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Abstract

The Lion optimizer has been a promising competitor with the AdamW for training
large AI models, with advantages in memory, computation, and sample efficiency.
In this paper, we introduce Distributed Lion, an innovative adaptation of Lion
for distributed training environments. Leveraging the sign operator in Lion, our
Distributed Lion only requires to communicate binary or lower-precision vectors
between workers to the center server, significantly reducing the communication
cost. Our theoretical analysis confirms Distributed Lion’s convergence properties.
Empirical results demonstrate its robustness across a range of tasks, worker counts,
and batch sizes, on both vision and language problems. Notably, Distributed Lion
attains comparable performance to standard Lion or AdamW optimizers applied
on aggregated gradients, but with significantly reduced communication bandwidth.
This feature is particularly advantageous for training large models. In addition,
we also demonstrate that Distributed Lion presents a more favorable performance-
bandwidth balance compared to existing efficient distributed methods such as deep
gradient compression and ternary gradients.

1 Introduction

The pursuit of modern artificial intelligence hinges on the training of large-scale models like large
language models[28] and large vision models (LVM)[20]. As the stakes – in terms of time, cost, and
environmental impact – grow ever higher for training expansive AI systems, the hunt for efficient
optimizers becomes critical.

Recently, a new optimization named Lion (evolved sign momentum) [11] has been discovered with
an evolutionary program. It was shown that it exhibits performance on par with the current state-of-
the-art AdamW [26] across a wide range of tasks, while reducing the memory cost and training time.

∗Equal contribution.
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Figure 1: Illustration of Distributed-Lion. Each worker keeps its own optimizer state and applies the Lion
optimizer individually to a binary update δi,t = Lion(x,Di) (without the weight decay), then the server
aggregates all δi,t to produce a binary ∆t by majority vote (or an integer ∆t by averaging) and send it back to
all workers. The workers then apply ∆t and weight decay to update their model parameters (Algorithm 1).

Consider optimizing a loss function fD(x) on Rd with a dataset D, the update rule of Lion is:

mt+1 = β2mt + (1− β2)∇fD(xt),

δt = Lion(xt,D)
def
= sign(β1mt + (1− β1)∇fD(xt)),

xt+1 = xt − ϵ
(
δt + λxt

)
,

(1)

where mt plays the role of the momentum, ϵ is the learning rate, β1, β2 ∈ [0, 1]2 are two momentum
related coefficients, and λ ≥ 0 is the weight decay coefficient. Comparing Lion against AdamW, one
observes that Lion only requires the storage of the first-order momentum term, which results in a
more relaxed memory requirement.

In this study, we tailor the Lion optimizer for distributed training. The Lion optimizer is particularly
suitable for this context due to two main attributes: (1) its simple update mechanism that relies solely
on first-order momentum, and (2) its use of the sign(·) function. We showcase the effective employ-
ment of the sign(·) function to streamline communication processes, leading to the development of a
novel distributed training framework named Distributed Lion. Within the Distributed Lion framework,
each participating worker independently adjusts the model parameters using a distinct instance of the
Lion optimizer, thereby maintaining separate optimizer states. A distinctive feature of this framework
is the mode of communication between workers and the central server, which is restricted to binary
or low-precision vectors.

Crucially, in this setup, workers convey updates rather than raw gradients to the central server.
The server, in turn, aggregates these updates through either a straightforward averaging process
(Distributed Lion-Avg) or a majority voting mechanism (Distributed Lion-MaVo). In the case of
Distributed Lion-MaVo, the consolidated update is maintained as a binary vector, whereas for Dis-
tributed Lion-Avg, given the presence of n workers, each element of the update vector is encoded
using log(n) bits. This approach markedly reduces the bandwidth requirements compared to tradi-
tional distributed training methods, which typically rely on high-precision floating-point vectors for
communication. The bandwidth efficiencies achieved by our method are detailed in Table 1. Our
contributions are: 1) We introduce the Distributed Lion algorithm, a simple yet effective approach
to extend Lion to distributed training, where all communications between workers and the server
are done through binary or low-precision vectors (Section 2); 2) We provide theoretical analysis
to ensure the convergence of Distributed Lion (Section 3); 3) Empirically, we demonstrate that on
both vision and language modeling tasks, Distributed Lion achieves comparable performance against
applying Lion and Adam with the synchronized gradients from all workers, while being significantly
more communication efficient. In addition, we show that Distributed Lion achieves a better trade-off
than existing efficient distributed training methods like deep gradient compression [24] and ternary
gradients [36] (Section 5).

2Chen et al. [11] suggests (β1 = 0.9, β2 = 0.99) based on empirical findings.
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Method Bandwidth Requirement
Worker→Server Server→Worker

Global Lion/AdamW 32d 32d
TernGrad [36] 1.5d log(2n+ 1)d
DGC [24] (1− η)32d 32d

Distributed Lion-Avg d log(n)d
Distributed Lion-MaVo d d

Table 1: Minimum bandwidth requirements of different methods for a model with d parameters and n workers.
For Deep Gradient Compression (DGC), η denotes the compression rate (default: η = 0.96).

2 The Distributed Lion

We introduce the distributed learning problem and then our Distributed Lion framework.

2.1 Distributed Training

In distributed training, we aim to minimize the following learning objective:

min
x

F (x) =
1

N

N∑

i=1

Eξi∼Di

[
f(x; ξi)

]
. (2)

Here, N denotes the number of workers, {Di} are N datasets,3 and x is the model parameter (e.g.,
the weights of a neural network). In the distributed learning setting, each worker i ∈ [n] will get its
own dataset Di, and we assume there is a centralized server that all workers can communicate with.
The simplest distributed training technique is to perform distributed gradient aggregation:

gserver =
1

N

N∑

i=1

gi, where gi = Eξi∼Di

[
∇xf(x; ξi)

]
. (3)

Here, each local gradient gi is an unbiased estimation of the true gradient ∇xF (x) when Di are i.i.d.
drawn from the same underlying distribution. The server aggregates all local gradients into gserver,
and then applies an optimizer like Adam [19] on top of gserver. However, the aggregation step requires
communicating the full gradient vectors gi, which can be expensive for large models.

Notation. Given a function f(x; ξ), the gradient∇f(x; ξ) is taken with respect to variable x. We
use ∥ · ∥, ∥ · ∥1, and ∥ · ∥∞ to denote the ℓ2, ℓ1, and ℓ∞ norm, respectively. ξi,t is the sampled data at
time t for the i-th worker and gi,t = ∇f(xt; , ξi,t). We similarly denote zi,t as any variable z at time
t from worker i.

2.2 Distributed Lion

The main idea of Distributed Lion is to leverage the binary nature of the Lion’s update for efficient
communication. To enable that, we want the workers to only send the binary updates to the server.
As a result, we let each worker keep tracks of its own optimizer state, i.e., the momentum mi,t. Then
at each step, each worker i first computes:

mi,t+1 = β2mi,t + (1− β2)gi,t,

δi,t = sign(β1mi,t + (1− β1)gi,t).
(4)

Then all workers send the δi,t back to the server. The server receives the binary “updates" from
all workers and then aggregates them. Here, we propose two simple ways for aggregation. Denote
St =

∑N
i=1 δi,t, which is a vector of integers in {0, . . . N}. Define the aggregation as follows:

∆t = aggregate(St) =

{
1
N St (Averaging)
sign(St) (Majority Vote)

. (5)

3Throughout this work, we assume {Di} consist of i.i.d data samples, ξi sampled from Di is i.i.d. though
our method should be directly applicable to non-i.i.d data.
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Algorithm 1 Distributed Lion Training

Inputs: Initial parameters x0 ∈ Rd, datasets {D1, . . . ,DN}, loss function f , learning rate ϵ,
hyper-parameters β1, β2 ∈ [0, 1] (default to 0.9, 0.99)4, and the weight decay λ.

Initialization: t = 0, ∀i,mi,0 = 0, and xi,0 = x0.
while not convergent do

Worker-side: Each worker i samples a batch ξi,t ∈ Di, computes the following, and sends δi,t
to the server:

if t > 0, xi,t ← xi,t−1 − ϵ
(
∆t−1 + λxi,t−1

)

δi,t ← sign
(
β1mi,t + (1− β1)∇xf(xi,t; ξi,t)

)

mi,t+1 ← β2mi,t + (1− β2)∇xf(xi,t; ξi,t).

Server-side: The server computes the aggregated update ∆t and broadcast it to all workers:

∆t =

{
1
N

(∑N
i=1 δi,t

)
(Averaging)

sign
(∑N

i=1 δi,t
)

(Majority Vote)
and t← t+ 1.

end while

So we simply average or take the majority vote from all {δi,t}. Here, we denote binary vectors in
magenta and low precision vectors in cyan. In the end, the server broadcasts ∆t back to each worker
i, and each worker performs xi,t+1 = xi,t − ϵ(∆t + λxi,t), where ϵ is the step size and λ is the
weight decay coefficient.

Communication Cost In both variants of Distributed Lion, the N workers only need to send the
binary vectors δi,t to the server. The server then sends the aggregated update ∆t back to the workers,
which is binary when using the majority vote aggregation, and an integer in {0, . . . , N} when
using the averaging aggregation. Note that an integer in {0, . . . , N} can be represented by at most
log(N) bits. In practice, usually N ≪ 232 hence log(N) < 32 and we still save the communication
bandwidth even with the average aggregation, comparing against communicating with floating point
numbers (Check Table 1). The full Distributed Lion algorithm is summarized in Algorithm 1.

