)
such that for every ai ∈ A,

|Pi| − |{j ∈ S : i ∈ Aj}|︸ ︷︷ ︸
#rejected papers of author ai

≤ x.

We now present several fundamental facts related to Def-
inition 3.1, which can be easily verified through basic set
theory.
Fact 3.2. For any author ai ∈ A and paper pj ∈ P , ai ∈
Aj if and only if pj ∈ Pi.

Fact 3.3. For each author ai ∈ A, the number of papers
submitted by the author can be formulated as:

|Pi| = |{pj ∈ P : ai ∈ Aj}|.

Fact 3.4. For each paper j ∈ [m], the number of authors
of this paper can be formulated as: |Aj | = |{ai ∈ A : pj ∈
Pi}|.
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Fact 3.5. For each author ai ∈ A, the set of coauthors for
author ai can be formulated as: Ci = (

⋃
pj∈Pi

Aj) \ {ai}.

4. The Desk Rejection Dilemma
In this section, we define the concept of an ideal desk-
rejection system in Section 4.1 and formally demonstrate in
Section 4.2 that no algorithm can achieve this ideal system.

4.1. Ideal Desk-Rejection

An ideal desk-rejection system should avoid unfairly reject-
ing papers from authors who either comply with the submis-
sion limit or exceed it by only one or two papers. Otherwise,
authors may face consequences due to co-authors with an
excessively high number of submissions. This issue is par-
ticularly problematic for early-career researchers, as such
collective penalties can have a significant negative impact
on their careers.

To address this, we formally define the criteria for an ideal
desk-rejection outcome for the problem in Definition 3.1,
where rejections are based solely on an author’s excessive
submissions, without unfairly penalizing others.

Definition 4.1 (Ideal desk-rejection). An ideal solution for
the submission limit problem in Definition 3.1 is a paper sub-
set S ⊆ P such that every author has exactly min{x, |Pi|}
papers remaining after desk rejection.

Remark 4.2. The ideal desk-rejection in Definition 4.1
ensures that innocent authors with less than x submissions
will retain all their papers, and a non-compliant author ai
with more than x submissions will be desk-rejected exact
(|Pi| − x) papers.

Thus, if there exists an algorithm that can reach the afore-
mentioned ideal solution, we can ensure that no author is
unfairly penalized due to their co-authors’ submission be-
havior, achieving both fairness and individual accountabil-
ity.

4.2. Hardness of Ideal Desk-Rejection

Unfortunately, we find that achieving an ideal desk-rejection
system is fundamentally intractable. The main result regard-
ing this hardness is presented in the following theorem:

Theorem 4.3 (Hardness of Ideal Desk-Rejection). Let n =
|A| denote the number of authors in Definition 3.1. We can
show that

• Part 1: For n ≤ 2, there always exists an algorithm
that can achieve the ideal desk-rejection in Defini-
tion 4.1.

• Part 2: For n ≥ 3, there exists at least one problem
instance where no algorithm can guarantee achieving

the ideal desk-rejection in Definition 4.1.

Proof. For Part 1, the result follows directly from
Lemma A.3 and Lemma A.5. For Part 2, the result is estab-
lished using Lemma A.6 and Lemma A.7. Detailed technical
proofs for these lemmas are provided in Appendix A.

Therefore, since an ideal desk-rejection system is not achiev-
able, it is inevitable that some authors may face excessive
desk-rejections due to collective punishments. This chal-
lenge is particularly concerning for early-career researchers
with only one or two submissions, motivating the need to
seek an approximate solution that optimizes fairness in desk-
rejection systems.

5. Fairness-Aware Desk-Rejection
In this section, we first introduce two fairness metrics in
Section 5.1, and then present the hardness result on min-
imizing one of them in Section 4.2. In Section 5.3, we
show our optimization-based fairness-aware desk-rejection
framework.

5.1. Fairness Metrics

As discussed earlier, achieving an ideal desk-rejection sys-
tem is practically infeasible, as unintended rejections due
to collective punishments are unavoidable. To address this,
we relax the ideal system into an approximate form, where
some unfair desk-rejections are permitted, while these rejec-
tions should be proportional to each author’s total number
of submissions.

Specifically, we introduce a cost function for each author,
which estimates the impact of desk-rejection on each author:

Definition 5.1 (Cost Function). Considering the submission
limit problem in Definition 3.1, we define the cost function
c : [n]× 2[m] → [0, 1] for a specific author ai and a set of
remaining paper S as

c(ai, S) :=
|Pi| − |{pj ∈ S : ai ∈ Aj}|

|Pi|
.

Remark 5.2. The cost function c(ai, S) measures the pro-
portion of papers authored by ai that are rejected, prioritiz-
ing fairness for early-career authors with fewer submissions
and aiming to reduce setbacks for them.

To further demonstrate how this author-wise cost function
could benefit fairness, we present the following example:

Example 5.3. Consider a submission limit problem with
x = 10 and n = 2. Suppose author a1 submits papers
p1, p2, . . . , p11, and author a2 submits only paper p11. Re-
jecting paper p11 (i.e., S = P \ {p11}) results in a cost
of c(a1, S) = 1/11 for a1 but a cost of c(a2, S) = 1 for
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a2, which is unfair to a2. On the other hand, if we re-
ject paper p1 (i.e., S′ = P \ {p1}), the cost for a1 re-
mains c(a1, S

′) = 1/11, while the cost for a2 becomes
c(a2, S

′) = 0. This minimizes both the highest cost and the
total cost. This example demonstrates that our cost func-
tion encourages rejecting papers from authors with many
submissions while protecting authors with few submissions.

To ensure fair treatment for all authors and avoid imposing
excessive setbacks on early-career researchers, we introduce
two fairness metrics based on our cost function. These
metrics are inspired by the principles of utilitarian social
welfare and egalitarian social welfare (Aziz et al., 2024).
We begin by defining worst-case fairness, which is a strict
worst-case fairness metric that aligns with the egalitarian
social welfare framework by estimating the individual cost
among all authors.

Definition 5.4 (Worst-case Fairness). Let c : [n]× 2[m] →
[0, 1] be the cost function defined in Definition 5.1. We define
function ζworst : 2[m] → [0, 1] to measure the worst-case
fairness:

ζworst(S) := max
i∈[n]

c(ai, S).

Next, we present the concept of average fairness, which
aligns with utilitarian social welfare and measures the total
cost across all authors.

