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ABSTRACT

Clinical diagnosis demands models that can process multimodal medical inputs
(images, patient histories, lab results) and generate diverse outputs including both
textual reports and visual content (annotations, segmentation masks, and images).
Despite this need, existing medical Al systems disrupt this unified process: medical
image understanding models interpret images but cannot generate visual outputs,
while medical image generation models synthesize images but cannot provide
textual explanations. This leads to gaps in data representation, feature integration,
and task-level multimodal capabilities. To this end, we propose a multi-level frame-
work that mirrors clinical diagnosis through the Observation-Knowledge-Analysis
(OKA) paradigm. Specifically, at the observation level, we construct UniMed-5M,
a dataset comprising over 5.6M samples that reformat diverse unimodal data into
multimodal pairs for foundational observation. At the knowledge level, we pro-
pose Progressive Curriculum Learning that systematically introduce medical
multimodal knowledge. At the analysis level, we introduce UniMedVL, the first
medical unified multimodal model for the simultaneous analysis of image under-
standing and generation tasks within a single architecture. UniMedVL achieves
superior performance on five medical image understanding benchmarks, while
matching specialized models in generation quality across eight medical imaging
modalities. Crucially, our unified architecture enables bidirectional knowledge
sharing generation tasks enhance visual understanding features, demonstrating that
integrating traditionally separate capabilities within a single medical framework
unlocks improvements across diverse clinical scenarios. Code is available at Link.
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Figure 1: Overview of UniMedVL unified framework. Capabilities across medical image under-
standing and generation tasks and performance comparisons.
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1 INTRODUCTION

Clinical diagnosis fundamentally follows a structured multi-level reasoning pipeline that is inherently
multimodal in both inputs and outputs. Physicians systematically observe multimodal raw data
(imaging patterns, patient histories, symptom descriptions (Huang et al., 2020)), integrate this with
clinical knowledge (medical literature, domain expertise, cross-modal associations (Khader et al.,
2023)), and analyse to produce diverse diagnostic outputs—textual reports explaining findings, visual
annotations localizing abnormalities, and comparative imagery for treatment planning (Nguyen et al.,
2023; Tanida et al., 2023).

Consider a radiologist examining suspected lung pathology: they process chest X-rays (visual), prior
CT scans (cross-modal comparison), and patient history (textual) to generate multiple complementary
outputs: detailed reports describing findings, visual annotations highlighting specific regions, and
comparative visualizations for surgical planning. This exemplifies how clinical diagnosis requires
unified processing of multimodal inputs to generate diverse multimodal outputs, where neither textual
reports alone (lacking spatial localization) nor visual annotations alone (lacking reasoning context)
suffice. While multimodal fusion has demonstrated substantial improvements in clinical decision-
making (Benani et al., 2025; Soenksen et al., 2022), current medical Al remains fragmented, with
state-of-the-art models achieving less than 60% accuracy compared to over 90% for human experts
on diagnostic challenges (Kaczmarczyk et al., 2024). This fragmentation manifests at three critical
levels: (i) Data: Medical datasets remain predominantly single-modal despite clear evidence that
multimodal integration substantially improves diagnostic accuracy (Warner et al., 2024; Huang et al.,
2023). (ii) Features: Current approaches lack systematic progressive training strategies that can
effectively capture deep cross-modal relationships—most methods simply concatenate features rather
than progressively building from basic pattern recognition to sophisticated multimodal reasoning (Haq
et al., 2025). (iii) Tasks: While general-domain models have made progress in unified architectures,
the medical domain still lacks truly unified models. For instance, although HealthGPT demonstrates
both understanding and generation capabilities for medical tasks, it requires reloading different model
checkpoints to switch between task types—a limitation that prevents seamless multi-task operation in
clinical workflows (Lin et al., 2025).

To bridge this gap, we propose a workflow-guided framework that mirrors how physicians actually
process medical information through the Observation-Knowledge-Analysis (OKA) paradigm: Ob-
servation Level (Data): We construct UniMed-5M, a 5-million sample dataset that, unlike existing
single-modal datasets, reformats medical data of various tasks into true multimodal input-output
compatible pairs. Knowledge Integration Level (Features): We design Progressive Curriculum
Learning that goes beyond naive concatenation. Through three carefully designed stages (alignment
for medical data, fusion, and synthesis), our approach materialises models to discover cross-modal
patterns better. Analysis Level (Tasks): We introduce UniMedVL, the first unified medical model
capable of both understanding and generation within a single architecture at the same time. Our
experiments validate two key insights: (1)Medical Representation learning requires framework, al-
lowing the shared representations in medical domains necessitate the OKA framework with sufficient
data quality and quantity, for unified medical multimodal learning; (2) Rapid adaptation is achievable,
unified model architectures demonstrate the feasibility of quickly adapting to new medical tasks and
datasets for scalable multimodal medical Al intelligence. Therefore, our contributions are as follows:

Observation (Data-level): We construct UniMed-5M, a large-scale dataset containing over 5.6M
multimodal medical examples that reformat diverse unimodal datasets into uniform multimodal
input-output pairs, and serve as the initial building blocks for unifying diverse medical tasks.

Knowledge integration (Feature-level): We devise Progressive Curriculum Learning, a three-
stage training paradigm that systematically builds medical multimodal capabilities: foundation
training for basic pattern recognition, instruction tuning for cross-modal fusion, and unified multi-
modal training for advanced synthesis.

Analysis (Task-level): We introduce UniMedVL, a novel unified medical foundation model that
provides multimodal capabilities—including understanding multimodal inputs and generating textual
reports, image translation, segmentation masks, and synthetic medical images—within a single
architecture without needing offline checkpoints once loaded.
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2 RELATED WORK

2.1 MEDICAL MULTIMODAL LARGE LANGUAGE MODELS

Early medical MLLMs took an adapter-style approach, plugging medical vision encoders into general
LLMs through lightweight projection or LoRA. Thawakar et al. (2024) aligned MedCLIP with Vicuna
via a linear projector in XrayGPT. Li et al. (2023) bootstrapped instruction data from PubMed figures
using GPT-4 in LLaVA-Med. These systems proved effective for VQA and reporting but kept fusion
shallow and provided no unified route to image synthesis or editing. A second paradigm emphasizes
data engineering. Chen et al. (2024b) leveraged GPT-4V to reformat noisy PubMed image—text pairs
into the 1.3M-sample PubMedVision corpus in HuatuoGPT-Vision. While this approach mitigates
data scarcity and noise, it remains primarily comprehension-oriented; unified, high-fidelity generation
is still outside the model proper. Zhang et al. (2023a), which extends beyond radiology to molecules
and proteins in a unified seq2seq architecture with BioMedGPT, and Singhal et al. (2025), which
reaches expert-level exam performance via chain-of-thought and clinician-aligned instruction with
Med-PalLM 2, strengthen biomedical reasoning but do not deliver a unified medical pipeline that
natively spans image-level generation and text reasoning. More recently, Lin et al. (2025) emerged
with HealthGPT as the first medical MLLM explicitly targeting unified multi-modal input and output.
It introduces MOE LoRA to reduce task interference and to cover tasks. However, its unification
relies on multiple task-specific models at inference time. As a result, different capabilities are not
consolidated into a single, end-to-end model that uniformly expresses all tasks simultaneously.

2.2  UNIFIED MULTIMODAL UNDERSTANDING AND GENERATION MODELS

Outside the medical domain, unified multimodal research has developed along several paradigms.
Autoregressive models (Team, 2024a; Wang et al., 2024; Lu et al.; 2024) treat images as discrete
tokens within decoder-only Transformers, achieving architectural unity but limiting high-resolution
synthesis due to long sequences and discrete reconstruction. Dual-encoder designs (Wu et al., 2025c;
Ma et al., 2025d; Xu et al., 2025b) address the granularity conflict between semantic understanding
and pixel-level generation through separate visual pathways, improving task-specific performance at
increased inference cost. Hybrid objectives combine different generative paradigms: Zhou et al. (2024)
jointly optimize text cross-entropy and image diffusion losses in Transfusion, Xie et al. (2024) embed
discrete diffusion via Omni-Attention for faster synthesis in SHOW-O, while modular approaches (Wu
et al., 2025¢e; ?; 2024a) bridge frozen MLLMs with diffusion models through learnable connectors.
These solutions achieve cost-effectiveness but sacrifice end-to-end differentiability. Representation
innovations target the semantics-fidelity gap through various strategies: multi-codebook quantization
(Ma et al., 2025c¢), contrastive-aligned tokenization (Wu et al., 2024b), unified CLIP semantic spaces
(Chen et al., 2025), and masked autoregressive encoders (Jiang et al., 2024). Advanced autoregressive
methods (Liao et al., 2025; Zhang et al., 2025; Zhuang et al., 2025) enable high-fidelity interleaved
generation through deep fusion, prefilled tokens, and reinforcement learning from human feedback.
Despite these advances, balancing semantic understanding with pixel-level reconstruction remains
challenging, particularly for fine-grained medical localization and diagnostic-quality image synthesis
required in clinical applications.

3 METHODOLOGY

Our workflow-guided multi-level framework systematically implements the clinical Observation-
Knowledge-Analysis (OKA) paradigm through three corresponding stages: data-level observation
for comprehensive multimodal dataset construction, feature-level knowledge integration through
principled curriculum learning, and task-level analysis via unified model architecture. Each stage
addresses specific computational challenges while maintaining clinical workflow coherence.

3.1 OBSERVATION LEVEL: UNIMED-5M DATASET CONSTRUCTION

At the observation level, comprehensive multimodal datasets are constructed to enable systematic
processing of diverse medical inputs that mirror clinical practice. The dataset construction follows
clinical workflow patterns where multiple data modalities are observed and initially processed before
knowledge integration. The overall dataset curation pipeline is shown in Fig. 2.
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Figure 2: Overview of the proposed Observation—-Knowledge framework. Observation: Covers data
sources and modality coverage, quality control pipeline, and interleaved task construction for building
training data across different model stages. Knowledge: Refers to the progressive curriculum training
paradigm, consisting of three stages that gradually equip the model with generalized capabilities on
interleaved tasks.

Data Source and Modality Coverage. A comprehensive medical dataset comprising 5.6M samples is
assembled from diverse public repositories including PMC-OA, Quilt-1M, PubMedVision, GMAI-VL
datasets, CheXpertPlus, PMC-VQA, Medical-Diff-VQA, SLAKE, PathVQA, and other specialized
medical datasets through systematic data synthesis and augmentation methodologies detailed in
Appendix A.2. The collection encompasses nine primary imaging modalities: chest X-rays (CXR),
histopathology images (HIS), CT scans, MRI sequences, retinal fundus photography (CFP), optical
coherence tomography (OCT), endoscopy, ultrasound, and fluorescence microscopy (FM). The
dataset encompasses diverse medical Al task categories spanning understanding, generation, and
multimodal input-output capabilities.