3 Theoretical Analysis

We provide our theoretical analysis of the Distributed Lion algorithm, both with the averaging and
the majority vote aggregation methods. In the following, we first describe that the distributed training
problem can be viewed as a constrained optimization problem when Distributed Lion is used. We
provide convergence results for Distributed Lion with both aggregation methods.

3.1 Lion as Constrained Optimization

Chen et al. [10] showed that the (global) Lion is a theoretically novel and principled approach for
minimizing a general loss function f(x) while enforcing a box-constrained optimization problem:

min
x∈Rd

f(x) s.t. ∥λx∥∞ ≤ 1, (6)

where the constraint is introduced due to the use of the weight decay coefficient λ. Moreover, Chen
et al. [10] showed that the Lion dynamics consists of two phases:

1) [Phase 1] When the constraint is not satisfied, that is, x ̸∈ F , where F is the feasible set
F def

= {x : ∥λx∥∞ ≤ 1}, it exponentially decays the distance to F : ∃ α ∈ (0, 1), such that
dist(xt+n,F) ≤ αndist(xt,F).

where n ≥ 0. Hence, xt converges to F rapidly and stays within F once it reaches it.

2) [Phase 2] After λxt enters F , the dynamics minimizes the objective f(x) while being confined
within the set F . This step is proved in [10] by constructing a Lyapunov function when sign(·) is
treated as the sub-gradient of a convex function.
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3.2 Convergence Analysis

In this section, we analyze the convergence of distributed Lion algorithms. Similar to the case
of global Lion, we show that distributed Lion also solves the box constrained optimization (6).
Its dynamics also unfolds into two phases aligning with Lion’s dynamics: Phase I shows rapid
convergence to a feasible set F , while Phase II seeks to minize the objective f(x) within the feasible
set F . Different from the Lyapunov approach used in Chen et al. [10], the proof of our Phase II result
is made by introducing a surrogate metric S(x) of constrained optimality, and providing upper bound
of S(xt) following the algorithm. Our analysis makes the following assumptions.
Assumption 3.1 (Variance bound). Di is i.i.d. drawn from a common distribution π∗, and the
stochastic sample ξi ∼ Di is i.i.d. and upon receiving query x ∈ Rd, the stochastic gradient
oracle gives us an independent unbiased estimate∇f(x; ξi) from the i-th worker that has coordinate
bounded variance:

Eξ[∇f(x; ξi)] = ∇f(x), Eξ

[
∥∇f(x; ξi)−∇f(x)∥2

]
≤ σ2.

Assumption 3.2 (Smooth and Differentiable f ). Function f(·) is differentiable and L-smooth.
Assumption 3.3 (Bias Correction). Consider the sequence {mi

t}t>0,i∈[N ] generated by Algorithm 1,
E[m̃i

t]/E[sign(m̃i
t)] ≥ 0.

Note that assumption 3.1 and 3.2 are standard in the analysis of stochastic optimization algorithms [8,
34]. When Assumption 3.1 holds, E∥ 1

N

∑N
i=1∇f(x; ξi)−∇f(x)∥2 ≤ σ2/N . In distributed training

setting, m1,t,m2,t, · · · ,mN,t are i.i.d., so E[β1mi,t+(1−β1)gi,t] and E[sign(m̃i
t+1)] don’t depend

on i. Assumption 3.3 evaluates the discrepancy between the expected value and the expected sign of
a measure, positing that the expected values of m̃i

t and ˜sign(mi
t) ought to share the same sign.

We now present our results. Similar to the case of global Lion, the dynamics of distributed lion can
also be divided into two phases depending on if the constraint x ∈ F is satisfied.

Phase I (x ̸∈ F) In line with the behavior observed in the global Lion, when the constraint is not
satisfied, both variants of distributed Lion decrease the distance to the feasible set exponentially fast.
Theorem 3.4 (Phase I). Assume f : Rd → R is L-smooth, β1, β2 ∈ (0, 1), and β2 > β1, and ϵ, λ > 0.
Let (xt)t≥0 be generated by Algorithm 1. Define F = {x : ∥λx∥∞ ≤ 1}, and dist(xt,F) =
infz∈F ∥z − xt∥ w.r.t. any norm ∥·∥. For any two non-negative integers s ≤ t, then ∀s ≤ t, we have

dist(xt,F) ≤ (1− ϵλ)t−sdist(xs,F).

Hence, xt converges to F rapidly and stays within F once it arrived.

Phase II (x ∈ F ) Now, we present the main result of the analysis for Phase II in Theorems 3.6, 3.7,
and 3.8. We start with introducing a surrogate metric that quantifies the optimality of the solution
within Phase II:

S(x) := ⟨∇f(x), sign(∇f(x)) + λx⟩. (7)

Let’s delve into the implications of S(x) = 0.
Proposition 3.5. Assume f is continuously differentiable, λ > 0, and ∥λx∥∞ ≤ 1. Then S(x) = 0
implies a KKT stationary condition of minx f(x) s.t. ∥λx∥∞ ≤ 1.

This KKT score (7) is tailored to encompass the stationary solutions of the box constrained problem
as described in (6). Building on this, we then proceed to analyze the convergence for the majority
vote, averaging, and global LION strategies throughout this section.
Theorem 3.6 (Majority Vote). Assumptions 3.1, 3.2, and 3.3 hold, consider the Majority vote scheme
in Algorithm 1 , β1, β2 ∈ (0, 1), and β2 > β1, and σ ≤ 2

√
dβ1β

t
2∥∇f(x0)∥, 1 ≤ t ≤ T , and

ϵ, λ > 0. Let (xt)t≥0 be generated by Majority Vote, and it is in Phase II: ∥λxt∥∞ ≤ 1 for all t.

We have

1

T

T∑

t=1

E[S(xt)] ≤
f(x0)− f∗

Tϵ
+
2Dβ1β2

√
d∥∇f(x0)∥

T (1− β2)
+
4β1Lϵd

1− β2
+
2
√
dσ(1 +

√
C) + 2ρ√

N
+2Lϵd,

(8)
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where C = β2
1(1− β2)

1
1+β2

+ (1− β1)
2, and D = max{1, σ/

(
2
√
dβ1β

T
2 ∥∇f(x0)∥

)
},

ρt[k] =

{
0 if E[sign(m̃i

t+1[k])] = 0,
E[m̃i

t+1[k]]/E[sign(m̃i
t+1[k])] otherwise

, and ρ = max1≤t≤T ∥ρt∥.

The result above shows that 1
T

∑T
t=1 E[S(xt)] decays with a rate of O( 1

Tϵ +
1

T (1−β2)
+ ϵ + 1√

N
).

This rate is in fact on par with global Lion as we show in the following result.
Theorem 3.7 (Global). Assumptions 3.1 and 3.2 hold, Consider the scheme in Algorithm (16), with
the same settings in Theorem 3.6, we have

1

T

T∑

t=1

E[S(xt)] ≤
f(x0)− f∗

Tϵ
+

2β1β2

√
d∥∇f(x0)∥

T (1− β2)
+

4β1Lϵd

1− β2
+

2(1− β1)
√
dσ√

N
+ 2Lϵd. (9)

Theorem 3.8 (Averaging). Assumptions 3.1 and 3.2 hold, consider the Averaging scheme in Algo-
rithm 1 , with the same settings in Theorem 3.6, we have

1

T

T∑

t=1

E[S(xt)] ≤
f(x0)− f∗

Tϵ
+
2β1β2

√
d∥∇f(x0)∥

T (1− β2)
+
4β1Lϵd

1− β2
+
2β1

√
dσ√

1 + β2

+2(1−β1)
√
dσ+2Lϵd

(10)

The Averaging method’s convergence bound doesn’t improve with more workers since
1
N

∑N
i=1 sign(δi,t) doesn’t approximate sign(

∑N
i=1 δi,t) effectively, unlike the Majority Vote’s ap-

proach sign(
∑N

i=1 sign(δi,t)).

4 Related Work

In this section, we provide a summary of optimizers that use the sign function and existing literature
on bandwidth-friendly distributed training.

Sign Operation in Optimization The sign operation is integral to optimization for several reasons.
Primarily, it acts as a normalization mechanism by disregarding the magnitude of gradients, thereby
equilibrating updates across different dimensions and potentially facilitating the avoidance of saddle
points. Additionally, the binary nature of the sign function’s output significantly reduces the memory
footprint required for storing gradient updates. The concept of sign-based optimization dates back to
RProp [30] and has seen renewed interest with the advent of SignSGD and its momentum-enhanced
variant, Signum [4]. A more recent advancement is the generalized SignSGD algorithm introduced
by [14], which incorporates a preconditioner, making it a superset of SignSGD and akin to Adam
in certain aspects. A noteworthy addition to sign-based optimizers is the Lion optimizer, which
emerged from evolutionary program search, achieving performance comparable to Adam [19] and
AdamW [26] for the first time. Lion distinguishes itself from Signum by employing a different
convex combination for outputting local updates, a technique referred to as the double-β scheme,
reminiscent of Nesterov’s momentum update, and encapsulates Signum as a particular case. On the
theoretical front, SignSGD and Signum have been shown to exhibit convergence rates comparable to
traditional SGD [4]. Recent work by [34] has extended the theoretical understanding by providing a
convergence theory that relaxes the requirements for bounded stochastic gradients and enlarged batch
sizes. Additionally, Lion has demonstrated its capability in performing constrained optimization
under the ℓ∞-norm constraint [10].