Definition 5.5 (Average Fairness). Let c : [n] × 2[m] →
[0, 1] be the cost function defined in Definition 5.1. We
define function ζavg : 2[m] → [0, 1] to measure the average
fairness:

ζavg(S) :=
1

n

∑
i∈[n]

c(ai, S).

To show the relationship between these two fairness metrics,
we have the following proposition:

Proposition 5.6 (Relationship of Fairness Metrics, informal
version of Proposition B.1 in Appendix B). For any solution
S ⊆ P to the submission limit problem in Definition 3.1, we
have ζavg(S) ≤ ζworst(S).

5.2. Hardness of Worst-case Fairness-Aware Submission
Limit Problem

After presenting fairness metrics for the desk-rejection sys-
tem, we introduce an optimization-based framework to ad-
dress these metrics. We first study the worst-case fairness-
aware submission limit problem to minimize the worst-case
fairness measure ζworst in Definition 5.4.

Definition 5.7 (Worst-case Fairness-Aware Submission
Limit Problem). We consider the following optimization

problem:

min
S⊆P

ζworst(S)

s.t. |{pj ∈ S : ai ∈ Aj}| ≤ x, ∀ai ∈ A.

To represent the fairness metric minimization problem in
matrix form, we introduce the following definition:

Definition 5.8 (Author-Paper Matrix). Let W ∈ {0, 1}n×m

denote the author-paper matrix for the author set A and
paper set P . Then, we define Wi,j = 1 if author ai is a
coauthor of paper pj , and Wi,j = 0 otherwise.

Therefore, we present a more tractable integer programming
form of the original problem and prove its equivalence to
the original formulation:

Definition 5.9 (Worst-Case Fairness-Aware Submission
Limit Problem, Matrix Form). We consider the following
integer optimization problem:

min
r∈{0,1}m

∥1n −D−1Wr∥∞

s.t. (Wr)/x ≤ 1n

where D = Diag(|P1|, · · · , |Pn|), and the rejection vector
r ∈ {0, 1}m is a 0-1 vector, with rj = 1 indicating that
paper pj is remained, and rj = 0 indicating that it is desk-
rejected.

Proposition 5.10 (Matrix Form Equivalence for ζworst, in-
formal version of Proposition B.3 in Appendix B). The
worst-case fairness-aware submission limit problem in Defi-
nition 5.7 and the matrix form integer programming problem
in Definition 5.9 are equivalent.

Unfortunately, solving this integer programming problem is
highly non-trivial, which means it may not yield a feasible
solution within a reasonable time for large-scale confer-
ence submission systems. We establish the computational
hardness of this problem in the following theorem:

Theorem 5.11 (Hardness, informal version of Theorem B.7
in Appendix B.2). The Worst-Case Fairness-Aware Submis-
sion Limit Problem defined in Definition 5.7 is NP-hard.

Since minimizing worst-case fairness is computationally
intractable, our fairness-aware desk-rejection system instead
focuses on minimizing average fairness.

5.3. Average Fairness Optimization

Given the inherent hardness of worst-case fairness optimiza-
tion, we address the fairness problem using an alternative
yet equally important metric: average fairness, as defined
in Definition 5.5. This metric is not only a crucial fairness
measure in its own right but also serves as a lower bound for
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worst-case fairness as stated in Proposition 5.6, potentially
improving worst-case fairness implicitly.

Following a similar approach in Section 5.2, we first formu-
late the submission limit problem with respect to average
fairness and derive a more tractable integer programming
formulation in matrix form:
Definition 5.12 (Average Fairness-Aware Submission Limit
Problem). We consider the following optimization problem:

min
S⊆P

ζavg(S)

s.t. |{pj ∈ S : ai ∈ Aj}| ≤ x, ∀ai ∈ A.

Definition 5.13 (Average Fairness-Aware Submission Limit
Problem, Matrix Form). We consider the following integer
programming problem:

max
r∈{0,1}m

1⊤
nD

−1Wr

s.t. (Wr)/x ≤ 1n,

where D = Diag(|P1|, · · · , |Pn|), and the rejection vector
r ∈ {0, 1}m is a 0-1 vector, with rj = 1 indicating that
paper pj is remained, and rj = 0 indicating that it is desk-
rejected.
Proposition 5.14 (Matrix Form Equivalence for ζavg, in-
formal version of Proposition B.8 in Appendix B). The
fairness-aware submission limit problem in Definition 5.12
and the matrix form integer programming problem in Defi-
nition 5.13 are equivalent.

However, solving integer programming problems is prac-
tically challenging. To this end, we first relax the feasible
region of r to [0, 1]m, and then analyze the resulting relaxed
problem.
Definition 5.15 (Average Fairness-Aware Submission Limit
Problem, Relaxation). We consider the optimization prob-
lem

max
r∈[0,1]m

1⊤
nD

−1Wr

s.t. (Wr)/x ≤ 1n,

where D = Diag(|P1|, · · · , |Pn|), and the rejection vector
r ∈ {0, 1}m is a 0-1 vector, with rj = 1 indicating that
paper pj is remained, and rj = 0 indicating that it is desk-
rejected.

Fortunately, the relaxed problem is a linear program, which
can be efficiently solved using standard linear programming
solvers. Moreover, its optimal solution is equivalent to that
of the original integer programming problem, an this result
is formalized in the following theorem:
Theorem 5.16 (Optimal Solution Equivalence of the Re-
laxed Problem, informal version of Theorem B.9 in Ap-
pendix B). The optimal solution of the relaxed linear pro-
gramming problem in Definition 5.15 is equivalent to the

Algorithm 1 Fairness-Aware Desk-Reject Algorithm
1: /* A denotes the set of n authors. */
2: /* P denote the set of m papers. */
3: /* Author ai ∈ N has a subset of papers Pi ⊂ P . */
4: /* Paper pj ∈ P is coauthored by a subset of authors

Aj ⊆ A.*/
5: /* x represents the submission limit for each author.*/
6: procedure FAIRDESKREJECT(A,P, x)
7: /* Initialize the constants of the problem. */
8: for i ∈ [n], j ∈ [m] do
9: if pj ∈ Ai then

10: Wi,j ← 1
11: else
12: Wi,j ← 0
13: end if
14: end for
15: D ← Diag(|P1|, . . . , |Pn|)
16: /* Solve the linear programming problem in Defini-

tion 5.15. */
17: r⋆ ← LPSolver(W,D, x, r0)
18: /* Transform the solution. */
19: S ← ∅
20: for j ∈ [m] do
21: if rj = 1 then
22: S ← S ∪ {pj}
23: end if
24: end for
25: return S
26: end procedure

optimal solution of the original integer programming prob-
lem in Definition 5.13.