Quality Control Pipeline. We adopt a three-step pipeline that progressively increases fidelity while
controlling cost:

* Coarse Filtering. Images are preprocessed through modality-specific normalization and resolution
filtering (> 128x 128 pixels). Text undergoes specialized tokenization that preserves medical
terminology, followed by length filtering (161024 characters).

* Medical Alignment. Because medical captions often emphasize specific pathological findings

rather than exhaustive descriptions, we implement a dedicated verification pipeline. MedGemma-

27b (Sellergren et al., 2025) generates five diverse captions per image; semantic similarity is
computed with ES-large-v2 embeddings (Wang et al., 2022); and medical-specific alignment is
assessed using MedSigCLIP (Sellergren et al., 2025). We then compute a combined alignment

SCOre SCOrefinal = A - similaritygy + scoreyedsigcrip With A = 0.5, retaining the top 50% of pairs

as high-quality training data.

Expert Validation. Medical experts draw a 5% stratified subset for comprehensive auditing strictly

along the seven dimensions: modality—image match, factual accuracy, information completeness,

position/quantity accuracy, professionalism, planning coherence, and clinical reasoning quality.

This stage serves as quality assurance rather than additional filtering: on the audited subset,

expert ratings across all dimensions are observed to be >0.85 (with high inter-rater agreement),

substantiating the dataset’s clinical reliability and mitigating potential LLM hallucinations.

Interleaved tasks Construction.This component encompasses five interleaved tasks: medical image
prompt segmentation, super-resolution, counterfactual generation, virtual staining, and cross-modal
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synthesis. We adopt two complementary construction strategies: Templateization and VLLM Caption.
In Templateization, inputs and outputs are standardized into structured image—text pairs, where
textual prompts explicitly guide the model beyond the provided image and outputs follow a templated
format. In contrast, VLLM Captioning emphasizes generating semantically rich textual descriptions
that interpret the corresponding images in medical contexts, including symptom analysis and clinical
insights.

3.2 KNOWLEDGE LEVEL: PROGRESSIVE CURRICULUM LEARNING

At the knowledge integration level, deep cross-modal knowledge fusion is achieved through a princi-
pled curriculum learning paradigm that progressively builds from basic medical pattern recognition
to sophisticated multimodal reasoning capabilities.

Progressive Curriculum Training Paradigm:

» Stage 1: Foundation Training. Foundational medical domain awareness is established through
unsupervised exposure to comprehensive medical datasets. The foundation training stage priori-
tizes broad pattern recognition over task-specific performance, enabling robust medical concept
acquisition through text-image paired learning and next-token prediction across diverse medical
sources. Furthermore, the training emphasizes learning general medical visual-language alignments
without task-specific constraints and overly curated datasets.

» Stage 2: Instruction Tuning. Medical expertise is systematically developed through fine-tuning
on curated high-quality instruction data. The instruction-formatted medical tasks follow the format
(¢, zy, k) = (at,a,) where query g, visual input x,,, and knowledge context k generate textual
a and visual a,, responses. We implement differentiated enhancement strategies for distinct task
types: For medical understanding tasks such as VQA, we augment standard responses with existing
Distilled Chain of Thought (DCOT) data that explicitly articulate the reasoning pathway from
visual observation to medical conclusions. For generation tasks, we employ Caption Augmented
Generation (CAG) pipeline to enhance caption quality, incorporating structured planning steps that
guide the visual synthesis process. The details are provided in Appendix A.5.

* Stage 3: Unified Multimodal Training. Multimodal capabilities of generation and understanding
are developed through sophisticated tasks requiring integrated visual-textual reasoning. This stage
focuses on complex interleaved tasks that combine understanding and generation requirements
within unified sequences. The training strategy maintains semantic stability from previous stages
while enabling advanced synthesis capabilities through selective parameter optimization, preparing
the model for comprehensive clinical analysis workflows.

3.3 ANALYSIS LEVEL: UNIMEDVL UNIFIED ARCHITECTURE

At the analysis level, comprehensive multimodal medical outputs are generated through a unified
architecture that naturally simulates clinical analytical processes while maintaining cross-modal
consistency. The UniMedVL architecture integrates the progressive curriculum learning paradigm
into a cohesive system capable of both understanding and generation within a single model.

Task Organization. Model training is systematically organised into three primary tasks that reflect
fundamental capabilities required for unified medical multimodal systems: (i) Understanding tasks
encompassing medical image comprehension, VQA, diagnostic reasoning, image captioning, and
clinical report generation; (ii) Generation tasks focusing on text-to-image synthesis with conditional
medical image generation and planning-guided approaches; and (iii) Interleaved tasks combining
visual-textual inputs and outputs requiring seamless multimodal integration. These interleaved tasks
include sophisticated capabilities such as virtual immunohistochemistry staining , cross-modal syn-
thesis (e.g., CT to MRI synthesis), counterfactual generation for treatment planning and development
forecasting.

Model Architecture Overview. Following Deng et al. (2025), we adopt a unified architecture with
dual visual encoders and mixture-of-transformer-experts (MoT). The understanding-oriented encoder
Evy ;1 extracts semantic tokens zy ;7 = Ey,;r(z,) for multimodal comprehension tasks, while the
generation-oriented encoder Ey 4 produces latent representations zy ag = Fy ag(x,) for visual
synthesis tasks. The MoT module contains specialized transformer experts: an understanding expert
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processes interleaved sequences of text and ViT tokens [Zteq¢, 2y 7] for vision-language understand-
ing, while a generation expert handles sequences containing text and VAE tokens [Zteqt, 2v aE] for
image generation. Projection layers fy ;7 and fy 4 g bridge the visual encoders with the transformer
experts, mapping encoded features to the shared hidden dimension. For generation outputs, the
decoder Dy 4 reconstructs visual content from the latent representations back to pixel space. A
generalized causal attention mechanism enables both experts to operate on the same token sequence
through shared self-attention operations for different types of tasks, integrating understanding and
generation paradigms into a unified framework.

Training Objectives. The model is trained with a unified loss function combining understanding
task loss and generation task loss. For understanding tasks, we employ next-token prediction:

n
Lntp = *Zlogp(twﬂtguzvm;@), (n
i=1
where t; denotes the i-th text token and 6 represents model parameters. For visual generation, rectified
flow matching is applied on VAE latents:

Cﬂow - Et,5[||v0(2VAEv ta C) - ’U||2], (2)
where vy is the velocity prediction network, Zy 4 g represents noisy latents processed by Dy ap, t is
the time step, c denotes conditioning, and v is the target velocity field. The overall training loss is as
follows:

L = Lyte(zvir) + - Liow(2vaE), 3)
where the coefficient o balances the contribution of generation tasks. We set o = 4 empirically.

4 EXPERIMENTS

4.1 BENCHMARKS AND BASELINES

Evaluation Benchmarks. We evaluate UniMedVL across medical visual understanding and genera-
tion benchmarks. For image understanding tasks, we employ VQA-RAD (Lau et al., 2018), SLAKE
(Liu et al., 2021), PathVQA (He et al., 2020), OmniMedVQA (Hu et al., 2024), and GMAI-MMBench
(Ye et al., 2024), which cover diverse medical scenarios. For image generation tasks, we split the
image—caption pairs in the proposed dataset into 80% for training and 20% for testing. We use the
test set to evaluate UniMedVL'’s text-to-image generation performance. For interleaved tasks, we
utilize the BCI dataset (Liu et al., 2022b) for the virtual immunohistochemistry staining task. The IXI
dataset (?) is leveraged to evaluate the super-resolution task, and the BraTS 2023 dataset (Adewole
et al., 2023) is used for evaluating the cross-modal synthesis task. We use the [CG-CXR dataset (Ma
et al., 2025b) to evaluate the counterfactual generation task.

Baseline Methods. These include two categories of methods: specialized models and unified
multimodal models. For specialized models, we include understanding-only models such as Med-
Flamingo (Moor et al., 2023), LLaVA-Med (Li et al., 2023), HuatuoGPT-Vision (Chen et al., 2024b),
RadFM (Wu et al., 2025b), GMAI-VL (Li et al., 2024), LLaVA-v1.5 (Liu et al., 2024), and InternVL2
(Team, 2024b). We also compare with image translation models including CycleGAN (Zhu et al.,
2017), pix2pix (Isola et al., 2017), pix2pixHD (Wang et al., 2018), pyramid pix2pix (Liu et al., 2022b),
SRCNN (Dong et al., 2015), VDSR (Kim et al., 2016), SwinIR (Liang et al., 2021), Restormer (Zamir
et al., 2022), AMIR (Yang et al., 2024), ResViT (Dalmaz et al., 2022), and TransUNet (Chen et al.,
2021). Additionally, to determine the model performance of medical imaging generation capability,
we finetuned LlamaGen-MediTok (Ma et al., 2025a). For unified multimodal models, we include
general frameworks like Janus (Wu et al., 2025d) and Bagel (Deng et al., 2025), as well as medical
unified models such as HealthGPT (Lin et al., 2025).

Evaluation Metrics. We employ task-specific metrics aligned with clinical relevance. For image
understanding tasks, we utilize accuracy as the evaluation metric. For image generation tasks,
we employ generation FID (gFID) and BioMedCLIP score to evaluate the quality of synthesized
images. For interleaved tasks, we leverage PSNR and SSIM as evaluation metrics for virtual
immunohistochemistry staining, super-resolution, and cross-modal synthesis tasks. For counterfactual
generation, we follow the experimental setup of ProgEmu (Ma et al., 2025b), using gFID, AUC-ROC,
and F1 to evaluate the quality of synthesized images, and BLEU-3, METEOR, and ROUGE-L to
assess the quality of the explanatory text.
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Table 1: Comparison of UniMedVL with other LVLMs and unified multi-modal models on
medical visual understanding tasks. Bold and underlined text indicate the best performance and
second-best performance, respectively.