Distributed Training In addressing the communication constraints of distributed training, the
research community has devised several innovative strategies, prominently featuring asynchronous
Stochastic Gradient Descent (SGD), gradient quantization, and sparsification techniques. Asyn-
chronous SGD offers a solution by enabling parameter updates immediately after back-propagation,
bypassing the need for gradient synchronization, thereby expediting the training process [9, 40, 25].
Li et al. [21] utilizes sketch-based algorithms for lossless data compression [23], achieving an
asymptotically optimal compression ratio [22]. However, its applicability is limited to highly sparse
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gradients, making it orthogonal to our research. In the realm of gradient quantization, methods such
as 1-bit SGD [33], QSGD [2], and TernGrad [36] are pivotal. These approaches compact the gradient
data, substantially reducing the required communication bandwidth, with 1-bit SGD demonstrating a
tenfold acceleration in speech applications and both QSGD and TernGrad confirming the feasibility of
quantized training in maintaining convergence. Moreover, gradient sparsification further mitigates the
communication load by transmitting only the most substantial gradients. Techniques like threshold
quantization and Gradient Dropping [1] exemplify this, with Gradient Dropping notably achieving a
99 reduction in gradient exchange with minimal impact on performance metrics, such as a mere 0.3
loss in BLEU score for machine translation tasks. The recent Deep Gradient Compression (DGC)
strategy [24] also contributes to this field by incorporating momentum correction and local gradient
clipping among other methods to maintain accuracy while significantly reducing communication
demands, albeit at the cost of increased computational overhead. Compared to gradient quantization
methods, Distributed Lion uniquely leverages the binary nature of Lion’s update and can be viewed
as performing quantization on updates rather than the gradient.

5 Experiment

In this section, we perform a thorough evaluation of the Distributed Lion algorithm, employing both
the averaging and majority vote aggregation methods. The design of our experiments is aimed at
addressing the following questions to ascertain the algorithm’s efficacy and performance:

(Q1) How does Mavolion perform in comparison to traditional global distributed training methods,
which aggregate gradients from local workers to apply an optimizer to the collective gradient?

(Q2) How does Mavolion measure up against established methodologies known for their communi-
cation efficiency in distributed training?

(Q3) How does Distributed Lion scale on large vision or language problems?

5.1 Comparing Distributed Lion Against Established Methods on CIFAR-10

To address Q1 and Q2, we compare Distributed Lion with both the averaging and the majority vote
methods, against established low-bandwidth distributed training techniques and the global distributed
training methods. We consider the following baseline methods: 1) Global AdamW (G-AdamW),
where we apply AdamW with the averaged gradients from all workers. 2) Global Lion (G-Lion),
where we apply Lion with the averaged gradients from all workers. Note that Global AdamW and
Global Lion serve as the performance and communication upper bounds. 3) Distributed Lion with
Averaged Updates (D-Lion (Avg)), In contrast to the majority vote mechanism used in Distributed
Lion, this variant averages the binary update vectors from all workers. While D-Lion (Avg) might
offer improved performance in principle, it comes at the cost of non-binary communication from
the server to the workers. 4) TernGrad [36]. The main idea is to tenarize the gradient into a
vector of {−1, 0, 1}, which is similar to what Lion does. But this process is done on the gradient
level instead of on the update level 5) Gradient Dropping (GradDrop) [1]. The main idea is to
drop insignificant gradient entries and only transmit sparse gradient signals. 6) Deep Gradient
Compression (DGC) [24]. DGC is built on top of the GradDrop, but additionally applies momentum
correction, local gradient clipping, momentum factor masking, and warm-up training.

Experiment Setup For GradDrop, DGC, and TernGrad, we choose the compression rate of 0.04
(note that 1/32 = 0.03125) to match the bandwidth of the D-Lion (MaVo). We conduct experiments
on the CIFAR-10 dataset using a vision transformer (ViT) with 6 layers, 8 heads, and a hidden
dimension of 512. This is because ViT has arguably become the most widely used architecture in
computer vision, and we empirically found no additional gain in performance when using a larger
ViT on CIFAR-10. In addition, to validate how Distributed Lion performs with different numbers of
workers, we consider k ∈ {4, 8, 16, 32}, each worker at each step samples an i.i.d batch of size 32.

We list the optimal hyperparameters selected for each method from Figure 2 in Table 4. The
learning rates are selected from {0.00005, 0.001, 0.005, 0.01} and the weight decays are selected
from {0.0005, 0.001, 0.005}. For each experiment, we use a cosine learning rate scheduler and run
for 200 epochs, and we ensure that in each epoch, each local worker sees the entire dataset once.
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Figure 2: Performance of Distributed Lion v.s. baseline distributed optimizers on CIFAR-10 with 4, 8, 16, and
32 workers, each worker at each step runs on a local batch with size 32. All results are averaged over three seeds.

Each experiments are conducted with three random seeds {42, 52, 62}, which results in a total of
4× 7× 3 = 84 experiments.

Figure 3: Performance of G-Lion, G-AdamW, Grad-
Drop, DGC, TernGrad, and D-Lion (Avg/MaVo) v.s.
the number of workers k.
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Figure 4: Test Error v.s. Communication Bits per Itera-
tion (closer to the lower-left is better). Note that we set
G-Lion and G-AdamW are both 64, because they re-
quire 32 bits per parameter, and there are both worker-
to-server and server-to-worker communications.

Observation We plot the testing accuracy (Test Acc.) over epochs for different methods in Figure 2,
the best testing accuracy of different methods over the number of workers in Figure 3, and the
performance versus per-iteration bandwidth in Figure 4 when using k = 4 workers. From the above
plots, we make the following observations.

• Compared to global methods, D-Lion (MaVo) performs on par with G-Lion. D-Lion (Avg)
performs slightly worse than G-Lion but is on par with G-Adamw (Figure 2).

• Compared to established communication efficient methods, both D-Lion (MaVo) and D-Lion
(Avg) outperform GradDrop, DGC and TernGrad by a large margin (Figure 2).

• We observe that both D-Lion (MaVo) and D-Lion (Avg) exhibit strong performance while
being 30x more communication efficient than global distributed training methods like
G-AdamW. To broaden our comparison, we introduced two additional baseline methods: D-
SIGNUM (Avg) and D-SIGNUM (MaVo). These baselines apply our proposed techniques
to the SIGNUM framework instead of Lion.5 We set β = 0.99 for D-SIGNUM. According
to our results, depicted in Figure 4, these SIGNUM-based methods do not perform as well
as their Lion-based counterparts.

• We notice that the overall performance of the same optimizer is worse as k is larger, this is
consistent with the observation made in DGC [24]. We hypothesize that this may be due to
the larger effective batch size resulting in smaller stochasticity, which is consistent with why
D-Lion (MaVo) performs a bit better than G-Lion on CIFAR-10 (Figure 3).

5Note that D-SIGNUM (Avg/MaVo) further subsumes D-SignSGD [5, 6].
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5.2 Scale to Larger Models on Larger Datasets

To answer Q3, we validate Distributed Lion on several large-scale setups including both vision and
natural language processing tasks. Under this setting, we compare D-Lion (MaVo) and D-Lion
(Avg) against G-AdamW and G-Lion. For the vision task, we tested ViT-S/16 [16] and ViT-B/16
on the ImageNet-1K [31] classification benchmark. For the natural language processing task, we
perform both language pretraining and finetuning tasks. This is because Lion has shown good
results on language modeling. For the language model pretraining task, we pretrain GPT2++ [29]
(the GPT-2 model with modern training techniques adopted from the LLaMA model [35]) on the
OpenWebText [17] benchmark, for both 350M and 760M size models. For the language model
finetuning task, we conduct few-shot finetuning of the LLaMA 7B model [35] and evaluate the models’
downstream performance on standard downstream evaluation benchmarks [13, 37, 12, 27, 7, 32].

Experiment Setup For the ImageNet-1K benchmark, we train all methods for 300 epochs, using
a global batch size of 4096 and data augmentations MixUp [39] of 0.5 and AutoAug [15]. When
training ViT-S/16, we use a learning rate of 3e−3 for G-AdamW, with betas of (0.9, 0.999) and a
weight decay of 0.1. For G-Lion, D-Lion (MaVo), and D-Lion (Avg), we use a learning rate of 3e−4,
betas of (0.9, 0.99), and a weight decay of 1.0. As for ViT-B/16, we use a learning rate of 1e−3 for
G-AdamW, with betas of (0.9, 0.999) and a weight decay of 1.0, while for all Lion variants, we use
a learning rate of 1e−4, betas of (0.9, 0.99), and a weight decay of 10.0. For pretraining language
models on the OpenWebText dataset, we build GPT2++ models using the original GPT2 model, but
with modern training techniques from the LLaMA model, including using the Gated Linear Unit
activation for the multilayer layer perceptron layers (MLPs) and the RMSNorm [38] instead of the
LayerNorm [3]. Following the Chinchilla scaling law [18], we trained the 350M model for 14,000
iterations and the 760M model for 30,000 iterations, both with 1,024 tokens. For G-AdamW, we
use a learning rate of 3e−4, betas of (0.95, 0.99), and a weight decay of 0.1. For all Lion variants,
we use a learning rate of 9e−5, betas of (0.9, 0.99), and a weight decay of 1.0. All the models are
trained under a global batch size of 480. For the instruction finetuning task, we instruct finetune a
LLaMA 7B model for 3 epochs with batch size 32. We use 2e−5 learning rate, betas of (0.9, 0.999),
0 weight decay for G-AdamW and 6e−6, (0.9, 0.99) betas, 0.01 weight decay for all Lion variants.
For all pretraining experiments, we use 4nodes × 8gpus = 32 workers. For instruction finetuning
experiments, we use 4 workers per experiment.