This theoretical result is significant as we formally estab-
lish that the average fairness-aware submission problem in
Definition 5.12 reduces to a linear programming (LP) prob-
lem with guaranteed optimality, solvable using off-the-shelf
LP solvers. We formalize this procedure in Algorithm 1,
where LPSolver denotes any standard LP solver, including
but not limited to the simplex method (Dantzig, 1951), ellip-
soid method (Khachiyan, 1980), interior-point method (Kar-
markar, 1984; Renegar, 1988; Lee & Sidford, 2014; Cohen
et al., 2019; Song, 2019; Brand et al., 2020; Song & Yu,
2021; Jiang et al., 2021; Cohen et al., 2021; Gu & Song,
2022; Qin et al., 2023; Liu et al., 2023; Gu et al., 2025).

Remark 5.17. The time complexity of our fairness-aware
desk-rejection algorithm in Algorithm 1 aligns with mod-
ern linear programming solvers. For instance, using the
stochastic central path method (Cohen et al., 2021; Jiang
et al., 2021; Qin et al., 2023), it achieves a time complex-
ity of O∗(m2.37 log(m/δ)), where δ represents the relative
accuracy corresponding to a (1 + δ)-approximation guar-
antee.
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Remark 5.18. In practice, major AI conferences routinely
process submissions at the scale of m ∼ 104 (Stanford,
2024). Given this regime, our algorithm guarantees efficient
computation, enabling fairness-aware desk rejection within
tractable timeframes, even for large-scale conferences.

6. Case Study
Since desk-rejection data from top AI conferences is not
publicly available, and fully open-review conferences like
ICLR do not impose submission limits, evaluating real-
world conference submissions is impractical. Therefore,
we present a case study to demonstrate how our proposed
desk-rejection algorithm more effectively addresses fairness
issues. Additional case studies are provided in Appendix C.

Let the paper subscript j in pj ∈ P denote the submission
order. We analyze the widely used desk-rejection system
(e.g., CVPR 2025) in Algorithm 2, which rejects all papers
submitted after an author’s x-th submission. To highlight its
limitations, we present a minimal working example:

Example 6.1. Consider a submission limit problem as de-
fined in Definition 3.1 with n = 2, x = 25, and m = 26.
Author a1 submits all papers p1, . . . , p26, while author a2
submits only p26.

Given the ideal desk-rejection criteria in Definition 4.1, it
is evident that we can reject any papers in {p1, p2, . . . , p25}
following the techniques in Lemma A.4. After rejection,
since a1 retains 25 papers and a2 retains 1 paper, the fair-
ness metrics are ζworst(S) = max{1/26, 0} = 1/26 and
ζavg(S) =

1
2 (1/26 + 0) = 1/52.

On the other hand, the CVPR 2025 algorithm, as described
in Algorithm 2, rejects p26, retaining S = {p1, . . . , p25}.
This unfairly penalizes a2, resulting in ζworst(S) =
max{1/26, 1} = 1 and ζavg(S) =

1
2 (1/26 + 1) = 27/52,

which is much worse compared with the ideal results. In
contrast, our method in Algorithm 1 solves the linear pro-
gram and recovers the ideal solution, achieving the same
fairness metrics as the optimal case.

A simple workaround to mitigate unfairness in conventional
desk-rejection systems is the roulette algorithm, which ran-
domly rejects papers from non-compliant authors like a1
until the submission limit x is reached. However, this
heuristic cannot fully prevent the rejection of the unde-
sirable paper p26 and results in suboptimal fairness out-
comes compared to our fairness-aware rejection, since the
expected fairness metrics under the roulette algorithm sat-
isfy E[ζworst] = (25/26) · (1/26) + (1/26) · 1 ≤ 1/26 and
E[ζavg] = (25/26) · (1/52) + (1/26) · (27/52) ≤ 27/52.

Thus, this example illustrates that conventional desk-
rejection systems in top conferences such as CVPR can
suffer from severe fairness issues, whereas our proposed

Algorithm 2 Conventional Desk-Reject Algorithm
1: procedure DESKREJCT(A,P, x)
2: /* Initialize registered paper set for each author. */
3: for i = 1→ n do
4: Ri ← ∅
5: end for
6: /* Initialize the subset of remaining papers. */
7: S ← P
8: /* Process each paper in submission order.*̇/
9: for j = 1→ m do

10: for i ∈ Aj do
11: /* If author ai has reached the submission

limit, the paper will be rejected.*/
12: if |Ri| ≥ x then
13: S ← S \ {pj}
14: break
15: end if
16: end for
17: /* If paper pj is not rejected, we add it to each

co-author’s registered paper set.*/
18: if pj ∈ S then
19: for i ∈ Aj do
20: Ri ← Ri ∪ {j}
21: end for
22: end if
23: end for
24: return S
25: end procedure

method effectively mitigates these problems.

Additionally, this example also highlights another notewor-
thy consequence of the conventional desk-rejection system.
Specifically, authors collaborating with senior researchers
who have numerous submissions may have to compete for
earlier submission slots to avoid desk rejection. However,
the submission order should not influence whether a paper
is accepted, which reveals the unintended implications of
the order-based desk-rejection system.

7. Experiments
In this section, we conduct an empirical study comparing
the conventional desk-rejection algorithm and our novel
fairness-aware desk-rejection algorithm.

Table 2. Dataset statistics.
Dataset # Authors # Papers
ICLR’21 7964 2954
ICLR’22 8507 2617
ICLR’23 12451 3793

8
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Table 3. The average fairness ζavg of the conventional desk rejection method and our fairness-aware desk rejection method. A lower ζavg
indicates better fairness.

Dataset Method x = 4 x = 6 x = 8 x = 10 x = 12 x = 14
ICLR’21 Conventional 0.112 0.059 0.033 0.021 0.013 0.009
ICLR’21 Fair (Ours) 0.074 0.035 0.018 0.011 0.006 0.004
ICLR’22 Conventional 0.112 0.059 0.035 0.023 0.013 0.007
ICLR’22 Fair (Ours) 0.073 0.036 0.019 0.010 0.005 0.002
ICLR’23 Conventional 0.115 0.056 0.031 0.022 0.015 0.009
ICLR’23 Fair (Ours) 0.074 0.033 0.018 0.011 0.007 0.004

Datasets. Most desk-rejection data from real-world con-
ferences (e.g., CVPR, KDD, etc.) is not public and is only
available to the conferences’ chairs. Thus, we conduct simu-
lation experiments with public ICLR data from the OpenRe-
view API 1. Specifically, we crawl the data using the invita-
tion link “ICLR.cc/{year}/Conference/-/Blind
Submission,” selecting three years of data: 2021, 2022,

and 2023. This results in our three datasets for evalua-
tion: ICLR’21, ICLR’22, ICLR’23. The statistics of these
datasets can be found in Table 2.