Model Params Medical VQA-RAD SLAKE PathVQA OmniMedVQA GMAI-MMBench
Understanding Only

LLaVA-v1.5 7B X 42.8 37.7 31.4 44.7 38.23
InternVL2 8B X 49.0 50.1 31.9 54.5 43.47
Med-Flamingo 8.3B v 43.0 25.5 31.3 349 12.74
LLaVA-Med 7B v 48.1 44.8 35.7 413 20.54
RadFM 14B v 50.6 34.6 14.33 235 22.34
HuatuoGPT-Vision-7B 7B v 53.0 49.1 32.0 50.0 50.22
MedGemma-4B 4B v 67.6 71.2 33.7 68.4 44.0
Lingshu-7B 7B v 62.7 71.0 59.6 82.0 523
Lingshu-32B 32B v 714 84.7 61.3 80.4 52.7
GMAI-VL 7B v 66.3 72.9 39.8 88.5 61.74
Unified Understanding and Generation

Janus 1.3B X 52.8 26.9 27.9 45.7 39.30
Bagel 7B X 60.09 58.91 39.05 71.13 48.11
HealthGPT-M3 3.8B v 55.9 56.4 39.7 68.5 42.08
HealthGPT-L14 14B v 583 64.5 444 74.4 43.1
UniMedVL (Ours) 14B v 61.9 75.4 53.5 85.8 60.75

Table 2: Performance comparison of our UniMedVL variants and other baseline models on the
text-driven image generation task across different modalities. CS denotes BioMedCLIP Score. Bold
and underlined text indicate the best performance and second-best performance, respectively.

| crp |
| FID, CS{ | FIDJ
89.14 68.16
217.19 182.80
7135 190.38
53.20 73.04

CXR | cT | HIS | MRI | ocr
CST | FID, CS{ | FID, CST | FID, CSt | FID|

198.63
206.18
107.20
149.01

| Ultrasound | Endoscopy | Average
CS | FID, CSf | FID, CST | FID] CST |
358.11 171.85
25578 0.672 215.49
100.44  0.700 108.40

9538  0.706 96.29

Method

LlamaGen-MediTok
Bagel
UniMedVL-Gen
UniMedVL

0.660
0.699
0.706

0.668
0.704
0.707

214.61
121.89
133.11

307.80 0.719
107.06  0.721

99.27 0.721

17574 0.639
8299  0.699
9036

0.643
0.699
0.704

163.78
79.84
73.04

0.650
0.699
0.708

0.662
0.672
0.702

0.652
0.694
0.696

0.706

4.2 PERFORMANCE OF UNIMEDVL

Medical Visual Understanding Performance. We evaluate the understanding capabilities of
UniMedVL across diverse medical VQA and image comprehension benchmarks. Table 1 presents
comprehensive results comparing our model with existing medical VLLMs and unified multimodal
models. Table 1 reveals a critical insight: unified architectures can achieve understanding perfor-
mance comparable to specialized models without sacrificing generation capabilities. UniMedVL
demonstrates this principle by maintaining competitive performance across diverse medical domains
while supporting both understanding and generation within a single architecture. The key technical
insight emerges from comparing unified models (bottom section) with understanding-only models
(top section): HealthGPT requires separate model checkpoints for different tasks, while UniMedVL
achieves superior performance (85.8% on OmniMedVQA vs. HealthGPT-L14’s 74.4%) with seam-
less task switching. This validates our core contribution that progressive curriculum learning enables
effective knowledge sharing between understanding and generation pathways in medical contexts.

Medical Image Generation Performance. Table 2 provides empirical evidence for cross-modal
knowledge transfer in medical generation. A critical insight emerges from comparing UniMedVL-
Gen (generation-only training) with UniMedVL: the average gFID improvement demonstrates that
understanding tasks contribute semantic constraints to enhance generation quality. Furthermore,
UniMedVL achieves BioMedCLIP scores of 0.706 on average across modalities, indicating strong
semantic alignment between generated images and clinical text descriptions. This challenges the
conventional assumption that joint training compromises individual task performance, instead showing
that medical multimodal learning benefits from task synergy when the data bottleneck is relieved.

Interleaved Multimodal Tasks Performance. Table 3 demonstrates UniMedVL'’s performance on
interleaved multimodal tasks. For virtual immunohistochemistry staining (H&E—IHC), UniMedVL
achieves 20.27 PSNR, outperforming HealthGPT-M3 by 28%. In MRI super-resolution (4x), our
model attains 27.29 PSNR/0.890 SSIM, showing substantial improvement over the unified baseline.
For cross-modal synthesis (T2<+FLAIR), UniMedVL reaches 25.07 average PSNR, approaching
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Figure 3: Comprehensive visualization of UniMed VL ’s multimodal capabilities. Demonstration
of diverse medical imaging tasks, including text-to-image generation, virtual staining, super resolution,
counterfactual generation, and cross-modal synthesis.

specialized models while maintaining unified capabilities. Figure 3 provides qualitative visualization
of these capabilities. The key insight emerges from comparing UniMedVL' (mixed data training
without progressive stages) with full UniMedVL: consistent improvements across all tasks (e.g.,
2.16 PSNR gain in virtual staining) demonstrate that our complete progressive training paradigm
effectively learns cross-modal relationships that simple fine-tuning cannot capture.

Table 3: Performance Comparison on specialised generation tasks. histological staining transfor-
mation (H&E to IHC), MRI super-resolution (4 x), and medical image translation (T <> FLAIR).
PSNR and SSIM are used in medical image translation. { indicates unified fine-tuning variant. Bold
and underlined text indicate the best performance and second-best performance, respectively.

H&E—THC Staining | MRI Super-Resolution | Medical Image Translation
Method PSNR/SSIM | Method PSNR/SSIM | Method T—FLAIR FLAIR—T; Avg
CycleGAN 16.20/0.373 SRCNN 28.81/0.892 ResViT 24.97/0.870  25.78/0.908  25.38/0.889
Pix2Pix 18.65/0.419 VDSR 30.04/0.914 pGAN 24.01/0.864  25.09/0.894  24.55/0.879
Pix2PixHD 19.63/0.471 SwinIR 31.55/0.933 pix2pix 23.15/0.869  24.52/0.883  23.84/0.876
Pyramid Pix2pix  21.16/0.477 Restormer 31.85/0.938 A-UNet 23.69/0.873  24.56/0.891  24.13/0.882
AMIR 31.99/0.939 SAGAN 24.02/0.860  25.10/0.893  24.56/0.877
HealthGPT-M3 15.81/0.242 HealthGPT-M3  18.37/0.580 HealthGPT-M3  18.88/0.745  19.30/0.750  19.09/0.748
UniMedVL f 18.11/0.401 UniMedVL f 19.64/0.602 UniMedVL f 23.99/0.711  23.49/0.732  23.74/0.722
UniMedVL 20.27/0.456 UniMedVL 27.29/0.890 UniMedVL 24.90/0.881  25.23/0.883  25.07/0.882

Table 4 evaluates counterfactual generation capabilities with explanatory text. UniMed VL achieves
27.17 gFID and significantly higher text quality metrics (0.2641 BLEU-3, 0.4486 METEOR, 0.4649
ROUGE-L) compared to specialized baselines. The improved counterfactual check rate (0.797
AUROC) demonstrates that our unified training enables generation of clinically plausible scenarios
with coherent textual explanations.

Table 4: Comparison of UniMedVL with baseline methods on medical counterfactual generation.
Bold and underlined text indicate the best performance and second-best performance, respectively.

Method Counterfactual Image Explanatory Text

gFID| AUROCT F1t BLEU-3t METEORtT ROUGE-Lf
CXR-IRGen 35.39 0.5236 0.7609 0.0448 0.2115 0.1846
ProgEmu 29.21 0.7921  0.8914 0.1241 0.4097 0.2606
UniMedVL T 27.17 0.7970  0.8731  0.2641 0.4486 0.4649
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Table 5: Ablation study of the proposed progressive curriculum learning strategy. UVE refers
to the understanding-oriented vision encoder. G and U refer to the generation and understanding
subsets of UniMed-5M, respectively. CAG: Caption Augmented Generation, DCOT: Distilled Chain
of Thought. Bold indicates the best performance and underlined indicates second-best performance.

Model UVE Late  Liow Data Type Understanding Generation
GMAI-MMBench SLAKE PathVQA OMVQA gFID|  BioMedCLIP}
Baseline Comparison
One-Stage-Joint-Base X v v U+G 0.5354 0.6560 0.4946 0.7784 123.48 0.6945
Stage 1: Foundation Training
F-Baseline X X X - 0.481 0.589 0.390 0.7113 21273 0.662
C-G-only X X v G - - - - 118.5991 0.6994
B-U-only v v X 0] 0.505 0.5476 0.3673 0.7723 - -
H-Joint-Base v v v U+G 0.593 0.6843 0.3649 0.8562 121.02 0.683
Stage 2: Instruction Tuning
C-G-only X X v CAG - - - - 108.40 0.698
B-U-only v v X DCOT 0.5432 0.6032 0.4526 0.8167 - -
H-Joint-Base v v v High-quaity U+G 0.6004 0.7418 0.5130 0.8626 120.036 0.6989
Stage 3: Unified Multimodal Training
H-Joint-Base v v v Interleaved tasks 0.6075 0.7540 0.5346 0.8584 96.287 0.7058
Stage-wise Understanding Accuracy Generation Quality: gFID vs BiomedClip Modality-wise Generation Quality
90 100 v MI.*'J-W 300 i
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g 70 2 140 200
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Figure 4: Visual Comparsion of Performance across different training stages and modalities.
(Left:) Stage-wise understanding accuracy performance. (Center:) Generation quality evolution
with gFID reduction and BioMedCLIP score enhancement through different training stages. (Right:)
Modality-specific generation performance comparison across UniMedVL variants.

4.3 ABLATION STUDY

Table 5 and Figure 4 validate how our Knowledge level and Analysis level synergistically improve
model capabilities. The critical finding is that joint training (H-Joint-Base) consistently outperforms
single-task variants during the stage 1, indicating that UniMed VL learns fundamental unified multi-
modal representations to effectively perform both understanding and generation tasks. The stage 2
further improves the performance on both understanding and generation tasks. The understanding
and generation capabilities are enhanced by the instructions with a reasoning process and high-quality
image captions, respectively. The stage 3 brings significant improvement, demonstrating that the
unified multimodal representations are further improved at this stage and support both understanding
and generation tasks.

5 CONCLUSION

We presented UniMedVL, a unified framework that simultaneously performs medical image under-
standing and generation within a single model, validated through extensive experiments on over 5
million medical samples demonstrating both state-of-the-art comprehension (75.40% SLAKE) and
competitive generation quality (95.80 gFID). While our current work focuses on 2D medical imaging,
the proposed OKA paradigm establishes foundations for exploring diverse medical Al tasks beyond
those demonstrated, including 3D volumetric analysis, temporal reasoning, and multimodal clinical
decision support. This work represents a critical step toward truly integrated medical Al systems
where understanding and generation capabilities synergistically enhance clinical workflows.
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Al

A.l.1

Table 6: Training hyperparameters and configurations for the three-stage curriculum learning strategy
in UniMedVL. These stages collectively implement the Knowledge component of the OKA frame-

work.