Table 2: Results on ImageNet classification and OpenWebText language modeling. For ImageNet experiments,
we report the Top-1 accuracy. For language modeling experiments, we report the validation perplexity. The best
performance is marked with bold text, and the second best with an underline.

Method Image Classification Language Modeling

ViT-S/16 ViT-B/16 GPT-2++ (350M) GPT-2++ (760M)

AdamW 79.74 80.94 18.43 14.70
G-Lion 79.82 80.99 18.35 14.66
D-Lion (MaVo) 79.69 80.79 18.37 14.66
D-Lion (Avg) 80.11 81.13 18.39 14.69

Table 3: 3-Shot instruction finetuning downstream evaluation results on various datasets. We mark the best
performance with bold text and the second one with an underline.

Method Arc-Easy Arc-Challenge BoolQ PIQA SIQA HellaSwag OBQA

0-Shot 76.64 43.06 76.43 78.64 45.96 56.87 33.53

G-AdamW 77.06 46.06 77.23 79.18 48.97 59.23 35.51
G-Lion 77.11 45.54 77.50 79.18 49.64 58.93 35.51
D-Lion (MaVo) 76.86 45.72 77.14 78.92 49.75 58.96 35.71
D-Lion (Avg) 76.35 45.54 76.90 78.76 48.06 59.06 32.14

Observation We summarize the results in Table 2 (ImageNet 1K and OpenWebText Language
Model Pretraining) and Table 3 (Instruction Finetuning). Both D-Lion (Avg) and D-Lion (MaVo)
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can maintain a performance similar to, or even better than, that of G-AdamW and G-Lion, on both
large-scale vision and language tasks. We observe that D-Lion (Avg) outperforms D-Lion (MaVo) on
ImageNet, and observe the opposite on language modeling and instruction finetuning. We hypothesize
that these differences are due to the impact of global batch size. As a result, we recommend using
D-Lion (Avg) / (MaVo) when the global batch size is large / small.

6 Conclusion and Future Work

In this paper, we introduced Distributed Lion, a communication-efficient distributed training strategy
that builds upon the Lion optimizer’s binary update mechanism. Distributed Lion is designed to
minimize communication overhead by allowing workers to independently manage their optimizer
states and exchange only binary or low-precision update vectors with the server. We proposed two
aggregation techniques within the Distributed Lion framework: average-based (Distributed Lion
Avg) and majority vote-based (Distributed Lion MaVo) algorithms. We provide both theoretical and
empirical results to demonstrate Distributed Lion’s effectiveness, scalability, and efficiency. Notably,
we show that Distributed Lion performs significantly better than existing communication-friendly
methods. In the meantime, Distributed Lion demonstrates performance on par with strong global
distributed training baselines, while being 32x more communication efficient. As our method is
orthogonal to existing communication-efficient methods, an interesting future direction is to combine
both techniques for further improvement. As a limitation, currently Distributed Lion (Avg / MaVo)
performs inconsistently across different datasets and benchmarks, it will be an interesting future
research direction to understand when and why one performs better than the other.
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A Additional Experiment Details

In this section, we provide additional experiment details.

CIFAR Experiments We list the optimal hyperparameters selected for each method from Figure 2
in Table 4. The learning rates are selected from {0.00005, 0.001, 0.005, 0.01} and the weight
decays are selected from {0.0005, 0.001, 0.005}. For each experiment, we use a cosine learning rate
scheduler and run for 200 epochs, and we ensure that in each epoch, each local worker sees the entire
dataset once.

Method LR ϵ WD λ Compression Rate

G-AdamW 0.0001 0.0005 -
G-Lion 0.00005 0.005 -
DGC 0.01 0.0005 0.96
GradDrop 0.001 0.0005 0.96
TernGrad 0.001 0.0005 -
D-Lion (Avg) 0.00005 0.005 -
D-Lion (MaVo) 0.00005 0.005 -

Table 4: Hyperparameters for each method in Figure 2. Where LR represents learning rate and WD represents
weight decay.

B Theory

This section is focusing on the proof of Lion dynamics, and will be organized into these folders:

• Phase I:

– Constraint enforcing: Discrete time

• Phase II:

– Majority Voting convergence
– Avg update convergence
– Global LION convergence

In line with the behavior observed in the global Lion approach, Lion under a distributed setting also
exhibits the two phases. In Section B.1, we show that converging to box can be exponentially fast
using our Algorithm 1. We start with introducing a notion of KKT score function that quantifies a
stationary solution to the box constrained optimization problem (6) in Section B.2. Building on this,
we then proceed to analyze the convergence in terms of the KKT score function for the majority vote
(Section B.2.1), averaging (Section B.2.2), and global LION strategies (Section B.2.3).

B.1 Phase I: Constraint Enforcing

We study phase I in this section. We show that when the constraint is not satisfied, both variants of
distributed Lion decrease the distance to the feasible set exponentially fast.

Theorem B.1 (Phase I). Assume f : Rd → R is L-smooth, β1, β2 ∈ (0, 1), and β2 > β1, and ϵ, λ > 0,
and 1− ϵλ ∈ (0, 1). Let (xt)t≥0 be generated by Algorithm 1. Define F = {x : ∥λx∥∞ ≤ 1}, and
dist(xt,F) = infz∈F ∥z − xt∥ w.r.t. any norm ∥·∥.
For any two non-negative integers s ≤ t, then ∀s ≤ t, we have

dist(xt,F) ≤ (1− ϵλ)t−sdist(xs,F).
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Proof. Recall Algorithm 1:

δi,t ← sign
(
β1mi,t + (1− β1)∇xf(xt; ξi,t)

)

mi,t+1 ← β2mi,t + (1− β2)∇xf(xt; ξi,t)

∆t =

{
1
N

(∑N
i=1 δi,t

)
(Averaging)

sign
(∑N

i=1 δi,t
)

(Majority Vote)

xt+1 = xt − ϵ(∆t + λxt)

Rewrite the update into the following form:

xt+1 = (1− ϵλ)xt − ϵ∆t,

Define ws→t = (1− ϵλ)t−s. Unrolling this update yields,

xt = (1− ws→t)zs→t + ws→txs, zs→t =

∑t−1
k=s wk→t(−∆t/λ)∑t−1

k=s wk→t

.

We have zs→t ∈ F since −∆t/λ ∈ F . For any ϵ > 0, let x̂s ∈ F be the point satisfying
∥x̂s − xs∥ ≤ dist(xs,F) + η. Hence, we have

dist(xt, F) = inf
z∈F
∥xt − z∥

≤ ∥xt − (1− ws→t)zs→t − ws→tx̂s)∥
= ws→t ∥xs − x̂s∥
≤ (1− ϵλ)t−s(dist(xs,F) + η).

As η → 0, we achieve the desired result.

B.2 Phase II

We study the convergence of Phase II in this section. We begin by defining a KKT score function to
quantify stationary solutions for the box-constrained optimization problem discussed in Section B.2.
Following this, we analyze convergence through the KKT score across majority vote (Section B.2.1),
averaging (Section B.2.2), and global Lion strategies (Section B.2.3).

First, we list the following assumptions used in our proof.

Assumption B.2 (Smooth and Differentiable f ). Function f(·) is differentiable and L-smooth.

Assumption B.3 (Variance bound). Di is i.i.d. drawn from a common distribtion π∗, and the
stochastic sample ξi ∼ Di is i.i.d. and upon receiving query x ∈ Rd, the stochastic gradient
oracle gives us an independent unbiased estimate∇f(x; ξi) from the i-th worker that has coordinate
bounded variance:

Eξ[∇f(x; ξi)] = ∇f(x), Eξ

[
∥∇f(x; ξi)−∇f(x)∥2

]
≤ σ2.

Assumption B.4 (Bias Correction). Consider the sequence {mi
t}t>0,i∈[N ] generated by Algorithm 1,

E[m̃i
t]/E[sign(m̃i

t)] ≥ 0.

Here we define the a KKT score function for box constrained problem (6):

S(x) := ⟨∇f(x), sign(∇f(x)) + λx⟩.

Proposition B.5. Assume f is continuously differentiable, λ > 0, and ∥λx∥∞ ≤ 1. Then S(x) = 0
implies a KKT stationary condition of minx f(x) s.t. ∥λx∥∞ ≤ 1.

Proof. We will verify that S(x) = 0 coincides with the first order KKT conditions of the box
constrained optimization problem (6).
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Recall the box constrained problem in (6), we can rewrite it into the following formulation:

min
x∈Rd

f(x) s.t. λxi − 1 ≤ 0, − λxi − 1 ≤ 0, ∀ i ∈ [d].