Note that some papers may be overlooked by the OpenRe-
view API, so the number of papers and authors included
in our evaluation may not fully match the total number of
real conference papers. However, we believe this deviation
in the number of authors and papers in our crawled dataset
does not significantly differ from publicly available statistics
of the ICLR conference.

Baselines. To the best of our knowledge, we are the first
paper to study the fairness of the submission-limit-based
desk-rejection problem. Thus, our only baseline is the cur-
rent desk-rejection algorithm used in major conferences (Al-
gorithm 2), which rejects all papers with non-compliant au-
thors based on submission order. We compare this with our
proposed group fairness optimization method (Algorithm 1),
which first rejects papers from senior researchers with nu-
merous submissions while protecting junior researchers with
fewer submissions.

Experimental Settings. For the linear program solver
LPSolver in Algorithm 1, we use the standard linear pro-
gram solver in the Python PuLP library 2. Before run-
ning the solver, to accelerate computation, we first remove
all safe authors whose papers do not include any non-
compliant authors exceeding the submission limit, as these
authors have no risk of desk-rejection. Our source code
is available at https://github.com/magiclinux/
desk_reject_fairness_icml_2025/.

1https://docs.openreview.net/reference/
api-v2

2https://pypi.org/project/PuLP

Results. We set the submission limit to x ∈
{4, 6, 8, 10, 12, 14} and run the desk-rejection algorithm.
We use average fairness ζavg, as defined in Definition 5.4, as
our evaluation metric. Our experimental results are shown in
Table 7. We find that, in most cases, our proposed method
achieves a significant cost reduction compared to previ-
ous methods, with a reduction of approximately 1/3 to 1/2.
Thus, we conclude that our proposed fairness-aware desk-
rejection method significantly outperforms current desk-
rejection algorithms in most major conferences, demon-
strating a promising future for improving fairness in AI
conferences.

8. Conclusion
In this work, we identify the fairness issue in the desk-
rejection mechanisms of AI conferences under submission
limits. Our theoretical analysis shows that an ideal system
that rejects papers solely based on authors’ non-compliance,
without unfairly penalizing others due to collective punish-
ment, is impossible. We further consider an optimization-
based fairness-aware desk-rejection system to alleviate the
unfairness problem. In this system, we considered two fair-
ness metrics: worst-case fairness and average fairness, and
formally established that optimizing worst-case fairness in
desk-rejection is NP-hard, while optimizing average fairness
can be reduced to a linear programming problem that can be
solved highly efficiently. Through case studies, we showed
that the proposed method outperforms the existing systems
in top AI conferences.

For future work, it would be interesting to study how strate-
gic behavior reshapes fairness once the system reaches equi-
librium. For example, we can cast the submission process
as an n-player game in which authors select collaborators
and project counts, balancing project costs against the re-
wards of clearing desk rejection and securing acceptance,
and then solve for the Nash equilibrium. Moreover, extend-
ing this baseline to include real-world factors, such as prior
collaborations, idea ownership, and unequal resources, will
clarify which alternative desk-rejection rules can sustain
equity under fully strategic play.
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Appendix
Roadmap. In Section A, we supplement the missing proofs in Section 4. In Section B, we present the missing proofs
in Section 5. In Section C, we show additional case studies. In Section D, we provide the details related to conference
submission limits.

A. Missing Proofs in Section 4
In this section, we provide the complete technical proofs for Theorem 4.3 in Section 4. In Section A.1, we first introduce
key definitions that will be useful To structure our analysis, we in the subsequent proofs. We then establish positive results
for the cases where n ≤ 2 in Section A.2, followed by negative results for n ≥ 3 in Section A.3.

A.1. Basic Definitions

To systematically analyze the desk-rejection problem, we begin by classifying authors based on their submission behavior
and their relationship to co-authors. This classification will help us organize and present the proofs in a more structured and
readable manner.

Definition A.1 (Author Categories). For any author ai ∈ A, we define the following categories:

• Non-compliant: An author ai is non-compliant if they have submitted more than x papers, i.e., |Pi| > x. Such authors
exceed the submission limit and are subject to desk-rejection under the policy.

• Vulnerable: An author ai is vulnerable if they have submitted no more than x papers (|Pi| ≤ x) but have at least one
non-compliant co-author, i.e., ∃k ∈ Ci such that |Pk| > x. Although these authors comply with the submission limit,
they are at risk of being unfairly penalized due to their co-authors’ non-compliance.

• Safe: An author ai is safe if they have submitted no more than x papers (|Pi| ≤ x) and all their co-authors are also
compliant, i.e., ∀k ∈ Ci, |Pk| ≤ x. These authors are guaranteed to retain all their submissions, as neither they nor
their co-authors violate the submission limit.

Next, we formalize the notion of achievability for the ideal desk-rejection system.

Definition A.2 (Achievability). Given a submission limit problem instance as defined in Definition 3.1:

• Positive result: A problem instance is a positive result if there exists an algorithm that can achieve the ideal desk-
rejection as defined in Definition 4.1.

• Negative result: A problem instance is a negative result if, under proper conditions, no algorithm can achieve the ideal
desk-rejection as defined in Definition 4.1.

In the following sections, we will use these definitions to systematically prove the positive results for small numbers of
authors (n ≤ 2) and the negative results for larger numbers of authors (n ≥ 3), which covers two cases in Theorem 4.3.

A.2. Positive Results

In this subsection, we present two positive results that support the n ≤ 2 case in Theorem 4.3. We begin with the positive
result for n = 1 and any x ∈ N+.

Lemma A.3 (Positive Result for n = 1 and Any x ∈ N+, General Case). If the following conditions hold:

• Let n = 1 denote the number of authors as defined in Definition 3.1.

• Let x ∈ N+ denote the maximum number of submissions allowed for each author in the conference.

Then, there exists an algorithm that achieves the ideal desk-rejection as defined in Definition 4.1.