IMPLEMENTATION DETAILS

TRAINING HYPERPARAMETERS

Stage 1 Stage 2 Stage 3
(Foundation) (Imstruction Tuning) (Unified Multimodal)

Hyperparameters
Learning rate 5x 1075 2.5 x 107° 1.0 x 1075
Optimizer AdamW
Loss weight (CE : MSE) 0.25:1.0
Training steps 85K 120K 70K
EMA ratio 0.995
Image Resolution (VAE) 512-1024 512-1024 32-1024
Image Resolution (ViT) 378-980 224-518 378-980
Max tokens per sample 18.5K 20K 27K
Dropout Text: 0.3, ViT/VAE: 0.05
ViT training Trainable Frozen Frozen
VAE training Frozen
Understanding branch Trainable
LLM training Trainable
Data Sampling Ratio (%)
Text-Only 5 5 3
Text-to-Image (T2I) 25 45 35
Image-to-Text (I2T) 75 40 37
Interleaved - 10 25

Detailed Training Strategy Implementation. Our training employs a three-stage curriculum
learning approach that implements the Knowledge component within the OKA framework. We use
the AdamW optimizer throughout all stages:

» Stage 1 (Foundation Training) establishes basic medical understanding over 85K steps with
a learning rate of 5 x 10~°. The data composition prioritizes image-to-text tasks (75%),
complemented by text-to-image generation (25%) and pure text data (5%). This stage trains
both ViT and LLM components end-to-end while keeping the VAE frozen. The image
resolution is restricted with the range from 512-1024 pixels for the generation branch and
378-980 pixels for the understanding branch.

 Stage 2 (Instruction Tuning) extends training to 120K steps with a reduced learning rate of
2.5 x 107°. The data mixture evolves to balance text-to-image (45%) and image-to-text
(40%) tasks, while introducing interleaved multimodal datasets (10%). The ViT encoder is
frozen at this stage to preserve learned visual features. Token capacity increases to 20K per
sample.

 Stage 3 (Unified Multimodal Training) focuses on interleaved generation capabilities over
70K steps with a learning rate of 1.0 x 10~°. This stage significantly increases interleaved
dataset usage (25%) while maintaining balanced generation (35%) and understanding (37%)
tasks. The expanded token budget (27K) and broader image resolution range (32-1024
pixels for generation) support interleaved tasks, including medical image super-resolution,
modality translation, and counterfactual generation.

Hardware Requirements and Training Infrastructure. Our model training was conducted using
8% A800 GPUs (80GB memory each) for experimental validation. However, for optimal training
efficiency and to fully exploit the model’s capacity, we recommend a minimum configuration of 16x
A800 GPUs or equivalent hardware.

Technical Implementation Details. The training employs a unified loss function that balances
understanding and generation objectives with a CE:MSE weight ratio of 0.25:1.0. We apply consistent
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dropout rates across all stages (Text: 0.3, ViT/VAE: 0.05) to prevent overfitting. The EMA coefficient
is set to 0.995 for stable model convergence. Throughout training, the VAE remains frozen to maintain
stable latent representations.

Rationale for Using Pretrained VAE without Fine-tuning. Our approach leverages a general-
purpose pretrained VAE model from FLUX (Black Forest Labs, 2024) without medical domain-
specific fine-tuning. This design choice addresses two core questions: (1) the reconstruction capability
of pretrained VAE on medical imaging modalities, and (2) the cost-benefit trade-off of fine-tuning
versus preserving existing capabilities. Regarding the first question, we conducted comprehensive
reconstruction experiments across eight medical imaging modalities to evaluate performance. For
the second question, considering that our training data is not specifically designed for reconstruction
optimization, we did not pursue domain-specific fine-tuning to avoid potential degradation of the
model’s general-purpose capabilities while maintaining stable latent representations throughout our
progressive training stages.

Table 7: Reconstruction quality evaluation of pretrained VAE models on medical imaging modalities.

Metric Model fa | CFP CT CXR Endoscopy HIS MRI OCT Ultrasound
rFID (Lower is Better)
VAE (FLUX) 8 | 1322 581 542 11.77 10.00 10.58 13.23 9.64
Direct End-to-end VAE (FLUX) 8 | 14.05 30.59 23.28 39.56 44,64 3795 17.33 31.58
VQGAN 8 | 2722 1597 3357 27.73 21.33 67.68 29.48 18.66
Emu3-VQ 8 | 1627 11.83 27091 20.83 1352 69.89 2543 11.99
MedITok 16 | 1439 7.88 22.27 10.66 6.32 4654 17.64 6.55
PSNR (Higher is Better)
VAE (FLUX) 8 | 3458 37.34 37.09 35.33 3450 3430 34.58 33.59
Direct End-to-end VAE (FLUX) 8 | 35.11 3443 31.28 31.98 29.69 34.82 30.83 35.17
VQGAN 8 | 3540 31.13 29.28 25.60 29.54 2094 24.79 31.68
Emu3-VQ 8 | 2896 36.11 31.68 28.96 3432 22.08 27.57 35.81
MedITok 16 | 3772 36.32 31.69 29.17 23.55 2355 2549 34.42
SSIM (Higher is Better)
VAE (FLUX) 8 10892 0.951 0973 0.934 0.922 0921 0.892 0.938
Direct End-to-end VAE (FLUX) 8 | 0.842 0.848 0.904 0.900 0.938 0934 0.867 0.816
VQGAN 8 10923 0.885 0.753 0.768 0.844 0.484 0.248 0.317
Emu3-VQ 8 10943 0.928 0.793 0.847 0.957 0.547 0.751 0.955
MedITok 16 | 0.953 0.937 0.855 0.890 0.972  0.660 0.935 0.883

Endoscopy

Original Image

Reconstructed
Image

Figure 5: Qualitative comparison of VAE reconstruction quality across diverse medical imaging
modalities. Visual examples demonstrating reconstruction fidelity across eight medical imaging
modalities (CFP, CT, CXR, Endoscopy, HIS, MRI, OCT, Ultrasound) using the pretrained FLUX
VAE without domain-specific fine-tuning.

The empirical evaluation demonstrates that the VAE (FLUX) achieves competitive reconstruction
performance across eight distinct medical imaging modalities without requiring domain-specific
fine-tuning. With a compression factor of f; = 8, the model consistently delivers low rFID scores,
competitive PSNR values, and robust SSIM scores. To evaluate the necessity of domain-specific
adaptation, we performed direct end-to-end fine-tuning of the FLUX VAE on medical imaging data
(highlighted in red in Table 7). The empirical results demonstrate that domain-specific fine-tuning
yields negligible performance improvements for generation tasks across medical modalities, exhibiting
inconsistent variations in rFID scores with marginal changes in corresponding metrics. Consequently,
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these observations validate the deployment of pretrained VAE models without domain-specific
fine-tuning for 2D medical imaging generation applications within our experimental framework.

A.1.2 RECONSTRUCTION FIDELITY FOR CLINICALLY IMPORTANT SMALL LESIONS

While Table 7 demonstrates competitive aggregate reconstruction metrics (rFID, PSNR, SSIM) across
diverse medical modalities, these metrics may not fully capture the preservation of small but clinically
critical structures such as polyps in endoscopy, dermatoscopic features in skin lesions, or fractures
in radiographs. To address this concern, we conducted targeted qualitative analysis focusing on
the reconstruction fidelity of fine anatomical details and pathological findings that are essential for
clinical diagnosis.

We selected representative cases from three imaging modalities where small lesion detection is
clinically critical: (1) an endoscopy image containing polyp, (2) a dermoscopy image with skin lesion
with globules, and (3) a x-ray image with fractures. For each case, we compared the original image
with its VAE-reconstructed counterpart, examining both full-field views and magnified regions of

interest (ROIs) centered on the lesions.

Original
image

Reconstructed
image

original zoom in original zoom in original zoom in

Figure 6: Preservation of clinically important small lesions in VAE reconstruction. Side-by-
side comparison of original images (top row) and VAE-reconstructed images (bottom row) across
three medical imaging scenarios. Left: Endoscopy image showing a polyp (highlighted in red
box). Middle: Dermoscopy image displaying skin lesion with globules (highlighted in red box).
Right: X-ray image with fractures (highlighted in red box). Original denotes the original image,
and Zoom-in denotes the zoomed-in view of the lesion within the red boxes. The magnified views
demonstrate that the FLUX VAE preserves fine structural details essential for clinical interpretation,
despite being a general-purpose encoder not specifically fine-tuned for medical imaging.

Figure 6 illustrates that the pretrained FLUX VAE maintains visually discernible fidelity for small
pathological features. In the endoscopy image, the polyp’s morphology and surface texture remain
well preserved in the reconstruction, with boundary definition comparable to the original. For the
dermoscopy image, the characteristic globular patterns, key diagnostic features for distinguishing
benign nevi from melanoma—are clearly visible in both the original and reconstructed versions. In
the X-ray image, the highlighted region and surrounding anatomical structures maintain structural
coherence post-reconstruction. These qualitative observations suggest that general-purpose VAE
also preserves clinically relevant fine-grained details that are critical for downstream diagnostic tasks
within our unified framework.
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A.2 DATASET STATISTICS
A.2.1 DATASET COMPOSITION DETAILS

Table 8: Overview of training stage data distribution, showing data composition, task types, and scale
statistics across different stages. Stage 2 utilised the high-quality subset of stage 1 datasets.

Training Stage Total Entries Task Categories
Stage 1: Foundation Training

Understanding Tasks 4.0M Image comprehension, VQA
Generation Tasks 1.6M  Text-to-image, controllable generation
Stage 1 Subtotal 5.6M Foundation capabilities
Stage 2: Instruction Tuning

Understanding Tasks 698K Image CoT, clinical reasoning
Generation Tasks 668K Enhanced T2I, medical translation
CoT Understanding 317K Chain-of-thought reasoning
Text-only Tasks 230K Medical QA, clinical dialogue
Stage 2 Subtotal 1.9M Knowledge integration
Stage 3: Unified Multimodal Training.

Interleaved Tasks 330K 5 interleaved tasks
Stage 3 Subtotal 0.33M Unified capabilities
Total Dataset 5.6M All medical tasks

A.2.2 MEDICAL DOMAIN AND MODALITY DISTRIBUTION

Table 9: Major datasets detailed information, showing key dataset contributions sorted by data volume.
For open-source datasets, the reported numbers indicate the actual subset sizes used in our training
pipeline after filtering.

Dataset Name Total Entries Primary Tasks

PMC-OA (Lin et al., 2023) 1.0M Text-to-Image Generation
Quilt-1m (Ikezogwo et al., 2023) 644K Histopathology Understanding
Healthgpt (Lin et al., 2025) 638K  Clinical Reasoning, Image Caption
PubMedVision (Chen et al., 2024a) 385K Controllable T2I Generation
Gmai-vl (Li et al., 2024) 288K  Enhanced T2I Generation

Bigbio (Fries et al., 2022) 262K  Clinical Reasoning with CoT
CheXpertPlus (Chambon et al., 2024) 223K Medical Report Understanding
PMC VQA (Zhang et al., 2023b) 204K Image Caption

Internvl (Chen et al., 2024c) 188K  Disease Classification, Clinical Reasoning
Medicat (Subramanian et al., 2020) 132K  Controllable T21 Generation
Medical-diff-vqa (Hu et al., 2023) 129K Image Caption, Entity Recognition
PMC-Inline (Wu et al., 2025a) 121K Multi-image Understanding
IXIT2/T1 SR 4x (Information eXtraction from Images (IXI) Project, 2024) 161K Super resolution

BraTS23 Modality Tran (Baltruschat et al., 2023) 52K Cross modal synthesis

SynthRAD Brain (MR to CT/CT to MR) (Thummerer et al., 2025) 66K  Cross modal synthesis

SynthRAD Pelvis (MR to CT/CT to MR) (Thummerer et al., 2025) 42K Cross modal synthesis

ICG-CXR dataset (Ma et al., 2025b) 10K Counterfactual generation

BCI dataset (Liu et al., 2022a) 5K Virtual immunohistochemistry staining
Total (Selected Datasets) 4.55M -

Others Datasets 1.05SM -

Grand Total 5.6M All Tasks
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A.2.3 MODALITY AND ANATOMY DISTRIBUTION

Figure 7 illustrates the comprehensive statistics of our curated medical datasets, showing both
modality distribution and anatomical coverage. These statistics highlight the diversity and quality of
data used across different training stages.