Let µ = (µ1, µ2, · · · , µd)
⊤ and µ̃ = (µ̃1, µ̃2, · · · , µ̃d)

⊤, then its first order KKT stationary condition
can be written as:

∂xi
f(x) + µiλ− µ̃iλ = 0 //Stationarity

µi(λxi − 1) = 0, µ̃i(−λxi − 1) = 0 //Complementary slackness
µi ≥ 0, µ̃i ≥ 0 //Dual feasibility
λxi − 1 ≤ 0, − λxi − 1 ≤ 0 //Primal feasibility
∀ i ∈ {1, 2, · · · , d}.

Expressing S(x) element-wisely, we obtain:

S(x) =
d∑

k=1

Sk(x), with Sk(x) = ∂xk
f(x) · (sign(∂xk

f(x)) + λxk) ,

where xk denotes the k-th element of vector x. Since ∥λx∥∞ ≤ 1, we have Sk(x) ≥ 0, because

Sk(x) = ∂xk
f(x) · (sign(∂xk

f(x)) + λxk)

= |∂xk
f(x)|+ λ∂xk

f(x) · xk

≥ |∂xk
f(x)| − |∂xk

f(x)| · |λxk|
= |∂xk

f(x)|(1− |λxk|)
≥ 0 //since ∥λx∥∞ ≤ 1.

Hence, if S(x) = 0, we have Sk(x) = 0 for each component k. It means that we have either
sign(∂xk

f(x)) + λxk = 0 or ∂xk
f(x) = 0 for each coordinate k.

There are two primary cases to consider for each k:

• Case I: ∂xk
f(x) = 0. This suggests that we reach a stationary condition of f(x) w.r.t.

coordinate xk, and the KKT condition is satisfied in this case with µk = µ̃k = 0.

• Case II: sign(∂xk
f(x)) + λxk = 0, it follows that xk = − 1

λ sign(∂xk
f(x)).

– if sign(∂xk
f(x) = 1, then ∂xk

f(x) ≥ 0, and the KKT condition is satisfied with
µk = 0 and µ̃k = ∂xk

f(x)/λ

– if sign(∂xk
f(x)) = −1, then ∂xk

f(x) ≤ 0, and the KKT condition is satisfied with
µ̃k = 0 and µk = ∂xk

f(x)/λ.

It turns out the two cases above exactly covers the KKT stationary solution pair (x, µ, µ̃) of the box
constrained problem in (6).

In conclusion, S(x) = 0 signifies reaching a stationary point of the bound-constrained optimization
problem, as formulated in (6), providing critical insights into the convergence behavior of the
algorithm under consideration.

B.2.1 Majority Vote

Assume f : Rd → R is L-smooth, and N is the number of workers, on the i-th worker, consider the
following scheme based on the majority vote:

git := ∇f(xt; ξ
i
t)

mi
t+1 = β2m

i
t + (1− β2)g

i
t

m̃i
t+1 = β1m

i
t + (1− β1)g

i
t

xt+1 = xt − ϵ

(
sign

(
N∑

i=1

sign(m̃i
t+1)

)
+ λxt

)
. //Majority Voting

(11)
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Theorem B.6 (Convergence in Phase II). Assumption B.2 B.3 B.4 hold, consider the scheme in
Algorithm 11, and β1, β2 ∈ (0, 1), and β2 > β1, and ϵ, λ > 0. ∥λx0∥∞ ≤ 1.

We have

1

T

T∑

t=1

ES(xt) ≤
f(x0)− f∗

Tϵ
+

2Dβ1β2

√
d∥∇f(x0)∥

T (1− β2)
+

4β1Lϵd

1− β2
+

2
√
dσ(1 +

√
C) + 2ρ√

N
+ 2Lϵd,

where C = β2
1(1− β2)

1
1+β2

+ (1− β1)
2, D = max{1, σ/

(
2
√
dβ1β

T
2 ∥∇f(x0)∥

)
}, and

ρt[k] =

{
0 if E[sign(m̃i

t+1[k])] = 0,
E[m̃i

t+1[k]]/E[sign(m̃i
t+1[k])] else.

Proof. Following Theorem B.1 from phase 1, once we have ∥λx0∥∞ ≤ 1, we stay within the
constraint set with ∥λxt∥ ≤ 1 for all subsequent time t ≥ 0.

For notation, write M̃t+1 =
∑N

i=1 sign(m̃
i
t+1). This yields xt+1 = xt − ϵsign(M̃t+1)− ϵλxt. We

have

f(xt+1)− f(xt) ≤ ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥22 //L-smoothness of f

= −ϵ⟨∇f(xt), sign(M̃t+1) + λxt⟩+
L

2
∥xt+1 − xt∥22

= −ϵ⟨∇f(xt), sign(∇f(xt)) + λxt⟩+
L

2
∥xt+1 − xt∥22

+ ϵ⟨∇f(xt), sign(∇f(xt))− sign(M̃t+1))⟩
≤ −ϵS(xt) + 2Lϵ2d+ ϵ⟨∇f(xt), sign(∇f(xt))− sign(M̃t+1)⟩, (12)

where we used ∥xt+1 − xt∥2 = ϵ2
∥∥∥sign(M̃t+1) + λxt

∥∥∥
2

≤ 4ϵ2d, because ∥λxt∥∞ ≤ 1.

By Assumption B.3, m̃1
t+1, m̃

2
t+1, · · · , m̃N

t+1 are i.i.d., so E[m̃i
t+1] and E[sign(m̃i

t+1)] don’t depend
on i. Hence we can define Rt+1 = E[m̃i

t+1]/E[sign(m̃i
t+1)], where the division operation is element

wise, so Rt+1 ∈ Rd.

By Assumption 3.3, Rt is non-negative, one special case for the ratio Rt is when E[sign(m̃i
t[k])] = 0,

yet E[m̃i
t[k]] ̸= 0, leading to Rt[k] = +∞ for k ∈ [d]. In such instance, P (m̃i

t[k] > 0) = 1/2
derived from the equation E[sign(m̃i

t[k])] = 2P (m̃i
t[k] > 0)− 1 = 0, for k ∈ [d].

First, recognizing that E[sign(M̃t[k])] = 0 is straightforward as we model it as a bino-
mial distribution with success probability p = 1/2 for t > 0. This leads to the result
E∇f(xt)[k]

(
sign(∇f(xt)[k])− sign(M̃t[k])

)
= E |∇f(xt)[k]|.

Given that E[X] = argminz E ∥X − z∥2 defines the expectation of a random variable X as the
value z minimizes the expected euclidean distance to X , and the median X = argminz E ∥X − z∥1
defines the median as the value z minimizing the expected absolute distance to X , for a R.V. X in R,
recall our case where P (m̃i

t[k] > 0) = 1/2, which is equivalent to that the median is 0. From this, it
follows that

E |∇f(xt)[k]| ≤ E[Eξ[
∣∣∇f(xt; ξ

i
t)[k]−∇f(xt)[k]

∣∣
1
]] ≤ E

√
Eξ

∥∥∇f(xt; ξit)[k]−∇f(xt)[k]
∥∥2
2
≤ σ.

To bound the last term in (12) ⟨∇f(xt), sign(∇f(xt)) − sign(M̃t+1)⟩, we follow a structured
approach. Here’s an outline for bounding this term:

To bound the last term in Equation (12), ⟨∇f(xt), sign(∇f(xt))− sign(M̃t+1)⟩, we follow a struc-
tured approach:

1. Transform Inner Product into Norm of Difference: Using Lemma B.8 to convert the
inner product ⟨∇f(xt), sign(∇f(xt))− sign(M̃t+1)⟩ into the norm of a difference.
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2. Introduce Rt as a De-bias Ratio: Rt is defined to adjust or correct for any bias in the
expected value of m̃i

t and the expected sign of m̃i
t as in Assumption B.4.

3. Handle Cases of Rt Separately: Given the possibility of Rt[k] = +∞, it’s essential to
treat the scenarios of Rt[k] < +∞ and Rt[k] = +∞ with separate proofs.

• For Rt[k] < +∞, standard bounding techniques can be applied, potentially leveraging
properties of Rt to establish a finite upper bound.

• For Rt[k] = +∞, it’s actually bounding ∥∇f(xt)∥. This can be bounded by the
variance of the stochastic gradient git.

4. Merge Cases with Finite ρt Replacing Rt: After separately proving bounds for each case
of Rt, the results are unified by substituting Rt with a finite ρt, where ρt serves a similar
purpose but ensures a manageable, finite adjustment.

Case I (Finite Rt+1)

The first step is to expand this inner product, we have

E⟨∇f(xt), sign(∇f(xt))− sign(M̃t+1)⟩

= E⟨∇f(xt), sign(∇f(xt))− sign(
1

N
M̃t+1)⟩

= E
d∑

k=1

∇f(xt)[k]

(
sign(∇f(xt)[k])− sign(

1

N
M̃t+1[k])

)

= 2E
d∑

k=1

Rt+1[k]

∣∣∣∣∇f(xt)[k]/Rt+1[k]−
1

N
M̃t+1[k]

∣∣∣∣

= 2E
d∑

k=1

Rt+1[k]

∣∣∣∣∣∇f(xt)[k]/Rt+1[k]−
1

N

N∑

i=1

sign(m̃i
t+1[k])

∣∣∣∣∣ . //Lemma B.8 and Assumption 3.3

By definition of Rt, it is a debiasing ratio between E[m̃i
t+1] and E[sign(m̃i

t+1)], so we construct
a difference between 1

N

∑N
i=1 sign(m̃

i
t+1[k]) and 1

N

∑N
i=1 m̃

i
t+1[k] by decoupling the difference

between ∇f(xt)[k]/Rt+1[k] and 1
N sign(m̃i

t+1[k]).