Proof. We consider the three cases for the only author a1: non-compliant, vulnerable, and safe, as defined in Definition A.1.
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Case 1: Non-compliant author. If author a1 is non-compliant, we desk-reject (|P1| −x) papers. This ensures that exactly
x papers remain, satisfying the ideal desk-rejection condition.

Case 2: Vulnerable author. Since n = 1 and there is only one author, author a1 has no co-authors to make itself
vulnerable. Therefore, this case cannot happen.

Case 3: Safe author. If author a1 is safe, no papers need to be rejected. The ideal desk-rejection condition is trivially
satisfied.

In all possible cases, we can achieve the ideal desk-rejection. Thus, the proof is finished.

To present the positive result for n = 2 and any x ∈ N+, we first discuss a specific case where all authors are non-compliant.
Lemma A.4 (Positive Result for n = 2 and Any x ∈ N+, Non-compliant Author Only Case). If the following conditions
hold:

• Let n = 1 denote the number of authors as defined in Definition 3.1.

• All the authors are non-compliant authors as defined in Definition A.1.

• Let x ∈ N+ denote the maximum number of submissions allowed for each author in the conference.

Then, there exists an algorithm that achieves the ideal desk-rejection as defined in Definition 4.1.

Proof. Let c ∈ N denote the number of papers co-authored by both author a1 and author a2. For i ∈ {1, 2}, let bi ∈ N
denote the number of single-authored papers by author ai.

We then have:

b1 + c = |P1|

and

b2 + c = |P2|.

Case 1: c ≤ x. In this case, we have b1 ≥ |P1| − x and b2 ≥ |P2| − x. Since bi represents the number of single-authored
papers by author ai, we can desk reject exactly (|Pi| − x) papers from author ai.

Case 2: c > x. Here, we have b1 < |P1| − x and b2 < |P2| − x. We first desk reject all b1 single-authored papers from
author a1 and all b2 single-authored papers from author a2. Next, we desk reject (c − x) co-authored papers from both
authors. This ensures that the remaining x papers are co-authored by both a1 and a2. Thus, we have successfully rejected
exactly (|Pi| − x) papers from each author ai.

By combining the two cases above, the proof is complete.

With the help of Lemma A.4, we now establish the positive result for n = 2 and any x ∈ N+.
Lemma A.5 (Positive Result for n = 2 and Any x ∈ N+, General Case). If the following conditions hold:

• Let n = 1 denote the number of authors as defined in Definition 3.1.

• Let x ∈ N+ denote the maximum number of submissions allowed for each author in the conference.

Then, there exists an algorithm that achieves the ideal desk-rejection as defined in Definition 4.1.

Proof. We consider two authors, a1 and a2. Without loss of generality, we assume that a1 has at least as many papers as a2,
i.e., |P1| ≥ |P2|. By exhaustively enumerating all possible compositions of author types (i.e., non-compliant, vulnerable, or
safe) for a1 and a2, we observe that the vulnerable-safe composition is impossible. This is because a vulnerable author
must co-author at least one paper with a non-compliant author. After excluding this case, we analyze the remaining possible
scenarios as follows:
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Case 1: Both a1 and a2 are safe authors. In this case, no papers need to be rejected, and the ideal desk-rejection trivially
holds.

Case 2: a1 is a non-compliant author and a2 is a safe author. Since rejecting papers from a1 does not affect a2’s
submissions, we can simply reject (|P1| − x) papers from a1 to achieve the ideal desk-rejection.

Case 3: a1 is a non-compliant author and a2 is a vulnerable author. By Definition A.1, we have |P1| > x and |P2| ≤ x.
Let c := |{pj ∈ S : pj ∈ P1, pj ∈ P2}| denote the number of co-authored papers by a1 and a2. From basic set theory, we
know that c ≤ |P2|. Since |P2| ≤ x, it follows that c ≤ x. Therefore, we have:

|P1| − c︸ ︷︷ ︸
Individual papers of a1

≥ |P1| − x︸ ︷︷ ︸
Excess papers of a1

,

which implies that the number of individual papers authored solely by a1 exceeds the number of over-limit papers for a1.
Thus, we can first reject a1’s individual papers without affecting a2’s submissions, thereby achieving the desired ideal
desk-rejection.

Case 4: Both a1 and a2 are non-compliant authors. This case directly follows from Lemma A.4.

Combining all the cases above, we conclude that the ideal desk-rejection can always be achieved, which finishes the
proof.

A.3. Negative Results

In this subsection, we present two positive results that support the n ≥ 3 case in Theorem 4.3. We commence by showing
the negative result for n = 3 and x = 1.
Lemma A.6 (Negative Result for n = 3 and x = 1). If the following conditions hold:

• Let n = 3 denote the number of authors as defined in Definition 3.1.

• Let x = 1 denote the maximum number of submissions allowed for each author in the conference.

Then, under proper conditions, no algorithm can achieve the ideal desk-rejection as defined in Definition 4.1.

Proof. Let all the authors be non-compliant authors as defined in Definition A.1, and let the number of papers be m = 3.
We suppose the three papers p1, p2, and p3 have the following authorship:

• Paper p1 is co-authored by a1 and a2.

• Paper p2 is co-authored by a1 and a3.

• Paper p3 is co-authored by a2 and a3.

From the authors’ perspective, the relationships are as follows:

• Author a1 has papers p1 and p2.

• Author a2 has papers p1 and p3.

• Author a3 has papers p2 and p3.

We enumerate all possible rejection plans and their outcomes in Table 4.

First, suppose we desk reject paper p3. Then, authors a2 and a3 each have one paper remaining, but author a1 still has two
papers. To satisfy the constraint x = 1, we must reject one of p1 or p2.

If we reject p1, author a2 is left with no papers, which is unfair. If we reject p2, author a3 is left with no papers, which is
also unfair.

Thus, no rejection plan satisfies the ideal desk rejection condition for all authors. This completes the proof.
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Table 4. Remaining number of papers for each author after desk rejection.
Rejected Papers Author a1 Author a2 Author a3

N/A 2 2 2
p1 1 1 2
p2 1 2 1
p3 2 1 1

p1, p2 0 1 1
p1, p3 1 0 1
p2, p3 1 1 0

p1, p2, p3 0 0 0

Next, we present the negative result for any n ≥ 3 and x = n− 2.

Lemma A.7 (Negative Result for Any n ≥ 3 and x = n− 2). If the following conditions hold:

• Let n ≥ 3 denote the number of authors as defined in Definition 3.1.