Cytology

Heart

_ Dermoscopy
Ultrasound
Endoscopy

Microscopy

Lower_Extremity

Fundus
Abdomen

s Brain

Lung

(a) Modality Distribution (b) Anatomy Distribution
Figure 7: Comprehensive statistics of our curated medical datasets, showing modality distribution

and anatomy distribution. These statistics demonstrate the diversity and quality of data used across
different training stages.
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A.3 DATA ENHANCEMENT PIPELINE: CAG IMPLEMENTATION

This section presents the complete prompt templates used in our Caption Augmented Generation
(CAG) pipeline for image generation tasks, as described in Section 3. The CAG pipeline consists of
two main stages: (1) structured medical description generation for quality control, and (2) caption
fusion that combines original captions with generated descriptions.

A.3.1 STAGE 1: STRUCTURED DESCRIPTION GENERATION

Purpose: Generate four-level structured medical image descriptions for quality control and
similarity computation

You are a universally expert medical image analyst, proficient in all
imaging modalities and anatomical systems.

Your input is a single medical image, with no supplementary information.
Your only task is to provide a comprehensive, objective, and structured
description at four distinct levels, from the highest overview down to
the most specific and exceptional findings.

You must not offer any diagnostic, interpretive, or clinical advice.

Output Structure (Four-Level, Top-to-Bottom —-- definitions for your
internal guidance; do NOT reproduce these headings in your answer)

LEVEL 1: IMAGE TYPE & GLOBAL CONTEXT

- In one sentence, state the presumed imaging modality (if visually
clear), main body region(s), and overall image category (e.g.,
cross-sectional, projectional, histological).

« Example: "This is an axial CT image of the abdomen and pelvis,
showing cross-sectional anatomy at the level of the lower kidneys."

LEVEL 2: MACRO-ANATOMICAL OVERVIEW

+ In 2-4 concise lines, summarize the global distribution and layout
of major anatomical regions, dominant structures, and any clearly
visible large-scale abnormalities, masses, or disease patterns.

« Describe anatomical orientation, symmetry, major organ relationships,
and other visually prominent features.

LEVEL 3: ORGAN / SUBREGION DETAILS -- must be the most detailed section

« In 6-12 lines (use complete sentences), describe the visual
appearance of individual organs, vessels, bones, or other relevant
subregions.

« Provide precise, granular, reproducible details so that all main
features can be reconstructed.

« Maintain strict objectivity; do not include diagnostic language.

LEVEL 4: SPECIAL OR INCIDENTAL FINDINGS
« List any unusual devices, postsurgical changes, image artifacts,

rare morphologic features, or observations not already mentioned above.
« If none are visible, explicitly state: "No distinct pathological

or incidental findings are visible."

Writing Instructions

1. Write the entire description as one continuous paragraph that
implicitly follows the LEVEL 1 -+ LEVEL 4 order--do not include
level headings, bullet points, or numbered lists in the paragraph.

2. Do not use bullet points elsewhere (except within the examples) .

3. For more complex images, the portion corresponding to LEVEL 3 should
naturally be longer; for simpler cases, keep it proportionally concise.

4. Avoid any clinical judgement or speculation--describe only what is
directly visible.

A.3.2 STAGE 2: CAPTION FUSION ENHANCEMENT

This stage fuses original captions with Stage 1 generated structured descriptions to create enhanced
descriptions for image generation tasks.
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Purpose: Fuse original captions with structured descriptions for enhanced image generation
prompts

You are a universally expert medical image analyst, proficient in all
imaging modalities and anatomical systems.

CRITICAL CONSTRAINT: You must maintain absolute anatomical consistency.

NEVER change, assume, or modify the anatomical location described in the

original caption. Do not make assumptions about different anatomical locations or
transfer descriptions between different body parts.

Your input consists of:

1. A structured, objective, four-level description derived from a locally
deployed AI model (following a strict hierarchy from global overview
to specific findings).

2. An original, data-derived textual description containing high-density,
potentially diagnostic or interpretative information, which may lack
structured clarity.

Your task is to:

« First, critically review and confirm the completeness of the structured
description generated by the local model.

- Then, systematically extract and objectively incorporate relevant,
visually verifiable details from the original data-derived description,
enhancing information density without including diagnostic, interpretive,
or clinical judgement.

+ Clearly indicate and explicitly include visually evident anatomical
abnormalities, structural deviations, or incidental observations present
in the original data but omitted in the structured description.

Output Structure (Four-Level, Top-to-Bottom)

LEVEL 1: IMAGE TYPE & GLOBAL CONTEXT

- In one sentence, state the presumed imaging modality, main body
region(s), and overall image category.

LEVEL 2: MACRO-ANATOMICAL OVERVIEW

« In 2--4 concise lines, summarize global anatomical distribution,
dominant structures, anatomical symmetry or deviations, and clearly
visible large-scale abnormalities.

LEVEL 3: ORGAN / SUBREGION DETAILS -- must be the most detailed section

« In 6--12 complete sentences, describe individual organs, bones,
vessels, and other relevant anatomical subregions in precise,
reproducible detail.

« Objectively highlight visually confirmed abnormalities or structural
deviations derived from the original data description.

LEVEL 4: SPECIAL OR INCIDENTAL FINDINGS

« Explicitly mention unusual devices, postsurgical changes, rare
morphological features, or visually detectable anomalies present in
the original description yet absent in the structured description.

« Clearly state the absence of commonly expected baseline anatomical
or pathological features if definitively not observed in the image.

Writing Instructions

1. Write the final enhanced description as a single, continuous paragraph
implicitly following LEVEL 1 + LEVEL 4 order--do not include explicit
level headings, bullet points, or numbered lists.

2. Avoid any clinical judgement, diagnostic language, or speculative
interpretation--include only details directly verifiable from visual
inspection.

3. Start your output with "Please generate a realistic [modality] image
showing" to make it a proper generation instruction.

A.3.3 STAGE 3: THINKING-ENHANCED RESPONSE GENERATION

This stage aims to elicit the reasoning process from the medical foundation model (MediGama-27B-
IT) by prompting it to explicitly generate its internal thinking steps. We leverage this specialized
medical model to simulate detailed reasoning processes through the structured prompt format. The
resulting data, which includes both the explicit thinking traces and the final responses, is then used to
train our model.
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Purpose: Generate medical image responses with thinking tags for enhanced reasoning and
quality control

System: You are a medical image generator. You create [modality] images based
on clinical descriptions. Your responses should describe what features you
have generated in the image from the creator's perspective. Use bullet points
to organize the anatomical structures and clinical features you have included
in your generated image.

User: Based on this clinical description: "[clinical_description]™"

You have been given the corresponding medical image. Please provide a response
following this format:

Required format:

<think>Analyzing the clinical description, I need to generate an image that
captures: 1) The key pathological process described, 2) The anatomical
structures involved, 3) The specific imaging characteristics for [modality].
Based on the clinical presentation, I should include [key features reasoning].
[structured_caption if available]</think>

Here/This is the generated [modality] image that displays:
+ [anatomical structure or clinical finding 1]

[anatomical structure or clinical finding 2]
« [anatomical structure or clinical finding 3]

IMPORTANT:

1. In the <think> tag, reason through WHAT you need to generate and WHY based
on medical knowledge

2. Respond from the GENERATOR perspective - describe what features you have
CREATED/GENERATED in the image

3. Use the exact format above with bullet points (-) to list features

4. Start with 'Here is the generated [modality] image that displays:'

5. Each bullet point should describe a specific anatomical structure,
clinical finding, or visual feature that you have included

6. Do NOT use observational language like 'shows', 'visible', 'can be seen'
- instead use generative language like 'displays', 'includes',
'features', 'contains'

Note: The thinking tag should reflect your decision-making process: "I need
to generate X because Y", "The clinical description indicates I should
include 7", etc.

The enhanced captions from Stage 2 (if the process "generating" is not generated successfully) and
Stage 3 (if the process "thinking" is generated successfully) are sampled and then submitted to the
Expert Review system (Section A.5) for final validation.
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A.4 DOWNSTREAM TASK RESULTS

A.4.1 MEDICAL REPORT GENERATION

7

™

"<image>\nl kindly request your help in creating a radiology
report specifically for this chest X-Ray scan."

"FINDINGS:Dual-chamber pacemaker, enteric tube, and
endotracheal tube are in satisfactory position. Mild
cardiomegaly is stable. There is new retrocardiac
opacification and blunting of the left costophrenic angle
likely representing a pleural effusion and left lower lobe
collapse.\nIMPRESSION:New left lower lobe collapse
and small to moderate left pleural effusion."

Figure 8: Medical report generation examples showing input images and generated reports.

A.4.2 VISUAL QUESTION ANSWERING

<image>\nWhat does the chest X-ray show?

-~
The chest X-ray shows consolidation in the left middle
3 and lower lobes of the lung. Consolidation refers to an

area of the lung that has become filled with fluid or

other material, which can be a sign of infection,

ra
s <image>\nWhat organ is shown in the image?

The image shows the parotid gland, which is a salivary
? gland located near the ear.

or other lung

‘What is VAP?

~a
an Whatis the abnormality in the image? unit (ICU) setting. VAP can be caused by various

factors, such as bacterial infections, aspiration of
secretions, or compromised immune systems. Tt is a
serious complication that can lead to increased
morbidity and mortality in critically ill patients.

| What is the significance of detecting deep lobe
extension?

~
-
f VAP stands for Ventilator-Associated Pneumonia. Itis a
type of pneumonia that develops in patients who are on
mechanical ventilation, typically in an intensive care

™ What is the significance of the deteriorating
A8 Pa02/FiO2 ratios?

ra

s Whatis the abnormality in the image? The PaO2/FiO2 ratio, also known as the P/F ratio, is a

7 measure of the efficiency of oxygen exchange in the
lungs. It is calculated by dividing the partial pressure of
oxygen in arterial blood (Pa02) by the fraction of
inspired oxygen (FiO2). A deteriorating P/F ratio
indicates that the patient's lung function is worsening,
and they are having difficulty exchanging oxygen
offectively. This can be a sign of worsening lung

v such as o acute respiratory

recurrence, or CffinEly distress syndrome (ARDS). In the context of the chest

TR T o el e, T e, e X-ray showing VAP, the deteriorating P/F ratio suggests

assessment of the tumor's extent is crucial for optimal that the patient's lung function is being negatively

impacted by the pneumonia.