ERt+1[k]

∣∣∣∣∣∇f(xt)[k]/Rt+1[k]−
1

N

N∑

i=1

sign(m̃i
t+1[k])

∣∣∣∣∣

= ERt+1[k]

∣∣∣∣∣∇f(xt)[k]/Rt+1[k]−
1

N

N∑

i=1

m̃i
t+1[k]/Rt+1[k] +

1

N

N∑

i=1

m̃i
t+1[k]//Rt+1[k]−

1

N

N∑

i=1

sign(m̃i
t+1[k])

∣∣∣∣∣

= ERt+1[k]

∣∣∣∣∣∇f(xt)[k]/Rt+1[k]−
1

N

N∑

i=1

m̃i
t+1[k]/Rt+1[k]

∣∣∣∣∣+Rt+1[k]

∣∣∣∣∣
1

N

N∑

i=1

m̃i
t+1[k]/Rt+1[k]−

1

N

N∑

i=1

sign(m̃i
t+1[k])

∣∣∣∣∣

= E

∣∣∣∣∣∇f(xt)[k]−
1

N

N∑

i=1

m̃i
t+1[k]

∣∣∣∣∣+Rt+1[k]

∣∣∣∣∣
1

N

N∑

i=1

m̃i
t+1[k]/Rt+1[k]−

1

N

N∑

i=1

sign(m̃i
t+1[k])

∣∣∣∣∣ .
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The first term E
∣∣∣∇f(xt)[k]− 1

N

∑N
i=1 m̃

i
t+1[k]

∣∣∣ doesn’t depend on Rt+1, we can bound this term
across d coordinates using Lemma B.10:

E
d∑

k=1

∣∣∣∣∣∇f(xt)[k]−
1

N

N∑

i=1

m̃i
t+1[k]

∣∣∣∣∣ ≤
√
dE

∥∥∥∥∥∇f(xt)−
1

N

N∑

i=1

m̃i
t+1

∥∥∥∥∥

≤
√
dE

∥∥∥∥∥∇f(xt)−
1

N

N∑

i=1

(
β1m

i
t + (1− β1)g

i
t

)
∥∥∥∥∥

≤
√
dE

∥∥∥∥∥
1

N

N∑

i=1

β1

(
∇f(xt)−mi

t

)
∥∥∥∥∥+

∥∥∥∥∥
1

N

N∑

i=1

(1− β1)
(
∇f(xt)− git

)
∥∥∥∥∥

≤
√
dβ1

(
βt
2∥∇f(x0)∥+

2Lϵ
√
d

1− β2
+

σ√
N(1 + β2)

)
+

√
dσ(1− β1)√

N
. //Lemma B.10

The second term ERt+1[k]
∣∣∣ 1N
∑N

i=1 m̃
i
t+1[k]/Rt+1[k]− 1

N

∑N
i=1 sign(m̃

i
t+1[k])

∣∣∣ can be decoupled

into the variance of 1
N

∑N
i=1 sign(m̃

i
t+1[k]) and the variance of 1

N

∑N
i=1 m̃

i
t+1[k]:

E
d∑

k=1

Rt+1[k]

∣∣∣∣∣
1

N

N∑

i=1

m̃i
t+1[k]/Rt+1[k]−

1

N

N∑

i=1

sign(m̃i
t+1[k])

∣∣∣∣∣

= E
d∑

k=1

Rt+1[k]

∣∣∣∣∣
1

N

N∑

i=1

m̃i
t+1[k]/Rt+1[k]− Em̃i

t+1[k]/Rt+1[k] + Em̃i
t+1[k]/Rt+1[k]−

1

N

N∑

i=1

sign(m̃i
t+1[k])

∣∣∣∣∣

= E
d∑

k=1

Rt+1[k]

∣∣∣∣∣
1

N

N∑

i=1

m̃i
t+1[k]/Rt+1[k]− Em̃i

t+1[k]/Rt+1[k] + Esign(m̃i
t+1[k])−

1

N

N∑

i=1

sign(m̃i
t+1[k])

∣∣∣∣∣

= E
d∑

k=1

Rt+1[k]

∣∣∣∣∣
1

N

N∑

i=1

m̃i
t+1[k]/Rt+1[k]− Em̃i

t+1[k]/Rt+1[k]

∣∣∣∣∣+Rt+1[k]

∣∣∣∣∣Esign(m̃
i
t+1[k])−

1

N

N∑

i=1

sign(m̃i
t+1[k])

∣∣∣∣∣

= E
d∑

k=1

∣∣∣∣∣
1

N

N∑

i=1

m̃i
t+1[k]− Em̃i

t+1[k]

∣∣∣∣∣+Rt+1[k]

∣∣∣∣∣
1

N

N∑

i=1

sign(m̃i
t+1)− Esign(m̃i

t+1)

∣∣∣∣∣

≤ E
√
d

∥∥∥∥∥
1

N

N∑

i=1

m̃i
t+1 − Em̃i

t+1

∥∥∥∥∥+ ∥Rt+1∥

∥∥∥∥∥
1

N

N∑

i=1

sign(m̃i
t+1)− Esign(m̃i

t+1)

∥∥∥∥∥ .

Now we have got the variance of 1
N

∑N
i=1 sign(m̃

i
t+1[k]) and the variance of 1

N

∑N
i=1 m̃

i
t+1[k], let

us bound them one by one:

The variance of 1
N

∑N
i=1 m̃

i
t+1[k]

√
dE

∥∥∥∥∥
1

N

N∑

i=1

m̃i
t+1 − Em̃i

t+1

∥∥∥∥∥ ≤
√
d

√√√√E

∥∥∥∥∥
1

N

N∑

i=1

m̃i
t+1 − Em̃i

t+1

∥∥∥∥∥

2

=
√
d

√√√√ 1

N2

N∑

i=1

E
∥∥m̃i

t+1 − Em̃i
t+1

∥∥2

≤
√

Cdσ2

N
, //Lemma B.11

where C = β2
1(1− β2)

1
1+β2

+ (1− β1)
2.
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The variance of 1
N

∑N
i=1 sign(m̃

i
t+1[k])

∥Rt+1∥E

∥∥∥∥∥
1

N

N∑

i=1

sign(m̃i
t+1)− Esign(m̃i

t+1)

∥∥∥∥∥ ≤

√√√√E

∥∥∥∥∥
N∑

i=1

sign(m̃i
t+1)/N − E[sign(m̃i

t+1)]

∥∥∥∥∥

2

= ∥Rt+1∥

√√√√ 1

N2

N∑

i=1

E
∥∥sign(m̃i

t+1)− E[sign(m̃i
t+1)]

∥∥2

≤ ∥Rt+1∥
√

1

N
. //Lemma B.9

In above, we have the bound of the last term in (12) ⟨∇f(xt), sign(∇f(xt))− sign(M̃t+1)⟩:

E⟨∇f(xt), sign(∇f(xt))− sign(M̃t+1)⟩

≤ 2E
d∑

k=1

∣∣∣∣∣∇f(xt)[k]−
1

N

N∑

i=1

m̃i
t+1[k]

∣∣∣∣∣+ 2E
d∑

k=1

Rt+1[k]

∣∣∣∣∣
1

N

N∑

i=1

m̃i
t+1[k]/Rt+1[k]−

1

N

N∑

i=1

sign(m̃i
t+1[k])

∣∣∣∣∣

≤ 2
√
dE

∥∥∥∥∥∇f(xt)−
1

N

N∑

i=1

m̃i
t+1

∥∥∥∥∥+ 2E
√
d

∥∥∥∥∥
1

N

N∑

i=1

m̃i
t+1 − Em̃i

t+1

∥∥∥∥∥+ 2 ∥Rt+1∥

∥∥∥∥∥
1

N

N∑

i=1

sign(m̃i
t+1)− Esign(m̃i

t+1)

∥∥∥∥∥

≤ 2
√
dβ1

(
βt
2∥∇f(x0)∥+

2Lϵ
√
d

1− β2
+

σ√
N(1 + β2)

)
+ 2

√
dσ(1− β1)√

N
+ 2

√
Cdσ2

N
+ 2 ∥Rt+1∥

√
1

N
.

Case II (Infinite R)

From our discussion above, we know that P (m̃i
t[k] > 0) = 1/2 since E[sign(m̃i

t[k])] = 2P (m̃i
t[k] >

0) − 1 = 0, where k ∈ [d]. For notion, write D = {j ∈ [d] | E[sign(m̃i
t+1[j])] = 0}. In this case,

we have

E
∑

j∈D
∇f(xt)[j]

(
sign(∇f(xt)[j])− sign(M̃t[j])

)
= E

∑

j∈D
|∇f(xt)[j]|

≤ E


Eξ

∑

j∈D

∣∣∇f(xt; ξ
i
t)[j]−∇f(xt)[j]

∣∣



≤ E
√
Eξ

∑

j∈D

∥∥∇f(xt; ξit)[j]−∇f(xt)[j]
∥∥2
2

≤ σ.