• Let x = n− 2 denote the maximum number of submissions allowed for each author in the conference.

Then, under proper conditions, no algorithm can achieve the ideal desk-rejection as defined in Definition 4.1.

Proof. In this negative problem instance, we choose the number of papers to be the same as the number of authors, i.e.,
m = n, and we assume all the n authors are non-compliant authors as defined in Definition A.1.

For each of the n papers pi ∈ P , we let i-th paper pi contain n− 1 authors, excluding only the i-th author ai. Specifically,
we have:

• The first paper p1 has authors a2, a3, · · · , an.

• The second paper p2 has authors a1, a3, a4, · · · , an.

• · · · · · ·

• The (n− 1)-th paper has authors a1, a2, · · · , an−2, an.

• The n-th paper has authors a1, a2, · · · , an−2, an−1.

Since each author is allowed to submit at most x = n− 2 papers, we must desk-reject at least two papers. We analyze the
process of desk-rejecting these two papers step by step.

Step 1: Desk-reject the first paper.

Without loss of generality, we consider rejecting paper p1 first. After this operation, authors a2, a3, · · · an, will have n− 2
submitted papers, while author a1 will have n− 1 submitted papers.

Step 2: Desk-reject the second paper.

Without loss of generality, we consider rejecting paper p2 next. After this operation, authors a3, a4, · · · an, will have n− 3
submitted papers, while author a1 and a2 will have n− 2 submitted papers.

At this point, it is impossible for authors a3, a4, a5 · · · , an to have exactly (n−2) submitted papers. Therefore, no algorithm
can achieve the ideal desk-rejection under the given conditions. This completes the proof.
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B. Missing Proofs in Section 5
In this section, we first present the missing proofs for fairness metrics in Section B.1, and then present the supplementary
proofs for the hardness of worst-case fairness optimization in Section B.2. Finally, we show the additional proofs for the
average fairness optimization problem in Section B.3.

B.1. Fairness Metrics

We present the relationship between the fairness metrics.
Proposition B.1 (Relationship of Fairness Metrics, formal version of Proposition 5.6 in Section 5.1). For any solution
S ⊆ P for the submission limit problem in Definition 3.1, we have

ζavg(S) ≤ ζworst(S).

Proof. By Definition 5.5, we have:

ζavg(S) =
1

n

∑
i∈[n]

c(ai, S)

≤ 1

n

∑
i∈[n]

max
i∈[n]

c(ai, S)

=
1

n
· n ·max

i∈[n]
c(ai, S)

= ζworst(S),

where the first equality directly follows from Definition 5.5, the second and the third inequality follow from basic algebra,
and the last equality follows from Definition 5.4. Thus, we complete the proof.

B.2. Hardness of Worst-Case Fairness-Aware Submission Limit Problem

Before proving the theoretical results in Section 5.2, we first introduce a useful fact that serves as a foundation for the
subsequent proofs.
Fact B.2. For each author ai ∈ A, the number of papers after desk-rejection (i.e., |{pj ∈ S : ai ∈ Aj}|) can be written as
W⊤

i r.

Proof. This simply follows from:

W⊤
i r =

∑
j∈[m]

Wi,j · rj

= |{j ∈ [m] : Wi,j = 1, rj = 1}|
= |{pj ∈ P : ai ∈ Aj , pj ∈ S}|
= |{pj ∈ S : ai ∈ Aj}|,

where the first and the second equality follow from basic algebra and set theory, and the third and the fourth equality follow
from Definition 3.1.

With the help of the aforementioned fact, we now prove the equivalence of the matrix form for the worst-case fairness
problem.
Proposition B.3 (Matrix Form Equivalence for ζworst, formal version of Proposition 5.10 in Section 5.2). The worst-case
fairness-aware submission limit problem in Definition 5.7 and the matrix form integer programming problem in Definition 5.9
are equivalent.

Proof. In Definition 5.7, the paper set P consists of m papers, each of which can either be maintained or desk-rejected.
Thus, the subset of maintained papers, S, can be represented by a 0-1 vector r ∈ {0, 1}m, where rj = 1 indicates that
paper pj is maintained, and rj = 0 indicates that it is desk-rejected. We now establish the equivalence of both the objective
function and the constraints in these two formulations.
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Part 1: Optimization Objective. We first consider the objective function 1⊤
nD

−1Wr in Definition 5.9:

min
r∈{0,1}m

∥1n −D−1Wr∥∞ = min
r∈{0,1}m

max
i∈[n]

(1− (D−1Wr)i)

= min
r∈{0,1}m

max
i∈[n]

(1− (W⊤
i r)i/Di,i)

= min
r∈{0,1}m

max
i∈[n]

(1− (W⊤
i r)i/|Pi|)

= min
r∈{0,1}m

max
i∈[n]

(1− |{pj ∈ S : ai ∈ Aj}|/|Pi|)

= min
r∈{0,1}m

max
i∈[n]

c(ai, S)

= min
r∈{0,1}m

ζworst(S),

where the first equality follows from the definition of infinity norm, the second equality follows from basic algebra, the third
equality follows from Definition 5.9, the fourth equality follows from Fact B.2, the fifth equality follows from Definition 5.1,
and the last equality follows from Definition 5.4. By decoding r back into the paper subset S, we recover the original
optimization objective in Definition 5.7.

Part 2: Constraints. The constraint in Definition 5.9 can be rewritten using basic algebra as:

Wi · r ≤ x, ∀i ∈ [n].

By applying Fact B.2, we see that this constraint is equivalent to its counterpart in Definition 5.7.

Since both the objective function and constraints in Definition 5.7 and Definition 5.9 are equivalent, the proof is complete.

To show the hardness of the worst-case fairness problem, we first present a classical set cover problem with well-established
hardness.

Definition B.4 (Set Cover Problem (Karp, 1972; Garey & Johnson, 1979)). The Set Cover problem is the following:

• Input: A universe U = {1, . . . , n}, a family of sets {S1, . . . , Sm} ⊆ 2U , and a integer K > 0.

• Question: Is there a subfamily {Sj : j ∈ J} for some J ⊆ {1, . . . ,m} and |J | ≤ K that covers U , i.e.,
⋃

j∈J Sj = U?

Lemma B.5 (Folklore (Karp, 1972; Garey & Johnson, 1979)). The Set Cover problem defined in Definition B.4 is NP-hard.