Detecting deep lobe extension in a parotid tumor is

3 important because it can provide valuable information
about the extent of the tumor and its potential impact on
surrounding structures. This information can help guide
treatment planning, such as surgical approaches and the
need for additional therapies. Additionally, deep lobe
extension may be associated with a higher risk of

management and prognosis.

Figure 9: Visual question answering examples across different medical imaging modalities.
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[ Clinical R i ] ( Clinical Reasoni )

“™ You should first think about the planning process in
your mind, and then generate the image.\nThe
planning process is enclosed within <think> </think>
tags; that is, <think> planning process here </think>
image here \n\n\n<image>Which finding is in this
chest X-ray? Options:\nA) fracture\nB) lung
opacity\nC) atelectasis\nD) consolidation?

“™ You should first think about the planning process in
your mind, and then generate the image.\nThe
planning process is enclosed within <think> </think>
tags; that is, <think> planning process here </think>
image here.\n'n'n<image>Does this chest X-ray show
atelectasis?

'91 <think>\nTo determine the findings on the chest X-ray,
I need to evaluate for fractures, lung opacity,
atelectasis, or consolidation. First, T examine the X-ray
for any discontinuity or irregularity in the bony
structures to identify fractures, but none are observed
in the ribs, clavicles, or spine, indicating no fracture.
Next, T assess the lung fields for any increased density
suggesting lung opacity. No areas are denser than the
surrounding tissue, suggesting no lung opacity. I then
analyze for volume loss indicative of atelectasis. The
images reveal mild bilateral basal atelectasis,
suggesting volume loss at the lung bases, which is
consistent with increased density and some pulmonary
structure crowding. Finally, I look for homogenous
opacification or air bronchograms that would indicate
consolidation. None are present, ruling out

<think>\nThe analysis begins by examining the chest
X-ray for signs of atelectasis. Key features (o evaluate
include reduced lung volumes and any distinctive
opacities in the lung. Observations revealed low lung
volumes and minimal opacities in the left basilar
region, ing partial collapse i
of atelectasis. Normally, atelectasis can cause
structures like the trachea or diaphragm to shift
towards the affected area, but in this case, no

was noted, ing the
conclusion that the atelectasis is mild. Given these
findings, the chest X-ray does indeed show minimal
left basilar atelectasis, confirming the diagnosis of
atelectasis.\n</think>\n'nYes

Based on this evaluation, the primary
finding in the chest X-ray is mild bilateral basal (N
\___ atelectasis.\n</think>\n\natelectasis J

Figure 10: Visual question answering examples across different medical imaging modalities(part 2).

A.4.3 MEDICAL IMAGE GENERATION
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“This is a histopathology image showing microscopic features of tissue architecture. The image displays a
highpower view of neoplastic cells arranged in a disorganized pattern. The cells exhibit significant nuclear
atypia, including pleomorphism (variation in size and shape), irregular nuclear contours, and prominent

nucleoli. The nuclei also demonstrate hyperchromasia (dark staining). The cellular cytoplasm is scant. Mitotic !9‘
figures are present. The tissue architecture is disrupted. with loss of normal glandular or ductal structures. ety y ; o
There is invasion into the surrounding stroma by these atypical cells. Foci of necrosis, characterized by cellular L with he vicous Temimlkymu
debris and fragmented nuclear material, are observed. The extracellular matrix appears degraded in areas e e g ke moobos ponenlly
where tumor cells have infiltrated. The basal membrane is disrupted in regions of invasion. No distinet identifabe oveying
! {he choroid, which appers a5 fecive lyer.
pathological or incidental findings are visible. No evidence of lymphocytes or inflammatory cells is present. Wit th nner 2 ’
No identifiable specific tissue of origin is definitively clear from this general view. conton e
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Figure 11: Medical image generation examples with text prompts.
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‘This s an axial T2weighted MRI image of the brain, depicting crosssectional anatomy. The brain parenchyma
occupies the majority of the image, surrounded by cerebrospinal fluid (CSF) spaces. The cerebral hemispheres
are visible, with a prominent pattern of gyri and sulci. The ventricles, particularly the lateral ventricles, are
located centrally and appear as CSFfilled spaces. There are hyperintense areas visible within the white matter,
particularly adjacent (o the lateral ventricles, exhibiting apmwnln&uldr(h:mbuuun The er appears
relatively hypointense compared to the white matter and CSE. The basal ganglia and thalamus arz located deep
within the brain, medial to the internal capsule. The e Tt St rly and
posteriorly, respectively, but are not fully visualized in this axial plane. The overall architecture of the brain
appears relatively preserved, although the white matter signal abnormalities are noticeable. The white matter
adjacent to the lateral ventricles shows increased signal intensity on the T2weighted sequence, appearing
brighter than the normal white matter. This increased signal is also observed extending into the deep white
matter tracts. The corpus callosum is visible as a large white matter tract crossing the midline. The sulci appear
as hypointense lines filled with CSE. The cortical gray matter shows a normal thickness and signal intensity.
The inage qulity i good, with m.mmm arificts. No mass ffct o ignificant cdcma is apparent. The lateral
hite matter
suggesting possible pathology. The ‘eraywhite matter junction appears mm\ ely well
blurring may be present in the affected areas. The fourth ventricle is partially vlsuallzed mienorl)
midbrain appears relatively normal in signal intensity. The Iempoml lobes are visible laterally, sho\»mp normal
The occipital lobes are “The overall structure of the brain
8 maintined. The supeiorsagital sinus 4 notcloarly visbl on his axial slce. No signifcan hemorrhage or
calcification is detected. The signal intensity of the CSF in the ventricles and sulci is consistent with normal
fluid. No obvious mass lesion or large vessel acclusion is identified.

e

~

“This is an endoscopic image from within the large intestine, specifically showing the cecum. The image
presents a crosssectional view of the lumen, revealing the mucosal lining and underlying vasculature. The
cecum occupies a sigaificant portion of the image, appearing as a dilated pouchlike structue with prominent,
thick, and somewhat irregular mucosal folds, which are characteristic features of this region. The mucosal
surface has a slightly granular texture with visible blood vessels traversing the folds. The color is
predominantly reddishbrown, consistent with the normal appearance of the colonic mucosa. The lumen i
relatively wide and open. The terminal ileum is not clearly visible in this particular frame, but the ileocecal
valve region is suggested by the transition in mucosal pattern. The image quality s zood. with adequate
illumination and resolution to visualize the mucosal details and vaseular structures. The visualization of the
characterisic thick folds and the overall morphology confirms the identification of the cecum. The presence of
a clear view of the mucosal pattern and vascularity. along with the typical fold appearance, suggests a thorough
examination of this specific area. The differentiation from other parts of the large intestine relies on the unique
prominence and arrangement of the cecal folds, as well a the overall pouchike shape and potential
visualization of the fleacecal valve. No specific devices, postsurgical changes, or artifacts are apparent within
the cecal lumen itself, although an endoscopic instrument is visible in the lower left corner, partially obscuring
the view. The ileocecal valve is not clearly depicted in this image.

~

“This s a grayscale ultrasound image of the female pelvs, showing crosssectional anatomy. The image displays
the uterus centrally located within the pelvic cavity. The uerus appears as  somewhat irregular, anechoic to
hypoechoie structure with a distinet, uniformly echogenic lining, consistent with the endometrium. The overall
morphology suggests a pear shape. Adjacent to the uterus, structures such as the bladder are visible, appearing
more anechoic and located anteriorly and inferiorly. The ovaries are not clearly visualized in this specific plane,
but their location would typically be lateral to the uterus. The image shows the cervical region inferiorly and
the uterine body superiorly. No large masses, fluid collections, or significant deviations from expected uterine
morphology are immediately apparent. The echotexture of the uterine wall appears relatively homogeneous
The endometrium shows a uniform, bright echo, suggesiing its presence. No significant artifacts are visible
that obscure the anatomical details. The absence of expected structures like the ovaries in this particular view
is noted. The bladder is visible anteriorly and inferiorly to the uterus, appearing as a large, dark, anechoic
structure.

Figure 12: Medical image generation examples with text prompts(part 2).

A.4.4 INTERLEAVED TASKS

Reviewing this endoscopy, could you
segment all instances of polyp and
provide their masks?"

Thinking

"content": "Generating a mask for the polyp based on the description.
The image shows a smooth, light-colored polyp in the lower part of the
image. I will create a mask highlighting this area."

"full_output": "<think>Generating a mask for the polyp based on the
description. The image shows a smooth, light-colored polyp in the lower
part of the image. I will create a mask highlighting this
area.</think>\n\nThis is the resulting mask for the polyp."

This is the required segmented image.

Generated

Reviewing this magnetic resonance, could
you segment all instances of stomach and
provide their masks?

Thinking

“content"": "The user wants me to generate an abdominal MRI image and then segment the large intestine, providing
masks for each segmented area. I need to describe the features I have generated in the image from the perspective of
the image generator, using bullet points and the specified format. The image should show the large intestine and its
segmented regions with masks.",

“full_output": "<think>The user wants me to generate an abdominal MRI image and then segment the large intestine,
providing masks for each segmented area. I need to describe the features 1 have generated in the image from the
perspective of the image generator, using bullet points and the specified format. The image should show the large
intestine and its segmented regions with masks.</think>\n\nHere is the generated mri image that displays:\n* An axial
view of the abdominal cavity, centered around the level of the large intestine.\n> The large intestine, depicted as a
tubular structure with varying signal intensities on the MRI\n+ Segmented regions of the large intestine, highlighted
with distinct masks.\n+ The masks are overlaid on the image, clearly delineating the boundaries of the segmented large
intestine segments.\n Surrounding abdominal structures, such as the liver, spleen, kidneys, and vertebral column, are
also included for anatomical context.”

~
This is the required segmented image.

Generated

Figure 13: Medical Image Prompt Segmentation.
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Super Resolution

. Transform this low-resolution brain MRI
~ slice into a high-resolution equivalent,
preserving neurological structures and
enhancing image sharpness.

Super Resolution

,,,,,, . Enhance the spatial resolution of this
brain MRI scan while preserving tissue
characteristics and improving overall

image quality.

9

generated.

Generated

~N
The virtual staining images of HE2IHC you requested have been

=

.

The virtual staining images of HE2IHC you requested have been )
generated.

Generated GT

Figure 14: Super Resolution.

Counterfactual Generation

You are an experienced radiologist
specializing in chest X-ray analysis.
Given a reference chest X-ray image,
analyze and predict the expected
radiological changes described in the
clinical context.\n\nClinical context:
Decreased right perihilar infection.