So, the inner product ⟨∇f(xt), sign(∇f(xt))− sign(M̃t+1)⟩ is still bounded. Hence we can merge
both cases into a unified bound by simply replacing Rt by ρt:

ρt[k] =

{
0 if E[sign(m̃i

t+1[k])] = 0,
E[m̃i

t+1[k]]/E[sign(m̃i
t+1[k])] else.

Adding one constant D ≥ 1 to make the bound in finite case adpative to infinite case:

σ ≤ 2D
√
dβ1β

t
2∥∇f(x0)∥,∀t, 1 ≤ t ≤ T.

Hence,

E
∑

j∈D
∇f(xt)[j]

(
sign(∇f(xt)[j])− sign(M̃t[j])

)

≤ 2D
√
dβ1β

t
2∥∇f(x0)∥+

4Ldβ1ϵ

1− β2
+

2
√
dσ(1 +

√
C) + 2 ∥ρt+1∥√
N

.
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Finally, we have the bound for both cases:

E⟨∇f(xt), sign(∇f(xt))− sign(M̃t+1)⟩

≤ 2
√
dβ1

(
βt
2∥∇f(x0)∥+

2Lϵ
√
d

1− β2
+

σ√
N(1 + β2)

)
+ 2

√
dσ(1− β1)√

N
+ 2

√
Cdσ2

N
+ 2 ∥ρt+1∥

√
1

N

≤ 2D
√
dβ1β

t
2∥∇f(x0)∥+

4Ldβ1ϵ

1− β2
+

2
√
dσ(1 +

√
C) + 2 ∥ρt+1∥√
N

.

Then we have

f(xt+1)− f(xt) ≤ −ϵS(xt) + 2Lϵ2d+ ϵ⟨∇f(xt), sign(∇f(xt))− sign(M̃t+1)⟩

≤ −ϵS(xt) + 2Lϵ2d+ ϵ

(
2D
√
dβ1β

t
2∥∇f(x0)∥+

4Ldβ1ϵ

1− β2
+

2
√
dσ(1 +

√
C) + 2 ∥ρt+1∥√
N

)
,

Hence, a telescope yields

1

T

T∑

t=1

ES(xt) ≤
f(x0)− f∗

Tϵ
+

2Dβ1β2

√
d∥∇f(x0)∥

T (1− β2)
+

4β1Lϵd

1− β2
+

2
√
dσ(1 +

√
C) + 2ρ√

N
+ 2Lϵd,

where ρ = max1≤t≤T ∥ρt∥.

Lemma B.7. Let (X,Y ) is a joint random variable on Rd ×Rd. For any constant a ∈ (0,+∞), we
have

E[⟨X, sign(X)− sign(Y )⟩] ≤ 2a
√
dE∥X/a− Y ∥.

Proof. Without loss of generality, set a = 1.

E[⟨X, sign(X)− sign(Y )⟩] = E[∥X∥1 − ⟨X, sign(Y )⟩]
≤ 2E[∥X − Y ∥1] //Lemma B.8

≤ 2
√
dE[∥X − Y ∥] //by Cauchy-Schwarz,

where ∥·∥1 is the ℓ1 norm and ∥·∥ denotes the Euclidean norm.

Lemma B.8. For any x, y ∈ R, we have

|x| − xsign(y) ≤ 2 |x− y| .

Proof. If sign(y) = sign(x), we have |x| − xsign(y) = 0 ≤ 2 |x− y|.
If sign(y) = −sign(x), we have |x| − xsign(y) = 2 |x| ≤ 2 |x|+ 2 |y| = 2 |x− y|.
If sign(y) = 0, we have |x| − xsign(y) = |x| = |x− y| ≤ 2 |x− y| .

Lemma B.9. Let X be a random variable in R, we have E ∥sign(X)− E[sign(X)]∥2 < 1.

Proof. The result is a direct derivation from Bernoulli distribution’s variance,

E ∥sign(X)− E[sign(X)]∥2 = E[sign(X)2]− E[sign(X)]2 < 1.

Lemma B.10. Following the same setting in Theorem B.6, we have

∥ 1
N

N∑

i=1

mi
t −∇f(xt)∥ ≤ βt

2∥∇f(x0)∥+
2Lε
√
d

1− β2
+

σ√
N(1 + β2)

.
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Proof. We use the notions: git := ∇f(xt; ξ
i
t), Mt = 1

N

∑N
i=1 m

i
t, εt := Mt − ∇f(xt), gt =

1
N

∑N
i=1 g

i
t, δt := gt −∇f(xt), and st = ∇f(xt−1)−∇f(xt)

εt = Mt −∇f(xt)

= β2Mt−1 + (1− β2)gt −∇f(xt)

= β2(Mt−1 −∇f(xt−1)) + (1− β2)(gt −∇f(xt)) + β2(∇f(xt−1)−∇f(xt)

= β2εt−1 + (1− β2)δt + β2st.

That is
εt = β2εt−1 + (1− β2)δt + β2st.

Under the L-smoothness assumption B.2:

∥st∥ = ∥∇f(xt−1)−∇f(xt)∥ ≤ L∥xt−1 − xt∥ ≤ 2L
√
dϵ, (13)

where ε is the step size. Using mathematical induction, we have

εt = βt
2ε0 +

t∑

i=1

βt−i+1
2 si + (1− β2)

t∑

i=1

βt−i
2 δt. (14)

By taking the norms of both sides of the above equation and using the strong bound 13 we obtain

∥εt∥ ≤ βt
2∥ε0∥+ 2L

√
dϵ

t∑

i=1

βt−i+1
2 + (1− β2)∥

t∑

i=1

βt−i
2 δt∥.

Taking expectations on both sides,

E∥εt∥ ≤ βt
2∥ε0∥+

2L
√
dε

1− β2
+ (1− β2)∥

t∑

i=1

βt−i
2 δt∥.

Note that r.v.s (δi)1≤i≤t are mean zero, using B.11, we have

E

∥∥∥∥∥
t∑

i=1

βt−i
2 δi

∥∥∥∥∥ =

√√√√E
t∑

i=1

β2t−2i
2

σ2

N
≤ σ√

N(1− β2
2)

Hence,

E∥εt∥ ≤ βt
2∥ε0∥+

2L
√
dε

1− β2
+

σ√
N(1 + β2)

.

Note that M0 = 0 under our setting, so ε0 = −∇f(x0), we have

E∥εt∥ ≤ βt
2∥∇f(x0)∥+

2L
√
dε

1− β2
+

σ√
N(1 + β2)

.

Lemma B.11 (Cumulative error of stochastic gradient [4]). Assume the same settings as in Theo-
rem B.6. Define Yk :=

∑k
l=1 αℓδl where δt := gt−∇f(xt) with gt =

∑N
i=1 g

i
t and git := ∇f(xt; ξ

i
t)

following the update in (11), and {αℓ : ℓ = 0, 1, . . .} is a deterministic sequence. Then Yk is a mar-
tingale, and

E



[

k∑

l=1

αlδl

]2
 =

1

N

k∑

l=1

α2
l σ

2.
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Proof. We simply check the definition of martingales. First, we have

E[|Yk|] = E

[∣∣∣∣∣
k∑

l=1

αlδl

∣∣∣∣∣

]

≤
∑

l

|αl|E[|δl|] //triangle inequality

=
∑

l

|αl|E[E[|δl||xl]] //law of total probability

≤
∑

l

|αl|E[
√
E[δ2l |xl]] //Jensen’s inequality

≤
∑

l

|αl|σ <∞ //Assumption B.3.

Second, again using the law of total probability,

E[Yk+1|Y1, ..., Yk] = E

[
k+1∑

l=1

αlδl

∣∣∣∣∣α1δ1, ..., αkδk

]

= Yk + αk+1E [δk+1|α1δ1, ..., αkδk]

= Yk + αk+1E [E [δk+1|xk+1, α1δ1, ..., αkδk] |α1δ1, ..., αkδk]

= Yk + αk+1E [E [δk+1|xk+1] |α1δ1, ..., αkδk]

= Yk.

This completes the proof that it is a martingale. We now make use of the properties of martingale
difference sequences to establish a variance bound on the martingale.

E[[
k∑

l=1

αlδl]
2] =

k∑

l=1

E[α2
l δ

2
l ] + 2

∑

l<j

E[αlαjδlδj ]

=

k∑

l=1

α2
lE[E[δ2l |δ1, ..., δl−1]] + 2

∑

l<j

αlαjE
[
δlE
[
E[δj |δ1, ..., δj−1]

∣∣δl
]]

=

k∑

l=1

α2
lE[E[E[δ2l |xl, δ1, ..., δl−1]|δ1, ..., δl−1]] + 0

=
1

N

k∑

l=1

α2
l σ

2.

As a direct result of Lemma B.11, we have the following.
Lemma B.12. Under the same settings as in Theorem 3.6, we have

E
∥∥m̃i

t+1 − E[m̃i
t+1]

∥∥2 ≤
(
β2
1(1− β2)

1

1 + β2
+ (1− β1)

2

)
σ2.

Proof.
m̃i

t+1 = β1m
i
t + (1− β1)g

i
t

= β1(1− β2)
(
git−1 + β2g

i
t−2 + · · ·+ βt−1

2 gi0
)
+ (1− β1)g

i
t.

Note that

β2
1(1− β2)

2
(
1 + β2

2 + · · ·+ β
2(t−1)
2

)
+ (1− β1)

2 = β2
1(1− β2)

2 1− β2t
2

1− β2
2

+ (1− β1)
2.