Additionally, we also present a technical lemma which is useful for showing the hardness of the worst-case fairness problem.

Lemma B.6. For any r ∈ {0, 1}m, the following two statements are equivalent:

• Part 1. ∥1n −D−1Wr∥∞ ≤ 1− 1
mini∈[n] |Pi| .

• Part 2. mini∈[n](Wr)i ≥ 1.

Proof. We first show that Part 1 implies Part 2. Suppose that

∥1n −D−1Wr∥∞ ≤ 1− 1

mini∈[n] |Pi|
.

By the definition of the infinity norm, we have

1− (Wr)i′

|Pi′ |
≤ 1− 1

mini∈[n] |Pi|
, ∀i′ ∈ [n].

Rearranging gives

(Wr)i′ ≥
|Pi′ |

mini∈[n] |Pi|
≥ 1, ∀i′ ∈ [n].
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Since for all i′ ∈ [n], we have (Wr)i′ ≥ 1, we can conclude that mini∈[n](Wr)i ≥ 1.

Now we show that that Part 2 implies Part 1. Suppose that mini∈[n](Wr)i ≥ 1, then we have (Wr)i ≥ 1 for all i ∈ [n],
which implies that for all i ∈ [n],

1− (Wr)i
|Pi|

≤ 1− 1

|Pi|
≤ 1− 1

maxi′∈[n] |Pi′ |
.

Hence

∥1n −D−1Wr∥∞ ≤ 1− 1

mini∈[n] |Pi|
.

Thus the proof is complete.

Theorem B.7 (Hardness, formal version of Theorem 5.11 in Section 5.2). The Worst-Case Fairness-Aware Submission
Limit Problem defined in Definition 5.7 is NP-hard.

Proof. By Proposition 5.10, it suffices to reduce the Set Cover problem to the integer optimization problem of the matrix
form in Definition 5.9.

Given an instance of Set Cover, we build the matrix W ∈ {0, 1}n×m by defining Wi,j = 1 if element i ∈ Sj , and 0
otherwise. Now set |Pi| =

∑
j∈[m] Wi,j for every row i ∈ [n]. Finally, we choose x = m. We reduce the Set Cover problem

to the following optimization problem:

min
r∈{0,1}m

∥1n −D−1Wr∥∞

s.t. Wr ≤ m1n,

∥r∥1 ≤ K.

Note that this problem is easier than the optimization problem defined in Definition 5.7. The constraint Wr ≤ m1n is
always satisfied, so we can drop it out. Now, it suffices to consider the decision problem:

Find r ∈ {0, 1}m

s.t. ∥1n −D−1Wr∥∞ ≤ 1− 1

mini∈[n] |Pi|
,

∥r∥1 ≤ K.

Note that ∥1n −D−1Wr∥∞ ≤ 1− 1
mini∈[n] |Pi| is equivalent to mini∈[n](Wr)i ≥ 1 by Lemma B.6.

Hence the problem is equivalent to

Find r ∈ {0, 1}m s.t. min
i∈[n]

(Wr)i ≥ 1 and ∥r∥1 ≤ K.

It is not hard to see that the Set Cover problem has a solution if and only if the above problem has a solution. Requiring
mini∈[n](Wr)i > 1 exactly means that each element i in the universe is covered by at least set Sj . The constraint ∥r∥1 ≤ K
means that the size of cover is at most K. In other words, there exists a subfamily of size at most K covering all elements if
and only if there is an r ∈ {0, 1}m with mini∈[n](Wr)i > 1 and ∥r∥1 ≤ K.

Therefore, by Lemma B.5, the worst-case fairness-aware submission limit problem is NP-hard.

B.3. Average Fairness Optimization

Now, we present the missing proofs on both matrix form equivalence and linear programming optimal solution equivalence
for the average fairness optimization problem.
Proposition B.8 (Matrix Form Equivalence for ζavg, formal version of Proposition 5.14 in Section 5.3). The problem in
Definition 5.12 and the problem in Definition 5.13 are equivalent.

Proof. In Definition 5.12, there are m papers in P , where each paper can either be maintained or rejected. Thus, we can
encode the paper subset S using a binary vector r ∈ {0, 1}m, where rj = 1 indicates that paper pj is maintained, and rj = 0
indicates that it is desk-rejected. We now demonstrate that both the objective function and the constraints are equivalent.
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Part 1: Optimization Objective. We first examine the objective function 1⊤
nD

−1Wr in Definition 5.13:

1⊤
nD

−1Wr =
∑
i∈[n]

(D−1Wr)i

=
∑
i∈[n]

(W · r)i/|Pi|

=
∑
i∈[n]

(W⊤
i · r)/|Pi|

=
∑
i∈[n]

|{pj ∈ S : ai ∈ Aj}|
|Pi|

=
∑
i∈[n]

(1− c(ai, S)),

where the first equality follows from basic algebra, the second follows from Definition 5.13, the third follows from matrix-
vector multiplication, the fourth follows from Fact B.2, and the final equality follows from Definition 5.1. Consequently, the
maximization problem in Definition 5.13 can be rewritten as:

max
r∈{0,1}m

∑
i∈[n]

(1− c(ai, S)).

Since maximizing this objective is equivalent to minimizing
∑

i∈[n] c(ai, S), we can reformulate it as:

min
r∈{0,1}m

∑
i∈[n]

c(ai, S).

By decoding r back into the paper subset S, we recover the original optimization objective in Definition 5.12.

Part 2: Constraints. Since the constraint is identical to that in the worst-case fairness minimization problem in Defini-
tion 5.7, this result follows directly from Part 2 in the proof of Proposition B.3.

Since both the objective function and constraints in Definition 5.12 and Definition 5.13 are equivalent, the proof is
complete.

Theorem B.9 (Optimal Solution Equivalence of the Relaxed Problem, formal version of Theorem 5.16 in Section 5.3). The
optimal solution of the relaxed problem in Definition 5.15 is equivalent to the optimal solution of the original problem in
Definition 5.13.

Proof. The problem in Definition 5.15 is a linear program since it has a linear objective function 1⊤
nD

−1Wr and linear
constraints: the box constraint r ∈ [0, 1]m and a linear inequality constraint (Wr)/x ≤ 1n.

Furthermore, the problem is convex because the objective function is linear, the constraint (Wr)/x ≤ 1n is affine, and the
feasible region defined by r ∈ [0, 1]m is a convex set.