Counterfactual Generation

~

WhYou are an experienced radiologist specializing in
chest X-ray analysis. Given a reference chest X-
ray image, analyze and predict the expected
radiological changes described in the clinical
context.\n\nClinical context: Development of a
small right pleural effusion and mild enlargement
of the cardiac silhouette.

There is a reduction in the density of the right perihilar region,
indicating decreased consolidation. The surrounding lung fields
appear clearer, and the overall lung volume seems more
expanded.

o

Generated

)

e

N

There is an increased blunting of the right costophrenic angle,
indicating a small pleural effusion. The cardiac silhouette
appears slightly larger, suggesting mild cardiomegaly.

Generated

Figure 15: Counterfactual Generation.
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Virtual Immunohistochemistry Staining Virtual Immunohistochemistry Staining

’a

s Synthesize a HER2 IHC image with 2*
expression level based on the given H&E
image.

’a

s Synthesize a HER2 IHC image with 3
expression level based on the given H&E
image.

@ The virtual staining images of HE2IHC you requested have been\ f@ The virtual staining images of HE2IHC you requested have been\
generated. generated.

Generated Generated
L J A\
Figure 16: Virtual Immunohistochemistry Staining.
Cross Modal Synthesis Cross Modal Synthesis

e

au Produce a MR scan brain image from the
provided CT scan scan, preserving
diagnostic quality and anatomical
structures.

ru

o Produce a MR scan brain image from the
provided CT scan scan, preserving
diagnostic quality and anatomical
structures.

f@ Production complete. Displaying the generated brain MR scan ) f@ Production complete. Displaying the generated brain MR scan h

scan. scan.

Generated GT Generated GT
" J " J

Figure 17: Cross Modal Synthesis.
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A.5 EXPERT REVIEW VALIDATION SYSTEM

This section presents an expert review validation system that evaluates the quality of our UniMed-5M
dataset construction and two caption generation approaches described in the Data Enhancement
Pipeline (Section A.3):

Simple approach: Caption fusion that combines structured descriptions from Stage 1 with original
captions (Stage 2 of CAG pipeline).

Thinking-enhanced approach: Incorporates an additional planning process with <think> tags that
integrates reasoning steps before medical image generation (Stage 3 of CAG pipeline). The validation
system evaluates both data quality and methodological effectiveness.

A.5.1 EXPERT REVIEW FRAMEWORK OVERVIEW

Our expert review validation system is designed around a seven-dimensional medical evaluation
framework that assesses medical Al performance.

Our evaluation framework encompasses seven dimensions that assess the synthetic quality of medical
image captions. The framework begins with Modality Match (0-1), which measures consistency
between images and declared medical imaging modalities, followed by Factual Accuracy (0-5)
that evaluates the precision of anatomical structure and pathological finding descriptions. Infor-
mation Completeness (0-5) assesses coverage of diagnostically relevant key information, while
Position/Quantity Accuracy (0-5) measures precision in anatomical localization and quantitative
assessments. The framework also incorporates Professionalism (0-5) to evaluate adherence to
medical reporting standards, Planning Coherence (0-5) to assess systematic thinking and logical
organization quality, and finally Clinical Reasoning (Turing Test) (0-5) to measure approximation
to human expert-level performance.

Expert Validation Protocol: Experts conducted audits of 200 samples across all seven dimensions.
The evaluation process achieved inter-rater agreement exceeding 0.85 across all dimensions.

A.5.2 EVALUATION DIMENSION ANALYSIS

Figure 18 presents the correlation analysis and comparative results. Figure 18a shows inter-
dimensional correlations, while Figure 18b compares the two generation approaches.

Evaluation Dimension Correlation Matrix

Modality Match -

Factual Accuracy

Information Completeness

Plannin 0.887 Dataset Score Difference Heatmap (Positive = Thinking Higher)

°

02
Turing Test 0755 Thinking - Simple { -0.121  -0.152  -0.064 = -0.212  -0.188  -0.184 0.0

e Difference

0.60 -02¢

oy

-0.4

Turing Test -

Factual Accura

Information Completeness

(a) Correlation matrix between evaluation dimensions. (b) Score difference heatmap comparing thinking and
simple approaches.

Figure 18: Expert evaluation analysis. (a) Correlation matrix revealing inter-dimensional relation-
ships (Pearson correlation coefficients ranging from 0.60 to 0.92). (b) Score difference heatmap
comparing thinking and simple approaches (negative values indicate simple approach scores higher;
all dimensions scored on 0-5 scale except Modality Match on 0-1 scale).
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A.5.3 DATASET QUALITY COMPARISON ANALYSIS

Figure 19 compares the two generation approaches across all evaluation dimensions. The radar chart
(Figure 19a) shows closely aligned performance profiles.

Overall Performance: Thinking vs Simple Method Comparison Medical MOda“ty Sample Distribution

Information Completeness

Ultrasound CXR
Factual Accuracy
Position Acguracy Fundus_Photography Endoscopy
soo%
jodality Match
Microscopy
MRI
Professionglism
ocT
—e— Thinking Method HIS
~#- Simple Method
cT
Planning
(a) Performance comparison: Thinking vs Simple ap- (b) Medical imaging modalities distribution

proaches across evaluation dimensions.

Figure 19: Expert validation overview. (a) Radar chart comparing performance profiles of thinking
and simple approaches across all seven evaluation dimensions. (b) Pie chart showing balanced
representation across medical imaging modalities, ensuring comprehensive coverage.

A.5.4 MEDICAL MODALITY-SPECIFIC ANALYSIS

Figure 20 presents modality-specific performance across nine medical imaging modalities. Figure 20a
shows statistical comparisons, and Figure 20b displays detailed performance metrics.

Medical Modality Performance Heatmap by Dimension

Thinking vs Simple ‘omparison ocT- 0%

Medical Modaities

00 # - M 5 f\f © & f@‘ r p & y & p@f @s‘“
S o cf v P & &\ﬁ o pr & & o e Q‘é)e &
¢ p y o
&
(a) Statistical comparison between thinking and simple (b) Modality-specific performance analysis.
approaches.

Figure 20: Comprehensive performance analysis. (a) Bar chart showing mean scores with confi-
dence intervals. (b) Heatmap displaying modality-specific performance scores.
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A.6 DOWNSTREAM TASK PERFORMANCE

A.6.1 MEDICAL REPORT GENERATION

Table 10: Medical report generation performance on MIMIC-CXR dataset. Evaluation of
automated radiology report generation using three metrics: ROUGE-L (lexical similarity), RaTE
(radiology-specific terminology accuracy), and RadCliQ~! (clinical quality assessment). Higher
scores indicate better performance for all metrics. Baseline results are sourced from Xu et al. (2025a).
Bold indicates best performance and underlined indicates second-best performance.

Models MIMIC-CXR MIMIC-CXR MIMIC-CXR
ROUGE-L RaTE RadCliQ ™!
GPT-4.1 9.0 513 57.1
Claude Sonnet 4 20.0 45.6 534
Gemini-2.5-Flash 254 50.3 59.4
Med-R1-2B 19.3 40.6 424
MedLM-R1-2B 20.3 41.6 48.3
MedGemma-8B-IT 25.6 52.4 62.9
LLaVA-Med-7B 15.0 12.8 52.9
HuatuoGPT-V-7B 23.4 489 48.2
BioMediX2-8B 20.0 44.4 53.0
Qwen2.5VL-7B 24.1 47.0 55.1
InternVL2-8B 23.2 47.0 56.2
InternVL3-8B 229 48.2 55.1
Lingshu-7B 30.8 52.1 69.2
HealthGPT-14B 21.4 48.4 52.7
HuatuoGPT-V-34B 235 48.5 47.1
MedDr-40B 15.7 452 47.0
InternVL3-14B 22.0 48.6 46.5
Qwen2.5VL-32B 15.7 475 452
InternVL2.5-38B 22.7 475 54.9
InternVL3-38B 22.8 479 472
Lingshu-32B 28.8 50.8 67.1
UniMedVL 19.2 45.0 42.4

A.6.2 CXR LUNG OPACITY IMAGE TRANSLATION

Table 11: Unpaired chest X-ray opacity removal translation performance. Task involves trans-
forming CXRs with lung opacities to opacity-free counterparts while preserving anatomical structures.
Evaluation metrics: FID (Fréchet Inception Distance) and KID (Kernel Inception Distance), where
lower values indicate better image quality and distributional similarity. Baseline results are sourced
from published literature. Bold indicates best performance and underlined indicates second-best
performance.

Model FID| KID /|
Baselines

Original CXRs  81.80 0.043
Munit 109.4  0.073
Unit 103.2  0.061
CycleGAN 208.3 0.216
Uvcgan 2104  0.225
Drit 117.6  0.087
AAMA-CDA 67.18 0.016
Unified Models

HealthGPT-M3  62.19  0.031
UniMed VL' 351  0.008
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A.7 FAILURE CASES AND ANALYSIS

We present representative failure cases of UniMedVL organized by task type: medical image
generation, medical image editing, and medical image understanding, with illustrative examples
shown in Figures 21 and 22.

A.7.1 MEDICAL IMAGE GENERATION:

Global appearance and background artefacts. Although UniMedVL generally produces realistic
images across modalities, a characteristic failure mode in text-to-image generation concerns embedded
text and annotations (Figure 21). In some synthesised samples, the model hallucinates spurious
on-image text or renders partially legible words, labels, or font styles that do not appear in the
corresponding real clinical images or do not match typical acquisition overlays. These artefacts
do not alter the main anatomical content but introduce visually unnatural patterns. As shown in
Figure 21, the generated chest X-ray exhibits spurious text overlays (red boxes highlight the artefacts),
the ultrasound image contains hallucinated text labels that deviate from standard clinical annotations,
and the CT scan shows partially corrupted metadata text at the bottom that does not match typical
DICOM overlay formatting.

A.7.2 MEDICAL IMAGE EDITING:

Fid -1deito

Figure 21: Text and annotation artefacts in medical image generation. Representative examples
in the medical image generation task showing hallucinated or corrupted text elements across different
imaging modalities. Left: Chest X-ray with spurious text overlay in the upper region (red box).
Center: Ultrasound image displaying hallucinated text labels that do not conform to standard clinical
annotation conventions (red box). Right: CT scan showing partially corrupted metadata text at the
bottom edge that deviates from typical DICOM overlay formatting (red box).