By using lemma B.11, we have

E
∥∥m̃i

t+1 − E[m̃i
t+1]

∥∥2 ≤
(
β2
1(1− β2)

1

1 + β2
+ (1− β1)

2

)
σ2.
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B.2.2 Averaging Update Convergence

Assume f : Rd → R is L-smooth, N is the number of workers, on the i-th worker, consider the
following scheme based on the averaging:

git := ∇f(xt; ξ
i
t), ∀i = 1, . . . , N

mi
t+1 = β2m

i
t + (1− β2)g

i
t, ∀i = 1, . . . , N

m̃i
t+1 = β1m

i
t + (1− β1)g

i
t, ∀i = 1, . . . , N

xt+1 = xt − ϵ

(
1

N

N∑

i=1

sign(m̃i
t+1) + λxt

)
. //Average aggregation

(15)

Theorem B.13 (Convergence in Phase II). Under Assumption B.2 B.3, consider the scheme in (15) ,
and β1, β2 ∈ (0, 1), and β2 > β1, and ϵ, λ > 0. ∥λx0∥∞ ≤ 1. We have

1

T

T∑

t=1

ES(xt) ≤
f(x0)− f∗

Tϵ
+

2β1β2

√
d∥∇f(x0)∥

T (1− β2)
+

4β1Lϵd

1− β2
+

2β1σ√
1 + β2

+ 2(1− β1)σ + 2Lϵd.

Proof. For notation, write M̃t+1 =
∑N

i=1 sign(m̃
i
t+1). This yields xt+1 = xt − ϵM̃t+1 − ϵλxt.

Following Theorem B.1 from phase 1, once we have ∥λx0∥∞ ≤ 1, we stay within the constraint set
with ∥λxt∥ ≤ 1 for all subsequent time t ≥ 0.

Following a similar procedure in B.6, we have

f(xt+1)− f(xt) ≤ ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥22

≤ −ϵ⟨∇f(xt), M̃t+1 + λxt⟩+
L

2
∥xt+1 − xt∥22

≤ −ϵ⟨∇f(xt), sign(∇f(xt)) + λxt⟩+
L

2
∥xt+1 − xt∥22

+ ϵ⟨∇f(xt), sign(∇f(xt))− M̃t+1⟩
≤ −ϵS(xt) + 2Lϵ2d+ ϵ⟨∇f(xt), sign(∇f(xt))− M̃t+1⟩.

Let us bound the last term ⟨∇f(xt), sign(∇f(xt))− M̃t+1⟩,

E⟨∇f(xt), sign(∇f(xt))− M̃t+1⟩

= E⟨∇f(xt), sign(∇f(xt))−
1

N

N∑

i=1

sign(m̃i
t+1)⟩

=

N∑

i=1

1

N
E⟨∇f(xt), sign(∇f(xt))− sign(m̃i

t+1)⟩

= E⟨∇f(xt), sign(∇f(xt))− sign(m̃i
t+1)⟩ //{m̃i

t+1}1≤i≤N are independent

≤ 2
√
dE
∥∥∇f(xt)− m̃i

t+1

∥∥ //Lemma B.7

≤ 2
√
dE
[
β1

∥∥∇f(xt)−mi
t

∥∥+ (1− β1)
∥∥∇f(xt)− git

∥∥] //triangle inequality

≤ 2
√
d

(
β1

(
βt
2∥∇f(x0)∥+

2Lϵ
√
d

1− β2
+

σ√
1 + β2

)
+ (1− β1)σ

)
. //Lemma B.10

Then we have

f(xt+1)− f(xt) ≤ −ϵS(xt) + 2Lϵ2d+ ϵ⟨∇f(xt), sign(∇f(xt))− M̃t+1⟩

≤ −ϵS(xt) + 2Lϵ2d+ 2ϵ
√
d

(
β1

(
βt
2∥∇f(x0)∥+

2Lϵ
√
d

1− β2
+

σ√
1 + β2

)
+ (1− β1)σ

)
.
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Hence, a telescope yields

1

T

T∑

t=1

ES(xt) ≤
f(x0)− f∗

Tϵ
+

2β1β2

√
d∥∇f(x0)∥

T (1− β2)
+

4β1Lϵd

1− β2
+

2β1σ
√
d√

1 + β2
+ 2(1− β1)

√
dσ + 2Lϵd.

B.2.3 Global Lion Convergence

Assume f : Rd → R is L-smooth, N is the number of workers, on the i-th worker, consider the
following scheme based on the global Lion:

git := ∇f(xt; ξ
i
t)

mi
t+1 = β2m

i
t + (1− β2)g

i
t

m̃i
t+1 = β1m

i
t + (1− β1)g

i
t

xt+1 = xt − ϵ

(
sign(

1

N

N∑

i=1

m̃i
t+1) + λxt

)
. //Global Lion

(16)

Theorem B.14 (Convergence in Phase II). Under Assumption B.2 and B.3, consider the scheme in
(16) , and β1, β2 ∈ (0, 1), and β2 > β1, and ϵ, λ > 0. ∥λx0∥∞ ≤ 1. We have

1

T

T∑

t=1

ES(xt) ≤
f(x0)− f∗

Tϵ
+

2β1β2

√
d∥∇f(x0)∥

T (1− β2)
+

4β1Lϵd

1− β2
+

2
√
dσ√
N

.

Proof. For notation, write G̃t+1 = 1
N

∑N
i=1 m̃

i
t+1. This yields xt+1 = xt − ϵsign(G̃t+1)− ϵλxt.

Following Theorem B.1 from phase 1, once we have ∥λx0∥∞ ≤ 1, we stay within the constraint set
with ∥λxt∥ ≤ 1 for all subsequent time t ≥ 0.

Following the same procedure in B.6, we have

f(xt+1)− f(xt) ≤ ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥22

≤ −ϵ⟨∇f(xt), sign(G̃t+1) + λxt⟩+
L

2
∥xt+1 − xt∥22

≤ −ϵ⟨∇f(xt), sign(∇f(xt)) + λxt⟩+
L

2
∥xt+1 − xt∥22

+ ϵ⟨∇f(xt), sign(∇f(xt))− sign(G̃t+1)⟩
≤ −ϵS(xt) + 2Lϵ2d+ ϵ⟨∇f(xt), sign(∇f(xt))− sign(G̃t+1)⟩.

Let us bound ⟨∇f(xt), sign(∇f(xt))− sign(G̃t+1)⟩,

E⟨∇f(xt), sign(∇f(xt))− sign(G̃t+1)⟩

= E⟨∇f(xt), sign(∇f(xt))− sign(
1

N

N∑

i=1

m̃i
t+1)⟩

≤ 2
√
dE

∥∥∥∥∥∇f(xt)−
1

N

N∑

i=1

m̃i
t+1

∥∥∥∥∥ //Lemma B.7

≤ 2
√
dE

[
β1

∥∥∥∥∥∇f(xt)−
1

N

N∑

i=1

mi
t

∥∥∥∥∥+ (1− β1)

∥∥∥∥∥∇f(xt)−
1

N

N∑

i=1

git

∥∥∥∥∥

]
//triangle inequality

≤ 2
√
d

(
β1

(
βt
2∥∇f(x0)∥+

2Lϵ
√
d

1− β2
+

σ√
N(1 + β2)

)
+

(1− β1)σ√
N

)
//Lemma B.10

≤ 2
√
d

(
β1

(
βt
2∥∇f(x0)∥+

2Lϵ
√
d

1− β2

)
+

(1− β1)σ√
N

)
.
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Then we have

f(xt+1)− f(xt) ≤ −ϵS(xt) + 2Lϵ2d+ ϵ⟨∇f(xt), sign(∇f(xt))− M̃t+1⟩

≤ −ϵS(xt) + 2Lϵ2d+ 2ϵ
√
d

(
β1

(
βt
2∥∇f(x0)∥+

2Lϵ
√
d

1− β2

)
+

(1− β1)σ√
N

)
.

Hence, a telescope yields

1

T

T∑

t=1

ES(xt) ≤
f(x0)− f∗

Tϵ
+

2β1β2

√
d∥∇f(x0)∥

T (1− β2)
+

4β1Lϵd

1− β2
+

2(1− β1)
√
dσ√

N
+ 2Lϵd.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:[Yes]

Justification: The claims are supported with theoretical and empirical results.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In the Conclusion section, we mentioned that Distributed Lion can be further
improved when combined with compression techniques. Currently, a limitation is that
D-Lion (Avg) and D-Lion (MaVo) perform inconsistently across datasets and benchmarks,
and it will be good to understand why in future work.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We list our assumptions and results explicit in the theory section.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the benchmark, algorithm, and hyperparameters for reproducing
our results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA] .

Justification: All the data we use are public. We will release code upon acceptance.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: answerYes

Justification: We provide the details for training and testing in the experiment section for
reproducing our results.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA] .

Justification: We average the results over 3 seeds and report the mean in Figure 2 for
the CIFAR experiment. But for larger scale experiment, it is extremely computationally
expensive to conduct the experiments multiple times, and it is known that the result is
relatively stable. Hence we only run once for each large-scale experiment.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided how many workers are needed for each experiment, the GPU
resource can be arbitrary as long as it fits in memory.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We think our paper confirms in every respect with the Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We do not think our work leads to any negative societal impact.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: We think the paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: we cite the data and benchmarks we use, and the baseline methods we compare
against.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: The paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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