By the fundamental theorem of linear programming (see Page 23 of (Luenberger & Ye, 1984)), the optimal solution must
occur at an extreme point of the convex polytope defined by the constraints. This implies that for all i ∈ [m], we must have
either ri = 0 or ri = 1. Therefore, the optimal solution of the relaxed linear program coincides with that of the original
integer program, which finishes the proof.

C. Additional Case Studies
As discussed in Section 4.2, optimizing the worst-case fairness metric is computationally challenging. Therefore, we
minimize the average fairness metric, which serves as a lower bound for worst-case fairness, as a practical alternative. In
this subsection, we present case studies demonstrating the relationship between both types of fairness metrics.
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Example C.1. Consider a submission limit problem as defined in Definition 3.1 with x = 2, n = 3 authors, and m = 6
papers. Let author a1 submit four papers p1, p2, p3, p4, author a2 submit two papers p3, p5, and author a3 submit two
papers p4, p6.

In this case, the ideal desk-rejection criteria in Definition 4.1 reject p1 and p2 (i.e., S = {p3, p4, p5, p6}), yielding fairness
metrics ζworst(S) = max{1/2, 0, 0} = 1/2 and ζavg(S) =

1
3 (1/2 + 0 + 0) = 1/6. By applying an LP solver to minimize

average fairness using Algorithm 1 and enumerating all rejection strategies to verify worst-case fairness minimization, we
observe that minimizing average fairness in this case aligns with minimizing worst-case fairness as defined in Definition 5.9.
This case illustrates that minimizing average fairness can sometimes benefit worst-case fairness.

However, average fairness and worst-case fairness are not always consistent. In some cases, prioritizing average fairness
may disproportionately burden certain individuals. To illustrate this, we consider the following example.

Example C.2. Consider a submission limit problem as defined in Definition 3.1 with x = 2, n = 5 authors, and m = 4
papers. Let author a1 submit four papers p1, p2, p3, p4, author a2 submit two papers p1, p2, and authors a3, a4, a5 be
coauthors of papers p3, p4.

In this scenario, an ideal desk-rejection is impossible because a1 must have two papers rejected, but rejecting any papers
would cause at least one of the authors in a2, . . . , a5 to fall below the submission limit of x = 2. Here, average fairness
and worst-case fairness diverge: Algorithm 1 minimizes average fairness by rejecting p1 and p2 (i.e., S = {p3, p4}), which
unfairly excludes all of a2’s submissions. This results in fairness metrics ζavg(S) = 1

4 (1/2 + 1 + 0 + 0) = 3/8 and
ζworst(S) = max{1/2, 1, 0, 0} = 1.

Conversely, the worst-case fairness minimization problem in Definition 5.9 rejects one paper from a1, a2 and another from
a3, a4, leading to ζavg(S) =

1
4 (1/2 + 1/2 + 1/2 + 1/2) = 1/2 and ζworst(S) = max{1/2, 1/2, 1/2, 1/2} = 1/2.

This example highlights an unintended consequence of minimizing average fairness: it may unfairly penalize authors with
fewer coauthors, as rejecting their papers incurs a smaller total cost. On the other hand, optimizing worst-case fairness
inevitably spreads rejections across a broader set of authors, potentially leading to a higher overall fairness cost. Balancing
individual and average fairness remains an open challenge, which we leave for future work.

D. Summary of Conference Links
In the introduction, Table 1 only gives a brief summary of the conference year and its limitation of per-author submission.
Thus, we provide a detailed list of conferences in each year in this section, and then summarize the submission limits in
Table. 5.

• CVPR

– 2025, https://cvpr.thecvf.com/Conferences/2025/CVPRChanges
– 2024, https://cvpr.thecvf.com/Conferences/2024/AuthorGuidelines

• ICCV

– 2025, https://iccv.thecvf.com/Conferences/2025/AuthorGuidelines
– 2023, https://iccv2023.thecvf.com/policies-361500-2-20-15.php

• AAAI

– 2025, https://aaai.org/conference/aaai/aaai-25/submission-instructions/
– 2024, https://aaai.org/aaai-24-conference/submission-instructions/
– 2023, https://aaai-23.aaai.org/submission-guidelines/
– 2022, https://aaai.org/conference/aaai/aaai-22/

• WSDM

– 2025, https://www.wsdm-conference.org/2025/call-for-papers/
– 2024, https://www.wsdm-conference.org/2024/call-for-papers/
– 2023, https://www.wsdm-conference.org/2023/calls/call-papers/
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– 2022, https://www.wsdm-conference.org/2022/calls/
– 2021, https://www.wsdm-conference.org/2021/call-for-papers.php
– 2020, https://www.wsdm-conference.org/2020/call-for-papers.php

• IJCAI

– 2025, https://2025.ijcai.org/call-for-papers-main-track/
– 2024, https://ijcai24.org/call-for-papers/
– 2023, https://ijcai-23.org/call-for-papers/
– 2022, https://ijcai-22.org/calls-papers
– 2021, https://ijcai-21.org/cfp/index.html
– 2020, https://ijcai20.org/call-for-papers/index.html
– 2019, https://www.ijcai19.org/call-for-papers.html
– 2018, https://www.ijcai-18.org/cfp/index.html
– 2017, https://ijcai-17.org/MainTrackCFP.html

• KDD

– 2025, https://kdd2025.kdd.org/research-track-call-for-papers/
– 2024, https://kdd2024.kdd.org/research-track-call-for-papers/
– 2023, https://kdd.org/kdd2023/call-for-research-track-papers/index.html
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https://kdd2024.kdd.org/research-track-call-for-papers/
https://kdd.org/kdd2023/call-for-research-track-papers/index.html
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Table 5. In this table, we summarize the submission limits of top conferences in recent years. For details of each conference website, we
refer the readers to Section D in Appendix.

Conference Name Year Upper Bound
CVPR 2025 25
CVPR 2024 N/A
ICCV 2025 25
ICCV 2023 N/A
AAAI 2025 10
AAAI 2024 10
AAAI 2023 10
AAAI 2022 N/A

WSDM 2025 10
WSDM 2024 10
WSDM 2023 10
WSDM 2022 10
WSDM 2021 10
WSDM 2020 N/A
IJCAI 2025 8
IJCAI 2024 8
IJCAI 2023 8
IJCAI 2022 8
IJCAI 2021 8
IJCAI 2020 6
IJCAI 2019 10
IJCAI 2018 10
IJCAI 2017 N/A
KDD 2025 7
KDD 2024 7
KDD 2023 N/A
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