Structure preservation in generation and editing. For interleaved editing-style tasks (e.g., virtual
staining, super-resolution, cross-modal synthesis, counterfactual generation), UniMedVL does not
always perfectly preserve all spatial structures outside the region being semantically edited (Figure 22).
For instance, in some counterfactual CXR generations, small devices or lines (e.g., catheters) can
become slightly blurred or shifted, even when the main pathological change is correctly applied.
Figure 22 illustrates these challenges across three representative cases: in the brain MRI cross-modal
synthesis tasks (top two rows), the generated images show subtle structural discrepancies in the
cerebellar and temporal regions compared to ground truth, and in the chest X-ray counterfactual
generation (bottom row), while the model successfully modifies the target pathological region,
occasionally minor shifts and blurring are observable in the cardiac silhouette boundaries.
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Ground Truth  Generated Image

Figure 22: Structural preservation challenges in interleaved generation and editing tasks.
Comparative analysis in the medical image editing task across different medical image translation
scenarios. Each row presents a triplet of Input, Ground Truth, and Generated Image. Top row:
Brain MRI cross-modal synthesis, where the generated image exhibits subtle structural distortions
in the cerebellar region compared to the ground truth. Middle row: Reverse brain MRI synthesis
shows minor misalignment in the temporal lobe structures. Bottom row: Chest X-ray counterfactual
generation task demonstrating reduction of pleural effusion; while the target pathological modification
is applied, the generated image shows slight blurring and positional shifts in the cardiac silhouette
and mediastinal borders.
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A.7.3 MEDICAL IMAGE UNDERSTANDING:

Table 12: UniMedVL performance on GMAI-MMBench validation set. Accuracy across 18
clinical VQA sub-categories.

Task Category Accuracy
Overall 0.607
Attribute Recognition 0.659
Blood Vessels Recognition 0.593
Bone 0.623
Cell Recognition 0.513
Counting 0.457
Disease Diagnosis 0.669
Image Quality Grading 0.440
Microorganism Recognition 0.793
Muscle 0.580
Nervous Tissue 0.925
Organ Recognition — Abdomen 0.657
Organ Recognition — Head and Neck 0.845
Organ Recognition — Pelvic 0.560
Organ Recognition — Thorax 0.747
Severity Grading 0.372
Surgeon Action Recognition 0.287
Surgical Instrument Recognition 0.310
Surgical Workflow Recognition 0.471

Medical demanding quantitative and fine-grained recognition scenarios. In medical demanding
tasks that require precise quantitative reasoning or fine-grained visual recognition, the unified model
shows clear limitations across multiple task categories. Table ?? presents UniMedVL'’s performance
on GMAI-MMBench validation set, revealing particularly low accuracy on surgical video recogni-
tion tasks: Surgeon Action Recognition, Surgical Instrument Recognition, and Surgical Workflow
Recognition. The model also struggles with quantitative assessment tasks including Counting, Image
Quality Grading, and Severity Grading.
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Multimodal Medical Quantitative Assessment
/7

i From the image input, please count and tell me the number of lymphocytes
shown.

B: "the number of lymphocytes: 7"

D: "the number of lymphocytes:25"

ii : On this immunohistochemical slide, lymphocytes correspond to the brown-stained cells
against blue nuclei. Visually estimating, | count ~30 such brown cells across the field.
Therefore, among the options provided, | select A: “the number of lymphocytes:30” as
the best match to the observed staining pattern.

p

Il
—J

X<<<
J

The error arises from coarse visual estimation: clusters of overlapping brown
staining are treated as separate lymphocytes, inflating the count. The model
fails to delineate individual nuclei and to exclude weak or nonspecific staining,
leading to overcounting versus the true value of 24 lymphocytes (option C).

Figure 23: Counting failure in lymphocyte quantification. Green indicates the correct answer,
and red indicates our model’s prediction.
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Surgeon Action Recognition
/7

-_ Focusing on the boxed section of this endoscopy video, what surgical action is
in progress?

B: "pulling seminal vesicle”

D: "sucking smoke"

‘Based on the boxed endoscopic view, | compare visual cues with typical urologic steps.
Bladder-neck dissection usually dominates such frames, whereas seminal-vesicle traction,
prostate bagging, or smoke suction require more specific devices or anatomy not clearly
visible. Given the limited context, | infer the action is bladder-neck dissection (A).

Il
—J

X< <<
J

This answer reflects procedural misclassification. The model relies on generic
priors (“typical” frames of bladder-neck dissection) instead of carefully
inspecting the boxed region for the retrieval bag and specimen, which are
diagnostic of prostate bagging. It underutilizes the explicit prompt to
recognize the specific surgical step in progress.

Figure 24: Surgeon Action Recognition failure. Green indicates the correct answer, and red
indicates our model’s prediction.
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Surgical Instrument Recognition
~
o Looking at the region delineated by a rectangle in the provided endoscopy

image, which option would be the most target-like?
A: "bipolar"

C: "hook"

3
\Within the boxed endoscopic region, | compare the visible instrument with typical
laparoscopic tools. The elongated tubular appearance suggests a fluid-delivery device rather
than a cutting tool or curved hook. Thus, among the options “bipolar,” “scissors,” “hook,” and

“irrigator,” | judge the instrument most consistent with an irrigator (D)

X(xxl
el

The mistake stems from coarse shape-based reasoning. The model focuses on
the shaft’s cylindrical form and ignores the distal jaws, which clearly resemble
scissor blades rather than an irrigation nozzle. By not attending to fine-grained
tip morphology and articulation, it misclassifies the laparoscopic scissors
(correct answer B) as an irrigator.

Figure 25: Surgical Instrument Recognition failure. Green indicates the correct answer, and
red indicates our model’s prediction.
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Surgical Workflow Recognition
e

-t Please identify which of the following options the surgical procedure shown in

the image belongs to.
A: "durotomy"
B: "nasal corridor creation"

C: "haemostasis"

3
Endoscopic view shows nasal/sinus cavity with instrument working on bony/soft tissue

surface. This appearance is more consistent with an endonasal approach to the sphenoid
sinus than with durotomy or generic nasal corridor creation or simple haemostatic
manoeuvres. Thus | classify it as anterior sphenoidotomy (D).

x<<<|

The model overemphasizes coarse anatomical context (endonasal access,
apparent sinus wall) and underutilizes dynamic cues that the instrument is
primarily controlling bleeding rather than creating a bony opening.
Consequently, a supportive step (haemostasis, C) is misinterpreted as a
definitive sinus procedure (anterior sphenoidotomy, D)

Figure 26: Surgical Workflow Recognition failure. Green indicates the correct answer, and red
indicates our model’s prediction.
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Image Quality Grading

)

Assessing the boxed area in this endoscopy image, which artifact stands out?

C: "blur"
D: "low contrast"

@l
In the boxed region, a sharply bright, featureless patch is visible on the mucosal surface. |

interpret this intense highlight as glare caused by the endoscope or another tool, i.e., an
instrument-related artifact, rather than blur, low contrast, or general image-quality
degradation. Therefore | select option A, “instrument artifacts.”

Il
=)

Ix<<<

The model conflates extreme brightness with instrument glare, ignoring that no
tool contour is visible and that the signal is locally clipped with complete texture
loss. These properties are typical of sensor saturation rather than reflection from

an instrument surface, so the correct dominant artifact is saturation (option B),
not instrument artifacts.

Figure 27: Image Quality Grading failure. Green indicates the correct answer, and red indicates
our model’s prediction.
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Severity Grading

/7

~n Please determine the severity of the provided image according to the core-
needle biopsy grading protocol.

A: "axillary lymph node (aln) metastasis - n0)"

ﬁ! 3
In this core-needle biopsy image, | see numerous metastatic tumor cells filling much of

the field. According to the aln grading scheme (nO: none; n+(1-2): limited; n+(>2):

extensive), this density appears compatible with involvement beyond two high-power
fields, so | classify it as n+(>2) (C).
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The error arises from misusing the HPF-based protocol: a single densely
infiltrated patch is overinterpreted as implying involvement of >2 fields. The
model extrapolates tumor extent beyond the visible image instead of restricting

grading to sampled HPFs, so the burden actually corresponds to n+(1-2)
metastasis (correct answer B).

Figure 28: Severity Grading failure. Green indicates the correct answer, and red indicates our
model’s prediction.
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A.8 EFFICIENCY ANALYSIS

We measure inference efficiency with single expert activation. Comparison with BLIP3-o0, Janus, and
HealthGPT is provided in Tables 13.

Image generation (Table 13(a)). UniMedVL (14B) requires 40.03 TFLOPs per image and 28.39
GB peak memory, whereas BLIP3-0 8B requires 142.59 TFLOPs per image and 25.55 GB. This
corresponds to approximately 3.6x lower compute per image for UniMedVL with only about 11%
higher peak memory (28.39 vs. 25.55 GB), even though UniMedVL uses a dual-encoder and MoT
design and has almost twice the parameters. UniMedVL’s compute cost is also close to that of Janus
7.42B (35.56 TFLOPs per image) while providing a larger unified model.

VQA on GMAI-MMBench (Table 13(b)). UniMedVL achieves 25.86 tokens/s with 2.256 TFLOPs
per sample and 28.25 GB peak memory, compared with BLIP3-0’s 30.40 tokens/s, 9.307 TFLOPs
per sample, and 18.21 GB. Thus, UniMedVL attains an approximately 4.1x reduction in FLOPs per
sample with comparable throughput (about 85% of BLIP3-0’s tokens/s), at the cost of higher peak
memory due to the dual-encoder design. Compared to another 14B unified model, HealthGPT-L14
(12.57 tokens/s, 3.009 TFLOPs, 29.22 GB), UniMedVL is roughly twice as fast in throughput and
more compute-efficient.

Table 13: Efficiency Evaluation. Comparison of throughput and computational costs across unified
medical multimodal models with batch size 1.

(a) Image Generation Throughput

Warm up with 10 images and measure efficiency over 20 images

Model Parameters FLOPs/Image (TFLOPs) Peak Mem (GB)
Janus 1B 10.01 5.19
HealthGPT-M3 3.8B 15.22 10.23
Janus 7.42B 35.56 17.10
BLIP3-0 8B 142.59 25.55
UniMedVL 14B 40.03 28.39

(b) VQA Understanding Throughput (GMAI-MMBench validation set)

Warm up with 50 questions and measure efficiency over 150 VQA questions

Model Parameters Tokens/s FLOPs/Sample (TFLOPs) Peak Mem (GB)
Janus 1B 70.11 0.498 4.46
HealthGPT-M3 3.8B 22.13 1.304 8.79
Janus 7.42B 52.94 1.894 14.59
BLIP3-0 8B 30.40 9.307 18.21
UniMedVL 14B 25.86 2.256 28.25
HealthGPT-L14 14B 12.57 3.009 29.22
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A.9 STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

Throughout the preparation of this manuscript, we utilized large language models to enhance the
quality of the text. Specifically, we employed GPT and Claude for tasks related to language refinement,
including correcting grammar and spelling, improving sentence clarity, and ensuring a consistent
academic tone.

The core scientific contributions, including the formulation of the problem, the proposed methodology,
the design and execution of experiments, and the interpretation of results, are entirely the work of the
authors. All text generated or modified by the LLM was meticulously reviewed, edited, and revised
by the authors to ensure it accurately reflects our original ideas and findings. The authors bear full
and final responsibility for all content presented in this paper.
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